必修二空间直角坐标系
高中数学 必修二 同步练习 专题4.3 空间直角坐标系(解析版)
一、选择题1.在空间直角坐标系中,M(–2,1,0)关于原点的对称点M′的坐标是A.(2,–1,0)B.(–2,–1,0)C.(2,1,0)D.(0,–2,1)【答案】A【解析】∵点M′与点M(–2,1,0)关于原点对称,∴M′(2,–1,0).故选A.2.点B是点A(1,2,3)在坐标平面yOz内的射影,则OB等于A.13B.14C.23D.13【答案】A3.点B30,0)是点A(m,2,5)在x轴上的射影,则点A到原点的距离为A.2B.2C.3D.5【答案】A【解析】点B30,0)是点A(m,2,5)在x轴上的射影,可得m3A到原点的距离222++2.故选A.(3)254.在空间直角坐标系中,点A(5,4,3),则A关于平面yOz的对称点坐标为A.(5,4,–3)B.(5,–4,–3)C.(–5,–4,–3)D.(–5,4,3)【答案】D【解析】根据关于坐标平面yOz 的对称点的坐标的特点,可得点A (5,4,3),关于坐标平面yOz 的对称点的坐标为(–5,4,3).故选D .5.空间中两点A (1,–1,2)、B (–1,1,22+2)之间的距离是A .3B .4C .5D .6【答案】B【解析】∵A (1,–1,2)、B (–1,1,22+2),∴A 、B 两点之间的距离d =222(11)(11)(2222)++--+--=4,故选B .6.在空间直角坐标系中,P (2,3,4)、Q (–2,–3,–4)两点的位置关系是A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对【答案】C7.点P (1,1,1)关于xOy 平面的对称点为P 1,则点P 1关于z 轴的对称点P 2的坐标是A .(1,1,–1)B .(–1,–1,–1)C .(–1,–1,1)D .(1,–1,1)【答案】B【解析】∵点P (1,1,1)关于xOy 平面的对称点为P 1,∴P 1(1,1,–1),∴点P 1关于z 轴的对称点P 2的坐标是(–1,–1,–1).故选B .8.已知点A (2,–1,–3),点A 关于x 轴的对称点为B ,则|AB |的值为A .4B .6C 14D .10【答案】D【解析】点A (2,–1,–3)关于平面x 轴的对称点的坐标(2,1,3),由空间两点的距离公式可知:AB ()()()222221133-++++10,故选D .9.在空间直角坐标系Oxyz 中,点M (1,2,3)关于x 轴对称的点N 的坐标是A.N(–1,2,3)B.N(1,–2,3)C.N(1,2,–3)D.N(1,–2,–3)【答案】D【解析】∵点M(1,2,3),一个点关于x轴对称的点的坐标是只有横标不变,纵标和竖标改变,∴点M(1,2,3)关于x轴对称的点的坐标为(1,–2,–3),故选D.10.空间点M(1,2,3)关于点N(4,6,7)的对称点P是A.(7,10,11)B.(–2,–1,0)C.579222⎛⎫⎪⎝⎭,,D.(7,8,9)【答案】A11.在空间直角坐标系中,已知点A(1,0,2),B(1,–4,0),点M是A,B的中点,则点M的坐标是A.(1,–1,0)B.(1,–2,1)C.(2,–4,2)D.(1,–4,1)【答案】B【解析】∵点M是A,B的中点,∴M110420222+-+⎛⎫⎪⎝⎭,,,即M(1,–2,1).故选B.二、填空题12.空间中,点(2,0,1)位于___________平面上(填“xOy”“yOz”或“xOz”)【答案】xOz【解析】空间中,点(2,0,1)位于xOz平面上.故答案为:xOz.13.在正方体ABCD–A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为___________.29【解析】∵在正方体ABCD –A 1B 1C 1D 1中,D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),∴C 1(0,2,3),∴对角线AC 1的长为|AC 1|=222(04)2329-++=.故答案为:29.14.在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作平面xOy 的垂线PQ ,则垂足Q 的坐标为___________. 【答案】(1,2,0)【解析】空间直角坐标系中,点P (1,2,3),过点P 作平面xOy 的垂线PQ ,垂足为Q ,则点Q 的坐标为(1,2,0),如图所示.故答案为:(1,2,0).15.若A (1,3,–2)、B (–2,3,2),则A 、B 两点间的距离为___________.【答案】5【解析】由题意,A 、B 两点间的距离为222(12)(33)(22)++-+--=5.故答案为:5. 16.已知A (1,a ,–5),B (2a ,–7,–2)(a ∈R ),则|AB |的最小值为___________.【答案】3617.点A (–1,3,5)关于点B (2,–3,1)的对称点的坐标为___________.【答案】(5,–9,–3)【解析】设点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(a,b,c),则12 2332512abc-+⎧=⎪⎪+⎪=-⎨⎪+⎪=⎪⎩,解得a=5,b=–9,c=–3,∴点A(–1,3,5)关于点B(2,–3,1)的对称点的坐标为(5,–9,–3).故答案为:(5,–9,–3).三、解答题18.若点P(–4,–2,3)关于坐标平面xOy及y轴的对称点的坐标分别是A和B.求线段AB的长.19.在Z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.【解析】设M(0,0,z),∵Z轴上一点M到点A(1,0,2)与B(1,–3,1)的距离相等,∴()222221021(03)(1)z z++-=+++-,解得z=–3,∴M的坐标为(0,0,–3).20.如图建立空间直角坐标系,已知正方体的棱长为2,(1)求正方体各顶点的坐标;(2)求A1C的长度.【解析】(1)∵正方体的棱长为2,∴A (0,0,2),B (0,2,2),C (2,2,2),D (2,0,2), A 1(0,0,0),B 1(0,2,0),C 1(2,2,0),D 1(2,0,0). (2)由(1)可知,A 1(0,0,0),C (2,2,2),A 1C 的长度|A 1C |=222222++=23.21.求证:以A (4,1,9),B (10,–1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.。
高中数学 必修2:4.3 空间直角坐标系
4.3 空间直角坐标系一、空间直角坐标系二、空间直角坐标系中点的坐标1.空间中的任意点与有序实数组(),,x y z之间的关系如图所示,设点M为空间直角坐标系中的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴、y轴和z轴于点P、Q和R.设点P、Q和R在x轴,y轴和z轴上的坐标分别是x、y和z,那么点M就和有序实数组(x,y,z)是一一对应的关系,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫做点M的横坐标,y叫做点M纵坐标,z叫做点M的竖坐标.2.空间直角坐标系中特殊位置点的坐标 3.空间直角坐标系中的对称点设点P (a ,b ,c )为空间直角坐标系中的点,则三、空间两点间的距离公式如图,设点11112222(,,),(,,)P x y z P x y z 是空间中任意两点,且点11112222(,,),(,,)P x y z Px y z 在xOy 平面上的射影分别为M ,N ,那么M ,N 的坐标分别为1122(,,0),(,,0)M x y N x y .在xOy 平面上,||MN = 在平面21MNP P 内,过点1P 作2P N 的垂线,垂足为H ,则11122||||,||||,||||PH MN MP z MP z ===,所以221||||HP z z =-.在12Rt △PHP 中,1||||PH MN == 根据勾股定理,得12||PP ==.因此,空间中点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2)之间的距离是12||PP =特别地,点P (x ,y ,z )到坐标原点O (0,0,0)的距离为|OP |空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.1.确定空间任一点的坐标确定空间直角坐标系中任一点P 的坐标的步骤是:①过P 作PC ⊥z 轴于点C ;②过P 作PM ⊥平面xOy 于点M ,过M 作MA ⊥x 轴于点A ,过M 作MB ⊥y 轴于点B ;③设P (x ,y ,z ),则|x |=|OA |,|y |=|OB |,|z |=|OC |.当点A 、B 、C 分别在x 、y 、z 轴的正半轴上时,则x 、y 、z 的符号为正;当点A 、B 、C 分别在x 、y 、z 轴的负半轴上时,则x 、y 、z 的符号为负;当点A 、B 、C 与原点重合时,则x 、y 、z 的值均为0.空间中点的坐标受空间直角坐标系的制约,同一个点,在不同的空间直角坐标系中,其坐标是不同的.【例1】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标.【名师点睛】空间中点P 坐标的确定方法 (1)由P 点分别作垂直于x 轴、y 轴、z 轴的平面,依次交x 轴、y 轴、z 轴于点P x 、P y ,P z ,这三个点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,那么点P 的坐标就是(x ,y ,z ).(2)若题所给图形中存在垂直于坐标轴的平面,或点P 在坐标轴或坐标平面上,则要充分利用这一性质解题.【例2】如图所示,在长方体ABCD-A 1B 1C 1D 1中,|AD|=3,|DC|=4,|DD 1|=2,E ,F 分别是BB 1,D 1B 1的中点,求点A ,B ,C ,D ,A 1,B 1,C 1,D 1,E ,F 的坐标.【例3】如图,在正方体1111ABCD A B C D -中,,E F 分别是111,BB D B 的中点,棱长为1. 试建立适当的空间直角坐标系,写出点,E F 的坐标.【解析】建立如图所示坐标系.方法一:E 点在xDy 面上的射影为,1,()1,0B B ,竖坐标为12.所以1(1,1,)2E .F 在xDy 面上的射影为BD 的中点G ,竖坐标为1.所以11(,,1)22F . 方法二:11,()1,1B ,10,()0,1D ,()1,1,0B ,E 为1B B 的中点,F 为11B D 的中点.故E 点的坐标为111110(,,)222+++即1(1,1,)2,F 点的坐标为101011(,,)222+++,即11(,,1)22. 2.求空间对称点的坐标求对称点的坐标一般依据“关于谁对称,谁保持不变,其余坐标相反”来解决.如关于横轴(x 轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.【例4】设点是直角坐标系中一点,则点关于轴对称的点的坐标为( A )A .B .C .D . 【例5】空间直角坐标系中,点关于点的对称点的坐标为( C ) A .B .C .D .【名师点睛】(1)求空间对称点的规律方法 空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.(2)空间直角坐标系中,任一点P (x ,y ,z )的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P 1(-x ,-y ,-z );②关于x 轴(横轴)对称的点的坐标是P 2(x ,-y ,-z );③关于y 轴(纵轴)对称的点的坐标是P 3(-x ,y ,-z );④关于z 轴(竖轴)对称的点的坐标是P 4(-x ,-y ,z );⑤关于xOy 坐标平面对称的点的坐标是P 5(x ,y ,-z );⑥关于yOz 坐标平面对称的点的坐标是P 6(-x ,y ,z );⑦关于xOz 坐标平面对称的点的坐标是P 7(x ,-y ,z ).(3)点关于点的对称要用中点坐标公式解决,即已知空间中两点111222(,,),(,,)A x y z B x y z ,则AB 的中点P 的坐标为121212(,,)222x x y y z z +++.3.空间两点间的距离公式(1)已知空间两点间的距离求点的坐标,是距离公式的逆应用,可直接设出该点坐标,利用待定系数法求解点的坐标.(2)若求满足某一条件的点,要先设出点的坐标,再建立方程或方程组求解.(3)利用空间两点间的距离公式判断三角形的形状时,需分别求出三边长,得到边长相等或者满足勾股定理;判断三点共线时,需分别求出任意两点连线的长度,判断其中两线段长度之和等于另一条线段长度.【例6】已知点()3,2,1M ,()1,0,5N ,求:(1)线段MN 的长度;(2)到,M N 两点的距离相等的点(),,P x y z 的坐标满足的条件.【例7】如图所示,建立空间直角坐标系Dxyz,已知正方体ABCD-A1B1C1D1的棱长为1,点P 是正方体的体对角线D1B的中点,点Q在棱CC1上.当2|C1Q|=|QC|时,求|PQ|.【例8】如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,|AP|=|AB|=2,|BC|=2,E,F分别是AD,PC的中点.求证:PC⊥BF,PC⊥EF.【解析】如图,以A为坐标原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.∵|AP|=|AB|=2,|BC|=2,四边形ABCD是矩形,∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),∴|PB|==2,∴|PB|=|BC|,又F为PC的中点,∴PC⊥BF.【例9】如图,已知正方体ABCD -A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a . 根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . 【名师点睛】求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.4.混淆平面与空间直角坐标系【例10】已知空间中两点(3,1,1)(2,2,3)A B ---、,在z 轴上有一点C ,它到A B 、两点的距离相等,求点C 的坐标.【错解】由已知得,AB 的中点坐标为51(,,2)22-,且AB 所在直线的斜率为3,故AB 的垂直平分线的斜率为13-,则垂直平分线的方程为15112()()3232z x y -=-+--, 当0x y ==时,43z =,故点C 的坐标为4(0,0,)3. 【错因分析】上面解法照搬平面解析几何中的解题思路而出现错误.由于点C 到A B 、两点的距离相等,故可求AB 的垂直平分线.以目前所学知识只能用两点间的距离公式求解.【正解】设点C 的坐标为(0,0,)z ,则=,即2210(1)3()8z z +-=+-,解得32z =,所以点C 的坐标为3(0,0,)2. 基础训练1.在空间直角坐标系中,点P (1,2,3)关于x 轴对称的点的坐标为( B )A .(-1,2,3)B .(1,-2,-3)C .(-1,-2,3)D .(-1,2,-3)2.在空间直角坐标系中,点P (3,4,5)关于yOz 平面对称的点的坐标为( A )A .(-3,4,5)B .(-3,-4,5)C .(3,-4,-5)D .(-3,4,-5)3.