不等式知识点汇总

合集下载

高中不等式全套知识点总结

高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。

一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。

2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。

3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。

二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。

2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。

3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。

三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。

2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。

四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。

2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。

高考不等式知识点总结

高考不等式知识点总结

高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。

下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。

当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。

2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。

3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。

4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。

5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。

二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。

在解过程中,可以通过加减法、乘除法保持不等式不变。

2.不等式组:由多个不等式组成的方程组,称为不等式组。

求解不等式组的关键是确定每个不等式的集合和并集。

三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。

可以根据系数的正负、零点的位置和变号法等来确定解的范围。

2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。

四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。

2.解绝对值不等式的关键是分情况讨论。

将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。

不等式知识点大全

不等式知识点大全

不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。

2.不等式的解集:解集是满足不等式的所有实数的集合。

3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。

二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。

2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。

三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。

2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。

2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。

2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。

2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。

2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。

八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。

2.布尔不等式:包括与或非不等式和限制条件不等式等。

3.等价不等式:等式两边取绝对值后变为不等式。

4.单调性不等式:利用函数单调性性质证明不等式。

5.导数不等式:利用函数的导数性质证明不等式。

6.积分不等式:利用积分性质及定积分的性质来推导不等式。

初中数学不等式知识点大全

初中数学不等式知识点大全

初中数学不等式知识点大全一、不等式的基本概念1.不等式的定义:不等式是数学中表示两个数的大小关系的一种数学符号表示法。

2.不等式符号的意义:"<"表示小于、">"表示大于、"<="表示小于等于、">="表示大于等于。

3.一元一次不等式、二元一次不等式和多变量不等式的定义和性质。

4.不等式的解集:表示满足不等式的全部解的集合,可以用数轴表示。

二、不等式的性质1.不等式的传递性:如果a<b,b<c,则a<c。

2.不等式两边加减同一个数,不影响不等关系的大小。

3.不等式两边乘除同一个正数,不影响不等关系的大小。

4.不等式两边乘除同一个负数,不等关系会发生改变。

5.不等式两边取倒数时,要注意变号问题。

6.乘以不等式时,要考虑所乘以的数的正负情况。

三、不等式的解法1.第一类不等式(一元一次不等式)的解法:根据不等式的性质,将不等式中的未知数移到一边,得到关于未知数的集合表示的解,进而求解交集、并集或全集。

2.第二类不等式(一元二次不等式)的解法:将不等式变形为一元二次函数的图像问题,通过观察函数图像,确定不等式的解集。

3.系统不等式的解法:将多个不等式作为一个整体进行考虑,得到多个不等式的交集或并集形式,再求解。

四、一些常见的数学不等式1.加减法不等式:例如2x+3>7,根据性质将未知数移到一边,得到解集x>22.乘除法不等式:例如3x/5>=6,根据性质将未知数移到一边,得到解集x>=10。

3.绝对值不等式:例如,3x+5,<7,根据绝对值的性质进行分段讨论,得到解集-4<x<24.开方不等式:例如√(x-1)>3,根据开方的定义和性质进行讨论,得到解集x>10。

5.取整不等式:例如[x]>2,根据整数函数的定义和性质进行讨论,得到解集x>3五、不等式的应用1.不等式在图像问题中的应用:例如求一元一次不等式的解集时,可以将不等式表示的区间在数轴上进行标注,直观地表示解集。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

不等式知识点汇总

不等式知识点汇总

不等式知识点汇总不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。

下面我们来对不等式的相关知识点进行一个汇总。

一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。

例如:3 < 5,x + 2 > 5,y 1 ≤ 3 等都是不等式。

二、不等式的基本性质1、对称性:如果 a > b,那么 b < a 。

2、传递性:如果 a > b 且 b > c,那么 a > c 。

3、加法性质:如果 a > b,那么 a + c > b + c 。

4、乘法性质:如果 a > b 且 c > 0,那么 ac > bc ;如果 a > b 且c < 0,那么 ac < bc 。

这些基本性质是解决不等式问题的基础,需要牢记并能够熟练运用。

三、一元一次不等式形如 ax + b > 0 或 ax + b < 0(其中a ≠ 0)的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:1、去分母(如果有分母)。

