实验八 九 简支梁和悬臂梁的振型测量

合集下载

梁的振动实验报告

梁的振动实验报告

梁的振动实验报告实验目的改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。

对比理论计算结果与实际测量结果。

正确理解边界条件对振动特性的影响。

实验内容对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。

实验原理1、固有频率的测定悬臂梁作为连续体的固有振动,其固有频率为:,其一、二、三、四阶时,简支梁的固有频率为:其一、二、三、四阶时,其中E为材料的弹性模量,I为梁截面的最小惯性矩,ρ为材料密度,A为梁截面积,l为梁的长度。

试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm.材料参数: 45#钢,弹性模量E=210 (GPa), 密度=7800 (Kg/m3)横截面积:A=4.33*10-4 (m2),截面惯性矩:J==2.82*10-9(m4)则梁的各阶固有频率即可计算出。

2、实验简图图1 悬臂梁实验简图图2简支梁实验简图实验仪器本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。

图3和图4分别为悬臂梁和简支梁的实验装置图。

图5为YE6251数据采集仪。

图3 悬臂梁实验装置图图4 简支梁实验简图图5 YE6251数据采集分析系统实验步骤1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。

2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。

3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。

4:用力锤对第1点激振,对应的激励为f1,响应为1,平均3次,对应的数据为第1批数据,以此类推,测量完全部测点。

5:选择"教学装置模态分析和振型动画显示",调入测量数据进行分析。

6:"在教学装置选择"中,选择结构类型为"简支梁",如果选择等份数为17,将需要测量17个测点。

连续弹性体悬臂梁各阶固有频率及主振型测定(最全)word资料

连续弹性体悬臂梁各阶固有频率及主振型测定(最全)word资料

实验十二 连续弹性体悬臂梁各阶固有频率及主振型测定一、一、实验目的1、 1、 用共振法确定连续弹性体悬臂梁的各阶固有频率和主振型。

2、 2、 观察分析梁振动的各阶主振型。

情况下,梁的振动是无穷多个主振型的迭加。

如果给梁施加一个合适大小的激扰力,且该力的频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率确定的振动形态叫做这一阶主振型,这时其它各阶振型的影响小得可以忽略不计。

用共振法确定梁的各阶固有频率及振型,我们只要连续调节激扰力,当梁出现某阶纯振型且振动幅值最大即产生共振时,就认为这时的激扰力频率是梁的这一阶固有频率。

实际上,我们关心的通常中最低几阶固有频率及主振型,本实验是用共振法来测定悬臂梁的一、二、l i β①根据《振动力学》,刘延柱,陈文良,陈立群著,1998版。

136页,例6.2-2式(g)A — A — 梁横截面积(m 2)l ρ—材料线密度(kg/m) l ρ=ρAρ—材料密度(kg/m 3) I —梁截面弯曲惯性矩(m 4)对矩形截面,弯曲惯性矩:123bhI = (m 4) (2)式中: b —梁横截面宽度(m) h —梁横截面高度(m) 本实验取l =( ) m b=( ) m h=( ) mE=20×1011Pa ρ=7800kg/m 3 各阶固有频率之比:f 1:f 2:f 3:f 4……=1:6.27:17.55 (3)理论计算可得悬臂梁的一、二、三阶固有频率的振型如图(3)所示:0.10.20.30.40.50.60.70.80.91-10120 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-2020 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.511.5beam transvers vibration with one end clasped四、四、实验方法1、 1、 选距固定端L/4之处为激振点,将激振器端面对准悬臂梁上的激振点,保持初始间隙δ=6~8mm 。

悬臂梁实验报告

悬臂梁实验报告

实验报告悬臂梁的模态实验姓名: xxx学号: xxx专业: xxx系别: xxx一、试验装置二、实验原理本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~,∑=+-==ni i i i k i s i r s r rs i k F X H 12)()()(0)21(~~λζλϕϕ (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为:∑=+--=-=ni i i i k i s i r s r a rs i kF X H 12)()()(202)21(~~λζλϕϕωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为:,22)(~)()()()()()(2kk k s k r k k k sk r k k a rs m i k i H ζϕϕζϕϕωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m kk k 2()(ω)式中=为各阶主质量...n k ,3,2,1=。

改变s 点的位置,在不同点激振,可以得到不同点与点r之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为:∑=+--=ni i i i i i r i r a rr i k H 12)()()(2)21(~λζλϕϕω (4) 它的第k 个峰值为:,2)(~)()()(2kk k r k r k k a rr k i H ζϕϕωωω-== (5)由(3)/(5)得到:(6)若另1)(=k rϕ,就可得到:(7)由(7)式,另s=1,2,3,......n,就可得到第k 阶主振型的各个元素。

梁的振动实验报告

梁的振动实验报告

梁的振动实验报告实验目的改变梁的边界条件,对比分析不同边界条件,梁的振动特性(频率、振型等)。

对比理论计算结果与实际测量结果。

正确理解边界条件对振动特性的影响。

实验内容对悬臂梁、简支梁进行振动特性对比,利用锤击法测量系统模态及阻尼比等。

实验原理1、固有频率的测定悬臂梁作为连续体的固有振动,其固有频率为:()1,2,.......r r l r ωλ==其中,其一、二、三、四阶时, 1.87514.69417.854810.9955.....r l λ=、、、 简支梁的固有频率为:()1,2,.......r r l r ωλ==其中其一、二、三、四阶时, 4.73007.853210.995614.1372.....r l λ=、、、 其中E 为材料的弹性模量,I 为梁截面的最小惯性矩,ρ为材料密度,A 为梁截面积,l 为梁的长度。

试件梁的结构尺寸:长L=610mm, 宽b=49mm, 厚度h=8.84mm. 材料参数: 45#钢,弹性模量E =210 (GPa), 密度ρ=7800 (Kg/m 3)横截面积:A =4.33*10-4 (m 2),截面惯性矩:J =312bh =2.82*10-9(m 4)则梁的各阶固有频率即可计算出。

