福建省泉州市2019年质检数学卷及问题详解

合集下载

数学分类汇编(12)三角函数的化简与求值(含答案)

数学分类汇编(12)三角函数的化简与求值(含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)8.第24届国际数学家大会会标是以我国古代数学家赵爽的弦图为基础设计的,会标是四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为,大正方形的面积为,直角三角形中较小的锐角为,则()A. B. C. D.【答案】D【解析】【分析】由图形可知三角形的直角边长度差为a,面积为6,列方程组求出直角边得出sinθ,代入所求即可得出答案.【详解】由题意可知小正方形的边长为a,大正方形边长为5a,直角三角形的面积为6,设直角三角形的直角边分别为x,y且x<y,则由对称性可得y=x+a,∴直角三角形的面积为S xy=6,联立方程组可得x=3a,y=4a,∴sinθ,tanθ=.∴===,故选:D.【点睛】本题考查了解直角三角形,三角恒等变换,属于基础题.(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)3.若,则()A. B. C. D.【答案】C【解析】【分析】本道题化简式子,计算出,结合,即可.【详解】,得到,所以,故选C.【点睛】本道题考查了二倍角公式,难度较小.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)14.已知,则_______【答案】【解析】原式化为,,所以,,填。

(江西省新余市2019届高三上学期期末考试数学(理)试题)15.已知,则______.【答案】【解析】【分析】根据同角的三角函数的关系和二倍角公式即可求出.【详解】解:,,,,,故答案为:.【点睛】本题考查同角的三角函数关系式和二倍角公式的应用,属于基础题.(湖南省长沙市2019届上学期高三统一检测理科数学试题)15.在平面直角坐标系中,角的顶点在原点,始边与轴的非负半轴重合,终边过点,则__________.【答案】【解析】【分析】结合终边过点坐标,计算出,结合二倍角公式和余弦两角和公式,即可。

【详解】,所以【点睛】本道题考查了二倍角公式与余弦的两角和公式,难度中等。

2019-2020学年度九年级数学上学期第二次质检试题(含解析) 新人教版

2019-2020学年度九年级数学上学期第二次质检试题(含解析) 新人教版

——教学资料参考参考范本——2019-2020学年度九年级数学上学期第二次质检试题(含解析)新人教版______年______月______日____________________部门一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣22.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.666.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.49.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣210.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是__________.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是__________.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式__________;自变量的取值范围__________.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为__________.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为__________.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有__________:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?20xx-20xx学年浙江省××市××区高桥中学九年级(上)第二次质检数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可用多种不同的方法来选取正确答案.1.已知原点是抛物线y=(m+1)x2的最高点,则m的范围是( )A.m<﹣1 B.m<1 C.m>﹣1 D.m>﹣2【考点】二次函数的性质.【分析】由于原点是抛物线y=(m+1)x2的最高点,这要求抛物线必须开口向下,由此可以确定m的范围.【解答】解:∵原点是抛物线y=(m+1)x2的最高点,∴m+1<0,即m<﹣1.故选A.【点评】此题主要考查了二次函数的性质.2.抛物线y=﹣2(x+3)2﹣21的顶点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质.【分析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.【解答】解:∵抛物线y=﹣2(x+3)2﹣21的顶点是(﹣3,﹣21),∴顶点(﹣3,﹣21)在第三象限,故选C.【点评】此题主要考查了二次函数的性质,二次函数顶点式y=a (x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.3.下列事件中:①在足球赛中,中国队战胜日本队;②长为2,3,4的三条线段能围成一个直角三角形;③任意两个正数的乘积为正;④抛一枚硬币,硬币落地时正面朝上.其中属于不确定事件的有( )A.1个B.2个C.3个D.4个【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:①在足球赛中,中国队战胜日本队是随机事件,故①正确;②长为2,3,4的三条线段能围成一个直角三角形,是不可能事件,故②错误;③任意两个正数的乘积为正,是必然事件,故③错误;④抛一枚硬币,硬币落地时正面朝上,是随机事件,故④正确;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.已知二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,则m的值为( )A.2 B.﹣4 C.2或﹣4 D.无法确定【考点】二次函数图象上点的坐标特征.【分析】由题意二次函数的解析式为:y=(m﹣2)x2+m2﹣m﹣2知m﹣2≠0,∴m≠2,再根据二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,把(0,0)代入二次函数,解出m的值.【解答】解:∵二次函数的解析式为:y=(m﹣2)x2﹣4x+m2+2m ﹣8,∴(m﹣2)≠0,∴m≠2,∵二次函数y=(m﹣2)x2﹣4x+m2+2m﹣8的图象经过原点,∴m2+2m﹣8=0,∴m=﹣4或2,∵m≠2,∴m=﹣4.故选B.【点评】此题考查二次函数的基本性质,注意二次函数的二次项系数不能为0,这是容易出错的地方.5.抛物线y=x2+mx+n可以由抛物线y=x2向上平移2个单位,再向左平移3个单位得到,则mn值为( )A.6 B.12 C.54 D.66【考点】二次函数图象与几何变换.【分析】首先在抛物线y=x2确定顶点,进而就可确定顶点平移以后点的坐标,根据待定系数法求函数解析式.【解答】解:抛物线y=x2顶点坐标(0,0)向上平移2个单位,再向左平移3个单位得到(﹣3,2)代入y=(x﹣h)2+k得:y=(x+3)2+2=x2+6x+11,所以m=6,n=11.故mn=66;故选D.【点评】本题考查了二次函数的图象与几何变换,解决本题的关键是得到所求抛物线上的顶点,利用平移的规律即可解答.6.已知二次函数y=x2+x+m,当x取任意实数时,都有y>0,则m的取值范围是( )A.m≥B.m>C.m≤D.m<【考点】抛物线与x轴的交点.【分析】由题意二次函数y=x2+x+m知,函数图象开口向上,当x 取任意实数时,都有y>0,可以推出△<0,从而解出m的范围.【解答】解:已知二次函数的解析式为:y=x2+x+m,∴函数的图象开口向上,又∵当x取任意实数时,都有y>0,∴有△<0,∴△=1﹣4m<0,∴m>,故选B.【点评】此题主要考查二次函数与一元二次方程的关系,当函数图象与x轴无交点时,说明方程无根则△<0,若有交点,说明有根则△≥0,这一类题目比较常见且难度适中.7.上数学课时,老师给出了一个一元二次方程x2+ax+b=0,并告诉学生,从数字1、3、5、中随机抽取一个作为a,从数字2、6中随机抽取一个作为b,组成不同的方程共m个,其中有实数解的方程共n 个,则=( )A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】画树状图展示所有12种等可能的结果数,则m=12,根据判别式的意义可判断a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,然后计算的值.【解答】解:画树状图:共有12种等可能的结果数,则m=12,其中a=3,b=2;a=5,b=2;a=5,b=6时,方程有实数解,则n=3,所以==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了根的判别式.8.若实数a,b满足a+b2=2,则a2+6b2的最小值为( )A.﹣3 B.3 C.﹣4 D.4【考点】二次函数的最值.【分析】由a+b2=2得出b2=2﹣a,代入a2+6b2得出a2+6b2=a2+6(2﹣a)=a2﹣6a+12,再利用配方法化成a2+6b2=(a﹣3)2+3,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,∴a2+6b2=a2+6(2﹣a)=a2﹣6a+12=(a﹣3)2+3,当a=3时,a2+6b2可取得最小值为3.故选B.【点评】本题考查了二次函数的最值,根据题意得出a2+6b2=(a ﹣3)2+3是关键.9.已知二次函数y=x2+bx﹣4图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线( )A.x=1 B.x=2 C.x=﹣1 D.x=﹣2【考点】二次函数的性质;反比例函数图象上点的坐标特征.【分析】设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【解答】解:∵A在反比例函数图象上,∴可设A点坐标为(a,),∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣),又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得.故选C.【点评】本题主要考查待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意关于原点对称的两点的坐标的关系的广泛应用.10.如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),y=PC2,则y关于x的函数的图象大致为( )A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.三张完全相同的卡片上分别写有函数y=﹣2x﹣3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x 的增大而增大的概率是.【考点】概率公式;一次函数的性质;反比例函数的性质;二次函数的性质.【分析】先求出函数的图象在第一象限内y随x的增大而增大的函数的个数,再根据概率公式即可得出答案.【解答】解:∵函数y=﹣2x﹣3,y=,y=x2+1中,在第一象限内y随x的增大而增大的只有y=x2+1一个函数,∴所得函数的图象在第一象限内y随x的增大而增大的概率是;故答案为:.【点评】此题考查了概率公式,掌握一次函数、反比例函数和二次函数的性质是本题的关键,用到的知识点是概率=所求情况数与总情况数之比.12.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.【考点】二次函数图象与几何变换.【分析】根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.【解答】解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.【点评】考查根据二次函数的图象的变换求抛物线的解析式.13.已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式s=﹣3x2+24x;自变量的取值范围≤x<8.【考点】根据实际问题列二次函数关系式.【分析】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式.【解答】解:由题可知,花圃的宽AB为x米,则BC为(24﹣3x)米.这时面积S=x(24﹣3x)=﹣3x2+24x.∵0<24﹣3x≤10得≤x<8,故答案为:S=﹣3x2+24x,≤x<8.【点评】本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.要注意题中自变量的取值范围不要丢掉.14.如图,已知函数y=与y=ax2+bx(a>0,b>0)的图象交于点P.点P的纵坐标为1.则关于x的方程ax2+bx+=0的解为x=﹣3.【考点】二次函数的图象;反比例函数的图象;反比例函数图象上点的坐标特征.【专题】探究型.【分析】先根据点P的纵坐标为1求出x的值,再把于x的方程ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,此方程就化为求函数y=与y=ax2+bx(a>0,b>0)的图象交点的横坐标,由求出的P点坐标即可得出结论.【解答】解:∵P的纵坐标为1,∴1=﹣,∴x=﹣3,∵ax2+bx+=0化为于x的方程ax2+bx=﹣的形式,∴此方程的解即为两函数图象交点的横坐标的值,∴x=﹣3.故答案为:x=﹣3.【点评】本题考查的是二次函数的图象与反比例函数图象的交点问题,能把方程的解化为两函数图象的交点问题是解答此题的关键.15.已知二次函数y=﹣x2﹣2x+3的图象与x轴分别交于A、B两点(如图所示),与y轴交于点C,点P是其对称轴上一动点,当PB+PC取得最小值时,点P的坐标为(﹣1,2).【考点】抛物线与x轴的交点;轴对称-最短路线问题.【分析】首先求得A、B以及C的坐标,和函数对称轴的解析式,然后利用待定系数法求得AC的解析式,AC与二次函数的对称轴的交点就是P.【解答】解:连接AC.在y=﹣x2﹣2x+3中,令y=0,则﹣x2﹣2x+3=0,解得:x=﹣3或1.则A的坐标是(﹣3,0),B的坐标是(1,0),则对称轴是x=﹣1.令x=0,解得y=3,则C的坐标是(0,3).设经过A和C的直线的解析式是y=kx+b.根据题意得:,解得:,则AC的解析式是y=x+3,令x=﹣1,则y=2.则P的坐标是(﹣1,2 ).故答案是(﹣1,2).【点评】本题考查了二次函数的坐标轴的交点,以及对称的性质,确定P的位置是本题的关键.16.如图是抛物线y=ax2+bx+c的一部分,且其过点(3,0),对称轴为直线x=1,则下列结论正确的有①②③⑥:①abc>0②方程ax2+bx+c=0有两个不相等的实数根③a﹣b+c=0④当x>0时,y随x的增大而增大⑤不等式ax2+bx+c>0的解为x>3⑥3a+2c<0.【考点】二次函数图象与系数的关系;二次函数与不等式(组).【分析】根据抛物线的图象,数形结合,逐一解析判断,即可解决问题.【解答】解:∵抛物线的对称轴为x=1,抛物线与x轴有两个交点,∴﹣=1,b=﹣2a,另一个交点为(﹣1,0);∵抛物线开口向上,∴a>0,b<0;由图象知c<0,∴abc>0,故①正确;由图象知抛物线与x轴有两个交点,故②正确;把x=﹣1代入y=ax2+bx+c=a﹣b+c=0,故③正确;由抛物线的对称性及单调性知:x>1时,y随x的增大而增大故④错误;不等式ax2+bx+c>0的解为x>3或x<﹣1,故⑤错误;⑥∵a>0,c<0,∴3a+2c<0,故⑥正确.故答案为:①②③⑥.【点评】该题主要考查了二次函数的图象与系数的关系、抛物线的单调性、对称性及其应用问题;灵活运用有关知识来分析、解答是关键.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.判断下列二次函数的图象与x轴有无交点,若有请求出交点坐标;若无请说明理由.(1)y=﹣6x(2)y=2x2﹣12x+18.【考点】抛物线与x轴的交点.【分析】(1)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可;(2)首先求得判别式△的值,据此即可判断与x轴的交点的个数,若△≥0,然后令y=0,解方程求得与x轴的交点的横坐标即可.【解答】解:(1)∵a=,b=﹣6,c=0,∴b2﹣4ac=36>0,∴二次函数的图象与x轴有两个交点.令y=0,则x2﹣6x=0,解得:x=0或9.则与x轴的交点是(0,0)和(9,0);(2)∵a=2,b=﹣12,c=18,∴b2﹣4ac=(﹣12)2﹣4×2×18=0,∴二次函数与x轴只有一个交点.令y=0,则2x2﹣12x+18=0,解得:x=3,则与x轴的交点是(3,0).【点评】本题考查了二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标;二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2﹣4ac决定抛物线与x轴的交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.18.在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小米先从盒子中随机取出一个小球,记下数字为x,且不放回盒子,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵小米、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的有(1,4),(4,1),∴P(点(x,y)落在反比例函数y=的图象上)=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.已知抛物线y1=ax2+bx+c的顶点坐标为()且经过点A(1,0),直线y2=x+m恰好也经过点A(1)分别求抛物线和直线的解析式;(2)当x取何值时,函数值y2>y1;(3)当0≤x≤2时,直接写出y2和y1的最小值分别为多少?【考点】二次函数与不等式(组).【分析】(1)根据抛物线的顶点坐标可设出其顶点式,再由抛物线过A(1,0),可得出抛物线的解析式,再把A点坐标代入直线y2=x+m求出m的值即可;(2)在同一坐标系内画出一次函数与二次函数的图象,利用函数图象即可得出结论;(3)根据(2)中函数图象可直接得出结论.【解答】解:(1)∵抛物线y1=ax2+bx+c的顶点坐标为(),∴y1=a(x﹣)2﹣,∵抛物线经过点A(1,0),∴a(1﹣)2﹣=1,解得a=1,∴y1=(x﹣)2﹣.∵直线y2=x+m恰好也经过点A,∴1+m=0,解得m=﹣1,∴y2=x﹣1;(2)如图所示,当1<x<3时,y2>y1;(3)由图可知,当0≤x≤2时y1的最小值为﹣,y2的最小值为﹣1.【点评】本题考查的是二次函数与不等式组,根据题意画出函数图象,利用数形结合求解是解答此题的关键.20.已知二次函数y=ax2+bx+c的图象经过点(﹣2,4),(﹣1,0),(0,﹣2)(1)求这个二次函数的表达式;(2)求此二次函数的顶点坐标及与坐标轴的交点坐标,并根据这些点画出函数大致图象;(3)若0<y<3,求x的取值范围.【考点】待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.【分析】(1)由题意抛物线y=ax2+bx+c(a≠0)经过(﹣2,4),(﹣1,0),(0,﹣2)三点,把三点代入函数的解析式,根据待定系数法求出函数的解析式;(2)把求得的解析式化为顶点式,从而求出其对称轴和顶点坐标;分别令x=0,y=0,得到方程,解方程从而求出抛物线与坐标轴的交点坐标;(3)把y=3代入解析式求得横坐标,从而求出x的取值范围.【解答】解:(1)∵抛物线经过(﹣2,4),(﹣1,0),(0,﹣2)三点,则,解得∴y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣∴对称轴为直线x=,顶点坐标为(,﹣);∵x=0,y=﹣2,∴抛物线与y轴的交点坐标为(0,﹣2)∵y=0,∴x2﹣x﹣2=0,∴x1=2,x2=﹣1,∴抛物线与x轴的交点坐标为(2,0)、(﹣1,0).画出函数图象如图:(3)把y=3代入得,x2﹣x﹣2=3,解得x=∴<x<﹣1 或 2<x<.【点评】本题考查了待定系数法求二次函数解析式,二次函数的性质,待定系数法求函数解析式是常用的方法,需熟练掌握并灵活运用,(2)整理成顶点式形式求解更简便.21.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)若降价的最小单位为1元,则当降价多少元时,每星期的利润最大?最大利润是多少?【考点】二次函数的应用.【分析】(1)根据题意,卖出了(60﹣x)(300+20x)元,原进价共40(300+20x)元,则y=(60﹣x)(300+20x)﹣40(300+20x).(2)根据x=﹣时,y有最大值即可求得最大利润.【解答】解:(1)y=(60﹣x)(300+20x)﹣40(300+20x),即y=﹣20x2+100x+6000.因为降价要确保盈利,所以40<60﹣x≤60(或40<60﹣x<60也可).解得0≤x<20(或0<x<20);(2)当x=﹣=2.5时,y有最大值=6125,即当降价2.5元时,利润最大且为6125元.当x=2或3时,y的最大值为6120元.【点评】本题主要考查了二次函数的应用,根据题意正确列出代数式和函数表达式是解决问题的关键.22.已知A=a+2,B=2a2﹣3a+10,C=a2+5a﹣3,(1)求证:无论a为何值,A﹣B<0成立,并指出A,B的大小关系;(2)请分析A与C的大小关系.【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)计算A﹣B后结论,从而判断A与B的大小;(2)同理计算C﹣A,根据结果来比较A与C的大小.【解答】解:(1)A﹣B=﹣2a2+4a﹣8=﹣2(a﹣1)2﹣6<0,∴A<B;(2)C﹣A=a2+4a﹣5,当a<﹣5或a>1时,C>A,当a=﹣5或a=1时,C=A,当﹣5<a<1时,C<A.【点评】本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中A点的坐标为(﹣3,0),C为抛物线与y 轴的交点且S△ABC=6(1)求点B的坐标和抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)①设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值;②若点M是抛物线上在A、C之间的一个动点,则三角形ACM的最大面积是多少?【考点】二次函数综合题.【分析】(1)根据函数值相等两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据根据三角形的面积公式,可得P点的横坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)①根据垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标,可得函数解析式,根据顶点坐标是函数的最值,可得答案,②根据面积的和差,可得三角形的面积,根据QM最大时,三角形的面积最大,可得答案.【解答】解:(1)由A、B关于x=﹣1对称,得B(1,0),将A、B点坐标代入函数解析式,得,解得抛物线的解析式为y=x2+2x﹣3;(2)S△BOC=•OB•OC=S△poc=•OC•|Px|=4S△BOC=6,|px|=4,解得x=4或x=﹣4,当x=4时,y=42+2×4﹣3=21,即P1(4,21)当x=﹣4时,y=(﹣4)2+2×(﹣4)﹣3=5,即P2(﹣4,5)综上所述:P1(4,21)P2(﹣4,5).(3)①yAC=﹣x﹣3,设点Q(a,﹣a﹣3),则点D(a,a2+2a﹣3),∴QD=﹣a2﹣3a且﹣3≤a≤0,当a=时,QD的最大值为;②如图,S△ACM的最大值=S△AQM+SCQM=QM•AF+QM•OF=QM•OA=××3=.【点评】本题考查了二次函数综合题,(1)利用了待定系数法求函数解析式,函数值相等的两点关于对称轴对称;(2)利用三角形的面积得出P点的横坐标是解题关键;(3)利用垂直于x的直线上两点间的距离是大的纵坐标减小的纵坐标得出函数解析式是解题关键,②利用面积的和差是解题关键.。

