复变函数练习册(全套)

合集下载

复变函数练习题

复变函数练习题

复变函数练习题
1. 计算复数z=3+4i的模长和辐角。

2. 证明复数的加法满足交换律和结合律。

3. 给定复数序列{z_n},其中z_n=(1+i)^n,求当n趋向无穷大时的极限。

4. 证明欧拉公式e^(ix)=cosx+isinx。

5. 解复变方程(z-1)(z-2)=0。

6. 计算复数z=1-i的共轭复数。

7. 证明复数的乘法满足分配律。

8. 给定复变函数f(z)=z^2+1,求其在z=2处的导数。

9. 证明复数的除法满足结合律。

10. 已知复变函数f(z)=1/(z-1),求其在z=2处的值。

11. 证明复数z=a+bi的实部和虚部满足a^2+b^2=|z|^2。

12. 解复变方程z^2+z+1=0。

13. 证明复数的乘法满足交换律。

14. 计算复数z=2+3i的逆元,并验证乘积等于1。

15. 证明复数的倒数是其共轭复数除以其模长的平方。

16. 给定复变函数f(z)=z^3-3z^2+2z+1,求其在z=1处的值。

17. 证明复数的模长是非负的。

18. 给定复数序列{z_n},其中z_n=1/n,求其和的极限。

19. 证明复数的乘积的模长等于各自模长的乘积。

20. 给定复变函数f(z)=(z-1)/(z+1),求其在z=i处的值。

复变函数目标检测练习册

复变函数目标检测练习册

练习一 复数及其代数运算、复数的几何表示一、填空题 1.(ii +-11)4=2.i +1= Arg )(i +1= arg )(i +13.已知z=())())((i i i i +--+131131,则z = argz=4.将z=-cos 5π + isin 5π表示成三角形式为 表示成指数形式为 Argz= argz=5.3-i 的三角表示形式为,指数表示形式为二.分别就0<α≤π与-π<α<-2π两种情形将复数z=1 - cos α + isin α化成三角形式与指数形式,并求它的辐角主值。

三.利用复数表示圆的方程)(0≠a a (x 2+y2)+ bx + cy + d = 0,其中a , b , c , d 是实常数。

四.求下列方程所表示的曲线 ①)(i+1z + )(i —1z = 1②z z -)(i +2z -)(i -2z = 4五.证明⑴若z1 + z2 + z3 = 0且z1=z2=z3=1,则点z1 , z2 , z3为一内接单位圆的等边三角形的顶点。

⑵若z1 + z2 + z3 + z4 = 0且z1=z2=z3=z4,则点z1 , z2 , z3 , z4或者为一矩形的顶点,或者两两重合。

练习二复数的乘幂与方根、区域一、填空题1.(1+i)3+(1-i)3=2.31-=3.{z1<z<2}的内点是外点是边界点是4.0<Re(z)<1所确定的是(区域、闭区域)它是(有界、无界)二、求下列复数的值(1)⎪⎪⎭⎫⎝⎛-+ii313110(2)32221)+(i三、已知正方形的两个相对顶点为z1(0,-1)于z3(2,5),求另外两个顶点z2于z4的坐标。

四、画出23--zz≥1所表示的图形,并指出所表示的图形是否是区域,是否有界?五、已知x2+x+1=0,求x11+x7+x3的值。

六、求证:(1+cosθ+isinθ)n=2ncosn2θ(cos2θn+isin2θn)练习三复变函数、复变函数的极限和连续性一、选择题1.下列函数极限存在的是()A.lim→z zz)Re(B.lim→z zzC.lim→z1222---+zzzz zD.lim→z i21(zz-zz)2.将Z平面上的曲线x2+y2=4映射成W平面上的曲线u2+v2=41的映射函数f(z)为()A.W=Z B.W=Z2 C.W=Z1D.W=Z3.复变函数W=Z2确定的两个实元函数为()A.u=x2+y2 v=2xyB.u=2xy v=x2-y2C.u=x2v=2xyD.u=x2+y2v=2xy 4.两个实二元函数u=5.在映射W=Z2之下,Z平面的双曲线x2-y2=4映射成W平面上的图形为()A.直线u=4 B.圆u2+v2=4 C.直线v=4 D.双曲线uv=4二、考虑f(z)=z z +zz在z=0的极限三、函数W=Z1把下列z 平面上的 曲线映射成W 平面上怎样的曲线? (1)y=x (2) x=1 (3) (x -1)2+y 2=1 四、试讨论函数f(z)=⎪⎪⎩⎪⎪⎨⎧+022y x xy00=≠z z 的连续性练习四 解析函数的概念 函数解析的充要条件 一、选择题1.下列命题正确的是( )A .如果)(z f 在z 0连续,那么)('0z f 存在B .如果)('0z f 存在,那么)(z f 在z 0解析C .如果)(z f 在z 0解析,那么)('0z f 存在D .如果z 0是)(z f 的奇点,那么)(z f 在z 0不可导 2.下列函数仅在z=0处可导的是( )A.)(z f =z 2B.)(z f =x+2yiC.)(z f =z 2D.)(z f =z13.下列函数在复平面内处处解析的是( )A .f(z)=z B.f(z)=e x(cosy+isiny) C.f(z)=z 1 D.f(z)=zz 4.下面各式是柯西—黎曼方程的极坐标形式的是( )A .r u ∂∂=θ∂∂v θ∂∂u =-rv ∂∂ B.r u ∂∂=r 1θ∂∂v θ∂∂u =-r 1r v ∂∂C.r u ∂∂=r 1θ∂∂v r v ∂∂=-r 1θ∂∂uD.r u ∂∂=r θ∂∂v θ∂∂u =-r rv ∂∂ 5.下列说法正确的是( )A .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)+g(z)的一个奇点B .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)-g(z)的一个奇点C .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)g(z)的一个奇点D .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)/g(z)的一个奇点 二.设ay 3+bx 2y+i(x 3+pxy 2)为解析函数,试求a,b,p 之值。