如图,在正方体OABC -O 1A 1B 1C 1中,棱长为2,E 是B 1B 上的点,且|EB |=2|EB 1|,则点E 的坐标为( D )A .(2,2,1)B .(2,2,23)C .(2,2,13)D .(2,2,43) 4.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( B )A .9B .29C .5D .2 65.已知点A (1,a ,-5),B (2a ,-7,-2)(a ∈R )则|AB |的最小值是( B )A .3 3B .3 6C .2 3D .2 66.点(2,0,3)在空间直角坐标系中的( C )A .y 轴上B .xOy 面上C .xOz 面上D .第一象限内7.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为( B )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,0,0)8.如图所示,在长方体ABCO -A 1B 1C 1O 1中,OA =1,OC =2,OO 1=3,A 1C 1与B 1O 1交于P ,分别写出A ,B ,C ,O ,A 1,B 1,C 1,O 1,P 的坐标.9.(1)已知A (1,2,-1),B (2,0,2),①在x 轴上求一点P ,使|PA |=|PB |;②在xOz 平面内的点M 到A 点与到B 点等距离,求M 点轨迹.(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最小.(1)①设P (a ,0,0),则由已知得222(1)(2)1a -+-+=2(2)4a -+,即a 2-2a +6=a 2-4a +8,解得a =1,所以P 点坐标为(1,0,0).②设M (x ,0,z ),则有222(1)(2)(1)x z -+-++=22(2)(2)x z -+-,整理得2x +6z -2=0,即x +3z -1=0.故M 点的轨迹是xOz 平面内的一条直线.(2)由已知,可设M (x ,1-x ,0),则|MN |=222(6)(15)(01)x x -+--+-=22(1)51x -+.所以当x =1时,|MN |min =51,此时点M (1,0,0).能力10.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( A )A .62B . 3C .32D .6311.已知A 点坐标为(1,1,1),B (3,3,3),点P 在x 轴上,且|PA |=|PB |,则P 点坐标为( A )A .(6,0,0)B .(6,0,1)C .(0,0,6)D .(0,6,0)12.已知M (5,3,-2),N (1,-1,0),则点M 关于点N 的对称点P 的坐标为(-3,-5,2).13.在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长等于_2393_. 14.如图所示,正方形ABCD ,ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动.若|CM |=|BN |=a (0<a <2).(1)求MN 的长度;(2)当a 为何值时,MN 的长度最短?因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC 的直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.因为|BC |=1,|CM |=a ,点M 在坐标平面xBz 内且在正方形ABCD 的对角线上, 所以点M (22a ,0,1-22a ).因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN |=a ,所以点N (22a ,22a ,0). (1(2)由(1),得|当a =22(满足0<a 即MN 15.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 在线段BC 1上,且|BM |=2|MC 1|,N 是线段D 1M 的中点,求点M ,N 的坐标.16.如图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如图所示空间直角坐标系,试分别写出各个顶点的坐标.∵底面是边长为2的正方形,∴|CE |=|CF |=1.∵O 点是坐标原点,∴C (1,1,0), 同样的方法可以确定B (1,-1,0),A (-1,-1,0),D (-1,1,0).∵V 在z 轴上,∴V (0,0,3).17.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,以正方体的三条棱所在直线为轴建立空间直角坐标系Oxyz .(1)若点P 在线段BD 1上,且满足3|BP |=|BD 1|,试写出点P 的坐标,并写出P 关于y 轴的对称点P ′的坐标;(2)在线段C 1D 上找一点M ,使点M 到点P 的距离最小,求出点M 的坐标.(1)由题意知P 的坐标为⎝⎛⎭⎫23,23,13,P 关于y 轴的对称点P ′的坐标为⎝⎛⎭⎫-23,23,-13. (2)设线段C 1D 上一点M 的坐标为(0,m ,m ),则有|MP |=⎝⎛⎭⎫-232+⎝⎛⎭⎫m -232+⎝⎛⎭⎫m -132=2m 2-2m +1=2⎝⎛⎭⎫m -122+12. 当m =12时,|MP |取得最小值22,所以点M 为⎝⎛⎭⎫0,12,12. 18.如图,三棱柱ABC -A 1B 1C 1中,所有棱长都为2,侧棱AA 1⊥底面ABC ,建立适当坐标系写出各顶点的坐标.19.如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标是(﹣4,3,2).。
必修二431空间直角坐标系1
x
练习
2、如图,棱长为a的正方体OABC-D`A`B`C`中,对 角线OB`于BD`相交于点Q.顶点O为坐标原点,OA, OC分别在x轴、y轴的正半轴上.试写出点Q的坐标.
z
D`
C`
A`
B`
Q
O Q`
Cy
A
B
x
例2:结晶体的基本单位称为晶胞,如
图是食盐晶胞示意图(可看成是八个
棱长为1/2的小正方体堆积成的正方
一、空间直角坐标系: z
以单位正方体 OABC DABC的 D'
C'
顶点O为原点,分别以射线OA,A'
B'
OC,OD 的方向为正方向,以 O
C
y
线段OA,OC, OD的长为单位 A
B
长度,建立三条数轴:x轴,y轴, x
z轴,这时我们建立了一个空间直角坐标系 Oxyz。 点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴, 这三条坐标轴中每两条确定一个坐标平面,分别
空间直角坐标系中的坐标,记作M(x,y,z).
z
其中x叫做点M的横坐标,
R
M
y叫做点M的纵坐标,
O
P
Q M’
y z叫做点M的竖坐标.
x
z
(1)坐标平面内的点:
•C
1
•
E
•
F
O•
B
1•
•1
A
•D
xoy平面上的点竖坐标为0
yoz平面上的点横坐标为0
xoz平面上的点纵坐标为0
y
(2)坐标轴上的点:
x
x轴上的点纵坐标和竖坐标都为0
体),其中红色点代表钠原子,黑点
代表氯原子,如图:建立空间直角坐
北师大版高中数学必修二课件3.1空间直角坐标系的建立3.2空间直角坐标系中点的坐标
探究点1空间直角坐标系的建立
下图是一个房间的示意图,我们来探讨表示电灯位置的
方法.
z
墙
墙 地面
4 3
1
O1
4
x
(4,5,3) 5y
空间直角坐标系 z
从空间某一个定点O引三条互
相垂直且有相同单位长度的数
轴,这样就建立了空间直角坐
标系O-xyz.
O
y
x 点O叫作坐标原点,x,y,z轴统称为坐标轴,
这三条坐标轴中每两条确定一个坐标平面,分别称
【提升总结】
特殊位置的点的坐标
z
•C
1
•
E
•
F
O•
•
1 A
•B
1
•D
x
一、坐标平面内的点 xOy平面上的点竖坐标为0 yOz平面上的点横坐标为0 xOz平面上的点纵坐标为0
二、坐标轴上的点 y x轴上的点纵坐标和竖坐标都为0
y轴上的点横坐标和竖坐标都为0 z轴上的点横坐标和纵坐标都为0
思考2:在空间直角坐标系中,空间任意一点A与有 序数组(x,y,z)有什么关系?
4.如图,长方体OABC–D′A′B′C′中,|OA|=3, |OC|=4,|OD′|=3,A′C′与B′D′相交于点P. 分别写出点C,B′,P的坐标.
答案:C,B′,P 各点的坐标分别是
(0,4,0),(3,4,3), ( 3 , 2, 3) . 2
5.如图,棱长为3a的正方体OABC-DˊAˊBˊCˊ,点M 在BˊCˊ上,且|CˊM|=2|MBˊ|,以O为坐标原点,建 立如图空间直角坐标系,求点M的坐标. 解:由图形可知,M点在正方体的上 底面,所以M点的竖坐标与D′的竖坐标 相同,M在面BCC′B′上,得到点的 纵坐标为3a,因为所C以M M点2 M的B横 ,坐标是 2a, 所以M点的坐标是(2a,3a,3a)
必修二4.3.空间直角坐标系(教案设计)
实用文案标准文档4.3 空间直角坐标系教案 A教学目标一、知识与技能1. 理解空间直角坐标系的建立,掌握空间中点的坐标表示;2. 掌握空间两点间的距离公式.二、过程与方法1. 建立空间直角坐标系的方法与空间点的坐标表示;2. 经历由平面上两点间距离公式推导出空间中两点间的距离公式的过程.三、情感、态度与价值观1. 通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,体会类比和数形结合的思想.2. 通过空间两点间距离公式的推导,经历从易到难,从特殊到一般的认识过程. 教学重点、难点教学重点:空间直角坐标系中点的坐标表示,空间两点间的距离公式.教学难点:一般情况下,空间两点间的距离公式的推导.教学关键:用类比的方法写出空间的点的坐标,记忆并应用空间两点间的距离公式求空间的两点间距离,提高学生的空间想象能力.教学突破方法:借助正方体,发挥学生的空间想象能力,写出空间点的坐标.教法与学法导航教学方法:问题教学法,类比教学法.学习方法:探究讨论、练习法.教学准备教师准备:多媒体课件,正方体模型.学生准备:平面直角坐标系中点的坐标的写法.教学过程教学环节教学内容师生互动设计意图创设情境导入新课1.我们知道数轴上的任意一点M都可用对应一个实数x表示,建立了平面直角坐标系后,平面上任意一点M都可用对应一对有序实数(x,y)表示.那么假设我们对立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组(x,y,z)表示出来呢?师:启发学生联想思考.生:感觉可以.师:我们不能仅凭感觉,我们要对它的认识从感性化提升到理性化.让学生体会到点与数(有序数组)的对应关系.教师备课系统──多媒体教案2续上表概念形成2.空间直角坐标系该如何建立呢?图1师:引导学生看图1,单位正方体OABC – D ′A ′B ′C ′,让学生认识该空间直角系O –xyz 中,什么是坐标原点,坐标轴以及坐标平面.师:该空间直角坐标系我们称为右手直角坐标系.体会空间直角坐标系的建立过程.3.建立了空间直角坐标系以后,空间中任意一点M 如何用坐标表示呢? 图 2 师:引导学生观察图2. 生:点M 对应着唯一确定的有序实数组(x ,y ,z ),x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标. 师:如果给定了有序实数组(x ,y ,z ),它是否对应着空间直角坐标系中的一点呢?生:(思考)是的.师:由上我们知道了空间中任意点M 的坐标都可以用有序实数组(x ,y ,z )来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M (x ,y ,z ),x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.师:大家观察一下图1,你能说出点O ,A ,B ,C 的坐标吗? 学生从(1)中感性向理性过渡.实用文案标准文档续上表应用 举例 4. 例1 如图,在长方体OABC – D ′A ′B ′C ′中,|OA | = 3,|OC | = 4,|OD ′| = 2.写出D ′、C 、A ′、B ′四点的坐标. 【解析】D ′在z 轴上,且O D ′ = 2,它的竖坐标是2;它的横坐标x 与纵坐标y 都是零,所以点D ′的坐标是(0,0,2). 点C 在y 轴上,且O C = 4,它的纵坐标是4;它的横坐标x 与竖坐标z 都是零,所以点C 的坐标是(0,4, 0). 同理,点A ′的坐标是(3,0,0). 点B ′在xOy 平面上的射影是B ,因此它的横坐标x 与纵坐标y 同点B 的横坐标x 与纵坐标y 相同.在xOy 平面上,点B 横坐标x = 3,纵坐标y = 4;点B ′在z 轴上的射影是D ′,它的竖坐标与点D ′的竖坐标相同,点D ′ 的竖坐标z = 2. 所点B ′的坐标是(3,4,2). 例2结晶体的基本单位称为晶胞,图是食盐晶胞的示意图(可看成是八个棱长为12的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子.如图,建立空间直师:让学生思考例1一会,学生作答,师讲评. 师:对于例2的讲解,主要是引导学生先要学会建立合适的空间直角坐标系,然后才涉及到点的坐标的求法.生:思考例1、例2的一些特点.总结如何求出空间中的点坐标的方法.例2【解析】把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层的原子全部在xOy 平面上,它们所在位置的竖坐标全是0,所以这五个钠原子所在位置的坐标分别是(0,0,0),(1,0,0),(1,1,0),(0,1,0),11(,,0)22; 中层的原子所在的平面平行于xOy 平面,与z 轴交点的竖坐标为12,所以,这四个钠原子所在位置的坐标分别是 1111(,0,),(1,,)2222,1111(,1,),(0,,)2222;学生在教师的指导下完成,加深对点的坐标的理解,例2更能体现出建立一个合适的空间直角系的重要性.教师备课系统──多媒体教案4 角坐标系O–xyz后,试写出全部钠原子所在位置的坐标.续上表实用文案标准文档上层的原子所在的平面平行于xOy平面,与z轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是(0,0,1),(1,0,1),(1,1,1),(0,1,1),11(,,1)22.5. 练习 2 如图,长方体OABC–D′A′B′C′中,|OA| = 3,|OC| =4,|OD′| = 3,A′C′于B′D′相交于点P.分别写出点C、B′、P的坐标.师:大家拿笔完成练习2然后上黑板来讲解.生:完成.【解析】C、B′、P各点的坐标分别是(0,4,0),(3,4,3),3(,2,3)2.学生在原有小结的经验的基础上,动手操作,并且锻炼学生的口才.提出新概念6. 在平面上任意两点A(x1,y1),B(x2,y2)之间的距离的公式为|AB|=221212()()x x y y-+-,那么对于空间中任意两点A(x1,y1,z1),B (x2,y2,z2)之间的距离的公式会是怎样呢?你猜猜?师:只需引导学生大胆猜测,是否正确无关紧要.生:踊跃回答.通过类比,充分发挥学生的联想能力.概念形成7. 空间中任间一点P (x,y,z)到原点之间的距离公式会是怎样呢?师:为了验证一下同学们的猜想,我们来看比较特殊的情况,引导学生用勾股定理来完成.学生:在教师的指导下作答得出|OP|=222x y z++.从特殊的情况入手,化解难度.续上表教师备课系统──多媒体教案6 概念深化8. 如果|OP| 是定长r,那么x2+ y2+ z2 = r2表示什么图形?师:注意引导类比平面直角坐标系中,方程x2+ y2=r2表示的图形中,方程x2+y2 = r2表示图形,让学生有种回归感.