福建省泉州市2018-2019年最新最全5月初中毕业班质量检测数学试题(含答案解析)

福建省泉州市2018-2019年最新最全5月初中毕业班质量检测数学试题(含答案解析)

2019届福建省泉州市初中学业质量检查数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:所有答案必须填写在答题卡相应的位置上.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上相应题目的答题区域内作答.1. 下列各式正确的是( )A. -(-2018)=2018B. |-2018|=±2018C. 20180=0D. 2018-1=-20182. 计算(-2a2)3的结果是( )A. -6a2B. -8a5C. 8a5D. -8a63. 某几何体如下左图所示,该几何体的右视图是( )第3题图4. 一个正多边形的边长为2,每个外角都为60°,则这个多边形的周长是( )A. 8B. 12C. 16D. 185. 不等式组⎩⎪⎨⎪⎧x -1≤0-x <2,的整数解的个数为( ) A. 0个 B. 2个 C. 3个 D. 无数个6. 如图,▱ABCD 的对角线AC 与BD 相交于点O ,要使它成为矩形,需再添加的条件是( )A. OA =OCB. AC =BDC. AC ⊥BDD. BD 平分∠ABC第6题图7. 在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A. 最高分90B. 众数是5C. 中位数是90D. 平均分为87.5第7题图8. 如图,在△ABC 中,点D 、E 分别是边AB 、AC 上的点,且DE ∥BC ,若AD DB =12,DE =3,则BC 的长度是( ) A. 6 B. 8 C. 9 D. 10第8题图 9. 实数a 、b 、c 、d 在数轴上的对应点从左到右依次是A 、B 、C 、D ,若b +d =0,则a +c 的值( )A. 小于0B. 等于0C. 大于0D. 与a 、b 、c 、d 的取值有关10. 已知双曲线y =k x经过点(m ,n),(n +1,m -1),(m2-1,n2-1),则k 的值为( )A. 0或3B. 0或-3C. -3D. 3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置.11. 已知x =0是方程x2-5x +2m -1=0的解,则m 的值是________.12. 分解因式:x3-4x =________.13. 某口袋中装有2个红球和若干个黄球,每个球除颜色外其它都相同,搅匀后从中摸出一个球恰为红球的概率是15,则袋中黄球的个数为________.14. 抛物线y =x2-6x +7的顶点坐标是________.15. 在直角坐标系中,点M(3,1)绕着原点O 顺时针旋转60°后的对应点的坐标是________.16. 如图,在面积为16的四边形ABCD 中,∠ADC =∠ABC =90°,AD =CD ,DP ⊥AB 于点P ,则DP 的长是________.第16题图三、解答题:本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤.在答题卡的相应位置内作答.17. (8分)先化简,再求值:x(x +2)+(x -1)(x +1)-2x ,其中x =2.18. (8分)解方程组:⎩⎪⎨⎪⎧x -y =13x +y =7.19. (8分)如图,在四边形ABCD 中,AB =AD =3,DC =4,∠A =60°,∠D =150°,试求BC 的长度.第19题图20. (8分)如图,E、F是▱ABCD的对角线AC上的两点,AE=CF,求证:DF=BE.第20题图21. (8分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:第21题图(1)接受测评的学生共有________人,扇形统计图中“优”部分对应扇形的圆心角为________°,并补全条形统计图;(2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;(3)测评成绩前五名的学生恰好是3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.22. (10分)某学校在“校园读书节”活动中,购买甲、乙两种图书共100本作为奖品,已知乙种图书的单价比甲种图书的单价高出50%.同样用360元购买乙种图书比购买甲图书少4本.(1)求甲、乙两种图书的单价各是多少元;(2)如果购买图书的总费用不超过3500元,那么乙种图书最多能买多少本?23. (10分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是边AD 的中点,且AC =5,DC =1.(1)求证:AB =DE ;(2)求tan ∠EBD 的值.第23题图24. (13分)如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交AC ︵于点D ,过点D 作DE ∥AC ,交BA 的延长线于点E ,连接AD 、CD.(1)求证:DE 是⊙O 的切线;(2)若OA =AE =2时,①求图中阴影部分的面积;②以O 为原点,AB 所在的直线为x 轴,直径AB 的垂直平分线为y 轴,建立如图所示的平面直角坐标系,试在线段AC 上求一点P ,使得直线DP 把阴影部分的面积分成1∶2的两部分.第24题图25. (13分)如图,在直角坐标系中,抛物线y=-x2+bx+2与x轴交于A、B两点,与直线y=2x交于点M(1,m).(1)求m,b的值;(2)已知点N,点M关于原点O对称,现将线段MN沿y轴向上平移s(s >0)个单位长度.若线段MN与抛物线有两个不同的公共点,试求s的取值范围;(3)利用尺规作图,在该抛物线上作出点G,使得∠AGO=∠BGO,并简要说明理由.(保留作图痕迹)第25题图2019届福建省泉州市初中学业质量检查1. A 【解析】2. D 【解析】(-2a2)3=(-2)3(a2)3=-8a6,故选D.3. D 【解析】本题考查几何体的右视图,从右往左看,可看到两个矩形,一上一下叠放在一起,且所有棱都能看到,故轮廓线均为实线,符合条件的只有D.4. B 【解析】正多边形的每个外角都为60°,360°÷60°=6,所以这个多边形为正六边形,正六边形的周长为6×2=12.5. C 【解析】不等式组的解为-2<x ≤1,其中的整数解有-1,0,1,共3个.6. B 【解析】对角线相等的平行四边形是矩形,故选B.7. C 【解析】由折线统计图可知,十名选手的最高分为95分,A 错误;众数为90,B 错误;把成绩从低到高排,中间两数都为90,所以中位数为90,C 正确;x -=1080×2+85+90×5+95×2=88.5(分),故D 错误.8. C 【解析】∵DE ∥BC ,∴AB AD =BC DE,∵DB AD =21,∴BC DE =31,∵DE =3,∴BC =9.9. A 【解析】根据数轴上右边的数总比左边的大,得a<b<c<d ,∵b+d=0,∴b+c<0,∵b>a,∴a+c<0.10. D 【解析】把点(m,n),(n+1,m-1),(m2-1,n2-1)代入双曲线y=x k得,k=mn①,k=(n+1)(m-1)②,k=(m2-1)(n2-1)③,①代入②得m-n=1;②代入③中得,1=(m+1)(n-1),1=mn+n-m-1,mn=2+(m-n)=3,所以k=3.11. 21【解析】把x=0代入方程得2m-1=0,∴m=21.12. x(x+2)(x-2) 【解析】x3-4x=x(x2-4)=x(x+2)(x-2)13. 8 【解析】口袋中球的个数为2÷51=10个,袋中黄球的个数为10-2=8个.14. (3,-2) 【解析】y=x2-6x+7=(x2-6x+9)-9+7=(x-3)2-2,所以抛物线的顶点坐标为(3,-2).15. (,-1) 【解析】如解图,由旋转的性质可知∠MOB=60°,OM =OB,又∵M(,1),可得∠MOC=30°,∴∠COB=30°,过点B作BC⊥OC 于点C,结合OB=OM可知,点B与点M关于x轴对称,∴B(,-1).第15题解图16. 4 【解析】如解图所示,过D点作DE⊥BC交BC的延长线于点E.∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形.∴∠PDE=90°,∴∠ADP =∠CDE.∵AD=DC,∴Rt△APD≌Rt△CED,∴DP=DE,∴四边形PDEB是正方形,又∵四边形ABCD的面积为16,∴正方形DPBE的面积也为16,∴DP=DE=4.第16题解图17. 解:原式=x2+2x +x2-1-2x =2x2-1当x =时,原式=2×()2-1=4-1=3. 18. 解:3x +y =7 ②x -y =1 ①, ①+②得4x =8,∴x =2, 将x =2代入①得y =1. 所以该方程组的解为y =1x =2. 19. 解:如解图,连接DB ,第19题解图∵AB =AD ,∠A =60°, ∴△ABD 是等边三角形, ∴BD =AD =3,∠ADB =60°,又∵∠ADC =150°,∴∠CDB =∠ADC -∠ADB =150°-60°=90°, ∵DC =4, ∴BC ===5.20. 证明:在▱ABCD 中,CD ∥AB ,DC =AB , ∴∠DCA =∠BAC ,在△DCF 和△BAE 中,CF =AE ∠DCA=∠BAC,∴△DCF ≌△BAE(SAS), ∴DF =BE.21. (1)80,135,补全条形统计图如解图①所示;第21题解图①【解法提示】接受测评的学生共有20÷25%=80(人),安全知识达到“良”的人数为80-30-20-5=25(人),扇形统计图中“优”部分对应扇形的圆心角为8030×360°=135°.(2)该校对安全知识达到“良”程度的人数为: 1200×8030+25=825(人); (3)列表如下:所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53. 或画树状图如解图②:第21题解图②所有等可能的结果为20种,其中抽到一男一女的为12种, 所以P(抽到1男1女)=2012=53.22. 解:(1)设甲种图书的单价是x 元,则乙种图书的单价是1.5x 元, 依题意得:x 360-1.5x 360=4. 解得:x =30,经检验x =30是原方程的解,且x =30,1.5x =45符合题意. 答:甲种图书的单价是30元,乙种图书的单价是45元. (2)设乙种图书能买m 本,依题意得:45m +30(100-m)≤3500, 解得:m ≤3100=3331,因为m 是正整数,所以m 最大值为33, 答:乙种图书最多能买33本.23. (1)证明:在矩形ABCD中,∠ADC=90°,AB=DC=1,∵AC=,DC=1,∴在Rt△ADC中,AD===2,∵E是边AD的中点,∴AE=DE=1,又∵AB=1,∴AB=DE;(2)解:如解图,过点E作EM⊥BD于点M,第23题解图∵BD=AC=,在Rt△DEM和Rt△DBA中,sin∠ADB=ED EM=BD BA,即1EM=51,解得:EM=55,又∵在Rt△ABE中,BE===,∴在Rt△BEM中,BM==)25=55,∴在Rt△BEM中,tan∠EBD=BM EM=55=31.第24题解图24. (1)证明:如解图,连接OC , ∵OA =OC ,F 为AC 的中点, ∴OD ⊥AC , 又∵DE ∥AC , ∴OD ⊥DE , ∵OD 为⊙O 的半径, ∴DE 是⊙O 的切线; (2)解:①由(1)得OD ⊥DE , ∴∠EDO =90°, ∵OA =AE =2, ∴OA =OD =AD =2, ∴△AOD 是等边三角形, ∴∠AOD =∠DAO =60°, ∴∠ACD =21∠AOD =30°, 又∵AC ⊥OD ,∴∠CAO =∠CAD =30°, ∴∠ACD =∠CAO , ∴CD ∥AB , ∴S △ACD =S △OCD , ∴S 阴=S 扇形OCD ,∵∠CAD =∠OAD -∠OAC =60°-30°=30°, ∴∠COD =2∠CAD =60°, ∴S 阴=36060π×22=32π;②由已知得:A(-2,0),C(1,), ∴直线AC 的表达式为y =33x +33,如解图,过点P1分别作P1M ⊥x 轴,P1N ⊥AD ,垂足分别M ,N , 由①得AC 平分∠OAD , ∴P1M =P1N ,设P1(x ,33x +33)(-2≤x ≤1), P1M =P1N =33x +33,∵直线DP1把阴影部分面积分成1∶2的两部分, 若S △AP1D =31S 阴,即21×2·(33x +33)=31×32π, 解得:x =93π-18,此时P1(93π-18,92π),若S △AP2D =32S 阴,同理可求得P2(93π-18,94π), 综上所述:满足条件的点P 的坐标为P1(93π-18,92π)和P2(93π-18,94π).25. 解:(1)把M(1,m)代入y =2x 得m =2×1=2,把M(1,2)代入y =-x2+bx +2得2=-12+b +2,即b =1; (2)由(1)得y =-x2+x +2,M(1,2),因为点N ,点M 关于原点O 对称,所以N(-1,-2),如解图①,过点N 作CN ⊥x 轴,交抛物线于C ,则C 的横坐标为-1, 所以C 的纵坐标为-(-1)2+(-1)+2=0,第25题解图①所以C(-1,0)与A 重合,则CN =AN =2,即当s =2时线段MN 与抛物线有两个公共点, 设平移后的直线表达式为y =2x +s , 由y =-x2+x +2y =2x +s得x2+x +s -2=0, 由Δ=12-4(s -2)=0,得s =49,即当s =49时,线段MN 与抛物线只有一个公共点,所以,当线段MN 与抛物线有两个公共点时,s 的取值范围为2≤s <49; (3)如解图②,在x 轴上取一点P(-2,0),以P 为圆心,OP 为半径作圆,⊙P 与抛物线的交点,即是所求作的点G(解图②中的G 与G ′),理由:第25题解图②当点G 在x 轴上方时,由作图可知,PG =2,PA =1,PB =4, 则PG PA=PB PG=21, ∵∠GPA =∠BPG , ∴△GPA ∽△BPG , ∴∠PBG =∠PGA , ∵GP =PO , ∴∠POG =∠PGO ,又∵∠POG =∠PBG +∠OGB , ∠PGO =∠PGA +∠AGO ,∴∠AGO=∠BGO,同理可证:当点G′在x轴的下方时,结论也成立.。

