内存寻址的三种模式

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内存寻址的三种模型

1. 地址的种类

首先明确一下逻辑地址和线性地址这两个概念:

1. 逻辑地址

2. 线性地址

3. 物理地址

1.1 逻辑地址:

逻辑地址是编译器生成的,我们使用在linux环境下,使用C语言指针时,指针的值就是逻辑地址。对于每个进程而言,他们都有一样的进程地址空间,类似的逻辑地址,甚至很可能相同。

1.2 线性地址:

线性地址是由分段机制将逻辑地址转化而来的,如果没有分段机制作用,那么程序的逻辑地址就是线性地址了。

1.3 物理地址

物理地址是CPU在地址总线上发出的电平信号,要得到物理地址,必须要将逻辑地址经过分段,分页等机制转化而来。

2. 三种寻址模型

x86体系结构下,使用的较多的内存寻址模型主要有三种:

1. 实模式扁平模型real mode flat model

2. 实模式分段模型real mode segment model

3. 保护模式扁平模型protected mode flat model

下面是对这三种模型的描述

实模式和保护模式相对,实模式运行于20位地址总线,保护模式则启用了32位地址总线,地址使用的是虚拟地址,引入了描述符表;虽然二者都引入了段这样一个概念,但是实模式的段是64KB固定大小,只有16KB个不同的段,CS,DS等存储的是段的序号(想想为什么?)。保护模式则引入了GDT和LDT段描述符表的数据结构来定义每个段。

扁平模型和分段模型相对,区别在于程序的线性地址是共享一个地址空间还是需要分成多个段,即为多个程序同时运行在同一个CS,DS的范围内还是每个程序都拥有自己的CS,DS:前者(flat)指令的逻辑地址要形成线性地址,不需要切换CS,DS;后者的逻辑地址,必须要经过段选择子去查找段描述符,切换CS,DS,才能形成线性地址。

3. 实模式扁平模型

该模式只有在386及更高的处理器中才能出现!

80386的实模式,就是指CPU可用的地址线只有20位,能寻址0~1MB的地址空间。

注意:80386的实模式并不等同于8086/8088的实模式,后者的实模式其实就是实模式分段模型!

扁平模型,意味着我们这里不使用任何的分段寄存器。(其实还是使用了CS,DS,只是不用程序员去显示地为该寄存器赋值,jmp指令时就已经将CS, DS设置好了)

Linux启动代码arch/i386/boot/bootsect.S就工作在该模式下。

逻辑地址----> 物理地址

4. 实模式分段模型

对于8086/8088 运行在实模式的程序,其实就是运行在实模式分段模型中。对于不同的程序,有不同的CS,DS值,每个程序的段起始地址都不同。对于这样的程序而言,偏移地址16位的特性决定了每个段只有64KB大小。

详细过程可以用下图来描述:该图来自/gustavo/blog/

5. 保护模式扁平模型

我们的Linux,Window XP/7采用的内存寻址模型,Linux中,段主要分为4种,即为内核代码段,内核数据段,用户代码段,用户数据段。

对于内核代码段和数据段而言,CS,DS的值是0xC00000000,而用户代码和数据段的CS,DS的值是0x00000000

当CPU运行于32位模式时,不管怎样,寄存器和指令都可以寻址整个线性地址空间,所以根本就不需要再去使用基地址。基址可以设为一个统一的值。

下面是一个示例,该图来自/gustavo/blog/

扁平模型在这里得到了很好的体现,这个用户空间的程序基地址是0,。事实上,所有的用户空间的程序,其GDT指向的基地址都是0。

posted @ 2011-12-01 16:39 李洛克阅读(12) 评论(0) 编辑

2011年11月20日

Linux Cache 机制

在阅读文章前,您应该具备基本的存储器层次结构知识,至少要了解局部性原理。要详细了解cache基本原理,可以参考本书《深入理解计算机系统》中存储器体系结构一章:

带着疑问来看文章,cache对于程序员是不可见的,它完全是由硬件控制的,为什么在linux内核中还有cache.h这个头文件,定义了一些关于cache的结构?

1. cache概述

cache,中译名高速缓冲存储器,其作用是为了更好的利用局部性原理,减少CPU访问主存的次数。简单地说,CPU正在访问的指令和数据,其可能会被以后多次访问到,或者是该指令和数据附近的内存区域,也可能会被多次访问。因此,第一次访问这一块区域时,将其复制到cache中,以后访问该区域的指令或者数据时,就不用再从主存中取出。

2. cache结构

假设内存容量为M,内存地址为m位:那么寻址范围为000…00~FFF…F(m位)

倘若把内存地址分为以下三个区间:

《深入理解计算机系统》p305 英文版beta draft

tag, set index, block offset三个区间有什么用呢?再来看看Cache的逻辑结构吧:

将此图与上图做对比,可以得出各参数如下:

B = 2^b

S = 2^s

现在来解释一下各个参数的意义:

一个cache被分为S个组,每个组有E个cacheline,而一个cacheline中,有B个存储单元,现代处理器中,这个存储单元一般是以字节(通常8个位)为单位的,也是最小的寻址单元。因此,在一个内存地址中,中间的s位决定了该单元被映射到哪一组,而最低的b位决定了该单元在cacheline中的偏移量。valid通常是一位,代表该cacheline是否是有效的(当该cacheline不存在内存映射时,当然是无效的)。tag就是内存地址的高t位,因为可能会有多个内存地址映射到同一个cacheline中,所以该位是用来校验该cacheline是否是CPU要访问的内存单元。

当tag和valid校验成功是,我们称为cache命中,这时只要将cache中的单元取出,放入CPU寄存器中即可。

当tag或valid校验失败的时候,就说明要访问的内存单元(也可能是连续的一些单元,如int占4个字节,double占8个字节)并不在cache中,这时就需要去内存中取了,这就是cache不命中的情况(cache miss)。当不命中的情况发生时,系统就会从内存中取得该单元,将其装入cache中,与此同时也放入CPU寄存器中,等待下一步处理。注意,以下这一点对理解linux cache机制非常重要:

当从内存中取单元到cache中时,会一次取一个cacheline大小的内存区域到cache中,然后存进相应的cacheline中。

例如:我们要取地址(t, s, b) 内存单元,发生了cache miss,那么系统会取(t, s, 00…000) 到(t, s, FF…FFF)的内存单元,将其放入相应的cacheline中。

下面看看cache的映射机制:

当E=1时,每组只有一个cacheline。那么相隔2^(s+b)个单元的2个内存单元,会被映射到同一个cacheline中。(好好想想为什么?)

相关文档
最新文档