2、实验简图图1 悬臂梁实验简图图2简支梁实验简图实验仪器本次实验主要采用力锤、加速度传感器、YE6251数据采集仪、计算机等。

图3和图4分别为悬臂梁和简支梁的实验装置图。

图5为YE6251数据采集仪。

图3 悬臂梁实验装置图图4 简支梁实验简图图5 YE6251数据采集分析系统实验步骤1:"在教学装置选择"中,选择结构类型为"悬臂梁",如果选择等份数为17,将需要测量17个测点。

2:本试验可采用多点激励,单点响应的方式,如果是划分为17等份,请将拾振点放在第5点。

3:请将力锤的锤头换成尼龙头,并将力通道的低通滤波器设置为1KHz,将拾振的加速度通道的低通滤波器设置为2KHz。

悬臂梁振动参数测试实验

悬臂梁振动参数测试实验

报告四报告四 悬臂梁振动参数测试试验一 实验目的实验目的1.了解机械振动测试的基本原理 方法 技能2.掌握自由共振法确定系统的固有频率和阻尼比的方法3.了解机械振动数据处理方法二 要仪器设备 要仪器设备1.悬臂梁—被测 象2.DASP 数据采集 分析系统 该系统集成 信号发生器示波器 信号分析仪 和 频响函数测试仪 种仪器, 有多通道同 采集 能,并 采集到的信号实 时域 频域多种分析 能, 有 被测振动系统的频响函数测试的 能3.电荷放大器—前置放大器4. 速度计自由共振法自由共振法1.1.时域法测梁的振动频率和阻时域法测梁的振动频率和阻时域法测梁的振动频率和阻尼尼本实验中,圆频率d ωω=当ξ很小时,有d d ,2/n T ωωωπ≈=中,正由测量得到 所示,当ξ很小时,有 1 定d n ωω≈ 2 确定ξξ=lnin i nM M δ+= 2.2.频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼因d ωω=当ξ很小时,有 r n ωω≈1 由()A ω减掉ω 的共振峰来确定n ω2 212nωωξω−=,12(1)(1)nn ωξωωξω=−=+12()()A A ωω≈≈四 按理论 式计算按理论 式计算 梁的固有频率梁的固有频率已知()n f HZ =式中 E ——梁的弹性模量0I ——梁横截面惯性矩L ——悬臂梁长度S ——梁的横截面积A ——振型常数 3.52A = 一阶ρ——梁材料单位体积质量五 悬臂梁振动参数的测试悬臂梁振动参数的测试图1 实验测试悬臂梁图2 测试实验 场1.1.用时域波形曲线确定梁的用时域波形曲线确定梁的n ω和ξ 由实验测量信号分析软件如 图3所示图3安 CRAS 振动及动态信号采集分析软件一次锤击得到梁的振动信号波形,拾取时域波形曲线中任意一段曲线,并 波峰值进行标定,如图4所示图4 任取7个振动信号波形曲线由图4知,n=7,M i =0.22E此,M i为n =0.17E此,且n*正=1821.88-1653.13=168.75ms 则,梁的振动周期正=168.75/7=24.1071ms,即 正=24.107×10-3s故,悬臂梁的振动频率ƒ时=1/正=41.18Hz≈41.2Hz将正代入 式得d 322/260.5/24.10710T rad s πωπ−===×将M i =0.22m步,M i为1=0.17m步代入 式得0.22lnln 0.2580.17i n i n M M δ+=== 再将0.258n δ=代入 式得35.86910ξ−===×即得到梁的阻尼比0.587%ξ≈ 2.2.用频域 率谱曲线确定梁的用频域 率谱曲线确定梁的n ω和ξ悬臂梁的频域 率谱曲线如图5所示图5 悬臂梁的频域 率谱曲线由图5, 知,频域 梁的振动频率ƒ频=41.56 Hz再结合 式得r 2241.56261.0rad /n f s ωωππ≈=⋅=×≈频按照实验 骤,分 取共振峰两侧得到1ω和2ω,如图5中所示, 得141.41/rad s ω= 241.88/rad s ω=将1ω 2ω和n ω代入 式得2141.8841.410.000922261n ωωξω−−===× 即频域 计算得梁的振动频率 ƒ=41.56 Hz阻尼比约 ζ≈0.09%时域法相比,阻尼比差距较大,应该以时域法测的的阻尼比 准,频域法测量时,由于软件分辨率的限制,的位置,故测量误差较大 理论 式计算结果相比较 理论 式计算结果相比较,,分析误差产生的原因分析误差产生的原因本振动实验中,选用的悬臂梁材料 45#钢, 物理尺 参数如L ——悬臂梁长度,L=23.2cmB ——悬臂梁宽度,B=3cm H ——悬臂梁厚度,H=0.3cmS ——梁的横截面积E ——梁的弹性模量,E=200GPa0I ——梁横截面惯性矩,30/12I B H =⋅A ——振型常数, 3.52A = 一阶ρ——梁材料单位体积质量,7.89x103kg/m 3将以 各参数代入 式,计算得()45.383()n f HZ Hz === 即理论 式计算得到悬臂梁的固有频率45.4H n f z ≈显然,理论计算所得的梁的固有频率大于由时域波形曲线计算的固有频率,即45.3H 41.56H n f z f z ≈>≈时误差产生的原因有多方面,分析如a)实验仪器存在误差 本实验采用的是 速度计作 传感器,由于长时间使用,传感器没有经过重新标定和校 ,固定端 牢固,或是固定 没放 整,都有 能导致振动信号采集时产生误差,使得采集信号波形在周期 幅值和相位方面存在一定的偏差,进而影响到实验结果 外,振动信号分析软件的设置偏差也会 实验分析结果产生影响b)实验过程中的人 操作误差 本实验 要是锤击法测试,在锤击悬臂梁时,由于锤击的力量和方向 当,或没及时抽开锤子,在击打梁时产生突变振动,使采集到的信号发生 涉,从而影响了信号分析,结果产生误差干) 境影响误差 整个实验仪器连接放置在室温 境 的小实验室中,由于实验组成员讨论喧哗产生的声音,以及来回走动 地板产生的振动,都会在一定程度 涉和影响振动信号采集的质量,从而影响到分析结果的准备性。