生:猜想说出理由.学会类比.9.如果是空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式是怎样呢?师生:一起推导,但是在推导的过程中要重视学生思路的引导.得出结论:|P1P2|=222121212()()()x x y y z z-+-+-人的认识是从特殊情况到一般情况的.10. 巩固练习(1)先在空间直角坐标系中标出A、B两点,再求它们之间的距离:A(2,3,5),B(3,1,4);A(6,0,1),B(3,5,7).(2)在z轴上求一点M,使点M到点A(1,0,2)与点B(1,–3,1)的距离相等.教师引导学生作答(1)【解析】6,图略;70,图略(2)【解析】设点M的坐标是(0,0,z).依题意,得22(01)0(2)z-++-=222(01)(03)(1)z-+++-培养学生直接利用公式解决问题能力,进一步加深理解.续上表实用文案标准文档(3)求证:以A(10,–1,6),B(4,1,9),C(2,4,3)三点为顶点的三角形是等腰三角形.4.如图,正方体OABD–D′A′B′C′的棱长为a,|AN| =2|CN|,|BM| = 2|MC′|.求MN的长.解得z = –3.所求点M的坐标是(0,0,–3).(3)【证明】根据空间两点间距离公式,得,︱AB︱=222(104)(11)(69)-+--+-=7,︱BC︱=222(42)(14)(93)-+-+-=7,︱AC︱=222(102)(14)(63)-+--+-=98.因为7+7>98,且|AB| =|BC|,所以△ABC是等腰三角形.4.【解析】由已知,得点N的坐标为2(,,0)33a a,点M的坐标为2(,,)33a aa,于是22222||()()(0)33335.3a a a aMN aa=-+-+-=小结今天通过这堂课的学习,你能有什么收获?(1)空间点的坐标表示,(2)空间两点间的距离公式及应用.生:谈收获.师:总结.知识整理.课堂作业1.已知点M到三个坐标平面的距离都是1,且点M的三个坐标同号,则点M的坐标为 ______.【解析】分别过点(1,0,0),(0,1,0),(0,0,1)作与yOz平面,xOz平面,xOy教师备课系统──多媒体教案8平面平行的平面,三个平面的交点即为M 点,其坐标为(1,1,1)或过点(-1,0,0),(0,-1,0),(0,0,-1)作与yOz 平面,xOz 平面,xOy 平面平行的平面,三个平面的交点即为M 点,其坐标为(-1,-1,-1).答案:(1,1,1)或(-1,-1,-1)2. 如图,正方体ABCD – A 1B 1C 1D 1,E 、F 分别是BB 1,D 1B 1的中点,棱长为1,求点E 、F 的坐标和B 1关于原点D 的对称点坐标.【解析】由B (1,1,0),B 1(1,1,1),则中点E 为1(1,1,)2,由B 1(1,1,1),D 1(0,0,1),则中点11(,,1)22F . 设B 1关于点D 的对称点M (x 0,y 0,z 0), 即D 为B 1M 的中点,因为D (0,0,0),所以,000000102110121102x x y y z z +==--==-=-+=⎧⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪⎩,,,得,., 所以M (–1,–1,–1 ).3. 已知点A 在y 轴 ,点B (0,1,2)且||5AB =,则点A 的坐标为 .【解析】由题意设A (0,y ,0),则2(1)45y -+=,解得:y = 0或y = 2,故点A 的坐标是(0,0,0)或(0,2,0) 4. 坐标平面yOz 上一点P 满足:(1)横、纵、竖坐标之和为2;(2)到点A (3,2,5),B (3,5,2)的距离相等,求点P 的坐标.【解析】由题意设P (0,y ,z ),则2222222(03)(2)(5)(03)(5)(2)y z y z y z +=⎧⎨-+-+-=-+-+-⎩,, 解得:11.y z =⎧⎨=⎩,故点P 的坐标为(0,1,1).实用文案标准文档教案 B第1课时教学内容:4.3.1 空间直角坐标系 教学目标1. 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置;2. 掌握空间直角坐标系、右手直角坐标系的概念,会画空间直角坐标系,会求空间直角坐标;3. 深刻感受空间直角坐标系的建立的背景以及理解空间中点的坐标表示;4. 通过数轴与数,平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性.教学重点、难点教学重点:求一个几何图形的空间直角坐标. 教学难点:空间直角坐标系的理解. 教学过程一、情景设计1. 我们知道数轴上的任意一点M 都可用对应一个实数x 表示,建立了平面直角坐标系后,平面上任意一点M 都可用对应一对有序实数),(y x 表示.那么假设我们建立一个空间直角坐标系时,空间中的任意一点是否可用对应的有序实数组()z y x ,,表示出来呢?2.空间直角坐标系该如何建立呢? 二、新课教学如图,OABC -D ′A ′B ′C ′是单位正方体,以O 为原点,分别以射线OA ,OC ,OD ′的方向为正方向,以线段OA ,OC ,OD ′的长为单位长,建立三条数轴:x 轴、y 轴、z 轴,∠xpy =135°,∠yoz =45°,这时我们说建立了一个空间直角坐标系Oxyz ,其中点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,通过每两个坐标轴的平面叫坐标平面,分别称为xoy 平面,yoz 平面,zox 平面.在空间坐标系中,让右手拇指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.空间直角坐标系有序实数组(x ,y ,z )一一对应.(x ,y ,z )称为空间直角坐标系的坐标,x 称为横坐标,y 称为纵坐标,z 为竖坐标.O 、A 、B 、C 四点坐标分别为:O (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0).教师备课系统──多媒体教案10例1 在长方体OABC -D ’A ’B ’C ’中,∣OA ∣=3,∣OC ∣=4,∣OD ′∣=2,写出D ′、C 、 A ′、B ′四点的坐标.【解析】因为D ′在z 轴上,且∣OD ′∣=2,它的竖坐标为2,它的横坐标与纵坐标都是零,所以D ′点的坐标是(0,0,2);点C 在y 轴上,且∣OC ∣=4,所以点C 的坐标为(0,4,0);点A ′的坐标为(3,0,2),B ′的坐标为(3,4,2).例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标.【解析】把图中的钠原子分成下、中、上三层来写它们所在位置的坐标.下层原子全在xOy 平面,它们所在位置的竖坐标全是0,所以下层的五个钠原子所在位置的坐标分别为:(0,0,0),(1,0,0),(1,1,0),(0,1,0),(21,21,0);中层的四个钠原子所在位置的坐标分别为:(21,0,21),(1,21,21),(21,1, 21),(0,21, 21);上层的五个钠原子所在位置的坐标分别为:(0,0,1),(1,0,1),(1,1,1),(0,1,1),(21,21,1).三、典型例题解析例3 在空间直角坐标系中,作出点M (6,-2, 4).点拨:点M 的位置可按如下步骤作出:先在x 轴上作出横坐标是6的点1M ,再将1M 沿与y 轴平行的方向向左移动2个单位得到点2M ,然后将2M 沿与z 轴平行的方向向上移动4个单位即得点M .答案:M 点的位置如图所示.总结:对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力.变式题演练1M2M M (6,-2,4) Oxyz624实用文案标准文档在空间直角坐标系中,作出下列各点:A (-2,3,3);B (3,-4,2);C (4,0,-3).答案:略.例4 已知正四棱锥P -ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.点拨:先由条件求出正四棱锥的高,再根据正四棱锥的对称性,建立适当的空间直角坐标系.【解析】 正四棱锥P -ABCD 的底面边长为4,侧棱长为10,∴正四棱锥的高为232.以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A (2,-2,0)、B (2,2,0)、C (-2,2,0)、D (-2,-2,0)、P (0,0,223).总结:在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标.变式题演练 在长方体1111ABCD A B C D -中,AB =12,AD =8,AA 1=5,试建立适当的空间直角坐标系,写出各顶点的坐标.【解析】以A 为原点,射线AB 、AD 、AA 1分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A (0,0,0)、B (12,0,0)、C (12,8,0)、D (0,8,0)、A 1(0,0,5)、B 1(12,0,5)、C 1(12,8,5)、D 1(0,8,5).例5 在空间直角坐标系中,求出经过A (2,3,1)且平行于坐标平面yOz 的平面α的方程.点拨:求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解.【解析】 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行, ∴平面α也与x 轴垂直,∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等. 平面α过点A (2,3,1),∴平面α内的所有点的横坐标都是2, ∴平面α的方程为x =2.总结:对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题.本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程.OA B CDPx yz教师备课系统──多媒体教案12变式题演练在空间直角坐标系中,求出经过B (2,3,0)且垂直于坐标平面xOy 的直线方程. 答案:所求直线的方程为x =2,y =3. 四、课堂小结(1)空间直角坐标系的建立. (2)空间中点的坐标的确定. 五、布置作业P138习题4.3 A 组:1,2.第2课时教学内容:4.3.2 空间两点间的距离公式 教学目标1. 通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式;2. 通过推导和应用空间两点间的距离公式,进一步培养学生的空间想象能力;3. 通过探索空间两点间的距离公式,体会转化(降维)的数学思想. 教学重点、难点探索和推导空间两点间的距离公式. 教学过程一、问题引入问题:求粉笔盒(长方体)的对角线的长度. 解决方案: ①直接测量取两个或三个一样的粉笔盒如图放置,用尺子测量其对角线的长度.②公式计算量出粉笔盒的长、宽、高,用勾股定理计算.一般地,如果长方体的长、宽、高分别为c b a ,,,那么对角线长222c b ad ++=.实用文案标准文档③坐标计算建立空间直角坐标系,使得长方体的一个顶点为坐标原点,所有棱分别与坐标轴平行,求出对角线顶点的坐标,用平面内两点间的距离公式和勾股定理计算.一般地,空间任意一点),,(z y x P 与原点间的距离222z y x OP ++=.探究:如果OP 是定长r ,那么2222r z y x =++表示什么图形?思考:上面推导了空间任意一点与原点间的距离公式,你能否猜想空间任意两点间的距离公式?如何证明?类比空间任意一点与原点间的距离公式,猜想空间任意两点间的距离公式.用平面内两点间的距离公式和勾股定理推导. 由此可得空间中任意两点),,(),,,(22221111z y x P z y x P 之间的距离公式22122122121)()()(z z y y x x P P -+-+-=.二、例题精讲例1 已知A (x ,2,3)、B (5,4,7),且|AB |=6,求x 的值. 【解析】|AB |=6,∴6)73()42()5(222=-+-+-x ,即(x -5)2=16,解得x =1或x =9.例2 求点P (1,2,3)关于坐标平面xOy 的对称点的坐标.【解析】设点P 关于坐标平面xOy 的对称点为P ′,连 P P ′交坐标平面xOy 于Q , 则P P ′⊥坐标平面xOy ,且|PQ |=|P ′Q|,∴P ′在x 轴、y 轴上的射影分别与P 在x 轴、y 轴上的射影重合,P ′在z 轴上的射影与P 在z 轴上的射影关于原点对称,∴P ′与P 的横坐标、纵坐标分别相同,竖坐标互为相反数,∴ 点P (1,2,3)关于坐标平面xOy 的对称点的坐标为(1,2,-3).点评:通过巧设动点坐标,得到关于两点间距离的目标函数,由函数思想得到几何最值. 注意这里对目标函数最值的研究,实质就是非负数最小为0. 三、课堂小结1. 空间中两点间距离的坐标计算.2. 类比思想:维度的升高,距离公式如何改变? 四、布置作业P138 习题4.3A 组:3.P139习题4.3B 组:1,2,3.教师备课系统──多媒体教案14第四章测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知点(1,4,2)M -,那么点M 关于y 轴对称点的坐标是( ). A .(1,4,2)-- B .(1,4,2)- C .(1,4,2)- D .(1,4,2)2.若直线3x +4y +c =0与圆(x +1)2+y 2=4相切,则c 的值为( ). A .17或-23 B .23或-17 C .7或-13 D .-7或133.过圆x 2+y 2-2x +4y -4=0内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( ).A .x +y -3=0B .x -y -3=0C .x +4y -3=0D .x -4y -3=04.经过(1,1),(2,2),(3,1)A B C --三点的圆的标准方程是( ). A .22(1)4x y ++= B.22(1)5x y ++= C .22(1)4x y -+=D.22(1)5x y -+=5.一束光线从点A (-1, 1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路程是( ).A .32-1B .26C .5D .46.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( ).A .5B .5C .25D .107.已知两点(1,0)A -、(0,2)B ,若点P 是圆22(1)1x y -+=上的动点,则ABP ∆面积的最大值和最小值分别为( ).A .11(45),(51)22+- B .11(45),(45)22+- C .11(35),(35)22+-D .11(25),(52)22+-8.已知圆224x y +=与圆2266140x y x y +-++=关于直线l 对称,则直线l 的方程是( ).实用文案标准文档A. 210x y -+=B. 210x y --=C. 30x y -+=D. 30x y --=9.直角坐标平面内,过点(2,1)P 且与圆224x y +=相切的直线( ). A.有两条 B.有且仅有一条C.不存在D. 不能确定10.若曲线222610x y x y ++-+=上相异两点P 、Q 关于直线240kx y +-=对称,则k 的值为( ).A. 1B. -1C.12D. 2 11.