2、去括号。

3、移项:把含未知数的项移到一边,常数项移到另一边。

4、合并同类项。

5、系数化为 1:根据不等式的性质,将未知数的系数化为 1。

例如,解不等式 2x + 5 > 9 ,首先移项得到 2x > 9 5 ,即 2x >4 ,然后系数化为 1 ,得到 x > 2 。

四、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0(其中a ≠ 0)的不等式叫做一元二次不等式。

解一元二次不等式通常需要先求出对应的一元二次方程的根,然后根据二次函数的图象来确定不等式的解集。

例如,对于不等式 x² 3x + 2 < 0 ,先解方程 x² 3x + 2 = 0 ,因式分解为(x 1)(x 2) = 0 ,解得 x = 1 或 x = 2 。

然后根据二次函数 y = x² 3x + 2 的图象,开口向上,与 x 轴的交点为 1 和 2 ,所以不等式的解集为 1 < x < 2 。

不等式知识点总结

不等式知识点总结

不等式知识点总结一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 2>5,x - 1≤slant2x等。

2. 不等式的解与解集。

- 不等式的解:使不等式成立的未知数的值叫做不等式的解。

例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。

- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。

3. 解不等式。

- 求不等式解集的过程叫做解不等式。

例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。

二、不等式的基本性质。

1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。

例如5>3,那么3 < 5。

2. 性质2(传递性)- 如果a>b,b>c,那么a>c。

例如7>5,5>3,那么7>3。

3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。

例如3>1,那么3+2>1 + 2,即5>3。

- 推论:如果a>b,c>d,那么a + c>b + d。

例如4>2,3>1,那么4 + 3>2+1,即7>3。

4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。

例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。

高中不等式知识点归纳总结

高中不等式知识点归纳总结

高中不等式知识点总结1. 不等式的定义和基本性质不等式是数学中用来表示大小关系的符号。

一般地,设a、b是实数,可以有以下四种不等式关系:•$ a < b $ :表示a小于b,即a严格小于b;•$ a > b $ :表示a大于b,即a严格大于b;•$ a b $ :表示a小于等于b,即a小于或等于b;•$ a b $ :表示a大于等于b,即a大于或等于b。

基本性质:•对于不等式的加减运算:若a小于等于b,则a+c小于等于b+c,a-c小于等于b-c(c为实数);•对于不等式的乘法运算:若a小于等于b且c大于0,则ac小于等于bc,若c小于0,则ac大于等于bc;•对于不等式的除法运算:若a小于等于b且c大于0,则a/c小于等于b/c,若c小于0,则a/c大于等于b/c(c不等于0)。

2. 一元一次不等式2.1 不等式的解集表示一元一次不等式的解集可以用数轴上的区间表示。

对于形如ax+b>0或ax+b<0的一元一次不等式,可以先求出方程的零点x=-b/a,再根据a的正负判断不等式的解集:•当a>0时,不等式的解集为x<−b/a或x>−b/a;•当a<0时,不等式的解集为x>−b/a或x<−b/a。

2.2 一元一次不等式的性质•当且仅当不等式两边同时加上(或减去)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个负数时,不等号的方向改变。

3.1 不等式的解集表示一元二次不等式的解集可以用数轴上的区间表示。

对于形如ax2+bx+c>0或ax2+bx+c<0的一元二次不等式,可以先求出抛物线的顶点和判别式D的值,再根据D的正负判断不等式的解集。

•当a>0时,不等式的解集为抛物线顶点的左右两侧;•当a<0时,不等式的解集为抛物线顶点的外侧。

初中数学不等式知识点大全

初中数学不等式知识点大全

初中数学不等式知识点大全知识点1:不等式不等式是用不等号(。

≥、<、≤、≠)表示不等关系的式子。

常用的表示不等关系的语言及符号有:1.大于、比……大、超过。

2.小于、比……小、低于。

<;3.不大于、不超过、至多:≥;4.不小于、不低于、至少。

≤;5.正数。

6.负数:<;7.非负数:≥;8.非正数:≤。

例1中是不等式的有-1>2,3x≥-1,3x-4<2y,3x-5=2x+2,a^2+2≥0,a^2+b^2≠c^2.例2中不能用不等式表示的是m+n等于。

练1中是不等式的有5>x,3a+4b>y,2a+3≤7,x^2+1≥8.练2中(1)的含义是x^2大于等于0,(2)的含义是-x小于等于0.知识点2:不等式的基本性质不等式有以下基本性质:1.不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