简支梁实验

简支梁实验

简支梁模态参数测定之一—测定固有频率与振型一、实验目的1、加深对系统固有频率和主振型的理解;2、掌握振动系统固有频率及主振型的一种测量方法(共振法);3.了解压电式传感器及与它相配的测量系统的工作原理,掌握正确使用的方法;4、了解激振系统的工作原理。

二、实验装置框图图1 表示实验装置系统框图图1 实验装置系统框图三、实验原理试验模态分析法是确定结构固有频率的有效方法,在结构分析中应用广泛,而简支梁也是桥梁结构中一种常见的模型,现代桥梁中依然存在不少采用简支梁模型的桥梁结构。

所以本事通过试验模态法得到简支梁的固有频率和振型,也是桥梁结构分析中一种常用的方法很有实际意义,实验所用的均质等截面简支梁模型,属于小阻尼和连续的无限自由度的振动系统。

本实验模型是一矩形截面简支梁,它是一无限自由度系统。

理论上说,它应有无限个固有频率和主振型,在一般情况下,梁的振动是无穷多个主振型的迭加。

如果给梁施加一个合适大小的激振力,且该力的频率正好等于梁的某阶固有频率,就会产生共振,对应于这一阶固有频率而确定的振动形态叫做这一阶主振型,这时其它各阶振型的影响小得可以忽略不计。

用共振法确定梁的各阶固有频率及振型,具体步骤是首先得找到梁的各阶固有频率,并让激扰力频率等于某阶固有频率,使梁产生共振,然后,测定共振状态下梁上各测点的振动加速度值,从而确定前三阶主振型。

振型:即振动形态,即梁上各个测量点和振幅的关系图。

如图所示为一阶,二阶和三阶的振型图。

在正弦激励下振幅的比值等于加速度的比值。

所以本次试验测量加速度与位置之间的关系就能正确画出振型,大致如图2所示。

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.9 1图2 前三阶振型图根据材料力学理论下简支梁固有频率的计算:2012f l ππ⎛⎫= ⎪⎝⎭E 为材料的弹性模量,查表取E=210Gpa 测量得简支梁b=0.05m h=0.15m l=1m312bh I =s 为梁的横截面积37850kgm ρ=2201135.1622f Hzl l ππππ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭10f f =214140.6f f Hz == 319316.4f f Hz==四、实验方法1、 激振器安装把激振器安装在支架上,将激振器和支架固定在实验台基座上,并保证激振器顶杆对简支梁有一定的预压力(不要超过激振杆上的红线标识),用专用连接线连接激振器和DH1301输出接口。