已知圆221:460C x y x y +-+=和圆222:60C x y x +-=相交于A 、B 两点, 则AB 的垂直平分线方程为( ).A.30x y ++=B.250x y --=C.390x y --=D. 4370x y -+= 12. 直线3y kx =+与圆22(3)(2)4x y -+-=相交于M ,N 两点,若︱MN ︱≥23,则k 的取值范围是( ).A .3,04⎡⎤-⎢⎥⎣⎦B .[)3,0,4⎛⎤-∞-+∞ ⎥⎝⎦C .33,33⎡⎤-⎢⎥⎣⎦D .2,03⎡⎤-⎢⎥⎣⎦ 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.圆22:2440C x y x y +--+=的圆心到直线l :3440x y ++=的距离d = .14.直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB ∣∣= . 15.过点A (4,1)的圆C 与直线10x y --=相切于点 B (2,1),则圆C 的方程为 .16.在平面直角坐标系xOy 中,已知圆422=+y x 上有且仅有四个点到直线12x -5y +c=0的距离为1,则实数c 的取值范围是______ .三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分) 已知圆经过(3,0)A ,18(,)55B -两点,且截x 轴所得的弦长为2,求教师备课系统──多媒体教案16此圆的方程.18.(12分)已知线段AB 的端点B 的坐标为 (1,3),端点A 在圆C:4)1(22=++y x 上运动.(1)求线段AB 的中点M 的轨迹;(2)过B 点的直线L 与圆C 有两个交点P ,Q .当CP ⊥CQ 时,求L 的斜率.19.(12分)设定点M (-2,2),动点N 在圆222=+y x 上运动,以OM 、0N 为两边作平行四边形MONP ,求点P 的轨迹方程.20.(12分)已知圆C 的半径为10,圆心在直线2y x =上,且被直线0x y -=截得的弦长为42,求圆C 的方程.21.(12分)已知圆C :222430x y x y ++-+=.(1)若不经过坐标原点的直线l 与圆C 相切,且直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)设点P 在圆C 上,求点P 到直线50x y --=距离的最大值与最小值.22.(12分)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它实用文案标准文档们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.教师备课系统──多媒体教案18参考答案一、选择题1. 选B.纵坐标不变,其他的变为相反数.2. 选D.圆心到切线的距离等于半径.3. 选 A.直线l 为过点M , 且垂直于过点M 的直径的直线.4. 选D.把三点的坐标代入四个选项验证即可.5. 选D.因为点A (-1, 1)关于x 轴的对称点坐标为(-1,-1),圆心坐标为(2,3),所以点.A (-1, 1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路程为22(12)(13)1 4.--+---=6.选B.由题意知,圆心坐标为(-2,-1),210.a b ∴--+=22(2)(2)a b -+-表示点(a,b )与(2,2)的距离,2242122541a b +--+-=+所以()()的最小值为,所以22(2)(2)a b -++的最小值为5.7.选B.过圆心C 作CM AB ⊥于点M ,设CM 交圆于P 、Q 两点,分析可知ABP ∆和ABQ ∆分别为最大值和最小值,可以求得||5AB =,45d =,所以最大值和最小值分别为1415(1)(45)225±=±. 8.选D.两圆关于直线l 对称,则直线l 为两圆圆心连线的垂直平分线.9.选A.可以判断点P 在圆外,因此,过点P 与圆相切的直线有两条. 10.选D.曲线方程可化为22(1)(3)9x y ++-=,由题设知直线过圆心,即(1)2340,2k k ⨯-+⨯-=∴=.故选D.11.选C.由平面几何知识,知AB 的垂直平分线即为两圆心的连线,把两圆分别化为标准式可得两圆心,分别为C 1(2,-3)、C 2(3,0),因为C 1C 2斜率为3,所以直 线方程为y-0=3(x-3),化为一般式可得3x-y-9=0.12.选A .(方法1)由题意,若使︱MN ︱≥23,则圆心到直线的距离d ≤1,即实用文案标准文档113232≤++-k k ≤1,解得34-≤k ≤0.故选A. (方法2)设点M ,N 的坐标分别为),(),,2211y x y x (,将直线方程和圆的方程联立得方程组223(3)(2)4y kx x y =+⎧⎨-+-=⎩,,消去y ,得06)3(2)1(22=+-++x k x k ,由根与系数的关系,得16,1)3(2221221+=⋅+--=+k x x k k x x , 由弦长公式知2122122124)(1||1||x x x x k x x k MN -+⋅+=-⋅+==1122420164]1)3(2[1222222++--=+⋅-+--⋅+k k k k k k k ,︱MN ︱≥23,∴222024121k k k --++≥23,即8(43k k +)≤0,∴34-≤k ≤0,故选A.二、填空题13. 3. 由圆的方程可知圆心坐标为C (1,2),由点到直线的距离公式,可得3434241322=++⨯+⨯=d .14. 23(方法1) 设11,)A x y (,22(,)B x y ,由22250,8.x y x y -+=⎧⎨+=⎩消去y 得251070x x +-=,由根与系数的关系得121272,,5x x x x +=-=-2121212415()45x x x x x x -=+-=, ∴ 21215415123225ABx x ∣∣=+-=⨯=().教师备课系统──多媒体教案20(方法2)因为圆心到直线的距离555d ==, 所以22228523AB r d =-=-=.15. 22(3)2x y -+=. 由题意知,圆心既在过点B (2,1)且与直线10x y --=垂直的直线上,又在点,A B 的中垂线上.可求出过点B (2,1)且与直线10x y --=垂直的直线为30x y +-=,,A B 的中垂线为3x =,联立方程30,3,x y x +-==⎧⎨⎩,解得3,0,x y ==⎧⎨⎩,即圆心(3,0)C ,半径2r CA ==,所以,圆的方程为22(3)2x y -+=.16. 1313c -<<. 如图,圆422=+y x 的半径为2,圆上有且仅有四个点到直线12x-5y+c=0的距离为1,问题转化为坐标原点(0,0)到直线12x-5y+c=0的距离小于 1.221,13,1313.125c c c <<∴-<<+即三、解答题17.【解析】根据条件设标准方程222()()x a y b r -+-=,截x 轴所得的弦长为2,可以运用半径、半弦长、圆心到直线的距离构成的直角三角形;则:⎪⎪⎩⎪⎪⎨⎧+==-+--=+-,1,)58()51(,)3(222222222b r r b a r b a ∴⎪⎩⎪⎨⎧===5,2,2r b a 或⎪⎩⎪⎨⎧===.37,6,4r b a∴所求圆的方程为22(2)(2)5x y -+-=或22(4)(6)37x y -+-=.实用文案标准文档18.【解析】(1)设()()11,,,A x y M x y ,由中点公式得111112123232x x x x y y y y +==-⇔+=-=⎧⎪⎧⎪⎨⎨⎩⎪⎪⎩,, 因为A 在圆C 上,所以()()222232234,12x y x y ⎛⎫+-=+-= ⎪⎝⎭即 . 点M 的轨迹是以30,2⎛⎫ ⎪⎝⎭为圆心,1为半径的圆.(2)设L 的斜率为k ,则L 的方程为()31y k x -=-,即30kx y k --+=, 因为CP ⊥CQ ,△CPQ 为等腰直角三角形,圆心C (-1,0)到L 的距离为12CP =2, 由点到直线的距离公式得222324129221k k k k k k --+=∴-+=++, ∴2k 2-12k +7=0,解得k =3±112. 故直线PQ 必过定点 1003⎛⎫ ⎪⎝⎭,.19.【解析】 设P (x ,y ),N (x 0,y 0),∴22020=+y x , (*)∵平行四边形MONP , ∴ 00222222x x y y -=+=⎧⎪⎪⎨⎪⎪⎩,,有00+22x x y y ==-⎧⎨⎩,,教师备课系统──多媒体教案22代入(*)有2)2()2(22=-++y x ,又∵M 、O 、N 不能共线,∴将y 0=-x 0代入(*)有x 0≠±1,∴x ≠-1或x ≠-3,∴点P 的轨迹方程为2)2()2(22=-++y x (3x 1-≠-≠且x ).20.【解析】因为所求圆的圆心C 在直线2y x =上,所以设圆心为(),2C a a , 所以可设圆的方程为()()22210x a y a -+-=,因为圆被直线0x y -=截得的弦长为42,则圆心(),2C a a 到直线0x y -=的距离()22224210211a ad ⎛⎫-==- ⎪ ⎪⎝⎭+-,即22a d ==,解得2a =±. 所以圆的方程为()()222410x y -+-=或()()222410x y +++=.21.【解析】(1)圆C 的方程可化为22(1)(2)2x y ++-=,即圆心的坐标为(-1,2),半径为2 ,因为直线l 在两坐标轴上的截距相等且不经过坐标原点,所以可设直线l 的方程为 0x y m ++=; 于是有|12|112m -+++=,得1m =或3m =-,因此直线l 的方程为10x y ++=或30x y +-=.(2)因为圆心(-1,2)到直线50x y --=的距离为|125|1142---+=,所以点P到直线50x y --=距离的最大值与最小值依次分别为52和32.22.【解析】(1)设直线l 的方程为:(4)y k x =-,即40kx y k --=, 由垂径定理,得:圆心1C 到直线l 的距离22232()12d =-=, 结合点到直线距离公式,得:2|314|11k k k ---=+,实用文案标准文档 化简得:272470024k k k k +===-,解得或, 求直线l 的方程为:0y =或7(4)24y x =--, 即0y =或724280x y +-=. (2) 设点P 坐标为(,)m n ,直线1l 、2l 的方程分别为:1(),()y n k x m y n x m k-=--=--,即:110,0kx y n km x y n m k k-+-=--++=, 因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等. 由垂径定理,得圆心1C 到直线1l 与2C 直线2l 的距离相等. 故有:2241|5||31|111n m k n km k k k k --++--+-=++, 化简得:(2)3,(8)5m n k m n m n k m n --=---+=+-或,关于k 的方程有无穷多解,有:2030m n m n m n m n --=⎧⎧⎨⎨--=⎩⎩,-+8=0,或,+-5=0, 解之得:点P 坐标为)213,23(-或)21,25(.。
高中数学必修二《空间直角坐标系》优秀教学设计
4.3空间直角坐标系4.3.1空间直角坐标系教材分析本节课内容是数学必修2 第四章圆与方程的最后一节的第一小节。
课本之所以把“空间直角坐标系”的内容放在必修2的最后即第四章的最后,原因有三:一、“空间直角坐标系”的内容为以后选修中用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题打基础,做好准备;二、必修2第三、四章是平面解析几何的基础内容,本节“空间直角坐标系”的内容是空间解析几何的基础,与平面解析几何的内容共同体现了“用代数方法解决几何问题”的解析几何思想;三、本套教材从整体上体现了“螺旋式上升”的思想,本节内容安排“空间直角坐标系”,为以后的学习作铺垫,正是很好地体现了这一思想。
本小节内容主要包含空间直角坐标系的建立、空间中由点的位置确定点的坐标以及由点的坐标确定点的位置等问题。
结合图形、联系长方体和正方体是学好本小节的关键。
课时分配本小节内容用1课时的时间完成,主要讲解空间直角坐标系的建立以及空间中的点与坐标之间的联系。
教学目标重点:空间直角坐标系,空间中点的坐标及空间坐标对应的点。
难点:右手直角坐标系的理解,空间中的点与坐标的一一对应。
知识点:空间直角坐标系的相关概念,空间中点的坐标以及空间坐标对应的点。
能力点:理解空间直角坐标系的建立过程,以及空间中的点与坐标的一一对应。
教育点:通过空间直角坐标系的建立,体会由二维空间到三维空间的拓展和推广,让学生建立发展的观点;通过空间点与坐标的对应关系,进一步加强学生对“数形结合”思想方法的认识。
自主探究点:如何由空间中点的坐标确定点的位置。
考试点:空间中点的确定及坐标表示。
易错易混点:空间中的点与平面内的点以及它们的坐标之间的联系与区别;空间直角坐标系中x轴上单位长度的选取。
拓展点:不同空间直角坐标系下点的坐标的不同;空间中线段的中点坐标公式。
教具准备多媒体课件和三角板课堂模式师生互动、小组评分以及兵带兵的课堂模式。
一、引入新课由数轴上的点和平面直角坐标系内的点的表示引入空间中点的表示。
人教A版高中数学必修二4.3空间直角坐标系学案含教学反思