即如果a>b,那么a+c>b+c,a-c>b-c。

2.不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

即如果a>b,c>0,那么ac>bc,a/b>b/b。

3.不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

即如果a>b,c<0,那么ac<bc,a/b<b/a。

4.如果a>b,那么b<a。

5.如果a>b,b>c,那么a>c。

例1中由a-3<b+1可得到的结论是a<b+4.例2中如果a>b,那么下列变形错误的是2-2a>2-2b。

例3中正确的判断是若a<b,则a^2<b^2.例4中若a1,a+b<ab。

例1】解下列不等式组,结果正确的是()B.不等式组x7的解集是x 1解析:用数轴法解不等式组,先求出每一个不等式的解集,再找出它们的公共部分。

对于不等式组x7的解集是x 1x 1其解集为x7,x1,即x7.结果正确的是B.练1】嘉年华小区计划新建50个停车位,已知新建1个地上停车位和1个地下停车位需0.7万元,新建3个地上停车位和2个地下停车位需1.6万元。

数学不等式关键知识点总结

数学不等式关键知识点总结

数学不等式关键知识点总结一、不等式的概念不等式是用来表示两个数之间大小关系的数学式子。

通常,我们用符号"<"、">"、"≤"、"≥"来表示不等式中的大小关系。

例如,"2 < 3"表示2小于3;"4 ≥ 2"表示4大于或等于2。

在不等式中,我们把不等号的左边称为不等式的左侧,右边称为不等式的右侧。

这里需要说明的是,不等式并不仅仅是单纯的数值比较,还可以是变量的比较。

二、不等式的解集解集是不等式的一个重要概念。

解集指的是满足不等式的所有可能的解的集合。

对于单变量不等式,解集通常用一个不等式表示出来,例如"-2 < x < 3"表示x的取值范围在-2和3之间;对于多变量不等式,解集通常用一个不等式组表示出来,例如"2x + 3y ≤ 6"和"x + y < 4"表示x和y的取值范围。

解集的求解是解决不等式问题的关键步骤之一。

三、不等式的性质1. 加法性质:不等式两边同时加上(减去)同一个数,不等号方向不变。

例如,若a > b,则a + c > b + c;若a < b,则a - c < b - c。

2. 乘法性质:不等式两边同时乘以(除以)同一个正数,不等号方向不变;不等式两边同时乘以(除以)同一个负数,不等号方向改变。

例如,若a > b 且c > 0,则ac > bc;若a > b 且c < 0,则ac < bc。

3. 联立性质:若a > b 且 c > d,则a + c > b + d。

四、不等式的解法解不等式的方法通常有图形法、代数法和参数法等。

其中,代数法是解不等式的主要方法之一,主要有以下几种方法:1. 直接法:适用于一次不等式的情况,通过对不等式进行简单的加法、减法、乘法、除法等操作,得到不等式的解集。

不等式知识点总结(精选5篇)

不等式知识点总结(精选5篇)

不等式知识点总结(精选5篇)不等式知识点总结篇11、不等式及其解集用“<”或“>”号表示大小关系的式子叫做不等式。

使不等式成立的未知数的值叫做不等式的解。

能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。

含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

2、不等式的性质不等式有以下性质:不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。

不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。

不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。

3、实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为xa)的形式。

4、一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。

几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

解不等式就是求它的解集。

对于具有多种不等关系的问题,可通过不等式组解决。

解一元一次不等式组时。

一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。

不等式知识点总结篇2不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

初中数学不等式知识点

初中数学不等式知识点

初中数学不等式知识点一、不等式的定义与性质1.不等关系:对于任意两个实数a和b,只有以下三种情况之一成立:a>b,a=b,a<b。

2.不等式:由不等关系得到的表达式称为不等式。

3.不等式的解:使得不等式成立的数字的范围。

4.不等式的性质:a)若a>b且b>c,则a>c。

b)若a>b,则a+c>b+c。

c) 若a>b且c>0,则ac>bc。

d) 若a>b且c<0,则ac<bc。

二、一元一次不等式1.解一元一次不等式的方法:a)变形法:根据不等式性质对不等式进行变形,以求得解的范围。

b)试值法:取不等式两边的中心值,带入不等式进行判断。

c)图解法:将不等式转化为数轴上的表示,并用图形确定解的范围。

2.一元一次不等式的特殊情况:a)严格不等式:不等号中的大于或小于号是有实际意义的,例如x>3b)非严格不等式:不等号中的大于等于或小于等于号是有实际意义的,例如x≥33.一元一次不等式的解集表示方法:a)区间表示法:解集用区间表示,如(3,+∞)表示大于3的所有实数。