悬臂梁振动参数测试实验

悬臂梁振动参数测试实验

悬臂梁振动参数测试实验悬臂梁是一种常见的结构,广泛应用于工程领域。

在实际应用中,悬臂梁的振动参数对结构的稳定性和性能有重要影响。

因此,进行悬臂梁振动参数测试实验具有重要意义。

悬臂梁的振动参数主要包括自然频率、阻尼比和模态形态等。

自然频率是指悬臂梁在无外界力作用下固有振动的频率。

阻尼比是描述悬臂梁振动衰减速度的参数。

模态形态是指悬臂梁不同振型下的振动特征。

悬臂梁的振动参数测试实验可以通过使用加速度传感器和激励源等测量设备进行。

实验流程如下:首先,确定悬臂梁的几何尺寸和材料参数。

将悬臂梁固定在实验平台上,并保证其支座位置与实际使用条件相同。

接下来,以悬臂梁的自然频率为目标进行实验。

采用激励源施加不同频率的激励信号,并通过加速度传感器测量相应的振动响应。

利用悬臂梁的振幅-频率响应曲线,可以得到悬臂梁的自然频率。

然后,以阻尼比为目标进行实验。

在悬臂梁上施加周期性激励信号,在加速度传感器的测量下获取悬臂梁的振动响应。

利用悬臂梁的振幅-时间曲线,可以计算出悬臂梁的阻尼比。

最后,以模态形态为目标进行实验。

通过在悬臂梁不同位置施加冲击或连续激励信号,可以观察到悬臂梁的振动模态。

利用高速摄像机或激光干涉仪等设备,可以记录下悬臂梁不同振型的形态,从而得到悬臂梁的模态形态。

实验完成后,可以对悬臂梁的振动参数进行分析和评价。

如果实测值与设计值或理论值相符,则说明实验结果准确可靠;如果存在较大偏差,则可能需要重新检查实验方法或设计参数。

总之,悬臂梁振动参数测试实验是一个关键的工程实验,可以用于评估和改进悬臂梁的振动性能。

通过合理设计实验方案和选用合适的测量设备,可以得到准确的振动参数,为悬臂梁的设计和应用提供有力支持。

梁的振动实验报告

梁的振动实验报告

梁的振动实验报告摘要:本实验主要研究了梁的振动现象,通过对梁的不同振动模式进行测量和分析,验证了梁的振动特性与理论模型的吻合程度。

实验结果表明,梁的自由振动频率与其长度、材质和截面形状有关,可以通过实验测量得到的频率与理论计算结果相符。

Ⅰ.实验目的1.研究梁的振动现象,了解梁的振动特性。

2.通过实验测量梁的自由振动频率,并与理论计算结果进行比较,验证梁的振动模型。

Ⅱ.实验原理1.梁的自由振动:当梁在无外力作用下发生振动时,称为自由振动。

自由振动的频率与梁的长度、材质和截面形状有关。

2.理论分析:利用梁的挠度方程和边界条件,可以得到梁的振动模式及其频率。

Ⅲ.实验仪器和材料1.实验仪器:梁振动实验装置、电子计时器。

2.实验材料:金属梁、木梁、塑料梁。

Ⅳ.实验步骤1.准备工作:将不同材料的梁装在振动实验装置上,并调整装置的参数。

2.实验测量:将梁拉到一定偏置位置,释放后记录振动的周期,并测量梁的长度。

3.实验重复:重复以上步骤,分别对不同梁进行测量。

Ⅴ.实验数据处理与分析1.实验数据整理:将测得的振动周期和梁的长度整理成表格。

2.实验数据分析:根据实验数据,计算不同梁的自由振动频率,并与理论计算结果进行比较。

Ⅵ.结果与讨论1.实验结果:通过实验测量得到了不同梁的自由振动频率。

2.数据分析:将实验测量的频率与理论计算结果进行对比,分析其吻合程度。

3.结果讨论:根据实验结果和分析,讨论梁的振动特性、材料对振动频率的影响等。

Ⅶ.实验结论1.梁的自由振动频率与其长度、材质和截面形状有关。

2.实验测量得到的梁的自由振动频率与理论计算结果吻合较好,实验验证了梁的振动模型。

Ⅷ.实验心得通过本次实验,我对梁的振动特性有了更深入的了解,学会了利用实验方法进行梁的振动测量和分析。

实验结果的验证也增加了我对理论知识的信心。

但是,在实验过程中还存在一些误差和改进的地方,需要进一步加强实验技巧和方法。

锤击法测量悬臂梁的固有振动参数试验报告

锤击法测量悬臂梁的固有振动参数试验报告

锤击法测量悬臂梁的固有振动参数试验报告悬臂梁是工程中常用的一种结构形式,在实际应用中,了解悬臂梁的固有振动参数对于设计和分析都非常重要。

锤击法是一种常见的测量悬臂梁固有振动参数的实验方法,本文将通过锤击法测量悬臂梁的固有振动参数,并撰写一份试验报告。

1.实验目的:本实验的目的是采用锤击法测量悬臂梁的固有振动参数,包括固有频率和振动模态。

2.实验设备和材料:-悬臂梁:长度为L的悬臂梁-锤子:质量为m的锤子-支座:用于支撑悬臂梁和固定激振点的支座-多功能振动测试仪:用于采集实验数据和分析振动模态-实验室测量器具:如电子天平、尺子等3.实验步骤:3.1准备工作-准备好悬臂梁和支座,并确保悬臂梁能够在支座上稳定地放置。

-将多功能振动测试仪连接到计算机上,并打开测试软件。

3.2测量固有频率-将锤子在悬臂梁上的不同位置进行轻微的敲击,记录每次敲击的时间和位置。

-根据记录的数据,计算出各个位置的固有频率,即悬臂梁的自由振动频率。

-重复上述操作,至少进行五次测量以获得准确结果。

3.3测量振动模态-在悬臂梁的敏感点上安装合适的加速度计。

-通过多功能振动测试仪采集加速度计的数据,并进行实时分析。

-在分析软件中观察和记录悬臂梁的振动模态,包括节点位置和相应的模态形态。

-重复上述操作,至少进行五次测量以获得准确结果。

4.数据处理与分析:4.1固有频率的计算根据实际测量的数据,可以计算出悬臂梁的固有频率。

根据振动理论,悬臂梁的固有频率与其几何尺寸和材料属性有关,可以使用以下公式计算:fn = αn * sqrt(E/(ρ*L^4))其中,fn为第n个固有频率,αn为与振动模态相对应的常数,E为悬臂梁的杨氏模量,ρ为悬臂梁的质量密度,L为悬臂梁的长度。