泉州市2019年实验小学四年级数学下学期期末考试试卷 附答案

泉州市2019年实验小学四年级数学下学期期末考试试卷 附答案

泉州市2019年实验小学四年级数学下学期期末考试试卷附答案班级:_________ 姓名:_________ 学号:_________题号填空题选择题判断题计算题综合题应用题总分得分1、考试时间:90分钟,满分为100分(含卷面分2分)。

2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。

3、不要在试卷上乱写乱画,卷面不整洁扣2分。

一、用心思考,正确填空(共10小题,每题2分,共20分)。

1、两数相除商8余2,若被除数和除数同时乘10,这时商是(),余数是()。

2、小马虎在计算除法时,把除数25看成了52,结果商3余19,正确的商是()。

3、一个两位小数四舍五入后是3.5,这个两位小数最小是(),最大是()。

4、992÷28把除数看作( )来试商,商的最高位在( )位上。

5、等腰三角形有()条对称轴,等边三角形有()条对称轴。

6、填出下表所缺的数。

7、4×27×25=27×(4×25)=2700,这里运用了()和()。

8、比一百万少十万的数是(),比一百万多一万的数是()。

9、一个数的最大因数是12,这个数是(),一个数的最小倍数是18,这个数是()。

10、用4个同样大的正方体分别摆成下面的形状:从()面和()面看,这三个物体的形状完全相同;从()面看,这三个物体的形状各不相同。

二、反复比较,慎重选择(共8小题,每题2分,共16分)。

1、在三角形中,如果两个内角的度数之和等于第三个内角,那么这个三角形是()。

A、直角三角形B、锐角三角形C、钝角三角形2、读两级数时,( )的0都不读。

A. 每级前面B.每级中级C.每级末尾3、八个千和八个十组成的数是()。

A.800080B.808C.8080D.88004、1030507中有()个零可以读出来。

A、1B、2C、35、下面各式,( )是方程。

A、4a+8B、6b-9>12C、a÷3=96、从一点引出两条()就组成一个角。

福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题(带答案解析)

福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题(带答案解析)