b)不等式表示法:通过不等式的形式表示解集,如x>3三、一元二次不等式1.解一元二次不等式的方法:a)求解开头为正负的二次不等式:将二次不等式化为二次方程,再通过求解二次方程得到解的范围。

b)求解开头为非负的二次不等式:直接观察二次不等式的开头,确定解的范围。

2.一元二次不等式的特殊情况:a)严格不等式:不等号中的大于或小于号是有实际意义的,例如x^2>4b)非严格不等式:不等号中的大于等于或小于等于号是有实际意义的,例如x^2≥43.一元二次不等式的解集表示方法:a)区间表示法:解集用区间表示,如(-∞,-2)∪(2,+∞)表示不在(-2,2)范围内的所有实数。

b)不等式表示法:通过不等式的形式表示解集,如x<-2或x>2四、两个不等式的关系1. 不等式的加减乘除运算:若a>b且c>0,则有a+c>b+c、ac>bc (或ac<bc)、a/c>b/c(或a/c<b/c)。

不等式知识点总结

不等式知识点总结

不 等 式1、 不等式的性质是证明不等式和解不等式的基础。

不等式的基本性质有: 1对称性:a>b ⇔b<a ;2传递性:若a>b ,b>c ,则a>c ; 3可加性:a>b ⇒a+c>b+c ;4可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。

5同向相加:若a>b ,c>d ,则a+c>b+d ; 6异向相减:b a >,d c <d b c a ->-⇒. 7正数同向相乘:若a>b>0,c>d>0,则ac>bd 。

8乘方法则:若a>b>0,n ∈N+,则n nb a >;9开方法则:若a>b>0,n ∈N+,则n n b a >;10倒数法则:若ab>0,a>b ,则b1a 1<。

2、绝对值不等式(1)|x |<a (a >0)的解集为:{x |-a <x <a}; |x |>a (a >0)的解集为:{x |x >a 或x <-a}。

(2)|b ||a ||b a |||b ||a ||+≤±≤-3、不等式的证明:(1) 常用方法:比较法,公式法,分析法,反证法,换元法,放缩法; (2) 在不等式证明过程中,应注重与不等式的运算性质联合使用; (3) 证明不等式的过程中,放大或缩小应适度。

4、一元二次不等式ax 2+box>0(a>0)解法.: 一元二次不等式的解集其实就和二次项系数、二次方程的根以及不等号有关,因而可以总结解一元二次不等式的一般步骤:先把二次项系数化成正数,再解对应二次方程,最后根据方程的根的情况,结合不等号的方向写出解集(可称为“三步曲”法).一元二次方程的解的讨论0>∆0=∆ 0<∆二次函数c bx ax y ++=2(0>a)的图象一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax {}21x x x x <<∅∅5、整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间) 6、分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f7、含绝对值不等式的解法 (1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. (1)ax a a a x <<-⇔><)0(;(2)ax a x a a x >-<⇔>>或)0(;(3)ax f a a a x f <<-⇔><)()0()(;(4)a x f a x f a a x f >-<⇔>>)()()0()(或;(5))()()()()(x g x f x g x g x f <<-⇔<;(6))()()()()()(x g x f x g x f x g x f >-<⇔>或;(7)ax b b x a a b b x a -≤≤-≤≤⇔>>≤≤或)0(;(8)⎪⎩⎪⎨⎧≠<⇔⎩⎨⎧≠<⇔><0)(])([)(0)()()()0()()(22x g x g a x f x g x g a x f a a x g x f 。