4.2振动模态的分析通过振动测试仪采集的振动信号,可以进行振动模态的分析。

根据振动模态的特点,可以确定悬臂梁的节点位置和相应的模态形态。

通过多次测量和分析,可以进一步验证实验结果的准确性。

悬臂梁实验报告范文

悬臂梁实验报告范文

悬臂梁实验报告范文实验报告:悬臂梁实验1.引言悬臂梁是一种常见的结构,广泛应用于建筑、航空、机械等领域。

在工程设计、结构分析和实验研究中,了解悬臂梁的力学特性对于保证结构稳定性和可靠性有着重要意义。

本实验旨在通过对悬臂梁的实验研究,深入理解悬臂梁的受力分析、挠度计算以及变形规律,并将实验结果与理论计算进行对比,验证理论计算结果的准确性。

2.实验原理2.1悬臂梁的力学模型悬臂梁通常由一根直杆(悬臂)和迎接作用力的端杆组成。

在实验中,本实验选取了一根长度为L的悬臂梁,在其一端沿垂直方向施加一作用力,并在悬臂的自由端进行力学参数测量。

2.2悬臂梁的挠度计算悬臂梁在受力作用下会发生弯曲,产生挠度。

根据悬臂梁的挠度计算公式,可以得到悬臂梁的最大挠度和挠度分布情况。

3.实验步骤3.1实验器材准备(1)悬臂梁:本实验使用了一根长度为L的悬臂梁,悬臂梁的材料和截面尺寸在实验前确定。

(2)测力计:选择合适的测力计,将其连接到悬臂梁的一端,用于测量作用力的大小。

(3)位移传感器:选择合适的位移传感器,将其放置在悬臂梁的自由端,用于测量悬臂梁的挠度。

3.2实验操作(1)固定悬臂梁:将悬臂梁固定在实验台上,保持其水平和稳定。

(2)施加作用力:在悬臂梁的一端施加作用力,记录作用力的大小。

(3)测量挠度:使用位移传感器测量悬臂梁在不同位置的挠度,记录测量结果。

(4)重复实验:重复以上实验操作,至少进行3次实验,在不同作用力下测量悬臂梁的挠度。

4.实验结果4.1悬臂梁的挠度分布情况根据实验测量的数据,可以绘制悬臂梁的挠度分布曲线,分析挠度随悬臂长度的变化规律。

4.2实验结果与理论计算结果的对比将实验测得的挠度数据与理论计算的挠度进行对比,计算其误差并分析可能的原因。

5.结论通过对悬臂梁的实验研究,得到了悬臂梁的挠度分布情况,并将实验结果与理论计算进行了对比。

根据实验结果和对比分析,可以得出以下结论:(1)悬臂梁在受力作用下会发生弯曲,产生挠度,挠度随悬臂长度呈指数衰减。

悬臂梁实验——精选推荐

悬臂梁实验——精选推荐

悬臂梁实验一、实验目的1. 测定悬臂梁上下表面的应力,验证梁的弯曲理论二、实验仪器设备与工具1. 材料力学组合实验台中悬臂梁实验装置与部件2. A XL 2118系列静态电阻应变仪3. 游标卡尺、钢板尺三、实验原理与方法将试件固定在实验台架上,梁在纯弯曲时,同一截面上表面产生压应变,下表面产生拉应变,上下表面产生的拉压应变绝对值相等。

此时,可得到不同横截面的正应力σ,计算公式WM =σ 式中: M — 弯矩 L P M ⋅= (L —载荷作用点到测试点的距离)W — 抗弯截面矩量 62bh W =在梁的上下表面分别粘贴上应变片R 1,R 2;如图1所示,当对梁施加载荷P 时,梁产生弯曲变形,在梁内引起应力。

图1 悬臂梁受力简图及应变片粘贴图实验接线方式实验接桥采用1/4桥(半桥单臂)方式,应变片与应变仪组桥接线方法如图2所示。

使用试件上的应变片(即工作应变片1#、2#)分别连接到应变仪测点的A/B 上,测点上的B 和B1用短路片短接;温度补偿应变片连接到桥路选择端的A/D 上,桥路选择短接线将D1/D2短接,并将所有螺钉旋紧。

四、实验步骤1. 设计好本实验所需的各类数据表格。

图2 应变片与应变仪接线图2. 测量悬臂梁的有关尺寸,确定试件有关参数。

见附表13. 拟订加载方案。

选取适当的初载荷P 0,估算最大载P max (该实验载荷范围≤50N),一般分4~6级加载。

4. 实验采用多点测量中半桥单臂公共补偿接线法。

将悬臂梁上两点应变片按序号接到电阻应变仪测试通道上,温度补偿片接电阻应变仪公共补偿端。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

6. 实验加载。

用均匀慢速加载至初载荷P 0。

记下各点应变片初读数,然后逐级加载,每增加一级载荷,依次记录各点应变仪的εi ,直至终载荷。

实验至少重复三次。

见附表27. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

悬臂梁振动参数测试实验

悬臂梁振动参数测试实验

报告四报告四 悬臂梁振动参数测试试验一 实验目的实验目的1.了解机械振动测试的基本原理 方法 技能2.掌握自由共振法确定系统的固有频率和阻尼比的方法3.了解机械振动数据处理方法二 要仪器设备 要仪器设备1.悬臂梁—被测 象2.DASP 数据采集 分析系统 该系统集成 信号发生器示波器 信号分析仪 和 频响函数测试仪 种仪器, 有多通道同 采集 能,并 采集到的信号实 时域 频域多种分析 能, 有 被测振动系统的频响函数测试的 能3.电荷放大器—前置放大器4. 速度计自由共振法自由共振法1.1.时域法测梁的振动频率和阻时域法测梁的振动频率和阻时域法测梁的振动频率和阻尼尼本实验中,圆频率d ωω=当ξ很小时,有d d ,2/n T ωωωπ≈=中,正由测量得到 所示,当ξ很小时,有 1 定d n ωω≈ 2 确定ξξ=lnin i nM M δ+= 2.2.频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼频域法测梁的振动频率 阻尼因d ωω=当ξ很小时,有 r n ωω≈1 由()A ω减掉ω 的共振峰来确定n ω2 212nωωξω−=,12(1)(1)nn ωξωωξω=−=+12()()A A ωω≈≈四 按理论 式计算按理论 式计算 梁的固有频率梁的固有频率已知()n f HZ =式中 E ——梁的弹性模量0I ——梁横截面惯性矩L ——悬臂梁长度S ——梁的横截面积A ——振型常数 3.52A = 一阶ρ——梁材料单位体积质量五 悬臂梁振动参数的测试悬臂梁振动参数的测试图1 实验测试悬臂梁图2 测试实验 场1.1.用时域波形曲线确定梁的用时域波形曲线确定梁的n ω和ξ 由实验测量信号分析软件如 图3所示图3安 CRAS 振动及动态信号采集分析软件一次锤击得到梁的振动信号波形,拾取时域波形曲线中任意一段曲线,并 波峰值进行标定,如图4所示图4 任取7个振动信号波形曲线由图4知,n=7,M i =0.22E此,M i为n =0.17E此,且n*正=1821.88-1653.13=168.75ms 则,梁的振动周期正=168.75/7=24.1071ms,即 正=24.107×10-3s故,悬臂梁的振动频率ƒ时=1/正=41.18Hz≈41.2Hz将正代入 式得d 322/260.5/24.10710T rad s πωπ−===×将M i =0.22m步,M i为1=0.17m步代入 式得0.22lnln 0.2580.17i n i n M M δ+=== 再将0.258n δ=代入 式得35.86910ξ−===×即得到梁的阻尼比0.587%ξ≈ 2.2.用频域 率谱曲线确定梁的用频域 率谱曲线确定梁的n ω和ξ悬臂梁的频域 率谱曲线如图5所示图5 悬臂梁的频域 率谱曲线由图5, 知,频域 梁的振动频率ƒ频=41.56 Hz再结合 式得r 2241.56261.0rad /n f s ωωππ≈=⋅=×≈频按照实验 骤,分 取共振峰两侧得到1ω和2ω,如图5中所示, 得141.41/rad s ω= 241.88/rad s ω=将1ω 2ω和n ω代入 式得2141.8841.410.000922261n ωωξω−−===× 即频域 计算得梁的振动频率 ƒ=41.56 Hz阻尼比约 ζ≈0.09%时域法相比,阻尼比差距较大,应该以时域法测的的阻尼比 准,频域法测量时,由于软件分辨率的限制,的位置,故测量误差较大 理论 式计算结果相比较 理论 式计算结果相比较,,分析误差产生的原因分析误差产生的原因本振动实验中,选用的悬臂梁材料 45#钢, 物理尺 参数如L ——悬臂梁长度,L=23.2cmB ——悬臂梁宽度,B=3cm H ——悬臂梁厚度,H=0.3cmS ——梁的横截面积E ——梁的弹性模量,E=200GPa0I ——梁横截面惯性矩,30/12I B H =⋅A ——振型常数, 3.52A = 一阶ρ——梁材料单位体积质量,7.89x103kg/m 3将以 各参数代入 式,计算得()45.383()n f HZ Hz === 即理论 式计算得到悬臂梁的固有频率45.4H n f z ≈显然,理论计算所得的梁的固有频率大于由时域波形曲线计算的固有频率,即45.3H 41.56H n f z f z ≈>≈时误差产生的原因有多方面,分析如a)实验仪器存在误差 本实验采用的是 速度计作 传感器,由于长时间使用,传感器没有经过重新标定和校 ,固定端 牢固,或是固定 没放 整,都有 能导致振动信号采集时产生误差,使得采集信号波形在周期 幅值和相位方面存在一定的偏差,进而影响到实验结果 外,振动信号分析软件的设置偏差也会 实验分析结果产生影响b)实验过程中的人 操作误差 本实验 要是锤击法测试,在锤击悬臂梁时,由于锤击的力量和方向 当,或没及时抽开锤子,在击打梁时产生突变振动,使采集到的信号发生 涉,从而影响了信号分析,结果产生误差干) 境影响误差 整个实验仪器连接放置在室温 境 的小实验室中,由于实验组成员讨论喧哗产生的声音,以及来回走动 地板产生的振动,都会在一定程度 涉和影响振动信号采集的质量,从而影响到分析结果的准备性。