复变函数_习题集(含答案)

复变函数_习题集(含答案)
, .
原积分 .
20.解: 在 内以 为2级极点.
.
原积分 .
21.解: .
记 , 在上半平面内仅以 为二级极点.
,
故 .
22.解: .
设 , 以 为二级极点,且
,
.
故 .
23.解: .
设 , 为 在上半平面的一级极点,
,
.
.
24.解: .
记 满足 ,
.
故 .
25.解: 设 则 , .
,
令 则 在 内只有一级极点, ,依定理有
《复变函数》课程习题集
一、计算题
1.函数 在 平面上哪些点处可微?哪些点处解析?
2.试判断函数 在 平面上哪些点处可微?哪些点处解析?
3.试判断函数 在 平面上的哪些点处可微?哪些点处解析?
4.设函数 在区域 内解析, 在区域 内也解析,证明 必为常数.
5.设函数 在区域 内解析, 在区域 内为常数,证明 在区域 内必为常数.
25.用留数定理计算积分 .
26.判断级数 的收敛性.
27.判断级数 的敛散性.
28.判断级数 的敛散性.
29.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
30.求幂级数 的收敛半径,并讨论它在收敛圆周上的敛散情况.
31.将 按 的幂展开,并指明收敛范围.
32.试将函数 分别在圆环域 和 内展开为洛朗级数.
.
9.解:
.
10.解: .
11.解: 在C内解析.
.
12.解: .
13.解:
.
14.解:(a) .
(b)
.
15.解:(a) .
(b)
.
16.解: 在 内仅以z=1,z=2为分别为一、二级极点.

复变函数练习册(全套)

复变函数练习册(全套)

第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。

复变函数习题及答案解释

复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。

(完整)《复变函数》练习题

(完整)《复变函数》练习题

(完整)《复变函数》练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)《复变函数》练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)《复变函数》练习题的全部内容。

福师12秋《复变函数》练习题注:1、本课程练习题所提供的答案仅供学员在学习过程中参考之用,有问题请到课程论坛提问。

一、单项选择题1.2sin i =( )A . B. C . D .答案:D2.函数在复平面上( ) A .处处不连续B.处处连续,处处不可导C 。

处处连续,仅在点z =0可导 D.处处连续,仅在点z =0解析 答案:C3.设C 是绕点的正向简单闭曲线,则 ( )A .B .C .D .0答案:C 4.,分别是正向圆周与,则( )A .B .cos2C .0D .sin2答案:D二、填空题1()e ei--1()e ei-+1()e e i --1e e-+2()f z z =00z ≠530()C z dz z z =-⎰2iπ3020z iπ502z i π1C 2C 1z =21z -==-+-⎰⎰dz z zi dz z e i c c z212sin 21221ππ2i π1. 设,则________。