不等式知识点总结

不等式知识点总结

不等式知识点总结不等式是数学中的一个重要概念,它描述了数的大小关系。

在不等式中,通过使用不等号(<, ≤, >, ≥)来表示不同数的大小关系。

1. 基本不等式:- 加减法不等式:如果a > b,则有a + c > b + c,a - c > b - c; - 乘法不等式:如果a > b 且 c > 0,则有ac > bc;如果a > b且 c < 0,则有ac < bc;- 除法不等式:如果a > b 且 c > 0,则有a/c > b/c;如果a >b 且c < 0,则有a/c < b/c;- 幂不等式:如果a > b 且 n > 1,则有a^n > b^n;如果0 < a < b 且 0 < n < 1,则有a^n > b^n。

2. 不等式的性质:- 传递性:如果a > b 且 b > c,则有a > c;- 对称性:如果a > b,则有b < a;- 反身性:对于任意的a,有a = a;- 加减性:如果a > b,则有a + c > b + c;- 乘除性:如果a > b 且 c > 0,则有ac > bc,a/c > b/c。

3. 不等式的求解:- 确定不等式的解集:通过比较不等式中的数的大小关系,可以确定不等式的解集。

例如,对于不等式2x + 1 > 5,可以通过移项得到2x > 4,再除以2得到x > 2,解集为{x | x > 2}。

- 不等式的逆运算:对于不等式a > b,可以通过取倒数、开平方、开n次方等逆运算来改变不等式的大小关系。

- 不等式的绝对值:当不等式中存在绝对值时,需要对绝对值进行分类讨论,分别讨论绝对值的正负情况,然后求解不等式。

不等式知识点归纳

不等式知识点归纳

不等式知识点归纳1.不等式的基本性质不等式的性质可分为单向性质和双向性质两类.在解不等式时,只能用双向性质; 在证明不等式时,既可用单向性质,也可用双向性质. (1)a b b a <⇔>对称性 (2)c a c b b a >⇒>>,传递性(3)c b c a b a+>+⇒>加法单调性(4)d b c a d c b a +>+⇒>>,同向不等式相加 (5)d b c a d c b a->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,. 或 c b c a >(乘法单调性)(7)bc ac c b a <⇒<>0, 或 c bca <(8)bd ac d c b a>⇒>>>>0,0(同向不等式相乘)(9)0,0a ba b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b >>⇒<(倒数关系)(11))1,(0>∈>⇒>>n Z n b a b a n n且平方法则(12))1,(0>∈>⇒>>n Z n b a b an n 且开方法则倒数性质①a>b,ab>0.11b a <⇒②a<0<b.11b a <⇒③a>b>0,0<c<d.d b c a >⇒ ④0<a<x<b 或a<x<b<0.a x b 111<<⇒ 有关分数的性质:若a>b>0,m>0,则①真分数的性质: ②假分数的性质:).(;0>--->++<m b m a mb a b m a m b a b ).(;0>---<++>m b m b m a b a m b m a b a比例的几个性质①比例基本性质:;②反比定理:;③更比定理:;④合比定理;;⑤分比定理:;⑥合分比定理:;⑦分合比定理:;⑧等比定理:若,,则.①,则.【说明】:(,糖水的浓度问题).【拓展】:.②,,则;2.比较大小:分类讨论1.作差比较法;2.作商比较法(常用于指数式或均为正数的两式).(1)作差法步骤:作差——变形——判断差的符号.作商法的步骤:作商——变形——判断商与1的大小.(2)两种方法的关键是变形.常用的变形技巧有因式分解、配方、有理化等,也可以等价转化为易于比较大小的两个代数式来达到目的. 1.比较法(1)作差比较法①理论依据:a >b ⇔a -b >0;a <b ⇔a -b <0.②证明步骤:作差→变形→判断符号→得出结论.(2)作商比较法①理论依据:b >0,ab >1⇒a >b ;b <0,ab >1⇒a <b .②证明步骤:作商→变形→判断与1的大小关系→得出结论.2.平方法、开方法、倒数法等3.用同向不等式求差的范围.c b y xd a cy d bx a d y c b x a -<-<-⇒⎩⎨⎧-<-<-<<⇒⎩⎨⎧<<<<4.倒数关系在不等式中的作用..110;110b a b a ab b a b a ab >⇒⎩⎨⎧<><⇒⎩⎨⎧>>5.不等式的解法: 注意“系数化正”附:化归方法在不等式中的具体运用:(1)异向化同向;(2)负数化正数;(3)减式化加式;(4)除式化乘式;(5)多项化少项;(6)高次化低次.注:1.求不等式的解集、定义域及值域时,结果一定要用集合或区间表示,不能用不等式表示. 2.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o,a<b<o.解不等式应遵守的原则:1.凡是x的系数为负数的因式首先要[ 即标准式]2.分式不等式不能两边同乘上公分母而约去分母,只能移项通分。