悬臂梁模态分析试验报告

悬臂梁模态分析试验报告

悬臂梁各阶固有频率及主振形的测定试验一、实验目的1、用共振法确定悬臂梁横向振动时的前五阶固有频率;2、熟悉和了解悬臂梁振动的规律和特点;3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。

二、仪器和设备悬臂梁固定支座;脉冲锤1 个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS 振动噪声测试系统。

三、实验基本原理瞬态信号可以用三种方式产生,分述如下:一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号.二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间T , T越小则频率范围越大•三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力.用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗•四、实验结果记录2阶振型图3阶振型图4阶振型图五、理论计算悬臂梁固有频率11 3圆截面悬臂钢梁有关参数可取: E 10 Pa, 7850 kg/ m。

用直尺测量悬臂梁的梁长L=1000mm、梁直径D=12mm。

计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。

悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。

对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。

运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程cos Lch L 1式中:L――悬臂梁的长度梁各阶固有频率为(5-1) 5阶振型图f1 1 f 3.516 2.470 8.687f22f*2 122.034 2.47154.445f32f*3 f61.623 2.471152.270f4o *4 f120.912 2.471298.774f552f199.657 2.741547.26 0f i(i l )2ElAl(5-2 )悬臂梁固有圆频率及主振型函数i(i 2)(i 3,4,5....)3261.623 42120.912 52199.6572.110117850124 10-126462 10-62.471六、ANSYS有限元模拟仿真结果6.1前五阶固有频率仿真数据Tabular D E日Mode Y Frequency [Hz:11, B.47392耳84755353,07944w53.0395£14&.516&.14S.5477,290.698&时加g9.47生的1010.A79 目26.2振型仿真图A; MdcklT-ffta :Type: Tc*al Defsr™ii DTIFreq^enryi Mr*右tinSUIS^/JO 17U!E2JJ97 MUlJ8f>77 注制3J4I5BU79Bmwi 升?IM□ Min>o. a^o OJOQ OJDd 问5W(L泊Oxias IMhki a q«76:1/50 —1^15? --J」屈—二昭形10JOT93U M71»■ 9i2^lOMin 1阶振型仿真图A; ModalTstt- Dte'onrnfitian i'・卫虽To(& DefcrFr mtiaF TMU .uncyi $8iO(i, ,J Hk Un抵m2515/^/20 17;DFn■3JC0CU M imj0.13D2阶振型仿真图I V L: bloclAlTyped T©刍ll D电+Fr^q^Nncvi: 14^8i54 HzLL 旳|t rn2Clb;4/2J 1『旳§□Ml MIX1^031LZ5211^1510削丄D4O.TGSn?□J?2nz o^j&di0 Min□』E J迦DJ.4I0 圧血QMU Cm)ZJ3阶振型仿真图A- M«I1ITertj De^orr-^tie.^ 9 Iyyr«TcilLji Lrlu r niAtiuArpqufncw 3^[1.TJ l-fr 5i七m201勺W」9 1 :E21M& hUi¥卞侮耗:5lJ&5i-414164U»3□.TtiEig i34fil3O L2M-0&a Mm[ilOJ-3 L-r.)ojc-n a.^da4阶振型仿真图A-心戌i” IL 巧■叩T HE«4 QtforNiitiflrnFreqL*no^T 4-7^ J2 -HzU^dSri W15M/M17J011313 Miiiijfisaui«U40TQ少钿U.M34FdJi^aEU3M40M|・[匸DQmd^ilO5阶振型仿真图七、结果误差分析悬臂梁理论计算固有频率理论值、有限元仿真值与实测值表梁几何尺寸梁长L=1m 梁直径D=12mm固有频率(Hz) f i f2f a f4f s 实验值8.49154.216154.607304.354494.691理论值8.68754.445152.270298.774547.260有限元仿真值8.47553.089148.54290.74479.92误差原因:(1)实验试件在并非是十分标准,5阶实验计算模态存在误差;2)有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。