福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理科)数学试题1.已知集合{}012M =,,,{}2|20N x x x =∈+-≤Z ,则M N =I ( ) A .{}1,0,1- B .{}0,1 C .{}0,1,2 D .{}2,1,0,1-- 2.若x yi +(,)x y ∈R 与31i i +-互为共轭复数,则x y +=( ) A .0 B .3C .-1D .4 3.某旅行社调查了所在城市20户家庭2019年的旅行费用,汇总得到如下表格:则这20户家庭该年的旅行费用的众数和中位数分别是( )A .1.4,1.4B .1.4,1.5C .1.4,1.6D .1.62,1.6 4.记n S 为等差数列{}n a 的前n 项和.已知25a =-,416S =-,则6S =( ) A .-14 B .-12 C .-17 D .125.5(3)(2)x x +-的展开式中4x 的系数为( )A .10B .38C .70D .2406.已知函数41()2x x f x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .c a b << 7.松、竹、梅经冬不衰,因此有“岁寒三友”之称.在我国古代的诗词和典籍中有很多与松和竹相关的描述和记载,宋代刘学箕的《念奴娇·水轩沙岸》的“缀松黏竹,恍然如对三绝”描写了大雪后松竹并生相依的美景;宋元时期数学名著《算学启蒙》中亦有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.现欲知几日后,竹长超过松长一倍.为了解决这个新问题,设计下面的程序框图,若输入的5x =,2y =,则输出的n 的值为( )A .4B .5C .6D .78.若[]0,1x ∈时,|2|0x e x a --≥,则a 的取值范围为( )A .[]1,1-B .[]2,2e e --C .[]2e,1-D .[]2ln 22,1- 9.已知函数()sin 2cos 2f x a x b x =-,0ab ≠.当x ∈R 时()3f x f π⎛⎫≤⎪⎝⎭,则下列结论错误..的是( ) A.a B .012f π⎛⎫= ⎪⎝⎭C .2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭D .42155f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭10.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5n f ()*n N ∈的前2020项的和为( ) A .101051+ B .1010514- C .1010512- D .101051- 11.如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BDB .11BC BD ⊥ C .三棱锥11C B CE -的体积为13 D .异面直线1B C 与BD 所成的角为60︒12.若双曲线C :221x y m n+=(0)mn <绕其对称中心旋转3π可得某一函数的图象,则C 的离心率可以是( )A .3B .43CD .213.已知向量(1,1)a =r ,(1,)b k =-r ,a b ⊥r r ,则a b +=r r _________.14.在数列{}n a 中,11a =,23a =,21n n a a +=,则20192020a a +=____________. 15.设F 是抛物线E :23y x =的焦点,点A 在E 上,光线AF 经x 轴反射后交E 于点B ,则点F 的坐标为___________,||4||AF BF +的最小值为__________.16.直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,1AA =点M 是侧面11BCC B 内的动点(不含边界),AM MC ⊥,则1A M 与平面111BCC B 所成角的正切值的取值范围为__________.17.在平面四边形ABCD 中,2ABC π∠=,2DAC ACB ∠=∠,3ADC π∠=.(1)若6ACB π∠=,BC =BD ;(2)若DC =,求cos ACB ∠.18.如图1,四边形ABCD 是边长为2的菱形,60BAD ∠=︒,E 为CD 的中点,以BE 为折痕将BCE ∆折起到PBE ∆的位置,使得平面PBE ⊥平面ABED ,如图2.(1)证明:平面PAB ⊥平面PBE ;(2)求二面角B PA E --的余弦值.19.已知(1,0)F 是椭圆C :22221x y a b+=(0)a b >>的焦点,点31,2P ⎛⎫ ⎪⎝⎭在C 上. (1)求C 的方程;(2)斜率为12的直线l 与C 交于()11,A x y ,()22,B x y 两点,当1212340x x y y +=时,求直线l 被圆224x y +=截得的弦长.20.冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现在有A 材料、B 材料供选择,研究人员对附着在A 材料、B 材料上再结晶各做了50次试验,得到如下等高条形图.(1)根据上面的等高条形图,填写如下列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV 胶层;②石墨烯层;③表面封装层.第一、二环节生产合格的概率均为12,第三个环节生产合格的概率为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,第三个环节的修复费用为3000元,其余环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标? 附:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.21.已知函数2()sin 2x f x e x ax x =+--.(1)当0a =时,求()f x 的单调区间;(2)若0x =为()f x 的极小值点,求a 的取值范围.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为,4x t y =⎧⎪⎨=-⎪⎩(t 为参数),圆C 的方程为22(1)1y x +-=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求l 和C 的极坐标方程;(2)过O 且倾斜角为α的直线与l 交于点A ,与C 交于另一点B ,若5612ππα≤≤,求||||OB OA 的取值范围. 23.记函数1()212f x x x =++-的最小值为m . (1)求m 的值;(2)若正数a ,b ,c 满足abc m =,证明:9ab bc ca a b c++≥++.参考答案1.B【解析】【分析】用列举法写出集合N ,再根据交集的定义写出M N ⋂.【详解】解:因为{}2|20N x x x =∈+-≤Z所以{}2,1,0,1N =--, 又{}012M =,, {}0,1M N ∴=I故选:B【点睛】本题考查了交集的运算问题,属于基础题.2.C【解析】【分析】 计算3121i i i+=+-,由共轭复数的概念解得,x y 即可. 【详解】3121i i i+=+-Q ,又由共轭复数概念得:x 1,y 2==-, 1x y ∴+=-.故选:C【点睛】本题主要考查了复数的运算,共轭复数的概念.3.B【解析】【分析】根据众数和中位数的定义解答即可;【详解】解:依题意可得则组数据分别为:1.2,1.2,1.2,1.2,1.4,1.4,1.4,1.4,1.4,1.4,1.6,1.6,1.6,1.8,1.8,1.8,1.8,1.8,2,2;故众数为:1.4,中位数为:1.5,故选:B【点睛】本题考查求几个数的众数与中位数,属于基础题.4.B【解析】【分析】设等差数列{}n a 的公差为d ,依题意列出方程组,再根据前n 项和公式计算可得;【详解】解:设等差数列{}n a 的公差为d ,则()14154414162a d S a d +=-⎧⎪⎨⨯-=+=-⎪⎩解得172a d =-⎧⎨=⎩,所以()616616122S a d ⨯-=+=- 故选:B【点睛】本题考查等差数列的通项公式及求和公式的应用,属于基础题.5.A【解析】【分析】首先求出二项式5(2)x -展开式的通项为()5152rr r r T C x -+=-,再令53r -=,54-=r 分别求出系数,由555(3)(2)(2()3)2x x x x x +--=+-即可得到展开式中4x 的系数.【详解】解:因为555(3)(2)(2()3)2x x x x x +--=+-,而5(2)x -展开式的通项为()5152rr r r T C x -+=-,当54-=r 即1r =时,()114425210T C x x =-=-,当53r -=即2r =时,()223335240T C x x =-=故5(3)(2)x x +-的展开式中4x 的系数为()4031010+⨯-= 故选:A【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.6.A【解析】【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】 解:因为41()222x x x x f x --==-,定义域为R ,()()22x x f x f x --=-=- 故函数是奇函数,又2x y =在定义域上单调递增,2xy -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20<所以()()()0.30.30.320.2log 2f f f >> 即a b c >>故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.7.A【解析】【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量b 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:当1n =时,152x =,4y =,满足进行循环的条件,当2n =时,454x =,8y =满足进行循环的条件, 当3n =时,1358x =,16y =满足进行循环的条件, 当4n =时,40516x =,32y =不满足进行循环的条件, 故输出的n 值4.故选:A .【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.8.D【解析】【分析】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+,然后分别求出()()max min ,f xg x 即可得a 的取值范围.【详解】由题得22x x x e a x e -≤≤+对[]0,1x ∀∈恒成立,令()()2g 2,x xf x x e x x e =-=+, ()2x f x e '=-Q 在[]0,1单调递减,且()ln 20f '=,()f x ∴在()0,ln 2上单调递增,在()ln 2,1上单调递减,()()max ln 22ln 22a f x f ∴≥==-,又()g 2xx x e =+在[]0,1单调递增,()()min 01a g x g ∴≤==, ∴a 的取值范围为[]2ln 22,1-.故选:D【点睛】本题主要考查了不等式恒成立问题,导数的综合应用,考查了转化与化归的思想.求解不等式恒成立问题,可采用参变量分离法去求解.9.D 【解析】 【分析】依题意,利用辅助角公式得到()()2f x x ϕ=-,且3f π⎛⎫⎪⎝⎭是()f x 的最大值,从而sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ,即可得到()2sin 26f x b x π⎛⎫=- ⎪⎝⎭,从而一一验证可得; 【详解】解:因为()()sin 2cos 22f x a x b x x ϕ=-=-,其中sin ϕ=,cos ϕ=0ab ≠.当x ∈R 时()3f x f π⎛⎫≤ ⎪⎝⎭,所以3x π=是图象的对称轴,此时,函数取得最大值sin 213πϕ⎛⎫⨯-= ⎪⎝⎭,取6π=ϕ;则1sin 2ϕ==,cos ϕ==,所以a ,故A 正确;()2sin 26f x b x π⎛⎫∴=- ⎪⎝⎭,则2sin 2012126f b πππ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,故B 正确; 17172sin 22sin 22sin 2sin 556563030f b b b b πππππππ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=⨯--=⨯--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,221317172sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故2515f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即C 正确; 22192sin 22sin 55630f b b ππππ⎛⎫⎡⎤∴=⨯-=⎪⎢⎥⎝⎭⎣⎦4421332sin 22sin 2sin 2sin 151********f b b b b πππππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=⨯--=-=-+=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦故42155f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,即D 错误; 故选:D 【点睛】本题考查辅助角公式及三角函数的性质的应用,属于中档题. 10.D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题. 11.ABD 【解析】 【分析】建立空间直角坐标系,利用空间向量法一一验证即可; 【详解】解:如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-u u u u r ,()11,1,1BD =-u u u u r ,()1,1,0BD =-u u u r ,()11,0,1BA =-u u u r所以()111011110B C BD =-⨯+⨯+-⨯=u u u r u u u r u g ,即11BC BD ⊥u u u r u u ur u ,所以11B C BD ⊥,故B 正确; ()11011101B C BD =-⨯+⨯+-⨯=u u u r u u u r g,1B C =u u u rBD =u u u r,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BD θ==u u u r u u u u ur g u u u r r g u ,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =r ,则1·0·0n BA n BD ⎧=⎨=⎩u u u v v u u u v v ,即00x y x z -+=⎧⎨-+=⎩,取()1,1,1n =r ,则()10111110n B C =⨯+⨯+⨯-=r u u u r g ,即1C n B ⊥r u u u r,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选:ABD【点睛】本题考查空间向量法在立体几何中的应用,属于中档题. 12.AD 【解析】 【分析】利用双曲线旋转后是函数的图象,求出渐近线的斜率,然后求解双曲线的离心率即可.【详解】解:当0m >,0n <时,由题意可知双曲线的渐近线的倾斜角为:6π,所以斜率为:3,可得:13m n =-,所以双曲线的离心率为:2e ==.当0m <,0n >时,由题意可知双曲线的渐近线的倾斜角为:6π,=3n m =-,所以双曲线的离心率为:e ==. 故选:AD . 【点睛】本题考查双曲线的简单性质的应用,属于中档题. 13.2 【解析】 【分析】由a b ⊥r r得0a b ⋅=r r ,算出1k=,再代入算出a b +r r即可.【详解】Q (1,1)a =r ,(1,)b k =-r ,a b ⊥r r,10a b k ∴⋅=-+=r r ,解得:1k =,()0,2a b ∴+=r r,则2a b +=r r .故答案为:2 【点睛】本题主要考查了向量的坐标运算,向量垂直的性质,向量的模的计算. 14.43【解析】 【分析】由递推公式可以先计算出前几项,再找出规律,即可得解; 【详解】解:因为11a =,23a =,21n n a a +=,所以131a a =,即31a =,241a a =,所以413a =351a a =,所以51a =, 461a a =,所以63a =L L由此可得数列{}n a 的奇数项为1,偶数项为3、13、3、13L L 所以2019202014133a a +=+= 故答案为:43【点睛】本题考查由递推公式研究函数的性质,属于基础题. 15.3,04⎛⎫ ⎪⎝⎭ 274【解析】 【分析】首先由抛物线的解析式直接得到焦点坐标,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立直线与抛物线方程,可得根与系数的关系,利用1233||4||444AF BF x x ⎛⎫+=+++ ⎪⎝⎭以及基本不等式计算可得; 【详解】解:因为23y x =,23p =,所以32p =,故焦点F 的坐标为3,04⎛⎫⎪⎝⎭,根据抛物线的性质可得B 点关于x 轴对称的点1B 恰在直线AF 上,且1||||B F BF =,设()11,A x y ,()122,B x y ,则()22,B x y -,当直线1AB 的斜率存在时,设直线1AB 的方程为34y k x ⎛⎫=- ⎪⎝⎭,联立得2343y k x y x⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,化简的22223930216k x k x k ⎛⎫-++= ⎪⎝⎭, 所以12916x x =,所以121233151527||4||4444444AF BF x x x x ⎛⎫+=+++=++≥= ⎪⎝⎭ 当且仅当124x x =时取等号,当直线1AB 的斜率不存在时,A 点与B 点重合,15||4||52AF BF p +==,综上可得||4||AF BF +的最小值为274故答案为:3,04⎛⎫ ⎪⎝⎭;274. 【点睛】本题考查抛物线的定义标准方程及其性质,直线与抛物线相交问题,焦点弦的相关性质与基本不等式的应用,属于中档题.16.⎤⎥⎝⎦【解析】如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<,由AM MC ⊥,则0AM MC =u u u u r u u u u rg ,即可得到动点M 的轨迹方程,连接1A M ,1B M ,则11A MB Ð为1A M 与平面11BCC B 所成角,从而11111tan A B A MB MB ∠=,即可求出1A M 与平面111BCC B 所成角的正切值的取值范围;【详解】解:如图建立空间直角坐标系,(A ,()14,0,0A,(C ,设(),4,M x z,(0z <<则(4,4,AM x z =--u u u u r,(,0,CM x z =-u u u u r,因为AM MC ⊥,所以0AM MC =u u u u r u u u u rg ,()(240x x z -+-=,即()(2224x z -+-=,(0z <<,连接1A M ,1B M,则12B M ≤<以111142MB <≤, 依题意可得11A B ⊥面11BCC B ,则11A MB Ð为1A M 与平面11BCC B所成角,1111114tan 27A B A MB MB MB ⎛⎤∠==∈ ⎥ ⎝⎦故答案为:27⎛⎤⎥ ⎝⎦本题考查空间向量法解决立体几何问题,线面角的计算,属于中档题. 17.(1)BD =2)3cos 4ACB ∠=【解析】 【分析】(1)在Rt ABC ∆中,由已知条件求出相关的边与角,由倍角关系推导求出ADC ∆为等边三角形,再利用余弦定理即求出BD =.(2)由题目已知条件2DAC ACB ∠=∠,可将所要的角转化到ACD ∆中,再将AC 用Rt ABC ∆中边角来表示,利用正弦定理及三角恒等变换求解即可得.【详解】解:(1)在Rt ABC ∆中,由6ACB π∠=,BC =1AB =,3BAC π∠=,2AC =又23DAC ACB π∠=∠=,3ADC π∠=,所以ADC ∆为等边三角形,所以2AD =在ABD ∆中,由余弦定理得,2222cos BD AB AD AB AD BAD =+-⨯⨯∠, 即222212212cos73BD π=+-⨯⨯⨯=,解得BD =(2)设ACB θ∠=,AB x =, 则2DAC θ∠=,DC =,在Rt ABC ∆中,sin sin AB xAC θθ==, 在ACD ∆中,根据正弦定理得,sin sin ACDAC D A CC D =∠∠,sin sin 3xθπ=,sinsin 23sin x πθθ⋅=⋅2sin cos sin xθθθ=⋅解得3cos 4θ=,即3cos 4ACB ∠=【点睛】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证能力和运算求解能力等,考查数形结合思想和化归与转化思想等,体现综合性与应用性,导向对发展直观想象、逻辑推理、数学运算及数学建模等核心素养的关注.18.(1)证明见解析(2)7【解析】 【分析】(1)依题意可得PE BE ⊥,由面面垂直的性质可得PE ⊥平面ABCD ,从而得到PE AB ⊥,再证AB BE ⊥,即可得到AB ⊥平面PBE ,从而得证;(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,利用空间向量求二面角的余弦值; 【详解】解:(1)依题意知,因为CD BE ⊥,所以PE BE ⊥, 当平面PBE ⊥平面ABED 时,平面PBE ⋂平面ABCD BE =,PE ⊂平面PBE , 所以PE ⊥平面ABCD ,因为AB Ì平面ABCD ,所以PE AB ⊥,由已知,BCD ∆是等边三角形,且E 为CD 的中点, 所以BE CD ⊥,//AB CD ,所以AB BE ⊥,又PE BE E ⋂=,PE ⊂平面PBE ,BE ⊂平面PBE ,所以AB ⊥平面PBE ,又AB Ì平面PAB ,所以平面PAB ⊥平面PBE .(2)以E 为原点,分别以ED u u u r ,EB u u u r ,EP u u u r的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系E xyz -,则(0,0,0)E ,(0,0,1)P,B,A ,(0,0,1)EP =u u u r,EA =u u u r ,(2,0,0)BA =u u u r,1)PA =-u u u r,设平面PAB 的一个法向量()111,,m x y z =u r ,平面PAE 的一个法向量()222,,n x y z =r由00BA m PA m ⎧⋅=⎨⋅=⎩u u u v vu u u v v得11112020x x z =⎧⎪⎨+-=⎪⎩;令11y =,解得1z =10x =,所以m =u r,由00EP n EA n ⎧⋅=⎨⋅=⎩u u u v vu u u v v得222020z x =⎧⎪⎨+=⎪⎩;令22y =-,解得2x =,20z =,所以2,0)n =-r,cos ,7m n m n m n ⋅====-⋅u r ru r r u r r .. 【点睛】本小题考查线面垂直的判定与性质、二面角的求解及空间向量的坐标运算等基础知识,考查空间想象能力、推理论证及运算求解能力,考查化归与转化思想、数形结合思想等,体现基础性、综合性与应用性,导向对发展数学抽象、逻辑推理、直观想象等核心素养的关注.19.(1)22143x y +=(2【解析】 【分析】(1)由已知可得221a b -=,再点31,2P ⎛⎫⎪⎝⎭在椭圆上得到方程组,解得即可; (2)设直线l 的方程为12y x t =+,联立直线与椭圆,列出韦达定理,由1212340x x y y +=,解得22t =,再由点到线的距离公式及勾股定理计算可得; 【详解】解:(1)由己知得221a b -=, 因点31,2P ⎛⎫⎪⎝⎭在椭圆上,所以221914a b += 所以24a =,23b =所以椭圆C 的方程为:22143x y +=(2)设直线l 的方程为12yx t =+, 联立2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y 得2230x tx t ++-=, ()222431230t t t ∆=--=->,解得24t <,12x x t +=-,2123x x t =-,由1212340x x y y +=,即12121134022x x x t x t ⎛⎫⎛⎫+++=⎪⎪⎝⎭⎝⎭, 所以()21212220x x t x x t +++=(*).将12x x t +=-,2123x x t =-代入(*)式,解得22t =,由于圆心O到直线l的距离为d==,所以直线l被圆O截得的弦长为5l===.【点睛】本小题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力等,考查化归与转化思想、数形结合思想、函数与方程思想等,体现基础性、综合性与创新性,导向对发展逻辑推理、直观想象、数学运算、数学建模等核心素养的关注. 20.(1)填表见解析;有99%的把握认为试验成功与材料有关(2)定价至少为2.2万元/吨【解析】【分析】(1)写出列联表,根据列联表求出2K的观测值,结合临界值表可得;(2)生产1吨的石墨烯发热膜,所需的修复费用为X万元,易知X可取0,0.1,0.2,0.3,0.4,0.5,然后根据独立重复事件的概率公式计算概率,写出分布列后求出期望即可.【详解】解:(1)根据所给等高条形图,得列联表:2K的观测值2100(4520530)1250507525k⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元. 易知X 可取0,0.1,0.2,0.3,0.4,0.5.202122(0)2312P X C ⎛⎫==⨯= ⎪⎝⎭,212124(0.1)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 222122(0.2)2312P X C ⎛⎫==⨯= ⎪⎝⎭,202111(0.3)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 212112(0.4)2312P X C ⎛⎫==⨯= ⎪⎝⎭,222111(0.5)2312P X C ⎛⎫==⨯= ⎪⎝⎭, 则X 的分布列为:修复费用的期望:111111()00.10.20.30.40.50.263612612E X =⨯+⨯+⨯+⨯+⨯+⨯=. 所以石墨烯发热膜的定价至少为0.211 2.2++=万元/吨,才能实现预期的利润目标. 【点睛】本小题主要考查等高条形图、独立性检验、分布列与期望等基础知识,考查数据处理能力、运算求解能力、应用意识等,考查统计与概率思想等,考查数学抽象、数学建模、数据分析等核心素养,体现基础性、综合性与应用性.21.(1)递增区间为(0,)+∞,递减区间为(0,)+∞(2)12a ≤ 【解析】 【分析】(1)首先求出函数的导函数()cos 2x f x e x '=+-,记()()g x f x '=,则()sin xg x e x '=-,分析()g x 的单调性,即可求出函数的单调性;(2)依题意可得(0)0f '=,记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-,利用导数分析()h x '的单调性,即可得到()cos x h x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点,即()sin 2x g x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-,再对a 分类讨论可得;【详解】解:(1)当0a =时,()cos 2xf x e x '=+-, 记()()g x f x '=,则()sin xg x e x '=-,当0x >时,e 1x >,1sin 1x -≤≤,所以()sin 0xg x e x '=->,()g x 在(0,)+∞单调递增,所以()(0)0g x g >=,因为()()0f x g x '=>,所以()f x 在(0,)+∞为增函数;当0x <时,1x e <,1cos 1x -≤≤,所以()cos 20xf x e x '=+-<, 所以()f x 在(0,)+∞为减函数.综上所述,()f x 的递增区间为(0,)+∞,递减区间为(0,)+∞.·(2)由题意可得()cos 22xf x e x ax '=+--,(0)0f '=. 记()()g x f x '=,则()sin 2xg x e x a '=--.再令()()h x g x '=,则()cos xh x e x '=-.下面证明()cos xh x e x '=-在,02π⎛⎫- ⎪⎝⎭有零点:令()()x h x ϕ'=,则()sin xx e x ϕ'=+在,02π⎛⎫- ⎪⎝⎭是增函数,所以()(0)2x πϕϕϕ⎛⎫'''-<< ⎪⎝⎭.又02πϕ⎛⎫'-< ⎪⎝⎭,(0)0ϕ'>, 所以存在1,02x π⎛⎫∈-⎪⎝⎭,()10x ϕ'=,且当1,2x x π⎛⎫∈- ⎪⎝⎭,()0x ϕ'<,()1,0x x ∈,()0x ϕ'>,所以()x ϕ,即()h x '在1,2x π⎛⎫- ⎪⎝⎭为减函数,在()1,0x 为增函数,又02h π⎛⎫'-> ⎪⎝⎭,(0)0h '=,所以()10h x '<, 根据零点存在性定理,存在01,2x x π⎛⎫∈- ⎪⎝⎭,()00h x '= 所以当()0,0x x ∈,()0h x '<,又0x >,()cos 0xh x e x '=->,所以()h x ,即()sin 2xg x e x a '=--在()0,0x 单调递减,在(0,)+∞单调递增,所以0()(0)sin 0212g x g e a a ''≥=--=-. ①当120a -≥,12a ≤,()0g x '≥恒成立,所以()g x ,即()f x '为增函数, 又(0)0f '=,所以当()0,0x x ∈,()0f x '<,()f x 为减函数,(0,)x ∈+∞,()0f x '>,()f x 为增函数,0x =是()f x 的极小值点,所以12a ≤满足题意. ②当12a >,(0)120g a '=-<,令()1xx e x =--,0x > 因为0x >,所以()10xu x e '=->,故()u x 在(0,)+∞单调递增,故()(0)0u x u >=,即有1x e x >+ 故2(2)sin 2221sin 220ag a ea a a a a '=-->+--≥,又()sin 2x g x e x a '=--在(0,)+∞单调递增,由零点存在性定理知,存在唯一实数(0,)m ∈+∞,()0g m '=,当(0,)x m ∈,()0g x '<,()g x 单调递减,即()f x '递减,所以()(0)0f x f ''<=,此时()f x 在(0,)m 为减函数,所以()(0)0f x f <=,不合题意,应舍去. 综上所述,a 的取值范围是12a ≤. 【点睛】本小题主要考查导数的综合应用,利用导数研究函数的单调性、最值和零点等问题,考查抽象概括、推理论证、运算求解能力,考查应用意识与创新意识,综合考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想、有限与无限思想以及特殊与一般思想,考查数学抽象、逻辑推理、直观想象、数学运算、数学建模等核心素养.22.(1cos sin 40θρθ+-=;2sin ρθ=(2)13,24⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化; (2)利用极坐标方程将||||OB OA 转化为三角函数求解即可. 【详解】(1)因为,4x t y =⎧⎪⎨=-⎪⎩,所以l40y +-=,又cos x ρθ=,sin y ρθ=,222x y ρ+=,lcos sin 40θρθ+-=,C 的方程即为2220x y y +-=,对应极坐标方程为2sin ρθ=.(2)由己知设()1,A ρα,()2,B ρα,则1ρ=22sin ρα=,所以,)21||12sin sin ||4OB OA ραααρ==⨯+12cos 214αα⎤=-+⎦ 12sin 2146πα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦又5612ππα≤≤,22663πππα≤-≤, 当266ππα-=,即6πα=时,||||OB OA 取得最小值12; 当262ππα-=,即3πα=时,||||OB OA 取得最大值34.所以,||||OB OA 的取值范围为13,24⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力. 23.(1)1m =(2)证明见解析 【解析】 【分析】(1)将函数()f x 转化为分段函数或利用绝对值三角不等式进行求解; (2)利用基本不等式或柯西不等式证明即可. 【详解】解法一:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩当12x ≤-时,1()22f x f ⎛⎫≥-= ⎪⎝⎭, 当1122x -<≤,1()12f x f ⎛⎫≥= ⎪⎝⎭, 当12x >时,1()12f x f ⎛⎫>= ⎪⎝⎭, 所以min ()1m f x ==解法二:(1)113,22311(),222113,22x x f x x x x x ⎧-+≤-⎪⎪⎪=-+-<≤⎨⎪⎪->⎪⎩如图当12x =时,min ()1m f x == 解法三:(1)111()222f x x x x =++-+-111222x x x ⎛⎫⎛⎫≥+--+- ⎪ ⎪⎝⎭⎝⎭ 1112x =+-≥ 当且仅当11022102x x x ⎧⎛⎫⎛⎫+-≤ ⎪⎪⎪⎪⎝⎭⎝⎭⎨⎪-=⎪⎩即12x =时,等号成立.当12x =时min ()1m f x == 解法一:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c c a b ⎛⎫++++≥⎪⎝⎭,因为111()9a b c c a b ⎛⎫++++≥=⎪⎝⎭成立,所以原不等式成立.解法二:(2)因为0a >,0b >,0c >,所以0ab bc ca ++≥>,0a b c ++≥>,又因为1abc =,所以()()9a b c ab bc ac ++++≥=,()()9ab bc ac a b c ++++≥所以9ab bc ca a b c++≥++,原不等式得证.补充:解法三:(2)由题意可知,111ab bc ca c a b++=++, 因为0a >,0b >,0c >,所以要证明不等式9ab bc ca a b c++≥++,只需证明111()9a b c a b c ⎛⎫++++≥⎪⎝⎭,由柯西不等式得:2111()9a b ca b c ⎛⎫++++≥= ⎪⎝⎭成立, 所以原不等式成立. 【点睛】本题主要考查了绝对值函数的最值求解,不等式的证明,绝对值三角不等式,基本不等式及柯西不等式的应用,考查了学生的逻辑推理和运算求解能力.。