4.3空间直角坐标系4.3.1&4.3.2 空间直角坐标系 空间两点间的距离公式[新知初探]1.空间直角坐标系(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x 轴、y 轴、z 轴,这样就建立了空间直角坐标系O xyz .(2)相关概念:点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M 的坐标可以用有序实数组(x ,y ,z )来表示,有序实数组(x ,y ,z )叫做点M 在此空间直角坐标系中的坐标,记作M (x ,y ,z ).其中x 叫点M 的横坐标,y 叫点M 的纵坐标,z 叫点M 的竖坐标.[点睛] 空间直角坐标系的画法(1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.4.空间两点间的距离公式(1)点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |= x 2+y 2+z 2.预习课本P134~137,思考并完成以下问题(2)任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|=x 1-x 22+y 1-y 22+z 1-z 22.[点睛] (1)空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.(2)空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22,z 1+z 22.[小试身手](2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2)( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,点P (3,4,5)与Q (3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称D .以上都不对解析:选A 点P (3,4,5)与Q (3,-4,-5)两点的横坐标相同,而纵、竖坐标互为相反数,所以两点关于x 轴对称.3.空间两点P 1(1,2,3),P 2(3,2,1)之间的距离为________. 解析:|P 1P 2|=-22+02+22=2 2.答案:2 2空间中点的坐标的求法[典例] 在棱长为1的正方体ABCD A 1B 1C 1D 1中,E ,F 分别是D 1D ,BD 的中点,G 在棱CD 上,且CG =14CD ,H 为C 1G 的中点,试建立适当的坐标系,写出E ,F ,G ,H 的坐标.[解] 建立如图所示的空间直角坐标系.点E 在z 轴上,它的x 坐标、y 坐标均为0,而E 为DD 1的中点,故其坐标为⎝⎛⎭⎪⎫0,0,12.由F 作FM ⊥AD ,FN ⊥DC ,垂足分别为M ,N , 由平面几何知识知FM =12,FN =12,故F 点坐标为⎝ ⎛⎭⎪⎫12,12,0.点G 在y 轴上,其x ,z 坐标均为0,又GD =34,故G 点坐标为⎝ ⎛⎭⎪⎫0,34,0. 由H 作HK ⊥CG 于K ,由于H 为C 1G 的中点. 故HK =12,CK =18,∴DK =78,故H 点坐标为⎝ ⎛⎭⎪⎫0,78,12.(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.(2)对于长方体或正方体,一般取相邻的三条棱所在直线为x ,y ,z 轴建立空间直角坐标系;确定点的坐标时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点坐标的关键.[活学活用]如图,在长方体ABCD A ′B ′C ′D ′中,|AB |=12,|AD |=8,|AA ′|=5.以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA ′分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求长方体各个顶点的坐标.解:因为|AB |=12,|AD |=8,|AA ′|=5,点A 为坐标原点,且点B ,D ,A ′分别在x 轴、y 轴和z 轴上,所以它们的坐标分别为A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5).点C ,B ′,D ′分别在xOy 平面、xOz 平面、yOz 平面内,坐标分别为C (12,8,0),B ′(12,0,5),D ′(0,8,5).点C ′在三条坐标轴上的射影分别是B ,D ,A ′,故点C ′的坐标为(12,8,5).空间两点间距离公式及应用[典例] 已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件.[解] (1)根据空间两点间的距离公式得线段MN 的长度|MN |=3-12+2-02+1-52=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以有下面等式成立:x -32+y -22+z -12=x -12+y -02+z -52,化简得x +y -2z +3=0,因此,到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件是x +y -2z +3=0.利用空间两点间的距离公式求线段长度问题的一般步骤为:[活学活用]已知直三棱柱ABC A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解:如图,以A 为原点,AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4). 因为M 为BC 1的中点, 所以由中点公式得M ⎝⎛⎭⎪⎫4+02,0+42,0+42,即M (2,2,2),又N 为A 1B 1的中点,所以N (2,0,4).所以由两点间的距离公式得 |MN |=2-22+2-02+2-42=2 2.空间中点的对称[典例] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________. (2)已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________.[解析] (1)如图所示,过A作AM⊥xOy交平面于M,并延长到C,使AM=CM,则A与C关于坐标平面xOy对称且C的坐标为(1,2,1).过A作AN⊥x轴于N并延长到点B,使AN=NB,则A与B关于x轴对称且B的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3,-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案] (1)(1,2,1),(1,-2,1) (2)(2,-3,1)在空间直角坐标系中,点P(x,y,z)关于坐标轴和坐标平面的对称点的坐标特点如下:(1)关于坐标原点的对称点为P1(-x,-y,-z);(2)关于横轴(x轴)的对称点为P2(x,-y,-z);(3)关于纵轴(y轴)的对称点为P3(-x,y,-z);(4)关于竖轴(z轴)的对称点为P4(-x,-y,z);(5)关于xOy坐标平面的对称点为P5(x,y,-z);(6)关于yOz坐标平面的对称点为P6(-x,y,z);(7)关于zOx坐标平面的对称点为P7(x,-y,z).其中的记忆方法为“关于谁谁不变,其余的相反”.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.[活学活用]在空间直角坐标系中,点M的坐标是(4,7,6),则点M关于y轴对称的点在xOz平面上的射影的坐标为( )A.(4,0,6) B.(-4,7,-6)C.(-4,0,-6) D.(-4,7,0)解析:选C 点M关于y轴对称的点是M′(-4,7,-6),点M′在xOz平面上的射影的坐标为(-4,0,-6).层级一学业水平达标1.点P(a,b,c)到坐标平面xOy的距离是( )A.a2+b2 B.|a|C.|b| D.|c|解析:选D 点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.已知A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:选A |AB|=1+32+1+32+1+32=4 3.3.在空间直角坐标系中,点P(3,1,5)关于平面xOz对称的点的坐标为( )A.(3,-1,5) B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)解析:选A 由于点关于平面xOz对称,故其横坐标、竖坐标不变,纵坐标变为相反数,即对称点坐标是(3,-1,5).4.若点P(-4,-2,3)关于xOy平面及y轴对称的点的坐标分别是(a,b,c),(e,f,d),则c与e的和为( )A.7 B.-7C.-1 D.1解析:选D 由题意,知点P关于xOy平面对称的点的坐标为(-4,-2,-3),点P关于y轴对称的点的坐标为(4,-2,-3),故c=-3,e=4,故c+e=-3+4=1.5.点P(1,2,3)为空间直角坐标系中的点,过点P作平面xOy的垂线,垂足为Q,则点Q的坐标为( )A.(0,0,3) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:选D 由空间点的坐标的定义,知点Q的坐标为(1,2,0).6.空间点M(-1,-2,3)关于x轴的对称点的坐标是________.解析:∵点M(-1,-2,3)关于x轴对称,由空间中点P(x,y,z)关于x轴对称点的坐标为(x,-y,-z)知,点M关于x轴的对称点为(-1,2,-3).答案:(-1,2,-3)7.在空间直角坐标系中,点(-1,b,2)关于y轴的对称点是(a,-1,c-2),则点P(a,b,c)到坐标原点的距离|PO|=________.解析:由点(x,y,z)关于y轴的对称点是点(-x,y,-z)可得-1=-a,b=-1,c-2=-2,所以a=1,c=0,故所求距离|PO|=12+-12+02= 2.答案: 28.在空间直角坐标系中,点M(-2,4,-3)在xOz平面上的射影为点M1,则点M1关于原点对称的点的坐标是________.解析:由题意,知点M 1的坐标为(-2,0,-3),点M 1关于原点对称的点的坐标是(2,0,3). 答案:(2,0,3)9.如图,已知长方体ABCD A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1). 10.如图,在长方体ABCD A 1B 1C 1D 1中,|AB |=|AD |=2,|AA 1|=4,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M ,N 两点间的距离.解析:由已知条件,得|A 1C 1|=2 2.由|MC 1|=2|A 1M |,得|A 1M |=223, 且∠B 1A 1M =∠D 1A 1M =π4.如图,以A 为原点,分别以AB ,AD ,AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则M ⎝ ⎛⎭⎪⎫23,23,4,C (2,2,0),D 1(0,2,4).由N 为CD 1的中点,可得N (1,2,2).∴|MN |=⎝ ⎛⎭⎪⎫1-232+⎝ ⎛⎭⎪⎫2-232+2-42=533. 层级二 应试能力达标1.点A (0,-2,3)在空间直角坐标系中的位置是( ) A .在x 轴上 B .在xOy 平面内 C .在yOz 平面内D .在xOz 平面内解析:选C ∵点A 的横坐标为0,∴点A (0,-2,3)在yOz 平面内.2.在空间直角坐标系中,点P (2,3,4)和点Q (-2,-3,-4)的位置关系是( ) A .关于x 轴对称 B .关于yOz 平面对称 C .关于坐标原点对称D .以上都不对解析:选C 点P 和点Q 的横、纵、竖坐标均相反,故它们关于原点对称.3.设A (1,1,-2),B (3,2,8),C (0,1,0),则线段AB 的中点P 到点C 的距离为( )A.132 B.534 C.532D.532解析:选D 利用中点坐标公式,得点P 的坐标为⎝ ⎛⎭⎪⎫2,32,3,由空间两点间的距离公式,得|PC |=2-02+⎝ ⎛⎭⎪⎫32-12+3-02=532. 4.在长方体ABCD A 1B 1C 1D 1中,若D (0,0,0),A (4,0,0),B (4,2,0),A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6解析:选B 由已知,可得C 1(0,2,3),∴|AC 1|=0-42+2-02+3-02=29.5.已知A (3,5,-7),B (-2,4,3),则线段AB 在yOz 平面上的射影长为________. 解析:点A (3,5,-7),B (-2,4,3)在yOz 平面上的射影分别为A ′(0,5,-7),B ′(0,4,3),∴线段AB 在yOz 平面上的射影长|A ′B ′|=0-02+4-52+3+72=101.答案:1016.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且点M 到点A ,B 的距离相等,则点M 的坐标是________.解析:因为点M 在y 轴上,所以可设点M 的坐标为(0,y,0).由|MA |=|MB |,得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,解得y =-1,即点M 的坐标为(0,-1,0).答案:(0,-1,0)7.在空间直角坐标系中,解答下列各题.(1)在x 轴上求一点P ,使它与点P 0(4,1,2)的距离为30;(2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N (6,5,1)的距离最短. 解:(1)设P (x,0,0). 由题意,得|P 0P |=x -42+1+4=30,解得x =9或x =-1.所以点P 的坐标为(9,0,0)或(-1,0,0). (2)由已知,可设M (x 0,1-x 0,0). 则|MN |=x 0-62+1-x 0-52+0-12=2x 0-12+51.所以当x 0=1时,|MN |min =51.此时点M 的坐标为(1,0,0).8.如图,正方体ABCD A 1B 1C 1D 1的棱长为a ,M 为BD 1的中点,N 在A 1C 1上,且|A 1N |=3|NC 1|,试求MN 的长.解:以D 为原点,以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则B (a ,a,0),A 1(a,0,a ),C 1(0,a ,a ),D 1(0,0,a ).由于M 为BD 1的中点,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,取A 1C 1中点O 1,则O 1⎝ ⎛⎭⎪⎫a 2,a2,a ,因为|A 1N |=3|NC 1|,所以N 为O 1C 1的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .由两点间的距离公式可得: |MN |= ⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-34a 2+⎝ ⎛⎭⎪⎫a 2-a 2 =64a .(时间120分钟 满分150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( ) A. 2 B .2 C .2 2D .4解析:选B 由题意,得圆心为(-1,0),半径r =3,弦心距d =|-1+0-1|12+12=2,所以所求的弦长为2r 2-d 2=2,选B.2.若点P (1,1)为圆x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0 D .2x -y -1=0解析:选D 由题意,知圆的标准方程为(x -3)2+y 2=9,圆心为A (3,0).因为点P (1,1)为弦MN 的中点,所以AP ⊥MN .又AP 的斜率k =1-01-3=-12,所以直线MN 的斜率为2,所以弦MN 所在直线的方程为y -1=2(x -1),即2x -y -1=0.3.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6 B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6.再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.4.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y -5=0 B.2x +y +5=0 C .2x +y -5=0D .2x +y +5=0解析:选C ∵M (2,1)在圆上,∴切线与MO 垂直. ∵k MO =12,∴切线斜率为-2.又过点M (2,1),∴y -1=-2(x -2),即2x +y -5=0.5.把圆x 2+y 2+2x -4y -a 2-2=0的半径减小一个单位则正好与直线3x -4y -4=0相切,则实数a 的值为( )A .-3B .3C .-3或3D .以上都不对解析:选C 圆的方程可变为(x +1)2+(y -2)2=a 2+7,圆心为(-1,2),半径为a 2+7,由题意得|-1×3-4×2-4|-32+42=a 2+7-1,解得a =±3. 6.如图,一座圆弧形拱桥,当水面在如图所示的位置时,拱顶离水面2米,水面宽12米,当水面下降1米后,水面宽度为( )A .14米B .15米 C.51米 D .251米解析:选D如图,以圆弧形拱桥的顶点为原点,以过圆弧形拱桥的顶点的水平切线为x 轴,以过圆弧形拱桥的顶点的竖直直线为y 轴,建立平面直角坐标系.