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。

不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。

2.解分式不等式f(x)。

a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。

3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。

4.解含参不等式时,常常需要分类等价转化。

按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。

二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。

三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。

2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。

四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。

2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。

不等式知识点总结

不等式知识点总结

不等式知识点总结不等式(Inequality)是数学中一个重要的概念,它描述的是两个数或两个式子之间大小关系的一种表示方式。

不等式可以用来解决许多实际问题,例如优化问题、利润问题、经济政策问题等。

下面将对不等式的基本概念、性质、解法以及应用进行总结。

一、不等式的基本概念不等式表示的是数或式之间的大小关系,它与等式相似,但不同的是不等式的结果为真时称为“成立”,结果为假时称为“不成立”。

不等式的基本形式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)四种形式。

二、不等式的性质1.相等性质:若两个不等式中的量相等,则两个不等式具有相同的大小关系。

2.传递性质:若a>b且b>c,则a>c。

也就是说,如果a大于b,而b大于c,则a大于c。

3.加减性质:若a>b,则a+c>b+c;若a>b,则a-c>b-c。

也就是说,如果a大于b,则a加上(或减去)相同的数c后仍然大于(或小于)b。

4. 正数性质:若 a>b 且 c>0,则 ac>bc。

也就是说,如果 a 大于b,而 c 大于 0,则 a 乘以 c 后仍然大于 b。

三、不等式的解法不等式的解法可以根据不等式的类型和条件的不同而有所不同,下面介绍几种常见的解法方法。

1.图解法:对于一元一次不等式,我们可以将其转化为坐标系中的图形表示,通过观察图形的位置判断不等式的解集。

例如,对于不等式x>3,我们可以在坐标系中画出一条过点(3,0)的直线,然后观察直线的右边区域即可确定不等式的解集。

2.代入法:对于一元一次不等式,我们可以根据不等式的条件逐个代入可能的解集,然后判断不等式的成立与否。

例如,对于不等式2x+1>5,我们可以依次代入x=2、x=3、x=4,然后判断不等式是否成立。

3.移项法:对于一元一次不等式,我们可以通过移项将不等式转化为等式,然后求解等式的根,再根据根的取值范围确定不等式的解集。

不等式知识点汇总

不等式知识点汇总

不等式知识点汇总不等式是数学中极为重要的一种运算形式,它与等式类似,但在计算过程中更具有灵活性和强大性。

因此,不等式被广泛应用于各种数学和实际问题的解决中。

本文将从基本概念、性质、应用等方面对不等式进行全面归纳和总结。

一、不等式的基本概念不等式是指两个数或两个算式之间的大小关系。

通常用符号"<"或">"表示,例如a<b或a>b。

其中,">"或"<"是称号,a和b则是两个数或两个算式,称之为不等式的左边和右边。

我们可以通过比较两边的大小关系来判断不等式的真假。

例如,4>2是一个成立的不等式,因为4比2大。

而3<2是一个不成立的不等式,因为3不如2大。

二、不等式的分类根据不等式的形式和特点,我们可以将它们分为以下几种。

1.一元不等式一元不等式是指只有一个未知数的不等式,例如x>1或x<5等。

在一元不等式中,我们需要通过代数变形或图解法等方法求解未知数x的取值范围。

2.二元不等式二元不等式是指含有两个未知数的不等式,例如x+y<10或2x-y>1等。

在二元不等式中,我们需要求解两个未知数x和y的取值范围。

3.绝对值不等式绝对值不等式是指含有绝对值符号的不等式,例如|2x-3|<5或|y+1|>3等。

在绝对值不等式中,我们需要将绝对值符号去掉,然后根据不等式的性质进行代数变形求解。

4.等比不等式等比不等式是指含有等比关系的不等式,例如a^2<b^2或a/x>b/y等。

在等比不等式中,我们需要根据等比关系进行代数变形或图解法等方法求解未知数的取值范围。

三、不等式的性质不等式有以下两个重要性质,它们是不等式求解的重要依据。

1.加减性质加减性质是指在不等式两边同时加上或减去一个数时,不等式的大小关系不变。

例如,若a<b,则a+c<b+c和a-c<b-c都成立。

不等式知识点

不等式知识点

一、知识梳理(一)不等式与不等关系 1.不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a nn且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n且2.应用不等式的性质比较两个实数的大小:作差法、作商法 (二)一元二次不等式及其解法有两相异实根 有两相等实根(三)线性规划1.用二元一次不等式(组)表示平面区域:二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2.二元一次不等式表示哪个平面区域的判断方法:由于对在直线Ax+By+C=0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax+By+C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3.线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z=2x+y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x,y )叫可行解;由所有可行解组成的集合叫做可行域;使目标函数取得最大或最小值的可行解叫线性规划问题的最优解。

不等式知识要点

不等式知识要点