2019年福建省中考数学试题及答案

2019年福建省中考数学试题及答案

2019年福建省初中学业水平考试数 学(试卷满分:150分 考试时间:120分钟)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1.计算22+(-1)0的结果是( )A .5B .4C .3D .22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ) A .72×104 B .7.2×105 C .7.2×106 D .0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ) A .等边三角形 B .直角三角形 C .平行四边形 D .正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( )A .B .C .D .5.已知正多边形的一个外角是36°,则该正多边形的边数为( ) A .12 B .10 C .8 D .66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A .甲的数学成绩高于班级平均分,且成绩比较稳定B .乙的数学成绩在班级平均分附近波动,且比丙好C .丙的数学成绩低于班级平均分,但成绩逐次提高D .就甲、乙、丙三个人而言,乙的数学成绩最不稳定 7.下列运算正确的是( ).A .a ·a 3=a 3B .(2a )3=6a 3C .a 6÷a 3=a 2D .(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ) A .x +2x +4x =34 685 B .x +2x +3x =34 685 C .x +2x +2x =34 685 D .x +12x +14x =34 685次数主视图9.如图,P A 、PB 是⊙O 的两条切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( ) A .55° B .70° C .110° D .125°10.若二次函数y =|a |x 2+bx +c 的图象过不同的五点A (m ,n ),B (0,y 1),C (3-m ,n ),D (2,y 2),E (2,y 3),则y 1, y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 3<y 1 二、填空题(每小题4分,共24分) 11.因式分解:x 2-9= .12.如图,数轴上A 、B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 . 13.某校征集校运会会徽图案,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100位学生, 其中60位学生喜欢甲图案,若该校共有学生2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生 有 人.14.在平面直角坐标系xOy 中,□OABC 的三个顶点分别为O (0,0),A (3,0),B (4,2),则其第四个顶点C 的坐标 是 .15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交 点,则图中阴影部分的面积为 .(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =3x (x >0)的图象上,函数y =kx (k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠DAB =30°,则k 的值为 .第15题图 第16题图三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解方程组:⎩⎪⎨⎪⎧x -y =52x +y =4.18.(本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF =CE .A19.(本小题满分8分)先化简,再求值:(x -1)÷(x -2x -1x ),其中x =2+1已知△ABC为和点A',如图,(1)以点A'为一个顶点作△A'B'C',使得△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)(2)设D,E,F分别是△ABC三边AB,BC,CA的中点,D',E',F'分别是你所作的△A'B'C'三边A'B',B'C',A'C'的中点,求证:△DEF∽△D'E'F'.AA'21.(本小题满分8分)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一个角度α得到△DEC,点A,B的对应点分别为D,E.(1)若点E恰好落在边AC上,如图1,求∠ADE的大小;(2)若α=60°,F为AC的中点,如图2,求证:四边形BEDF是平行四边形.图1 图2某工厂为贯彻落实“绿水青山就是金山银山”的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元。