设圆心为C ,水面所在弦的端点为A ,B , 则由已知可得A (6,-2),设圆的半径长为r ,则C (0,-r ), 即圆的方程为x 2+(y +r )2=r 2.将点A 的坐标代入上述方程可得r =10, 所以圆的方程为x 2+(y +10)2=100,当水面下降1米后,水面弦的端点为A ′,B ′,可设A ′(x 0,-3)(x 0>0),代入x 2+(y +10)2=100,解得x 0=51, ∴水面宽度|A ′B ′|=251米.7.过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0解析:选A 设点P (3,1),圆心C (1,0).已知切点分别为A ,B ,则P ,A ,C ,B 四点共圆,且PC 为圆的直径.故四边形PACB 的外接圆圆心坐标为⎝ ⎛⎭⎪⎫2,12,半径长为123-12+1-02=52.故此圆的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -122=54.① 圆C 的方程为(x -1)2+y 2=1.②①-②得2x +y -3=0,此即为直线AB 的方程.8.已知在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2=-2y +3,直线l 经过点(1,0)且与直线x -y +1=0垂直,若直线l 与圆C 交于A ,B 两点,则△OAB 的面积为( )A .1 B. 2 C .2 D .2 2解析:选A 由题意,得圆C 的标准方程为x 2+(y +1)2=4,圆心为(0,-1),半径r =2.因为直线l 经过点(1,0)且与直线x -y +1=0垂直,所以直线l 的斜率为-1,方程为y -0=-(x -1),即为x +y -1=0.又圆心(0,-1)到直线l 的距离d =|0-1-1|2=2,所以弦长|AB |=2r 2-d 2=24-2=2 2.又坐标原点O 到弦AB 的距离为|0+0-1|2=12,所以△OAB 的面积为12×22×12=1.故选A.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.请把正确答案填在题中的横线上)9.圆心在直线x =2上的圆C 与y 轴交于两点A (0,-4),B (0,-2),则圆C 的方程为________________.解析:由题意知圆心坐标为(2,-3),半径r =2-02+-3+22=5,∴圆C 的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=510.已知空间直角坐标系中三点A ,B ,M ,点A 与点B 关于点M 对称,且已知A 点的坐标为(3,2,1),M 点的坐标为(4,3,1),则B 点的坐标为______________.解析:设B 点的坐标为(x ,y ,z ),则有x +32=4,y +22=3,z +12=1,解得x =5,y =4,z =1,故B 点的坐标为(5,4,1). 答案:(5,4,1)11.圆O :x 2+y 2-2x -2y +1=0上的动点Q 到直线l :3x +4y +8=0的距离的最大值是________.解析:∵圆O 的标准方程为(x -1)2+(y -1)2=1,圆心(1,1)到直线l 的距离为|3×1+4×1+8|32+42=3>1,∴动点Q 到直线l 的距离的最大值为3+1=4. 答案:412.已知过点(1,1)的直线l 与圆C :x 2+y 2-4y +2=0相切,则圆C 的半径为________,直线l 的方程为________.解析:圆C 的标准方程为x 2+(y -2)2=2, 则圆C 的半径为2,圆心坐标为(0,2).点(1,1)在圆C 上,则直线l 的斜率k =-12-10-1=1,则直线l 的方程为y =x ,即x -y =0. 答案: 2 x -y =013.已知圆C :(x -1)2+y 2=25与直线l :mx +y +m +2=0,若圆C 关于直线l 对称,则m =________;当m =________时,圆C 被直线l 截得的弦长最短.解析:当圆C 关于l 对称时,圆心(1,0)在直线mx +y +m +2=0上,得m =-1.直线l :m (x +1)+y +2=0恒过圆C 内的点M (-1,-2),当圆心到直线l 的距离最大,即MC ⊥l 时,圆C 被直线l 截得的弦长最短,k MC =-2-0-1-1=1,由(-m )×1=-1,得m =1.答案:-1 114.已知点M (2,1)及圆x 2+y 2=4,则过M 点的圆的切线方程为________,若直线ax -y+4=0与该圆相交于A ,B 两点,且|AB |=23,则a =________.解析:若过M 点的圆的切线斜率不存在,则切线方程为x =2,经验证满足条件.若切线斜率存在,可设切线方程为y =k (x -2)+1,由圆心到切线的距离等于半径得|-2k +1|k 2+1=2,解得k =-34,故切线方程为y =-34(x -2)+1,即3x +4y -10=0.综上,过M 点的圆的切线方程为x =2或3x +4y -10=0. 由4a 2+1=4-32得a =±15.答案:x =2或3x +4y -10=0 ±1515.已知两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0,则两圆圆心的最短距离为________,此时两圆的位置关系是________.(填“外离、相交、外切、内切、内含”中的一个)解析:将圆C 1:x 2+y 2-2ax +4y +a 2-5=0化为标准方程得(x -a )2+(y +2)2=9,圆心为C 1(a ,-2),半径为r 1=3,将圆C 2:x 2+y 2+2x -2ay +a 2-3=0化为标准方程得(x +1)2+(y-a )2=4,圆心为C 2(-1,a ),半径为r 2=2.两圆的圆心距d =a +12+-2-a2=2a 2+6a +5=2⎝ ⎛⎭⎪⎫a +322+12,所以当a =-32时,d min =22,此时22<|3-2|,所以两圆内含.答案:22内含 三、解答题(本大题共5小题,共74分,解答时写出必要的文字说明、证明过程或演算步骤)16.(本小题满分14分)已知正四棱锥P ABCD 的底面边长为4,侧棱长为3,G 是PD 的中点,求|BG |.解:∵正四棱锥P ABCD 的底面边长为4,侧棱长为3,∴正四棱锥的高为1.以正四棱锥的底面中心为原点,平行于AB ,BC 所在的直线分别为y 轴、x 轴,建立如图所示的空间直角坐标系,则正四棱锥的顶点B ,D ,P 的坐标分别为B (2,2,0),D (-2,-2,0),P (0,0,1).∴G 点的坐标为G ⎝ ⎛⎭⎪⎫-1,-1,12 ∴|BG |=32+32+14=732.17.(本小题满分15分)已知从圆外一点P (4,6)作圆O :x 2+y 2=1的两条切线,切点分别为A ,B .(1)求以OP 为直径的圆的方程; (2)求直线AB 的方程.解:(1)∵所求圆的圆心为线段OP 的中点(2,3), 半径为12|OP |= 124-02+6-02=13,∴以OP 为直径的圆的方程为(x -2)2+(y -3)2=13. (2)∵PA ,PB 是圆O :x 2+y 2=1的两条切线, ∴OA ⊥PA ,OB ⊥PB ,∴A ,B 两点都在以OP 为直径的圆上.由⎩⎪⎨⎪⎧x 2+y 2=1,x -22+y -32=13,得直线AB 的方程为4x +6y -1=0.18.(本小题满分15分)已知圆过点A (1,-2),B (-1,4). (1)求周长最小的圆的方程;(2)求圆心在直线2x -y -4=0上的圆的方程.解:(1)当线段AB 为圆的直径时,过点A ,B 的圆的半径最小,从而周长最小, 即以线段AB 的中点(0,1)为圆心,r =12|AB |=10为半径.则所求圆的方程为x 2+(y -1)2=10.(2)法一:直线AB 的斜率k =4--2-1-1=-3,则线段AB 的垂直平分线的方程是y -1=13x ,即x -3y +3=0.由⎩⎪⎨⎪⎧x -3y +3=0,2x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =2,即圆心的坐标是C (3,2).∴r 2=|AC |2=(3-1)2+(2+2)2=20. ∴所求圆的方程是(x -3)2+(y -2)2=20.法二:设圆的方程为(x -a )2+(y -b )2=R 2.则⎩⎪⎨⎪⎧1-a 2+-2-b 2=R 2,-1-a 2+4-b 2=R 2,2a -b -4=0⇒⎩⎪⎨⎪⎧a =3,b =2,R 2=20.∴所求圆的方程为(x -3)2+(y -2)2=20.19.(本小题满分15分)已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值.解:(1)证明:圆的方程可整理为(x 2+y 2-20)+a (-4x +2y +20)=0, 此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系.由⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0得⎩⎪⎨⎪⎧x =4,y =-2.∴已知圆恒过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5a -22=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5a -22-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55. 20.(本小题满分15分)在平面直角坐标系xOy 中,O 为坐标原点,以O 为圆心的圆与直线x -3y -4=0相切.(1)求圆O 的方程.(2)直线l :y =kx +3与圆O 交于A ,B 两点,在圆O 上是否存在一点M ,使得四边形OAMB 为菱形?若存在,求出此时直线l 的斜率;若不存在,说明理由.解:(1)设圆O 的半径长为r ,因为直线x -3y -4=0与圆O 相切,所以r =|0-3×0-4|1+3=2,所以圆O 的方程为x 2+y 2=4.(2)法一:因为直线l :y =kx +3与圆O 相交于A ,B 两点,所以圆心(0,0)到直线l 的距离d =|3|1+k2<2,解得k >52或k <-52. 假设存在点M ,使得四边形OAMB 为菱形,则OM 与AB 互相垂直且平分, 所以原点O 到直线l :y =kx +3的距离d =12|OM |=1.所以|3|1+k2=1,解得k 2=8,即k =±22,经验证满足条件. 所以存在点M ,使得四边形OAMB 为菱形. 法二:设直线OM 与AB 交于点C (x 0,y 0).因为直线l 斜率为k ,显然k ≠0,所以直线OM 方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx 0+3,y =-1k x 0,解得⎩⎪⎨⎪⎧x 0=-3k k 2+1,y 0=3k 2+1.所以点M 的坐标为⎝ ⎛⎭⎪⎫-6k k 2+1,6k 2+1.因为点M 在圆上,所以⎝⎛⎭⎪⎫-6k k 2+12+⎝ ⎛⎭⎪⎫6k 2+12=4,解得k =±22,经验证均满足条件. 所以存在点M ,使得四边形OAMB 为菱形.。
空间直角坐标系教案
【课题】4.3.1空间直角坐标系【教材】人教A版普通高中数学必修二第134页至136页.【课时安排】1个课时.【教学对象】高二〔上〕学生.【授课教师】***一.教材分析:本节内容主要引入空间直角坐标系的根本概念,是在学生已学过的二维平面直角坐标系的根底上进展推广,为以后学习用空间向量解决空间中的平行、垂直以及空间中的夹角与距离问题、研究空间几何对象等内容打下良好的根底。
空间直角坐标系的知识是空间解析几何的根底,与平面解析几何的内容共同表达了"用代数方法解决几何问题〞的解析几何思想;通过空间直角坐标系内任一点与有序数组的对应关系,实现了形向数的转化,将数与形严密结合,提供一个度量几何对象的方法。
其对于沟通高中各局部知识,完善学生的认知构造,起到了很重要的作用。
二.教学目标:✧知识与技能(1)能说出空间直角坐标系的构成与特征;(2)掌握空间点的坐标确实定方法和过程;(3)能初步建立空间直角坐标系。
✧过程与方法(1)结合具体问题引入,诱导学生自主探究;. z.(2)类比学习,循序渐进。
情感态度价值观(1)通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,进而拓展自己的思维空间。
(2)通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系,并加深领会研究事物从低维到高维的方法与过程。
(3)通过对空间坐标系的接触学习,进一步培养学生的空间想象能力。
三.教学重点与难点:教学重点:空间直角坐标系相关概念的理解;空间中点的坐标表示。
教学难点:右手直角坐标系的理解,空间中点与坐标的一一对应。
四.教学方法:启发式教学、引导探究五.教学根本流程:↓. z.六.教学情境设计:. z.〔二〕引导探究,动手实践约6分钟思考:借助于平面直角坐标系,我们就可以用坐标来表示平面上任意一点的位置,则能不能仿照直角坐标系的方式来表示空间上任意一点的位置呢?不妨动手试一试……思路点拨:通过在地面上建立直角坐标系*Oy,则地面上任一点的位置可以用一对有序实数对〔*,y〕确定。
人教版高中数学必修二第四章圆与方程_空间直角坐标系
z
z
•
1
P3
• P
1
x
x
•
1
• o
y •P 2
y
P1
方法二:过P点作xOy面的垂线,垂足为P0
点。 点 P0在坐标系xOy中的坐标x、y依次是P点的横 坐标、纵坐标。再过P点作z轴的垂线,垂足P1在 z轴上的坐标z就是P点的竖坐标。 z
z P1 P
1
•
y
1
x
x M
1
• o
•P
N
y
0
P点坐标为(x,y,z)
(-1,-3,0) C1 • (2,-2,0) B1
1
O
•
• B•
x
1
1
• A(1,4,1) y •
A1(1,4,0)
(2,-2,-1)
练习:
点M(x,y,z)是空间直角坐标系Oxyz中的一点,写出 满足下列条件的点的坐标.
(1)与点M关于x轴对称的点 (2)与点M关于y轴对称的点 (x,-y,-z) (-x,y,-z)
Ⅲ
z
yz 面
Ⅳ
zx 面
Ⅱ
xy 面
Ⅶ Ⅷ
•
O
y
Ⅰ
Ⅵ
x
Ⅴ
空间直角坐标系共有八个卦限
设B`为空间的一个定点,过B`分别作垂直于x 轴、y轴、z轴的平面,依次交x轴、y轴、z轴于 点A,C,D`.
z
设点A,C,D`在x轴、 y轴、z轴上的坐标 分别为x、y、z, 那么点B`就对应惟 一确定的有序实数 组(x,y,z).
在空间,我们是否可以建立一个坐标系, 使空间中的任意一点都可用对应的有序实数 组表示出来呢?
1.建立了一个空间直角坐标系O-xyz.其中 (1)点O叫做坐标原点; (2)x轴、y轴、z轴叫做坐标轴; (3)以线段OA的长为单位长度. 2.通过每两个坐标轴的平面 叫做坐标平面,分别称为: xOy平面、yOz平面、zOx平面. 称这个坐标系为右手直角坐标 系.如无特别说明,本书建立 的坐标系都是右手直角坐标系.
高一数学人教版A版必修二 空间直角坐标系
§ 4.3 空间直线坐标系
4.3.1 空间直角坐标系
学习目标
1.了解空间直角坐标系的建系方式; 2.掌握空间中任意一点的表示方法; 3.能在空间直角坐标系中求出点的坐标.
问题导学
题型探究
达标检测
问题导学
知识点 空间直角坐标系
新知探究 点点落实
思考 1
在数轴上,一个实数就能确定一个点的位置 . 在平面直角坐标
度的数轴:x轴、y轴、z轴 ,这样就建立了一个 空间直角坐标系Oxyz . x轴、y轴、z轴 叫做坐标轴,通过 每 (2)相关概念: 点O 叫做坐标原点,
两个坐标轴 的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.