悬臂梁实验报告

悬臂梁实验报告

悬臂梁实验报告悬臂梁实验报告引言:悬臂梁是工程力学中常见的结构之一,广泛应用于桥梁、建筑和机械工程等领域。

本实验旨在通过悬臂梁的静力学实验,研究其受力特性和变形规律。

通过实验数据的采集和分析,可以进一步了解悬臂梁的力学性能,为工程实践提供参考。

实验装置:本次实验使用的悬臂梁实验装置由一根长而细的横梁固定在一端,另一端悬空,形成一个悬臂结构。

实验中使用了称重传感器、测力计、测量仪器等设备,用于测量悬臂梁的受力情况。

实验过程:1. 在实验开始前,首先将悬臂梁装置固定在实验台上,并保证其水平。

2. 将称重传感器安装在悬臂梁上,用于测量悬臂梁的受力。

3. 使用测力计测量悬臂梁上的外力,包括静力和动力。

4. 通过测量仪器记录悬臂梁的变形情况,包括挠度和角度。

5. 逐步增加悬臂梁上的外力,记录相应的受力和变形数据。

实验结果:通过实验数据的采集和分析,我们得到了以下结果:1. 受力特性:随着外力的增加,悬臂梁上的受力呈线性增长。

在小负荷情况下,悬臂梁的受力主要集中在固定端,随着外力的增加,受力逐渐向悬臂端转移。

当外力达到一定阈值时,悬臂梁会发生破坏。

2. 变形规律:悬臂梁在受力过程中会发生挠度和角度变化。

挠度是指悬臂梁在受力下产生的弯曲变形,随着外力的增加,挠度逐渐增大。

角度变化则是指悬臂梁在受力下产生的转动变形,同样随着外力的增加,角度变化逐渐增大。

3. 影响因素:悬臂梁的受力和变形受多种因素影响,包括外力的大小、悬臂梁的材料性质、悬臂梁的几何形状等。

在实验中,我们可以通过改变这些因素来研究其对悬臂梁性能的影响。

结论:通过本次实验,我们深入了解了悬臂梁的受力特性和变形规律。

悬臂梁在受力过程中呈现出线性增长的受力特性,同时产生挠度和角度变化。

这些实验结果对于工程实践具有重要意义,可以为桥梁、建筑和机械工程等领域的设计和施工提供参考。

未来研究方向:本实验只是对悬臂梁的基本受力特性和变形规律进行了研究,还有许多方面有待深入探索。

悬臂梁的振动模态实验报告

悬臂梁的振动模态实验报告

实验 等截面悬臂梁模态测试实验一、 实验目的1. 熟悉模态分析原理;2. 掌握悬臂梁的测试过程。

二、 实验原理1. 模态分析基本原理理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。

简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。

这就是说梁可以用一种“模态模型”来描述其动态响应。

模态分析的实质,是一种坐标转换。

其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。

这一坐标系统的每一个基向量恰是振动系统的一个特征向量。

也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。

多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数H i (ω),从而得到频率响应函数矩阵中的一行频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。

2. 激励方法为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。

传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示在[]∑==Nr iN ri ri r H H H 121...[]Nr r r Nr rr r irk c j m ϕϕϕωωϕ (2112)∑=++-=[]{}[]Tr ir Nr r iN i i Y H H H ϕϕ∑==121...j点作用单位力时,在i点所引起的响应。

要得到i和j点之间的传递导纳,只要在j点加一个频率为ω的正弦的力信号激振,而在i点测量其引起的响应,就可得到计算传递函数曲线上的一个点。

如果ω是连续变化的,分别测得其相应的响应,就可以得到传递函数曲线。

根据模态分析的原理,我们要测得传递函数矩阵中的任一行或任一列,由此可采用不同的测试方法。

悬臂梁的振动模态实验报告

悬臂梁的振动模态实验报告

悬臂梁的振动模态实验报告悬臂梁是一种常见的结构,广泛应用于工程中。

在实际应用中,悬臂梁的振动特性是非常重要的,因为它会对悬臂梁结构的稳定性和安全性产生影响。

因此,了解悬臂梁的振动模态是一项必要的研究任务。

本次实验旨在通过实验方法测量和分析悬臂梁的振动模态,并探究不同参数对振动模态的影响。

实验过程中使用的设备和仪器包括悬挂系统、激励源、传感器、数据采集系统等。

实验步骤如下:1.悬挂梁结构:将悬挂系统固定在实验室的支架上,确保悬臂梁能够在完全自由的情况下自由振动。

2.激励源:将激励源与悬挂梁连接,通过激励源提供外力。

3.传感器:在悬臂梁上选择合适的位置安装传感器,用于测量悬臂梁的振动信号。

4.数据采集系统:将传感器与数据采集系统相连,用于实时采集和记录振动信号。

5.实施实验:通过激励源提供激励力,使悬臂梁产生振动,并同时记录悬挂梁的振动信号。

6.数据处理:通过数据采集系统获得的数据,使用相应的信号处理技术对振动信号进行处理,得到振动模态的相关参数。

7.结果分析:根据实验结果,分析悬臂梁的振动特性和模态,并探究不同参数对振动模态的影响。

通过以上实验步骤,我们可以获得悬臂梁的振动模态,并了解不同参数对振动模态的影响。

实验结果有助于工程设计中的结构设计和改进。

在实验过程中,我们还需要注意以下几个方面的问题:1.悬挂系统的稳定性和刚度:确保悬挂系统能够提供稳定的支撑,并且具有足够的刚度,以保证悬臂梁在振动过程中不会产生偏差。