考核知识点:复数代值。

2.设是解析函数.若,则______. 考核知识点:解析函数的导数.3. 设C 为正向圆周,则 。

考核知识点:柯西积分公式.4.幂级数的收敛半径为_________.考核知识点:幂级数的收敛半径。

5. = .考核知识点:复数的乘幂。

提示:6.设为的极点,则____________________.考核的知识点:函数的极点。

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册合肥工业大学《复变函数与积分变换》校定平台课程建设项目资助2018年9月《复变函数与积分变换》第一章习题1.求下列各复数的实部、虚部、模、辐角和辐角主值:(1)122345i i i i +---; (2)312⎛⎫+ ⎪ ⎪⎝⎭.2. 将下列复数写成三角表达式和指数形式:(1)1; (2)21i i+.3. 利用复数的三角表示计算下列各式:(1; (2)103⎛⎫4. 解方程310z +=.5. 设12cos z zθ-+=(0,z θ≠是z 的辐角),求证:2cos n n z z n θ-+=.6.指出满足下列各式的点z 的轨迹或所在范围.(1)arg()4z i π-=;(2)0zz az az b +++=,其中a 为复数,b 为实常数. (选做)7.用复参数方程表示曲线:连接1i +与i 41--的直线段.8.画出下列不等式所确定的图形,指出它们是否为区域、闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?并标出区域边界的方向.(1) 11,Re 2z z <≤;(2) 0Re 1z <<;9.函数z w 1=把下列z 平面上的曲线映射成w 平面上怎么样的曲线? (1)224x y +=; (2)x y =; (3)1=x .10.试证:0Re limz z z→不存在.《复变函数与积分变换》第二章习题1.用导数定义求z z f Re )(=的导数.2.下列函数在何处可导,何处不可导?何处解析,何处不解析?(1)z z f 1)(=; (2))32233(3)(y y x i xy x z f -+-=;3.试讨论y ix xy z f 22)(+=的解析性,并由此回答:若复变函数),(),()(y x iv y x u z f +=中的),(y x u 和),(y x v 均可微,那么iv u z f +=)(一定可导吗?4.设3232()(f z my nx y i x lxy =+++)为解析函数,试确定,,l m n 的值.5.设()f z 在区域D 内解析,试证明在D 内下列条件是彼此等价的:(1)()f z =常数; (2)Re ()f z =常数; (3)()f z 解析.6.试解下列方程:(1)1ze =+; (2)0cos =z ; (3)0cos sin =+z z .7.求下列各式的值:(1)Ln(34)i -+; (2)i -33; (3)i e +2.8.等式33Ln 3Ln z z =是否正确?请给出理由.《复变函数与积分变换》第三章习题3.1复积分的概念与基本计算公式1. 计算积分dz ix y x C )(2⎰+-,其中C 为从原点到点1+i 的直线段.2.计算积分dz z zC ⎰的值,其中C 为2=z3.当积分路径是自i -沿虚轴到i ,利用积分性质证明:2)(22≤+⎰-dz iy x i i3.2柯西古萨基本定理1.计算积分dz z C ⎰1,其中C 为2=z2. 计算积分dz z e z C z)sin (⎰⋅-,其中C 为a z =.3.3基本定理的推广1. 计算积分dz z e Cz⎰,其中C 为正向圆周2=z 与负向圆周1=z 所组成。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 .8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____。

10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、。

方程0273=+z 的根为_________________________________。

12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 . 13、方程3)Im(=-z i 表示的曲线是__________________________.14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________。

15、不等式114z z -++<所表示的区域是曲线 的内部.16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案

完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数及积分变换习题册

复变函数及积分变换习题册

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z =6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。

8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____. 10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。

13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的部。

16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 。

8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________.9、设i z 21=,i z -=12,则)(21z z Arg = _ _____.10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、.方程0273=+z 的根为_________________________________.12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 。

13、方程3)Im(=-z i 表示的曲线是__________________________. 14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________. 15、不等式114z z -++<所表示的区域是曲线 的内部。

16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

复变函数题库(包含好多试卷-后面都有答案)

复变函数题库(包含好多试卷-后面都有答案)
① 复变函数

对于任一 Z D 都有W 与其对应 f z
资 注:与实际情况相比,定义域,值域变化
例 f z z
② lim f z zz0
z z0
学称 f z当 z z0 时以 A 为极限
大 ☆ 当 f z0 时,连续
例1
证明 f z z 在每一点都连续
证: f z f z0 z z0 z z0 0 z z0 所以 f z z 在每一点都连续
vx, y x2 y y3 所以 u 3x2 y 2
x
资 u 2xy
y
v 2xy x
根据
学 u 3x2 y2 v x2 3y2
v x2 3y 2 y
C-R 方 程 可 得
大 x
y
u 2xy v 2xy
x 0, y 0
y
x
所以当 z 0 时 f z存在导数且导数为 0,其它点不存在导数。
x1x2 ix1 y2 ix2 y1 y1 y2
x1x2 y1 y2 ix1 y2 x2 y1
菌 ④ z1 z1 z2 z2 z2 z2
x1 iy1 x2 iy2
x2 iy2 x2 iy2
x1 x2 x22
y1 y2 y22
i
y1x2 x1y2 x22 y22
分类:类比 n z 的求法(经验) 目标:寻找 arg 幅角主值
初等函数
Ⅰ常数
Ⅱ指数函数 ez ex cos y i sin y
① 定义域 ② ez1 ez2 ez1z2 ③ ez2i ez cos 2 i sin 2 ez ④ e z e z
Ⅲ对数函数 称满足 z e 的 叫做 z 的对数函数,记作 ln z
更多学习资源欢迎关注微信公众号:大学资料菌