2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向 x轴 的正方向,食指指向 y轴 的正 方向,如果中指指向 z轴 的正方向,则称这个坐标系为右手直角坐标系.
点P1关于z轴的对称点P2的坐标为(-1,-1,-1).
解析答案
1
2
3
4
5
3.在空间直角坐标系中,已知点 A(- 1,2,-3),则点 A在yOz平面内射 (0,2,-3) 影的点的坐标是__________. 解析 由空间直角坐标系中点的坐标的确定可知, 点A在yOz平面内的射影的点的坐标是(0,2,-3).
解析答案
1
2
3
4
5
(1,1,-1) ;点P 关于 4.点P(1,1,1)关于xOy平面的对称点P1的坐标为____________ 1 (-1,-1,-1) z轴的对称点P2的坐标为________________. 解析 点P(1,1,1)关于xOy平面的对称点P1的坐标为(1,1,-1),
系中,需要一对有序实数才能确定一个点的位置 .为了确定空间中任意 一点的位置,需要几个实数? 答案 思考2 答案 三个. 空间直角坐标系需要几个坐标轴,它们之间什么关系? 空间直角坐标系需要三个坐标轴,它们之间两两相互垂直.
人教版高一数学必修二《空间直角坐标系》说课稿
人教版高一数学必修二《空间直角坐标系》说课稿一、教材分析1. 教材内容概述本节课的教材内容是《空间直角坐标系》。
在高中数学必修二的学习中,这一章节是非常重要的基础内容,它为学生提供了进一步理解和掌握三维空间中直角坐标系的基本概念和性质的机会。
2. 教材知识结构教材围绕着以下几个主要知识点展开教学:•点的坐标与向量•空间直角坐标系•直线的方程与旋转•平面的方程与选点•空间图形的平移和旋转通过这些知识点的学习,学生能够理解并掌握在三维空间中描述点、直线和平面的方法,同时能够运用所学知识解决相关问题。
3. 学生特点分析本节课所面对的学生对象为高一学生。
他们正处于数学知识的初步学习阶段,基本熟悉了平面直角坐标系的概念和性质。
但对于空间直角坐标系和相关知识仍存在一定的陌生感。
因此,需要通过本课程的教学,引导学生逐步理解和掌握空间直角坐标系的概念和运用方法。
二、教学目标1. 知识与能力目标•理解空间直角坐标系的概念和性质•掌握点、直线和平面在空间直角坐标系中的表示方法•能够解决与空间直角坐标系相关的简单几何问题2. 过程与方法目标•培养学生观察、分析和解决问题的能力•培养学生合作学习和团队合作的能力•提高学生对数学概念的形象化理解和运用能力3. 情感态度和价值观目标•培养学生对数学的兴趣和热爱•培养学生思维的逻辑性和严谨性•培养学生独立思考和解决问题的能力三、教学重点和难点1. 教学重点•理解空间直角坐标系的概念和性质•能够正确表示点、直线和平面在空间直角坐标系中的位置关系•运用所学知识解决与空间直角坐标系相关的简单几何问题2. 教学难点•理解空间直角坐标系三维空间的特点和表示方法•掌握直线和平面的方程表示方法•能够准确应用空间直角坐标系解决几何问题四、教学过程设计1. 导入与概念解释为了让学生了解本节课的重要性,我们可以通过以下问题引导学生思考:•什么是空间直角坐标系?•空间直角坐标系有什么特点和作用?通过提问和学生的回答,引起学生对空间直角坐标系的兴趣,并激发他们运用此概念解决问题的欲望。
高中数学必修2(人教A版)教案—4.3.1空间直角坐标系
4. 3.1空间直角坐标系(教案)【教学目标】1.让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.3.进一步培养学生的空间想象能力与确定性思维能力.【教学重难点】重点:求一个几何图形的空间直角坐标。
难点:空间直角坐标系的理解。
【教学过程】一、情景导入1. 确定一个点在一条直线上的位置的方法.2. 确定一个点在一个平面内的位置的方法.3. 如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y 轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.2. 空间直角坐标系O—xyz中点的坐标.思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)思考2:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).三、典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).变式练习:已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.注意:此题可以由学生口答,教师点评.解:A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5),C (12,8,0),B ′(12,0,5),D ′(0,8,5),C ′(12,8,5).讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?得出结论:建立不同的坐标系,所得的同一点的坐标也不同.例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。
人教版高中数学必修二空间直角坐标系
1 2 5 3 2 4
2 2
2
3
BC AC
2 3 3 1 4 5
2 2
2
6 29
1 3 5 1 2 5
2 2
2
例1:已知三角形的三个顶点A(1,5,2), B(2,3,4),C(3,1,5),求: (2)BC边上中线AM的长。 解:
2 2
2
(1) 在空间直角坐标系中,任意两点 P1(x1,y1,z1)和P2(x2,y2,z2)间的距离:
|P ( x1 x2 ) ( y1 y2 ) ( z1 z 2 ) 1P 2 |
2 2
2
z
P1(x1,y1,z1)
O
P2(x2,y2,z2) H
M
y
N
x
例1:已知三角形的三个顶点A(1,5,2), B(2,3,4),C(3,1,5),求: (1)三角形三边的边长; 解: AB
23 5 x 2 2 3 1 5 9 2 M , 2, y 2 2 2 45 9 z 2 2 2
9 70 2 5 AC 1 5 2 2 2 2 2
x
三、特殊位置的点的坐标:
z
•
F
C
小提示:坐标轴
•
x
1
O
•
1
E
•
•
D
B y
上的点至少有两个 坐标等于0;坐标面 上的点至少有一个 坐标等于0。
• A1
•
点P的位置 坐标形式
原点
O D
X轴上
A E
Y轴上
B F
Z轴上
C
高中数学必修2教案:4-3-1空间直角坐标系
课题: 2.4.3.1 空间直角坐标系教材分析:解析几何是用代数方法研究解决几何问题的一门数学学科,空间直角坐标系的建立是为以后的《空间向量及其运算》打基础的.同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分内容知识,完善学生的认知结构起到很重要的作用.课 型: 新授课 教学要求:使学生能通过用类比的数学思想方法得出空间直角坐标系的定义、建立方法、以及空间的点的坐标确定方法. 教学重点:在空间直角坐标系中,确定点的坐标教学难点:通过建立适当的直角坐标系,确定空间点的坐标 教学过程: 一.提出问题:1.在初中,我们学过数轴,那么什么是数轴?决定数轴的因素有哪些?数轴上的点怎样表示?2.在初中,我们学过平面直角坐标系,那么如何建立平面直角坐标系?决定平面直角坐标系的因素有哪些?平面直角坐标系上的点怎样表示?如何借助平面直角坐标系表示学生的座位?能用直角坐标系表示教室里灯泡的位置吗?3.在空间,我们是否可以建立一个坐标系,使空间中的任意一点都可用对应的有序实数组表示出来呢?(板书课题) 阅读课本134P - 135P 内容二、讲授新课:1.空间直角坐标系:如图4.3-1(课本), ,,,,OBCD D A B C 是单位正方体.以O 为原点,分别以射线OA,OC,O 'D 的方向为正方向,以线段OA,OC,O 'D 的长为单位长,建立三条数轴:x 轴,y 轴,z 轴.这时我们说建立了一个空间直角坐标系Oxyz.其中点O叫做坐标原点,x 轴,y 轴,z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标面,分别称为xOy平面、yOz平面、zOx平面.将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样三条轴上的单位长度在直观上大体相等. 2. 右手直角坐标系:在空间直角坐标系中,让右手大拇指、食指和中指相互垂直时,大拇指指向x 轴正方向,食指指向y 轴正方向,中指指向z 轴正方向,则称这个坐标系为右手坐标系,如无特别说明,以后建立的坐标系都是右手坐标系.3.空间直角坐标系中的点与有序书组之间的关系:1)已知M 为空间一点,过点M 作三个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴和z 轴的交点分别为P 、Q 、R ,这三点在x 轴、y 轴和z 轴上的坐标分别为x ,y ,z .这样空间的一点M 就唯一确定了一个有序数组x ,y ,z .这组数x ,y ,z 就叫做点M 的坐标,并依次称x ,y ,z 为点M 的横坐标、纵坐标和竖坐标.坐标为x ,y ,z 的点M 通常记为M (x ,y ,z ).2)反过来,一个有序数组x ,y ,z ,我们在x 轴上取坐标为x 的点P 在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P 、Q 、R 分别作x 轴,y 轴,z 轴的垂直平面.这三个平面的交点M 即为有序数组x ,y ,z 为坐标的点.数x ,y ,z 就叫做点M 的坐标,并依次称x ,y ,z 为点M 的横坐标、纵坐标和竖坐标.3)坐标为x ,y ,z 的点M 通常记为M (x ,y ,z ).我们通过这样的方法在空间直角坐标系内建立了空间的点M 和有序数组x ,y ,z 之间的一一对应关系4.例题1(课本例1):在长方体,,,,OBCD D A B C -中,,3,4, 2.OA oC OD ===写出,,,,,,D C A B 四点坐标.(建立空间直角坐标系→写出原点坐标→各点坐标)讨论: 若以C 点为原点,以射线BC 、CO 、C 'C 方向分别为ox 、oy 、oz 轴的正半轴,建立空间直角坐标系,那么,各顶点的坐标又是怎样的呢?(得出结论:不同的坐标系的建立方法,所得的同一点的坐标也不同.) 5.例题2(课本例2)题略说明: 学生阅读,思考与例1的不同,教师引导学生解题的方法,图中没有坐标系,这给我们解题带来了难度,同时也给我们的思维提供了空间,如何建立空间直角坐标系才能使问题变得更简单?一般来说,以特殊点为原点,我们所求的点在坐标轴上或在坐标平面上的多为基本原则建立空间直角坐标系,坐标系建立的不同,点的坐标也不同,但点的相对位置是不变的,坐标系的不同也会引起解题过程的难易程度不同.因此解题时要慎重建立空间直角坐标系. 三、巩固练习:1.练习:136P 1, 2,3.2. 已知M (2, -3, 4),画出它在空间直角坐标系中的位置.3. 思考题:建立适当的直角坐标系,确定棱长为3的正四面体各顶点的坐标. 四.小结:1.空间直角坐标系的建立.2.空间直角坐标系内点的坐标的确定过程. 3.空间直角坐标系中点的位置的确定. 五.作业:1.课本138P 习题4.3 A 组 2 课后记:教材分析:解析几何是用代数方法研究解决几何问题的一门数学学科,空间直角坐标系的建立是为以后的《空间向量及其运算》打基础的.同时,在第二章《空间中点、直线、平面的位置关系》第一节《异面直线》学习时,有些求异面直线所成角的大小,借助于空间向量来解答,要容易得多,所以,本节课为沟通高中各部分内容知识,完善学生的认知结构起到很重要的作用.课 型: 新授课 教学要求:使学生熟练掌握求坐标轴上的点和坐标平面上的点的坐标,熟记已知两点的中点坐标公式,会求一个点关于坐标轴和坐标平面的对称点的坐标. 教学重点:求坐标轴上的点和坐标平面上的点的坐标,会求一个点关于坐标轴和坐标平面的对称点坐标,熟记已知两点的中点坐标公式.教学难点:会求一个点关于坐标轴和坐标平面的对称点的坐标 教学过程:一、复习提问:1.空间直角坐标系中点的坐标如何确定?已知点的坐标如何确定点的位置? 2.练习:在空间直角坐标系中,作出点(5,4,6). 二、讲授新课:1.坐标轴上的点与坐标平面上的点的坐标的特点:x 轴上的点的坐标的特点:P(m ,0,0),纵坐标和竖坐标都为零. y 轴上的点的坐标的特点:P(0,m ,0),横坐标和竖坐标都为零.z 轴上的点的坐标的特点:P(0,0,m ),横坐标和纵坐标都为零. x Oy 坐标平面内的点的特点:P(m ,n ,0),竖坐标为零. x Oz 坐标平面内的点的特点:P(m ,0,n ),纵坐标为零. y Oz 坐标平面内的点的特点:P(0,m ,n ),横坐标为零. 2.已知两点的中点坐标:平面上的中点坐标公式可以推广到空间,即设A(1x ,1y , 1z ),B(2x ,2y 2z ),则AB 中点的坐标为(211212,,222z z x x y y +++). 请同学门熟记以上公式.3.一个点关于坐标轴和坐标平面的对称点的坐标特点 点P (x ,y ,z)关于坐标原点的对称点为1P (-x ,-y ,-z ); 点P (x ,y ,z)关于坐标横轴(x轴)的对称点为2P (x ,-y ,-z ); 点P (x ,y ,z)关于坐标纵轴(y轴)的对称点为3P (-x ,y ,z ); 点P (x ,y ,z)关于坐标竖轴(z轴)的对称点为4P (-x ,-y ,-z ); 点P (x ,y ,z)关于xOy坐标平面的对称点为5P (x ,y ,-z ); 点P (x ,y ,z)关于yOz坐标平面的对称点为6P (-x ,y ,z ;) 点P (x ,y ,z)关于zOx坐标平面的对称点为7P (x ,-y ,z ).点评:其中记忆的方法为:关于谁谁不变,其余的相反.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数. 三、巩固练习:1.课本138P 习题4.3 A 组 1 2.已知点B(1,1,1),分别求出该点关于x轴、z轴、原点和xOy坐标平面的对称点的坐标. 3.在空间直角坐标系O-xyz中,关于点(0,22m +,m)一定有下列结论( )A.在xOy坐标平面上 B.在xOz坐标平面上 C.在yOz坐标平面上 D.以上都不对 四.小结:1.坐标轴上的点与坐标平面上的点的坐标的特点2.中点坐标公式3.一个点关于坐标轴和坐标平面的对称点的坐标特点 五.作业 : 全优设计100P 主动成长 1,2,4,5,6,7,11,12. 课后记:科目:数学 课题 §4.3.1 空间直角坐标系课型 新课教学目标 (1)使学生深刻感受到空间直角坐标系的建立的背景(2)使学生理解掌握空间中点的坐标表示(3)建立空间直角坐标系的方法与空间点的坐标表示(4)通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标系的必要性,培养学生类比和数列结合的思想.教学过程教学内容备注一、自主学习二、质疑提问三、问题探究四、课堂检测五、小结评价。