福建省泉州市2019-2020学年中考第二次质量检测数学试题含解析

福建省泉州市2019-2020学年中考第二次质量检测数学试题含解析

福建省泉州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>02.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.64.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是()A.10m B.20m C.30m D.40m5.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1056.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+7.在0,π,﹣3,0.6,2这5个实数中,无理数的个数为()A.1个B.2个C.3个D.4个8.估计10﹣1的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A =24°,则∠BDC的度数为()A.42°B.66°C.69°D.77°10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是()A.()2016B.()2017C.()2016D.()201711.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.0.4×108B.4×108C.4×10﹣8D.﹣4×10812.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.米B.米C.米D.米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.14.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.15.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=kx的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.16.如果点A (-1,4)、B (m ,4)在抛物线y =a (x -1)2+h 上,那么m 的值为_____.17.如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD=5,AE=2,AF=1.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是______.18.如图,点A (m ,2),B (5,n )在函数k y x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,▱ABCD 中,点E ,F 分别是BC 和AD 边上的点,AE 垂直平分BF ,交BF 于点P ,连接EF ,PD .求证:平行四边形ABEF 是菱形;若AB =4,AD =6,∠ABC =60°,求tan ∠ADP 的值.20.(6分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12; (2)解方程:x (x ﹣4)=2x ﹣821.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.(1)求AB 的长(精确到0.13 1.732 1.41≈≈,);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.22.(8分)某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如下表: 类型 价格 进价(元/盏) 售价(元/盏)A 型30 45 B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.(2)若设商场购进A 型台灯m 盏,销售完这批台灯所获利润为P ,写出P 与m 之间的函数关系式. (3)若商场规定B 型灯的进货数量不超过A 型灯数量的4倍,那么A 型和B 型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.23.(8分)如图,抛物线y=﹣12x 2﹣x+4与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C . (1)求点A ,点B 的坐标;(2)P 为第二象限抛物线上的一个动点,求△ACP 面积的最大值.24.(10分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .25.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.26.(12分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式.27.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区,为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.2.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.3.C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.4.B【解析】【分析】利用配方法求二次函数最值的方法解答即可.【详解】∵s=20t-5t2=-5(t-2)2+20,∴汽车刹车后到停下来前进了20m.故选B.【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.7.B【解析】【分析】分别根据无理数、有理数的定义逐一判断即可得.【详解】解:在0,π,-3,0.6这5个实数中,无理数有π这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.8.B【解析】【分析】<<.【详解】<∴34<,∴213<<﹣1的值在2和3之间.故选B.【点睛】的大小,在确定答案的范围.9.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°. 故选C.10.C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大12.D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(-1, -6)【解析】【分析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1, -6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.15.﹣1【解析】【详解】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭VV,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.16.1【解析】【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.17r<<【解析】【分析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ON⊥AE,OM⊥AF.AN=12AE=1,AM=12AF=2,MD=AD-AM=3∵四边形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN是矩形∴OM=AN=1∴=∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交r<<【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.18.2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)tan∠ADP=.【解析】【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【详解】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH ⊥AD 于H ,∵四边形ABEF 是菱形,∠ABC =60°,AB =4,∴AB =AF =4,∠ABF =∠AFB =30°,AP ⊥BF ,∴AP =AB =2,∴PH =,DH =5,∴tan ∠ADP ==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大. 20.(1)3;(1)x 1=4,x 1=1.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(12﹣18)﹣4×323 =8×38﹣33=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.21.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒==,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.22.(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B 型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【解析】【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P随m的增大而减小,∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【点睛】本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用. 23.(1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】【分析】(1)令y=0,得到关于x 的一元二次方程﹣12x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣12t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=12PD×OA=12PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣12x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴404b k b=⎧⎨=-+⎩ 解得:14k b =⎧⎨=⎩∴AC 解析式为y=x+4.设P (t ,﹣12t 2﹣t+4)则D (t ,t+4) ∴PD=(﹣12t 2﹣t+4)﹣(t+4)=﹣12t 2﹣2t=﹣12(t+2)2+2 ∴S △ACP =12PD×4=﹣(t+2)2+4 ∴当t=﹣2时,△ACP 最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.24.(1)2,3b b --;(2)图象见解析,6y x =或9y x=-;(3 【解析】【分析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M ,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式; (3)设出A 的坐标,表示出C,D 的坐标,得到CD 的长度,根据题意找到CD 的最小值,因为AD 的长度不变,所以当CD 最小时,对角线AC 最小,则答案可求.【详解】解:(1)()2222222323()3y x bx x bx b b x b b =--=-+--=--+Q , ∴抛物线的顶点的坐标为2(,3)b b --.故答案为:2(,3)b b --(2)将(2,1)M --代入抛物线的解析式得:4431b +-=- 解得:12b =-, ∴抛物线的解析式为23y x x =+-.抛物线L 的大致图象如图所示:将3y =代入23y x x =+-得: 233x x +-=,解得:2x =或3x =-∴抛物线与反比例函数图象的交点坐标为(2,3)或()3,3-.将(2,3)代入k y x=得:6k =, 6y x∴=. 将()3,3-代入k y x=得:9k =-, 9y x=-∴. 综上所述,反比例函数的表达式为6y x =或9y x=-. (3)设点A 的坐标为()2,23x x bx --,则点D 的坐标为()21,23x x bx +--, C 的坐标为21,(22)2)2(x x b x b ++---.()2223(22)22221DC x bx x b x b x b ⎡⎤∴=---+---=-+-⎣⎦ DC ∴的长随x 的增大而减小.Q 矩形ABCD 在其对称轴的左侧,抛物线的对称轴为x b =,1x b ∴+≤1x b ∴≤-∴当1x b =-时,DC 的长有最小值,DC 的最小值2(1)211b b =--+-=.AD Q 的长度不变,∴当DC 最小时,AC 有最小值.AC ∴的最小值222AD DC +=.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.25.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P (甲获胜)=516,P (乙获胜)=1﹣516=1116, 则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)一件A 型、B 型丝绸的进价分别为500元,400元;(2)①1625m ≤≤,②7512500(50100)5000(100)6611600(100150)n n w n n n -+≤<⎧⎪==⎨⎪-+<≤⎩.【解析】【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.【详解】(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为()100x +元,根据题意得:100008000100x x=+,解得400x =,经检验,400x =为原方程的解,100500x ∴+=,答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:5016m m m -⎧⎨⎩„…, m ∴的取值范围为:1625m 剟,②设销售这批丝绸的利润为y ,根据题意得:()()()8005002600400?50y n m n m =--+---,()1001000050n m n =-+-50150n Q 剟,∴(Ⅰ)当50100n <„时,1000n ->,25m =时,销售这批丝绸的最大利润()2510010000507512500w n n n =-+-=-+;(Ⅱ)当100n =时,1000n -=,销售这批丝绸的最大利润5000w =;(Ⅲ)当100150n <„时,1000n -<当16m =时,销售这批丝绸的最大利润6611600w n =-+.综上所述:7512500(50100)50001006611600(100150)n n w n n n -+<⎧⎪==⎨⎪-+<⎩„„.【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.27.(1)MN 不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN 是否穿过原始森林保护区,也就是求C 到MN 的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.试题解析:(1)如图,过C 作CH ⊥AB 于H ,设CH=x,由已知有∠EAC=45°, ∠FBC=60°则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=CH HB∴HB=tan30CHo=3=3x,∵AH+HB=AB∴x+3x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5根据题意得:15y=(1+25%)×1y,解得:y=25知:y=25的根.答:原计划完成这项工程需要25天.。

2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)

2019届高三上期末数学分类汇编(18)等差数列与等比数列(含答案)

(山东省德州市2019届高三期末联考数学(理科)试题)4.已知数列为等差数列,且成等比数列,则的前6项的和为()A. 15B.C. 6D. 3【答案】C【解析】【分析】利用成等比数列,得到方程2a1+5d=2,将其整体代入 {a n}前6项的和公式中即可求出结果.【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{a n}前6项的和为2a1+5d)=.故选:C.【点睛】本题考查等差数列前n项和的求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.(福建省宁德市2019届高三第一学期期末质量检测数学理科试题)3.等差数列中,,,则数列的前20项和等于()A. -10B. -20C. 10D. 20【答案】D【解析】【分析】本道题结合等差数列性质,计算公差,然后求和,即可。

【详解】,解得,所以,故选D。

【点睛】本道题考查了等差数列的性质,难度中等。

(江西省新余市2019届高三上学期期末考试数学(理)试题)5.在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18B. 9C. 18D. 20【答案】D【解析】【分析】由韦达定理得,从而的前10项和,由此能求出结果.【详解】等差数列中,是函数的两个零点,,的前10项和.故选:D.【点睛】本题考查等差数列的前n项和公式,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.(湖南省长沙市2019届上学期高三统一检测理科数学试题)13.设等差数列的前项和为,且,则__________.【答案】【解析】分析:设等差数列{a n}的公差为d,由S13=52,可得13a1+d=52,化简再利用通项公式代入a4+a8+a9,即可得出.详解:设等差数列{a n}的公差为d,∵S13=52,∴13a1+d=52,化为:a1+6d=4.则a4+a8+a9=3a1+18d=3(a1+6d)=3×4=12.故填12.点睛:本题主要考查等差数列通项和前n项和,意在考查学生等差数列基础知识的掌握能力和基本的运算能力.(湖南省湘潭市2019届高三上学期第一次模拟检测数学(文)试题)3.已知数列是等比数列,其前项和为,,则()A. B. C. 2 D. 4【答案】A【解析】【分析】由题意,根据等比数列的通项公式和求和公式,求的公比,进而可求解,得到答案。

泉州市南安市2019年中考数学模拟试卷(五)含答案解析

泉州市南安市2019年中考数学模拟试卷(五)含答案解析

福建省泉州市南安市2019年中考数学模拟试卷(五)(解析版)一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.965.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<26.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A .,B .,﹣C .,﹣D .﹣,二、填空题:.8.16的算术平方根是______.9.计算:﹣=______.10.分解因式:4x 2﹣6x=______.11.如图,已知AB ∥ED ,∠B=58°,∠C=35°,则∠D 的度数为______度.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为______.13.方程组的解为______.14.如图,已知AB 是⊙O 的直径,OD ⊥AC ,OD=3,则弦BC 的长为______.15.一个扇形的半径为6cm ,弧长是4πcm ,这个扇形的面积是______cm 2.16.如图,菱形ABCD 中,点O 是对角线AC 、BD 的交点,已知AB=5,OB=3,则菱形ABCD 的面积是______.17.在平面直角坐标系中,点A (0,6),点B (t ,0)是x 轴正半轴上的点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .(1)点C 的坐标为______;(2)△ABC 的面积为______.(均用含t 的代数式表示)三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为______.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.2019年福建省泉州市南安市中考数学模拟试卷(五)参考答案与试题解析一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则化简求出答案.【解答】解:A、4a+5b无法计算,故此选项错误;B、(a3)5=a15,正确;C、a4•a2=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算等知识,掌握运算法则是解题关键.3.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.96【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据按从小到大的顺序排列为:76,78,82,88,96,96,处于中间位置的两个数是82和88,那么由中位数的定义可知,这组数据的中位数是(82+88)÷2=85.故选B.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<2【考点】不等式的解集.【分析】根据x的取值范围画出数轴即可得出不等式组的解集.【解答】解:如图所示:,故不等式组的解集是:x>2.故选:C.【点评】此题主要考查了不等式的解集,正确在数轴上表示出解集是解题关键.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠C=68°.【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.二、填空题:.8.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.计算:﹣=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.分解因式:4x2﹣6x=2x(2x﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式得出答案.【解答】解:原式=2x(2x﹣3).故答案为:2x(2x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.【考点】平行线的性质;三角形的外角性质.【分析】要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.【解答】解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.【点评】根据两直线平行同位角相等和三角形外角的性质解答.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为 2.67×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26700用科学记数法表示为2.67×104.故答案为:2.67×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.方程组的解为.【考点】二元一次方程组的解.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=4,解得:x=1,将x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.如图,已知AB是⊙O的直径,OD⊥AC,OD=3,则弦BC的长为6.【考点】圆周角定理;垂径定理.【分析】先根据圆周角定理求出∠C的度数,再由OD⊥AC,点O是直径AB的中点可得出OD是△ABC的中位线,根据中位线定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵OD⊥AC,∴OD∥BC.∵OD=3,点O是AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.故答案为:6.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.一个扇形的半径为6cm,弧长是4πcm,这个扇形的面积是12πcm2.【考点】扇形面积的计算;弧长的计算.【分析】直接根据扇形的面积公式即可得出结论.【解答】解:∵扇形的半径为6cm,弧长是4πcm,∴这个扇形的面积=×4π×6=12πcm2..故答案为:12π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.16.如图,菱形ABCD中,点O是对角线AC、BD的交点,已知AB=5,OB=3,则菱形ABCD的面积是24.【考点】菱形的性质.【分析】根据菱形的面积公式,求出菱形的对角线的长即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,OB=OD,∴∠AOB=90°,∵AB=5,OB=3,∴AO===4,∴AC=8,BD=6,=•AC•BD=×6×8=24.∴S菱形ABCD【点评】本题考查菱形的性质、菱形的面积公式、勾股定理等知识,解题的关键是记住菱形的面积公式,灵活应用菱形的性质解决问题,属于中考常考题型.17.在平面直角坐标系中,点A(0,6),点B(t,0)是x轴正半轴上的点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.(1)点C的坐标为(t+3,);(2)△ABC的面积为.(均用含t的代数式表示)【考点】坐标与图形变化-旋转;三角形的面积.【分析】(1)根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;(2)根据点A和点B的坐标可以求得AB的长,从而可以求得BM的长,进而求得△ABC 的面积.【解答】解:(1)∵点A(0,6),点B(t,0),点M是线段AB的中点,∴点M的坐标是(),又∵将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,∴点C的坐标为:(t+3,),故答案为:(t+3,);(2)∵点A(0,6),点B(t,0),点M的坐标是(),∠ABC=90°,∴AB=,BM==,∴BC=,∴△ABC的面积是:,故答案为:.【点评】本题考查坐标与图形的变化﹣旋转,三角形的面积,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2×﹣1+3﹣﹣4=﹣1﹣.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.【考点】整式的混合运算—化简求值.【分析】根单项式乘以多项式、平方差公式对所求式子化简,然后将a=﹣3代入即可解答本题.【解答】解:a(a﹣2)﹣(a+3)(a﹣3)=a2﹣2a﹣a2+9=﹣2a+9,当a=﹣3时,原式=﹣2×(﹣3)+9=15.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.【考点】旋转的性质;平行四边形的判定.【分析】(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.【解答】(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.【点评】此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.【考点】列表法与树状图法;等腰三角形的判定与性质;概率公式.【分析】(1)由概率公式容易得出结果;(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.【解答】解:(1)P(取出的小球上的数字为5)=;(2)画出树状图如下所有等可能结果共有12种,其中能构成等腰三角形有8种,∴P(能构成等腰三角形)==.【点评】本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=即可得出CD的长.【解答】解:过C点作CD⊥AB于D,∵∠CBD=∠CAB+∠ACB,∴∠ACB=30°,∴∠ACB=∠CAB,∴BC=AB=10.在Rt△BCD中,sin60°=,∴CD=10×=5(m).因此C点离地面的高度为5m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)根据x=0时,甲距离B地30千米,由此即可解决问题.(2)根据相遇时间=即可解决.(3)分三个时间段求出时间即可,①是相遇前,则15x+30x=30﹣3,②是相遇后,则15x+30x=30+3,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,分别解方程即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查一次函数的应用、相遇问题等知识,理解题意是解题的关键,考虑问题要全面,不能漏解,属于中考常考题型.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y﹣b)2=r2.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.【考点】圆的综合题.【分析】(1)问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;(2)综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.【解答】解:(1)问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;(2)综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB(SAS),∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙Q的方程:(x﹣4)2+(y﹣3)2=25.【点评】此题考查了圆的综合、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,正确应用相关定理是解题关键.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【考点】二次函数综合题.【分析】(1)利用tan∠ABC=3,得出C但坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c=0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.。

福建省泉州市数学小学奥数系列3-1-4多人相遇和追及问题(二)

福建省泉州市数学小学奥数系列3-1-4多人相遇和追及问题(二)

福建省泉州市数学小学奥数系列3-1-4多人相遇和追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共19题;共88分)1. (5分) (2019六下·竞赛) 有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。