2.激励源的选取:根据实际需求和悬臂梁的特性,选择合适的激励源,以提供适当的激励力。

3.传感器的准确性:选择合适的传感器,并保证传感器的准确性和灵敏度,以获得准确的振动信号。

4.数据采集和处理的准确性:使用合适的数据采集系统和信号处理技术,以保证数据采集和处理的准确性。

总之,通过本次实验,我们可以深入了解悬臂梁的振动模态,并探究不同参数对振动模态的影响。

这对于工程设计和结构改进具有重要意义,可以提高悬臂梁结构的稳定性和安全性。

振及悬臂梁各低阶固有频率主振型测量

振及悬臂梁各低阶固有频率主振型测量

振动实验
五、问题讨论(必答题) 1、被动隔振效率曲线有何特点?
2、悬臂梁一、二、三阶主振型各有何特点 ?
2.实验数据记录表
3.绘出悬臂梁一阶、二阶、三阶主振型图。
振动实验
(三)吸振实验
吸振就是在振动主系统上附加特殊的子系统,以转移或 消耗主系统的振动能量,从而抑制主系统的振动。
1.实验装置及测试框图
测振仪
激振信号源
激振器
·
m

动力吸振器
传感器 简支梁

m1
2.被测对象及力学模型
振动实验
设备
m
▲●Biblioteka 单式 m1 动力简支梁
吸振 器
被测对象
m1 m1
m
m
单式动力吸振力学模型
3.系统的运动微分方程
振动实验
由振动理论知,该二自由度系统的运动方程为:
方程的稳态解为:
系统稳态响应的振幅为:
振动实验
= =
其中△(ρ)是系统的特征多项式 △

时, 主系统的振幅 。这时△
,吸
器的振幅为
, 可见质量 上受到的激振力恰好振被来自
吸振器弹簧的弹性恢复力 所平衡。
4.实验数据记录表
振动实验
频率 (
振幅B(
) 20 22 )
24 25 26 27 28 29 30 31 32 33 35 40
5.绘出幅频特性曲线(
)。
四、实验报告要求
1、画出实验测试框图。 2、计算隔振效率,绘出隔振效率曲线。 3、测定悬臂梁的一、二、三阶固有频率, 绘出各阶主振型图。 4.绘出动力吸振幅频特性曲线图。
振动实验
仪器振幅B 传感器

悬臂梁应变测量

悬臂梁应变测量

悬臂梁应变测量摘要:在航空、机械及材料研究领域中,零件的强度是一个很重要问题。

研究强度问题的途径之一便是实验应力分析。

本课程设计便是利用实验应力分析中的电测法来测定弹性元件等强度悬臂梁在力的作用下产生的应变。

具体方法是通过在悬臂梁上粘贴三个应变片,它们均分布在悬臂梁的上表面上,其中一应变片位于纵向轴的中心线上,其余两个应变片分别位于轴中心线的两侧等距离处,且靠近变动端;然后通过增减砝码的个数改变所加的力,利用数字万用表记录、读取数据。

为了减小实验误差,本实验采用多次测量求平均值的方法,并对实验数据利用Excel进行了拟合,作出了应变片的电阻变化值与载荷之间的关系图,再根据有关公式,最终得出在弹性限度内悬臂梁的应变与它所受到的外力大小成线性关系。

关键词:电测法;应变片;悬臂梁;数字万用表引言研究强度问题可以有两种途径,即理论分析和实验应力分析。

实验应力分析是用实验方法来分析和确定受力构件的应力、应变状态的一门科学,通过实验应力分析可以检验和提高设计质量、工程结构的安全性和可靠性,并且可以达到减少材料消耗、降低生产成本和节约能源的要求。

实验应力分析的方法很多,有电测法、光测法、机械测量方法等。

本实验主要是利用电测法。

电测法有电阻、电容、电感测试等多种方法,其中以电阻应变测量方法应用较为普遍。

电阻应变测量方法是用电阻应变片测定构件表面的应变,再根据应变--应力关系确定构件表面应力状态。

工程中常用此方法来测量模型或实物表面不同点的应力,它具有较高的灵敏度和精度。

由于输出的是电信号,易于实现测量数字化和自动化,并可进行遥测。

电阻应变测量可以在高温、高压、高速旋转、强磁场、液下等特殊条件下进行,此外还可以对动态应力进行测量。

由于电阻应变片具有体积小、质量轻、价格便宜等优点,且电阻应变测试方法具有实时性、现场性,因此它已成为实验应力分析中应用最广的一种方法。

它的主要缺点就是,一个电阻应变片只能测量构件表面一个点在某一个方向的应变,不能进行全域性的测量]1[。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八线性扫频法简支梁振型测试
一、实验目的
学习线性扫频法观察简支梁的振型;
二、实验仪器安装示意图
图8-1 实验装置框图
三、实验原理
根据梁的振动的振型叠加原理。

当激振频率是某一阶固有频率时候,梁的振动表现为此阶频率下的振型。

从而可以观察振型的节点,近似的知道振型曲线。

四、实验步骤
有一根梁如图所示,采用线性扫频方法做其z 方向的振动模态,可按以下步骤进行。

(1)连接仪器
固定好JZ‐1型接触式激振器,并与DH1301连接好。

(2)调整信号源频率,直到出现某阶振型
五、实验结果和分析
1、记录模态参数
模态参数 第一阶 第二阶 第三阶 第四阶 第五阶 频率
2、根据节点初步画出各阶模态振型图
3、与理论结果进行比较
实验九悬臂梁振型观察
一、实验目的
1、观察悬臂梁振型
二、实验仪器安装示意图
图9‐1 实验装置框图
三、实验原理
同 简支梁
四、实验步骤
有一根悬臂梁如图所示,采用线性扫频方法做其z 方向的振动模态,可按以下步骤进行。

(1)连接仪器
固定好非接触式激振器,并与DH1301连接好。

(2)调整信号源频率,直到出现某阶振型
五、实验结果和分析
1、记录模态参数
模态参数 第一阶 第二阶 第三阶 第四阶
频率
2、根据节点画出各阶模态振型图并与理论结果比较。

相关文档
最新文档