高中数学必修2《第四章:圆与方程.(4.3空间直角坐标系)》
个性化辅导教案学员姓名科目年级授课时间课时授课老师教学课题教学目标重点难点教学内容4.3空间直角坐标系空间直角坐标系的建立及坐标表示[导入新知]1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了空间直角坐标系O-xyz.(2)相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、zOx平面.2.右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.3.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫点M的横坐标,y叫点M的纵坐标,z叫点M的竖坐标.[化解疑难]1.空间直角坐标系的建立建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上,对于长方体或正方体,一般取相邻的三条棱所在的直线为x ,y ,z 轴建立空间直角坐标系.2.空间直角坐标系的画法(1)x 轴与y 轴成135°(或45°),x 轴与z 轴成135°(或45°).(2)y 轴垂直于z 轴、y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.3.特殊点在空间直角坐标系中的坐标表示如下点的位置 x 轴 y 轴 z 轴 xOy 平面 yOz 平面 xOz 平面 坐标表示 (x,0,0)(0,y,0)(0,0,z )(x ,y,0)(0,y ,z )(x,0,z )空间两点间的距离公式[导入新知]1.点P (x ,y ,z )到坐标原点O (0,0,0)的距离 |OP |=x 2+y 2+z 2.2.任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)间的距离 |P 1P 2|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.[化解疑难]1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算. 2.空间中点坐标公式:设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 中点P ⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22.空间中点的坐标的确定[例1] 如图,在长方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,CC 1上的点,|CF |=|AB |=2|CE |,|AB |∶|AD |∶|AA 1|=1∶2∶4.试建立适当的坐标系,写出E ,F 点的坐标. [解] 以A 为坐标原点,射线AB ,AD ,AA 1的方向分别为正方向建立空间直角坐标系,如图所示.分别设|AB |=1,|AD |=2,|AA 1|=4,则|CF |=|AB |=1,|CE |=12|AB |=12,所以|BE |=|BC |-|CE |=2-12=32.所以点E 的坐标为(1,32,0),点F 的坐标为(1,2,1).[类题通法]空间中点P 坐标的确定方法(1)由P 点分别作垂直于x 轴、y 轴、z 轴的平面,依次交x 轴、y 轴、z 轴于点P x 、P y 、P z ,这三个点在x 轴、y 轴、z 轴上的坐标分别为x 、y 、z ,那么点P 的坐标就是(x ,y ,z ).(2)若题所给图形中存在垂直于坐标轴的平面,或点P 在坐标轴或坐标平面上,则要充分利用这一性质解题.[活学活用]1.如图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如右所示空间直角坐标系,试分别写出各个顶点的坐标.空间中点的对称[例2] (1)点A (1,2,-1)关于坐标平面xOy 及x 轴的对称点的坐标分别是________.(2)已知点P (2,3,-1)关于坐标平面xOy 的对称点为P 1,点P 1关于坐标平面yOz 的对称点为P 2,点P 2关于z 轴的对称点为P 3,则点P 3的坐标为________.[解析] (1)如图所示,过A 作AM ⊥xOy 交平面于M ,并延长到C ,使AM =CM ,则A 与C 关于坐标平面xOy 对称且C 的坐标为(1,2,1).过A 作AN ⊥x 轴于N 并延长到点B ,使AN =NB ,则A 与B 关于x 轴对称且B 的坐标为(1,-2,1).∴A(1,2,-1)关于坐标平面xOy对称的点C的坐标为(1,2,1);A(1,2,-1)关于x轴的对称点B的坐标为(1,-2,1).(2)点P(2,3-1)关于坐标平面xOy的对称点P1的坐标为(2,3,1),点P1关于坐标平面yOz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).[答案](1)(1,2,1),(1,-2,1)(2)(2,-3,1)[类题通法]1.求空间对称点的规律方法空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.2.空间直角坐标系中,任一点P(x,y,z)的几种特殊对称点的坐标如下:①关于原点对称的点的坐标是P1(-x,-y,-z);②关于x轴(横轴)对称的点的坐标是P2(x,-y,-z);③关于y轴(纵轴)对称的点的坐标是P3(-x,y,-z);④关于z轴(竖轴)对称的点的坐标是P4(-x,-y,z);⑤关于xOy坐标平面对称的点的坐标是P5(x,y,-z);⑥关于yOz坐标平面对称的点的坐标是P6(-x,y,z);⑦关于xOz坐标平面对称的点的坐标是P7(x,-y,z).[活学活用]2.在空间直角坐标系中,点P(3,1,5)关于平面yOz对称的点的坐标为()A.(-3,1,5)B.(-3,-1,5)C.(3,-1,-5) D.(-3,1,-5)3.点P(-3,2,-1)关于平面xOy的对称点是________,关于平面yOz的对称点是________,关于x轴的对称点是________,关于y轴的对称点是________.空间中两点间的距离[例3]如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.[解] 由题意应先建立坐标系,以D 为原点,建立如图所示空间直角坐标系.因为正方体棱长为a ,所以B (a ,a,0),A ′(a,0,a ),C ′(0,a ,a ),D ′(0,0,a ).由于M 为BD ′的中点,取A ′C ′的中点O ′,所以M ⎝⎛⎭⎫a 2,a 2,a 2,O ′⎝⎛⎭⎫a 2,a2,a .因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝⎛⎭⎫a 4,34a ,a .根据空间两点间的距离公式,可得|MN |=⎝⎛⎭⎫a 2-a 42+⎝⎛⎭⎫a 2-3a 42+⎝⎛⎭⎫a 2-a 2=64a . [类题通法]求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.[活学活用]4.如图,在空间直角坐标系中,有一棱长为a 的正方体ABCD -A 1B 1C 1D 1,A 1C的中点E 到AB 的中点F 的距离为( )A.2aB.22a C .a D.12a12.空间直角坐标系的应用误区[典例] 如图,三棱柱ABC -A 1B 1C 1中,所有棱长都为2,侧棱AA 1⊥底面ABC ,建立适当坐标系写出各顶点的坐标.[解析] 取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,分别以OB 、OC 、OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.因为三棱柱各棱长均为2,所以OA =OC =1,OB =3,可得A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).[易错防范]1.解答此题不是以OB 、OC 、OO 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,而是以AB 、AC 、AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,进而错误地求出A (0,0,0),B (2,0,0),C (0,2,0).2.求空间点的坐标的关键是建立正确的空间直角坐标系,这也是正确利用坐标求解此类问题的前提.建立空间直角坐标系时要注意坐标轴必须是共点且两两垂直,且符合右手法则.[成功破障]如图,在棱长为1的正方体ABCD-A1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标系O-xyz.(1)若点P在线段BD1上,且满足3|BP|=|BD1|,试写出点P的坐标,并写出P关于y 轴的对称点P′的坐标;(2)在线段C1D上找一点M,使点M到点P的距离最小,求出点M的坐标.[随堂即时演练]1.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是()A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对2.在空间直角坐标系中,点P(-2,1,4)关于xOy平面的对称点的坐标是()A.(-2,1,-4) B.(-2,-1,-4)C.(2,-1,4) D.(2,1,-4)3.已知点A(4,5,6),B(-5,0,10),在z轴上有一点P,使|P A|=|PB|,则点P的坐标是________.4.在空间直角坐标系中,正方体ABCD-A1B1C1D1的顶点A的坐标为(3,-1,2),其中心M的坐标为(0,1,2),则该正方体的棱长为________.5.如图所示,直三棱柱ABC-A1B1C1中,|C1C|=|CB|=|CA|=2,AC⊥CB,D,E分别是棱AB,B1C1的中点,F是AC的中点,求DE,EF的长度.课后作业教师课后赏识。
高中数学必修二——空间直角坐标系
填一填·知识要点、记下疑难点
4.3.1
1.如图所示,为了确定空间点的位置,我们建立空
本 课 时 栏 目 开 关
间直角坐标系:以单位正方体为载体,以 O 为 原点,分别以射线 OA、OC、OD′的方向为正 方向,以线段 OA、OC、OD′的长为单位长, 建立三条数轴:x 轴、y 轴、z 轴,这时我们说建立了一个 空间直角坐标系 Oxyz ,其中点 O 叫做 坐标原点 ,x 轴、y 轴、 z 轴叫做坐标轴 ,通过每两个坐标轴的平面叫做 坐标平面 , 分别称为 xOy 平面、yOz 平面、zOx 平面 系为右手直角坐标系,即 右手拇指 , 通常建立的坐标 指向 x 轴的正方向,
研一研·问题探究、课堂更高效
问题 4
答
4.3.1
建立了空间直角坐标系以后,空间中任意一点 M 对应
如图所示,设点 M 是空间的一个定点,过点 M 分别作垂直
的三个有序实数如何找到呢?
于 x 轴、y 轴和 z 轴的平面,依次交 x 轴、y 轴和 z 轴于点 P、Q
本 课 时 栏 目 开 关
和 R.设点 P、Q 和 R 在 x 轴、y 轴和 z 轴上的坐标分别是 x,y 和 z,那么点 M 就对应唯一确定的有序实数组(x,y,z).
研一研·问题探究、课堂更高效
4.3.1
小结
本 课 时 栏 目 开 关
空间一点 M 的坐标可以用有序实数组(x,y,z)来表示,
有序实数组(x,y,z)叫做点 M 在此空间直角坐标系中的坐标, 记作 M(x,y,z).其中 x 叫做点 M 的横坐标,y 叫做点 M 的纵 坐标,z 叫做点 M 的竖坐标.
问题 2
4.3.1
平面直角坐标系由两条互相垂直的数轴组成, 设想空
高B数学必修二课件空间直角坐标系
平面方程及性质
一般式方程
点法式方程
Ax + By + Cz + D = 0(A、B、C不同时 为0)
n·(r - r0) = 0(n为平面法向量,r0为平面 上一点,r为任意点)
三点式方程
性质
(x - x1) / (x2 - x3) = (y - y1) / (y2 - y3) = (z - z1) / (z2 - z3)((x1, y1, z1)、(x2, y2, z2)、(x3, y3, z3)为平面上三点)
06
空间解析几何初步应用
点到直线距离公式推导与应用
点到直线距离公式
通过向量运算和空间几何知识,推导 点到直线距离的公式,并理解其几何 意义。
应用举例
利用点到直线距离公式,解决空间中 点到直线的最短距离问题,如计算点 到平面的距离等。
两点间距离公式推导与应用
两点间距离公式
通过向量运算和空间几何知识,推导 两点间距离的公式,并理解其几何意 义。
零向量与单位向量
零向量用$(0,0,0)$表示,模长为0;单位向量的模长为1,如$vec{i}=(1,0,0)$, $vec{ j}=(0,1,0)$,$vec{k}=(0,0,1)$。
向量间夹角与距离计算
要点一
向量间夹角
设两个非零向量$vec{a}=(x_1,y_1,z_1)$和 $vec{b}=(x_2,y_2,z_2)$,则 $coslanglevec{a},vec{b}rangle=frac{vec{a}cdotvec{b}}{| vec{a}||vec{b}|}=frac{x_1x_2+y_1y_2+z_1z_2}{sqrt{x_1^ 2+y_1^2+z_1^2}sqrt{x_2^2+y_2^2+z_2^2}}$。
高中数学必修二空间直角坐标系PPT
求对称点
广东河北湖南联合设计
广东分署财保处
广东河北湖南联合设计
广东分署财保处
一般的P(x,y,z) 关于:
广东河北湖南联合设计
(, −, −)
(1)x轴对称的点P1为__________;
广东河北湖南联合设计
(−, , −)
(2)y轴对称的点P2为__________;
(−, −, )
垂直于 X,Y,Z 轴的平面,交点依次为 P,Q、R
设点P,Q,R 在 X,Y,Z 轴上的坐标分别为 X,Y,Z
那么点 就对应唯一确定的有序实数组 (X,Y,Z)
广东河北湖南联合设计
P
x
O
y
Q
广东河北湖南联合设计
M'
z
反过来
R
给定有序实数组(x,y,z)
我们可以在 x,y,z轴上分别取坐标为实数
D′
广东河北湖南联合设计
广东分署财保处
A′
B′
C′
广东河北湖南联合设计
广东分署财保处
二
右手直角坐标系
O
广东河北湖南联合设计
广东河北湖南联合设计
O为坐标原点,x轴,y轴,z轴叫坐标轴,通过每两个坐标轴的
平面叫坐标平面,分别称为xOy平面、yOz平面、zOx平面.
x
A
B
C y
一
空间直角坐标系的建立
01.
广东河北湖南联合设计
人教版高中数学必修二
空间几何体的结构
广东分署财保处
广东分署财保处
叫做点M在空间直角坐标,记作M(x,y,z),其中x,y,z
分别叫做点M的横坐标、纵坐标、竖坐标.
广东河北湖南联合设计