机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动。

如果甲、乙两个机器人同时从点出发,那么当两个机器人在跑道上第3次迎面相遇时,机器人甲距离出发点点多少厘米?2. (5分) (2019六下·竞赛) 一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。

猎狗至少要跑多少步才能追上野兔?3. (5分) (2019六下·竞赛) 甲、乙两名同学在周长为米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑米,乙每秒钟跑米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?4. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B多远。

5. (1分) (2019六下·武侯月考) 如图,A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C第一次相遇,在D点第二次相遇.已知从A点出发逆时针到C点的路程为80米,从B点出发逆时针走到D 点的路程为60米,这个圆的周长为________米.6. (1分)早晨,小张骑车从甲地出发去乙地.下午1点,小王开车也从甲地出发,前往乙地.下午2点时两人之间的距离是15千米.下午3点时,两人之间的距离还是15千米.下午4点时小王到达乙地,晚上7点小张到达乙地.小张是早晨________出发.7. (5分) (2019六下·竞赛) A、 B 两地相距 950 米.甲、乙两人同时由 A地出发往返锻炼半小时.甲步行,每分钟走 40 米;乙跑步,每分钟行 150 米.则甲、乙二人第几次迎面相遇时距 B 地最近?8. (5分)(2020·芜湖) 甲、乙两人从周长250米的环形跑道上一点P同时、同向出发沿着跑道匀速慢跑,甲每秒跑5米,乙每秒跑3米。

泉州市2019秋期末统考

泉州市2019秋期末统考

泉州市 2019-2020 学年度上学期教学质量跟踪监测考试七年级数学试题第Ⅰ卷一、选择題:本题共10小题,每小题4分,共40分在每小题給出的四个选项中,只有一项是符合题意,在答题卡上相应题目的答区域内作答1.如果收入0元记作+80元,那么支出20元记作A .+20元B .-20元C .+100元D .-10元2.下列各组数中,相等的一组是 A .()332233与 B . ()3344--与 C . |5|(5)----与 D . 223(3)--与3.港珠襖大桥是中国域内一座述接着香港、珠海和测门的桥隧工程,工程总投1269亿元,将1269亿用科学记数法表示,结果井精确到百亿的为 A . 101310⨯ B . 111.210⨯ C . 111.310⨯ D . 120.1210⨯ 4.在下列儿何体中,主说图为三角形的是A .B .C .D . 5.2254x y -的次数是A . 10B . 9C . 7D . -46.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有A .用两瓶钉子就可以把木条固定在墙上;B .当木工师傅锯木板时,他会用墨盒在木板上弹出墨线,这样会使木板沿直线锯下;C .把弯曲的公路改直,就能缩短路程D . 在正常情况下,射击时只要保证瞄准的一只眼在两个准星确定的直线上,就能射中目标7.若整式231001004m n a b a b --++经过化简后结果等于4,则n m 的值为A . -8B . 8C . -9D . 9 8.设a 是有理数,则2a a -的值A .一定是正数B .一定是负数C .一定是非负数D .可以是负数9.如图,已知AB ∥CD ,∠ABE 与∠CDE 的角平分线相交于点F ,若 1110833ABM ABF CDM CDF BED =∠∠=∠∠=︒∠,,设,则∠M 的度数是 A .24° B .36° C .42° D .54°10. 一组连续整数 99,100,101,102,…,2020 前分别添加“+”和“-” ,并运算,则所得最小非负整数是A .1B .0C .199D .99第 II 卷二、填空题:本题共6小题,每小题4分,共24分.在答题卡上相应题目的答题区域内作答.11.比较大小:23_____34--(填“>”,“<”或“=”).12.如图,A ,O ,B 在同一条直线上,射线 OA 与正西方向的夹角 66°,则射线OB 的方向是南偏东____°.13.已知:580a b ab =-=<,,,则a b +的值为_____.14.如图,将一张长方形纸条沿某条直线折叠,已知∠1=116°,则∠2 等于_______°.15.如图,三角形 ABC 中,∠C =90°,AC =a ,BC =2a ,分别以AC ,BC 为直径的半圆交于 C ,D 两点,D 点恰好在 AB 上.则图中阴影部分的面积是______. 16.已知2225134A x ax y B x x by =+-+=+--,,且对于任意有理数 x ,y ,代数式2A B -的不变,则12()(233a A b B ---)的值是_________. 三、解答题:本题共 9 小题,共 86 分.解答题应写出文字说明、证明过程或演算步骤.在答题卡上相应题目的答题区域内作答.17.(本小题满分8分)计算:2201911123(1)()6412-+⨯---÷18.(本小题满分8分)先化简,再求值:222222(43)2(32)x x xy y x xy y --++-+,其中123x y ==-,.19.(本小题满分8分)如图,点D 是三角形ABC 的边BC 延长线上一点,CE ∥AB ,求证:∠A +∠B +∠ACB =180°.20.(本小题满分8分)如图,点A ,B ,C 在8×9网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:(1)延长线段AB 到点D ,使BD =AB ;(2)过点C 画直线AB 的垂线,垂足为E ;并直接写出点C 到直线AB 的距离;(3)过点A 画AF //BC 交CE 于点F ;(4)请写出图中∠CBD 的所有同位角.T12图 T14图T15图21.(本小题满分8分)如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN) .22.(本小题满分10分)如图,AD⊥BC于D点,EF⊥BC于F点,∠ADG=35°,∠C=55°,(1)证明DG∥AC;(2)证明∠FEC=∠ADG.23.(本小题满分10 分)“双十一”已经成为中国电子商务行业的年度盛事,每年这一天成为全民的购物节.在今年的“双十一”期间,某网店举办促销活动,方案如下表所示:(1)如果顾客在该网店一次性购物x元(x≥600),求实际付款多少元?(用含x的代数式表示)(2)某顾客在该店两次购物的商品共计800元.若第一次购物商品的金额为a元(a>300),求该顾客两次购物的实际付款共多少元?(用含a的代数式表示)24.(本小题满分12分)如图,点 A ,B 分别在直线 a ,b 上,a ∥b ,∠DCF (顶点 C 在点 B 的右侧)的两边分别交线段 AB 于点D ,直线 a 于 F ,∠DCF =∠ABC ,DE ∥CF ,交直线 a 于点 E .(1)若 ED 平分∠AEC ,求证:∠BDC =∠CED ;(2)已知∠ADE 的平分线和∠DCF 的平分线交于点 G ,把图形补完整,并证明∠AED =2∠G .25.(本小题满分14分)四个数分别是a 、b 、c 、d 满足1||||||a b c d a d n -+-=-,(n ≥3且为正整数,a ≤b ≤c ≤d ). (1)若n =3①当d -a =6时,求c -b 的值;②对于给定的有理数e (b <e <c ),满足4||||9b e a d -=-,请用含b 、c 的代数式表示e ; (2)若11||||22e b c f ad =-=-,,且110ef a d ->-,试求n 的最大值.。

2019年4月福建省高中毕业班质量检查测试理科数学(解析版)

2019年4月福建省高中毕业班质量检查测试理科数学(解析版)

16.答案: 26 解析:如图,设 P1(x1, y1) 为双曲线上一点,y y1 分别与渐近线 y 3x 、y 轴交于 P2 (x2 , y1), H (0, y1) ,
则线段 P1P2 绕 y 轴旋转一周所得圆环的面积为 S1
2
2
HP1 HP2
(x12
x22 ) ,其中
x12
3
(2)由(1)知, a2 3, a3 7 ,所以 b3 a2 3, b7 a3 7 ,………………………………7 分
设{bn}的公差为 d ,则 b7 b3 4d 4, d 1.…………………………………………………8 分
c2
由椭圆的定义得: PF1 PF2 2c 2
2c 2a ,所以 E 的离心率为 e a 22
2
2 1.
10.如图,AB 是圆锥 SO 的底面圆 O 的直径,D 是圆 O 上异于 A, B 的任意一点,以 AO 为直径的圆与 AD
的另一个交点为 C , P 为 SD 的中点.现给出以下结论:
B.{x |1 x 2}
C.{x |1 x ≤ 2}
D.{x | x ≥ 2}
1.答案:C
解析: A {x | x 1}, B {x | 2 ≤ x ≤ 2} ,所以 A B {x |1 x ≤ 2}.
2.若复数 z 满足 (z 1)i 1 i ,则 z ( )
A. i
B.1 i
2019 年 3 月福建省高中毕业班质量检查测试 理科数学
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的.
1.已知集合 A {x | y ln(x 1)}, B {x | x2 4 ≤ 0} ,则 A B ( )

2019年福建省泉州市初中学业质量检查数学试卷

2019年福建省泉州市初中学业质量检查数学试卷
A.−1B.2C. D.
2.下列运算结果为 的是( )
A.a+a+a B. - C.a•a•a D. ÷
3.一个几何体的三视图如图所示,则这个几何体是( )
4.人体中红细胞的直径约为0.00 000 77m,将数字0.00 000 77用科学记数法表示为( )
A.7.7× B.0.77× C.7.7× D.77×
∴不等式组的解集是2 −≤x 3……………………………………………………………………8分
18.(本小题8分)
解:原式
a a
a
a
a a
+


+ −
=
2
2 2
1
2
1 2
…………………………………………………………………1分
( ) ( )( )
( ) 1
1 1
2
1
2
+
− +


=
a a
a a
a
a
……………………………………………………………4分
二、填空题(每小题4分,共24分)
11.3 12. 5 13.100 14.615.
2
3 3−
16.( ) 1 , 0或( ) 3 , 0
共三、解答题(共86分)
17.(本小题8分)
解:解不等式①得:x≥2 − …………………………………………………………………………3分
解不等式②得:3<x……………………………………………………………………………6分
24.(13分)如图,在菱形ABCD中,点E是BC边上一动点(不与点C重合),对角线AC与BD相交于点O,连接AE,交BD于点G。

福建省泉州市2019年质检数学卷

福建省泉州市2019年质检数学卷

2019年福建省泉州市初中学业质量检查数学试题(试卷满分:150分:考试时间:120分钟)一、选择题:本大题共10小题,每小题4分,共40分 1.在-1、2、31、3这四个数中,无理数是( ) A. -1 B. 2 C. 31D.3 2.下列运算结果为a 3的是( )A. a+a+aB. a 5-a 2C. a·a·aD. a 6÷a 23.一个几何体的三视图如图所示,则这个几何体是( )4.人体中红细胞的直径约为0.00 000 77m ,将数字0.00 000 77用月科学记数法表示为 A.7.7×10-5 B.0.77×10-5 C.7.7×10-6 D.77×10-75.下列事件中,是必然事件的是( )A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子所得的点数小于7C.抛掷一枚普通硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张牌,恰好是方块6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中 棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是( )A.圆子(2,3),方子(1,.3)B.圆子(1,3),方子(2,3)C.圆子(2,3),方子(4,0)D.圆子(4,0),方子(2,3) 7.关于x 的一元二次方程x 2-mx -1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定 8.一次函数y =-2x +1的图象不经过( )A. 第一象限B.第二象限C.第三象限D.第四象限9.如图,抛物线y=ax 2+bx+c (a >0)过原点O ,与x 轴另一交点为A , 顶点为B ,若△AOB 为等边三角形,则b 的值为( )A.-3B.-23C. -33D.-43D . C . A . B .(第3题)(第6题)(第15题)10.如图,点E 为△ABC 的内心,过点E 作MN ∥BC 交AB 于点M , 交AC 于点N ,若AB =7,AC =5,BC =6,则MN 的长为( ) A. 3.5 B. 4 C. 5 D. 5.5 二、填空题:本大题共6小题,每小题4分,共24分11.计算:(21)-1+(3-1) °=________.12.若一组数据1、3、x 、5、8的众数为8,则这组数据的中位数为________. 13.在五边形 ABCDE 中,若∠A +∠B +∠C +∠D =440°,则∠E =________. 14.若⎩⎨⎧==b y ax 是方程组⎩⎨⎧=+-=-5512y x y x 的解,则a +4b =________.15.如图,PA 切⊙O 于点A ,点B 是线段PO 的中点,若⊙O 的 半径为3,则图中阴影部分的面积为________.16.在平面直角坐标系中,点A 的坐标为(4,0),点B 为y 轴上的一动点,将线段AB 绕点 B 顺时针旋转90°得线段BC ,若点C 恰好落在反比例函数y =x3的图象上,则点B 的 坐标为________.三、解答题:本大题共9小题,共86分,解答应写出文字说明,证明过程或演算步骤 17.(8分)解不等式组⎩⎨⎧+->≥+xx x 33224,并将解集在数轴上表示出来.18.(8分)先化简,再求值:(a +21-a )÷a a a +-221,其中a =-2.–3–2–11234(第10题)M N E ABC19.(8分)如图,在△ABC 中,AB=AC ,CD ⊥AB 于点D ,BE ⊥AC 于点E . 求证:BD=CE .20.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?21.(8分)如图,在□ABCD 中,AC 与BD 交于点O ,AC ⊥BC 于点C ,将△ABC 沿AC 翻折得到△AEC ,连接DE . (1)求证:四边形ACED 是矩形; (2)若AC =4,BC =3,求sin ∠ABD 的值.22.(10分)电器专营店的经营利润受地理位置、顾客消费能力等因素的影响某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示. 现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为_______;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当. 现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.23. (10分)在平面直角坐标系中,反比例函数y =xk(x >0,k >0图象上的两点(n ,3n ) 、(n +1,2n ). (1)求n 的值;(2)如图,直线l 为正比例函数y=x 的图象,点A 在反比例函数y =xk(x >0,k >0)的图象上,过点A 作AB ⊥l 于点B ,过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥BC 于点D ,记△BOC 的面积为S 1,△ABD 的面积为S 2,求S 1-S 2的值.24.(13分)如图,在菱形ABCD 中,点E 是BC 边上一动点(不与点C 重合)对角线AC 与 BD 相交于点O ,连接AE ,交BD 于点G .(1)根据给出的△AEC ,作出它的外接圆⊙F ,并标出圆心F (不写作法和证明,保留作图痕迹); (2)在(1)的条件下,连接EF . ①求证:∠AEF =∠DBC ;②记t =GF 2+AG ·GE ,当AB =6,BD =63时,求t 的取值范围.25.(13分)如图,二次函数y =x 2+bx -3的图象与x 轴分别相交于A 、B 两点,点B 的坐标为(3,0),与y 轴的交点为C ,动点T 在射线AB 上运动,在抛物线的对称轴l 上有一定点D , 其纵坐标为23,l 与x 轴的交点为E ,经过A 、T 、D 三点作⊙M . (1)求二次函数的表达式; (2)在点T 的运动过程中,①∠DMT 的度数是否为定值?若是,请求出该定值:若不是,请说明理由; ②若MT =21AD ,求点M 的坐标; (3)当动点T 在射线EB 上运动时,过点M 作MH ⊥x 轴于点H ,设HT =a ,当OH ≤x ≤OT 时,求y 的最大值与最小值(用含a 的式子表示).参考答案。