不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a <⇔<-=⇔=->⇔>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式.(4) 同解不等式与不等式的同解变形. 2.不等式的基本性质(1)a b b a <⇔>(对称性)(2)c a c b b a >⇒>>,(传递性)(3)c b c a b a +>+⇒>(加法单调性)(4)d b c a d c b a +>+⇒>>,(同向不等式相加) (5)d b c a d c b a ->-⇒<>,(异向不等式相减) (6)bc ac c b a >⇒>>0,.(7)bc ac c b a <⇒<>0,(乘法单调性)(8)bd ac d c b a >⇒>>>>0,0(同向不等式相乘)(9)0,0a b a b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b>>⇒<(倒数关系) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)3.几个重要不等式(1)0,0||,2≥≥∈a a R a 则若(2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么.2a b +≤(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.,3a b c a b c R +++∈(4)若、、则a=b=c 时取等号) 0,2b aab a b>+≥(5)若则(当仅当a=b 时取等号)2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或(7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么2112a ba b+≤+a=b 时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数):特别地,222()22a b a b ab ++≤≤(当a = b 时,222()22a b a b ab ++==)),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫⎝⎛+++≥++ ⇒幂平均不等式:22122221)...(1...n n a a a na a a +++≥+++ 注:例如:22222()()()ac bd a b c d +≤++.常用不等式的放缩法:①21111111(2)1(1)(1)1n n n n n n n n nn-==-≥++--1)2n nn n ==≥+-(2)柯西不等式: 时取等号当且仅当(则若nn n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ 332211223222122322212332211321321))(();,,,,,,,,(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g xf x f x f xg x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ (3)无理不等式:转化为有理不等式求解 1()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域○2⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ○3⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f (4).指数不等式:转化为代数不等式()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>(5)对数不等式:转化为代数不等式()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化 ⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为注:常用不等式的解法举例(x 为正数): ①231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②2222232(1)(1)124(1)()22327x x x y x x y y --=-⇒=≤=⇒≤类似于22sin cos sin (1sin )y x x x x ==-,③111||||||()2x x x x x x+=+≥与同号,故取等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式知识点汇总1、不等式的基本性质②(传递性),a b b c a c >>⇒> ①(对称性)a b b a >⇔>④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑦(开方法则)0,1)a b n N n >>⇒∈>且③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n na b a b n N n >>⇒>∈>且⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).③(三个正数的算术—几何平均不等式)3()a b c R +∈、、(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑦ban b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑨绝对值三角不等式.a b a b a b -≤±≤+ 3、几个著名不等式①平均不等式:112a b a b --+≤≤+()a b R +∈, (当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++③≥1122(,,,).x y x y R ∈④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<*,1)k N k >∈>等. ①舍去或加上一些项,如22131()();242a a ++>+ 5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()()0()f xf xg xg xf xg xf xg xg x>⇔⋅>⋅≥⎧≥⇔⎨≠⎩(<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f xa af x a≥⎧<>⇔⎨<⎩2()0()()()[()]f xg x g xf xg x≥⎧⎪<⇔>⎨⎪<⎩2()0(0)()f xa af x a≥⎧>>⇔⎨>⎩2()0()0()()0()0()[()]f xf xg x g xg xf xg x>⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或()0()0()()f xg xf xg x≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a>时,()()()()f xg xa a f x g x>⇔>⑵当01a<<时, ()()()()f xg xa a f x g x>⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法:⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤。

相关文档
最新文档