福建省泉州市2019年小学毕业班数学模拟试卷、参考答案及评分说明

福建省泉州市2019年小学毕业班数学模拟试卷、参考答案及评分说明

亲爱的同学们:时间如梭,转眼六年的小学生活即将结束,你们即将踏上新 征程! 拿起笔,勇敢地走进数学王国,用智慧和细心编织未来的梦想!祝你成功!1. 估一估:把你自己的一只拳头慢慢地伸进盛满水的脸盆中,并浸没它,溢出来的水的体积大约是( )。

①大于1 L②在0. 4 L 左右 ③在6~10 m L 之间 ④小于6 m L 2.a ∶7=9∶b ,下面的式子中不能成立的是( )。

①7∶b =a ∶9 ② a b =63 ③ a ∶b =7∶9 ④ a 9 = 7b 3.两根同样长的绳子,甲用去它的 16 ,乙用去它的 16米,剩下的相比较( )。

①甲剩下的长 ②乙剩下的长 ③一样长 ④无法比较 4.一个立体图形从正面看到的形状是 ,从左面看到的形状是 。

搭 这样的立体图形,最多需要( )块小立方块。

① 4 ② 5 ③ 7 ④ 85.深圳往返厦门的动车,除起点和终点外,中途还要停靠5个车站。

一共需要准备( )种不同的车票。

① 10 ② 20 ③ 21 ④ 426.一张长方形纸长8 cm ,宽6 cm 。

用这样的长方形密铺成一个正方形至少 需要( )张长方形纸。

① 12 ② 16 ③ 24 ④ 367.把一根18厘米长的吸管剪成3段,再用这三段吸管围成一个三角形,最多 可以有( )种不同的剪法。

(每段的长度都是整厘米)① 5 ② 6 ③ 7 ④ 88.一双鞋子,若卖100元,可赚钱25%;若卖90元,则可赚钱( )%。

① 10% ②12. 5% ③ 15% ④20%一、反复比较,慎重选择。

(10%)9.将右图中的直角三角形ABC 以直角边BC 所在的直线为轴旋转一周,求所得图形的体积,列式正确的是( )。

①π×42×3 ②π×42×3×13 ③π×32×4×13 ④π×52×4×1310.两摞相同规格的羽毛球整齐地叠放在桌面上,如右图(单位:cm )。

最新福建省泉州市永春县2019-2020学年九年级上期中考数学试卷(有详细答案)

最新福建省泉州市永春县2019-2020学年九年级上期中考数学试卷(有详细答案)

2019-2020九年级期中考试数学科试卷一、选择题(每题4分,共40分). 1.下列根式是最简二次根式的是( )A C D 2.下列计算,正确的是( )A =B .13222-=-C =D .1122-⎛⎫= ⎪⎝⎭3.若1-是方程220x x c -+= 的一个根,则c 的值为( )A .2-B .2-C .3D .1+4.用配方法解方程0122=-+x x 时,配方结果正确的是( )A .2)2(2=+x B .2)1(2=+x C. 3)2(2=+x D .3)1(2=+x 5.已知35a b = ,则a bb+ 的值为( ) A .25 B .52 C .45 D .856.下列各组线段的长度成比例的是( )A .2cm ,3cm ,4cm ,5cmB .1cm cm ,2cm cmC .1.5cm ,2.5cm ,4.5cm ,6.5cmD .1.1cm ,2.2cm ,3.3cm ,4.4cm7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m .若设道路的宽为xm ,则下面所列方程正确的是( ) A .()()32220570x x --= B .322203232570x x +⨯=⨯- C. ()()32203220570x x --=⨯- D .2322202570x x x +⨯-=8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为( )A .) B .()2,1 C.( D .(9.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( )A .∠C =∠EB .∠B =∠ADEC .AB AC AD AE = D .AB BCAD DE=10.如图,已知△ABC 的周长为1,连结△ABC 三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,依此类推,则第2016个三角形的周长为( ) A .12015 B .12016 C .201512D .201612二、填空题(每题4分,共24分).11.使6-x 有意义的x 的取值范围是 . 12.方程()()1213-=-x x x 的根是13.小明的身高为1.6米,他的影长是2米,同一时刻某古塔的影长是5米,则古塔的高度是 米.14.已知2<a <3,化简:2a -+= .15.如图,在△ABC 中,点D 是BC 的中点,点G 为△ABC 的重心,AG =2,则DG = .16.如图,点B 、C 是线段AD 上的点,△ABE 、△BCF 、△CDG 都是等边三角形,且AB =4,BC =6,已知△ABE 与△CDG 的相似比为2:5.则①CD = ; ②图中阴影部分面积为 .三、解答题(共86分). 17.计算:(8分)(1)(212-418+348)×52; (2)18-22-82+(5-1)0.18.解方程:()()313x x --= (8分)19.先化简,再求值:(()1x x x x -+- ,其中2x =+ (8分)20.已知:关于x 的一元二次方程x 2﹣(2m +1)x +m 2+m ﹣2=0.求证:不论m 取何值,方程总有两个不相等的实数根.(8分)21.求证:两边成比例且夹角相等的两个三角形相似。

2019泉州市小学数学六年级毕业班教学质量抽查数学科试卷

2019泉州市小学数学六年级毕业班教学质量抽查数学科试卷

泉州市小学数学六年级毕业班教学质量抽查数学科试卷(北师大版)(满分:100分; 答卷时间:90分钟)1.递等式计算。

60182823-÷ 0.36401845⨯+÷ 375254÷⨯11127979÷-⨯ 6143+7454⎡⎤÷-⎢⎥⎣⎦()2.解方程。

23+341.6x = 1.2 1.04x x -= 22::255x =3.在( )里填上合适的数或单位。

我国的陆地面积约960万( ) 10张百元人民币摞起来厚约1( )。

16日=( )时 1050千克=( )吨 4.6=0.375= ()():40=9=÷( )( )%。

二、填空题。

(22分)学 校 班 级 姓 名 报名号:密封 线内 不得答题一、计算题。

(24分)abAB11102615 5.在3,6,9,35这四个数中,请找出一个与众不同的数(),它与众不同,是因为:。

6.一张精密零件图纸的比例尺是10:1,在图纸上量得某一零件的长度是15毫米,这个零件的实际长度是()毫米。

7.王东和李阳用转盘(如右图)玩游戏,如果转盘指针指向质数就是王东胜,指向合数就是李阳胜。

在A、B处填上合适的数(不与转盘上的数相同),使这个游戏对双方都公平。

A可以是( ),B可以是( ) 。

8.把16厘米长的铁丝分成三段(整厘米)围成一个三角形,这个三角形最长的一条边是()厘米。

9.左图中大长方形的周长是C厘米,剪去一个最大的正方形(如图,单位:厘米),剩下的长方形周长是()厘米。

10.把25个棱长为1厘米的小正方体摆放在桌上(如右图),露在外面的面的面积是()平方厘米。

11.图中一个小球的体积是()立方厘米,一个大球的体积是()立方厘米。

12.甲、乙两桶油,甲桶中的油相当于乙桶的50%,从乙桶倒3升油给甲桶,此时,甲桶中的油相当于乙桶的80%,那么原来甲桶中有()升油。

13.吸烟不仅有害健康而且花钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年福建省泉州市初中学业质量检查数学试题
(试卷满分:150分:考试时间:120分钟)
一、选择题:本大题共10小题,每小题4分,共40分 1.在-1、2、3
1、3这四个数中,无理数是( ) A. -1 B. 2 C. 3
1 D.3 2.下列运算结果为a 3的是( )
A. a+a+a
B. a 5-a 2
C. a ·a ·a
D. a 6÷a 2
3.一个几何体的三视图如图所示,则这个几何体是( )
4.人体中红细胞的直径约为 000 77m ,将数字 000 77用月科学记数法表示为 ×10-7
5.下列事件中,是必然事件的是( )
A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球
B.抛掷一枚普通正方体骰子所得的点数小于7
C.抛掷一枚普通硬币,正面朝上
D.从一副没有大小王的扑克牌中抽出一张牌,恰好是方块
6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中 棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是( )
A.圆子(2,3),方子(1,.3)
B.圆子(1,3),方子(2,3)
C.圆子(2,3),方子(4,0)
D.圆子(4,0),方子(2,3) 7.关于x 的一元二次方程x 2-mx -1=0的根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.无实数根
D.不能确定 8.一次函数y =-2x +1的图象不经过( )
A. 第一象限
B.第二象限
C.第三象限
D.第四象限
9.如图,抛物线y=ax 2
+bx+c (a >0)过原点O ,与x 轴另一交点为A , 顶点为B ,若△AOB 为等边三角形,则b 的值为( )
A.-3
B.-23
C. -33
D.-43
D . C . A . B .
(第3题)
(第6题)
(第15题)
10.如图,点E 为△ABC 的内心,过点E 作MN ∥BC 交AB 于点M , 交AC 于点N ,若AB =7,AC =5,BC =6,则MN 的长为( ) A. B. 4 C. 5 D. 二、填空题:本大题共6小题,每小题4分,共24分
11.计算:(2
1)-1
+(3-1) °=________. 12.若一组数据1、3、x 、5、8的众数为8,则这组数据的中位数为________.
13.在五边形 ABCDE 中,若∠A +∠B +∠C +∠D =440°,则∠E =________. 14.若⎩

⎧==b y a
x 是方程组⎩⎨⎧=+-=-5512y x y x 的解,则a +4b =________.
15.如图,PA 切⊙O 于点A ,点B 是线段PO 的中点,若⊙O 的 半径为3,则图中阴影部分的面积为________.
16.在平面直角坐标系中,点A 的坐标为(4,0),点B 为y 轴上的一动点,将线段AB 绕点
B 顺时针旋转90°得线段B
C ,若点C 恰好落在反比例函数y =
x
3
的图象上,则点B 的 坐标为________.
三、解答题:本大题共9小题,共86分,解答应写出文字说明,证明过程或演算步骤 17.(8分)解不等式组⎩⎨⎧+->≥+x
x x 3322
4,并将解集在数轴上表示出来.
18.(8分)先化简,再求值:(a +2
1
-a )÷a a a +-221,其中a =-2.
–3
–2
–1
1234
(第10题)
M
N
E A
B C
19.(8分)如图,在△ABC 中,AB=AC ,CD ⊥AB 于点D ,
BE ⊥AC 于点E . 求证:BD=CE .
20.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步
21.(8分)如图,在□ABCD 中,AC 与BD 交于点O ,AC ⊥BC 于点C ,将△ABC 沿AC 翻折得到△AEC ,连接DE . (1)求证:四边形ACED 是矩形; (2)若AC =4,BC =3,求sin ∠ABD 的值.
22.(10分)电器专营店的经营利润受地理位置、顾客消费能力等因素的影响某品牌电脑专营店设有甲、乙两家分店,均销售A 、B 、C 、D 四种款式的电脑,每种款式电脑的利润如表1所示. 现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.
试运用统计与概率知识,解决下列问题:
(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为_______;
(2)经市场调查发现,甲、乙两店每月电脑的总销量相当. 现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定并说明理由.
23. (10分)在平面直角坐标系中,反比例函数y =x
k
(x >0,k >0图象上的两点(n ,3n ) 、(n +1,2n ). (1)求n 的值;
(2)如图,直线l 为正比例函数y=x 的图象,点A 在反比例函数y =
x
k
(x >0,k >0)的图象上,过点A 作AB ⊥l 于点B ,过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥BC 于点D ,记△BOC 的面积为S 1,△ABD 的面积为S 2,求S 1-S 2的值.
24.(13分)如图,在菱形ABCD 中,点E 是BC 边上一动点(不与点C 重合)对角线AC 与 BD 相交于点O ,连接AE ,交BD 于点G . (1)根据给出的△AEC ,作出它的外接圆⊙F ,并标出圆心F (不写作法和证明,保留作图痕迹); (2)在(1)的条件下,连接EF . ①求证:∠AEF =∠DBC ;
②记t =GF 2
+AG ·GE ,当AB =6,BD =63时,求t 的取值范围.
25.(13分)如图,二次函数y =x 2+bx -3的图象与x 轴分别相交于A 、B 两点,点B 的坐标 为(3,0),与y 轴的交点为C ,动点T 在射线AB 上运动,在抛物线的对称轴l 上有一定点D , 其纵坐标为23,l 与x 轴的交点为E ,经过A 、T 、D 三点作⊙M . (1)求二次函数的表达式; (2)在点T 的运动过程中,
①∠DMT 的度数是否为定值若是,请求出该定值:若不是,请说明理由;
②若MT =2
1
AD ,求点M 的坐标; (3)当动点T 在射线EB 上运动时,过点M 作MH ⊥x 轴于点H ,设HT =a ,当OH ≤x ≤OT 时,求y 的最大值与最小值(用含a 的式子表示).
参考答案。

相关文档
最新文档