《复变函数》练习题册

《复变函数》练习题册

第一章1. 设,43,5521i z i z +−=−=求21z z 与21z z . 参考答案:i 515721−−=z z ,i 515721+−=z z2.iii z −−−=131求()().,Im ,Re z z z z参考答案:()().25,21Im ,23Re =−==z z z z3. (1)证明:().Re 2212121z z z z z z =+ (2)证明:11Re()();Im()()22zz z z z z i=+=+4. 求下列复数的辐角主值、三角表示式、指数表示式123456781,1,1,1,2023,,1,z z z z z z i z z i=+==−+=−===−=−参考答案:1234567822arg ,arg ,arg ,arg ,3333arg 0,arg,arg ,arg 22z z z z z z z z πππππππ==−==−====−23i cossin221cos sin 12cos sin 233ii i i e i e i e πππππππππ=+=−=+= ++=,,,5 求i z 212−−=的三角表示式。

参考答案:−=−−=65sin 65cos4212ππi i z6. 求下列复数z 的实部与虚部,共轭复数,模与辐角()()821112432i i i i−++,参考答案:()()()()()()3arctan arg ,10z i 31,3Im ,1Re i,i 4i 4.32arctan arg ,131z i 132133,132Im ,133Re i 2311218−==+=−==+−−==+=−==+z z z z z z z z ,,,7.求下列各式的值(幂)()()()()361121i ++ ())53i − 参考答案:()()()())365511i 8i 21855(3)2(cos()sin())66i ππ+=−+=−−=−+−,8.求下列各式的值(方根)((12()()1331i −参考答案:((1601234522441cossin ,0,1,2,3.442221cos()sin(),0,1,2,3,4,5.661111,,,,,2222k k i k k k i k w i w i w i w i w i w i ππππππππ+++=+++=+=+−=−−()()130********cos sin ,0,1,2.337755cos sin ,cossin ,cos sin 1212121244k k i i kw i w i w i ππππππππππ−+−+ −=+=−++第二章1研究函数()()()22,2,z z h yi x z g z z f =+==和的解析性。

复变函数1到5章测试题及答案

复变函数1到5章测试题及答案

第一章复数与复变函数(答案)一、选择题1.当时,的值等于(B )ii z -+=115075100z z z ++(A ) (B ) (C ) (D )i i -11-2.设复数满足,,那么(A )z arg(2)3z π+=5arg(2)6z π-==z (A ) (B ) (C ) (D )i 31+-i +-3i 2321+-i 2123+-3.复数的三角表示式是(D ))2(tan πθπθ<<-=i z (A ) (B ))]2sin()2[cos(sec θπθπθ+++i )]23sin()23[cos(sec θπθπθ+++i (C )(D ))]23sin()23[cos(sec θπθπθ+++-i )]2sin()2[cos(sec θπθπθ+++-i 4.若为非零复数,则与的关系是(C )z 22z z -z z 2(A ) (B )z z z z 222≥-z z z z 222=-(C ) (D )不能比较大小z z zz 222≤-5.设为实数,且有,则动点y x ,yi x z yi x z +-=++=11,11211221=+z z 的轨迹是(B )),(y x (A )圆 (B )椭圆 (C )双曲线 (D )抛物线6.一个向量顺时针旋转,对应的复数为,则原向量对应的复数是(A )3πi 31-(A ) (B ) (C ) (D )2i 31+i -3i+37.使得成立的复数是(D )22z z =z(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设为复数,则方程的解是(B )z i z z +=+2(A ) (B ) (C ) (D )i +-43i +43i -43i --439.满足不等式的所有点构成的集合是(D )2≤+-iz iz z (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程所代表的曲线是(C )232=-+i z (A )中心为,半径为的圆周 (B )中心为,半径为2的圆周i 32-2i 32+-(C )中心为,半径为的圆周 (D )中心为,半径为2的圆周i 32+-2i 32-11.下列方程所表示的曲线中,不是圆周的为(B )(A ) (B )221=+-z z 433=--+z z (C ) (D ))1(11<=--a azaz )0(0>=-+++c c a a z a z a z z 12.设,则(C ),5,32,1)(21i z i z z z f -=+=-=12()f z z -=(A ) (B ) (C ) (D )i 44--i 44+i 44-i 44+-13.(D )000Im()Im()limz z z z z z →--(A )等于 (B )等于 (C )等于 (D )不存在i i -014.函数在点处连续的充要条件是(C )),(),()(y x iv y x u z f +=000iy x z +=(A )在处连续 (B )在处连续),(y x u ),(00y x ),(y x v ),(00y x (C )和在处连续(D )在处连续),(y x u ),(y x v ),(00y x ),(),(y x v y x u +),(00y x15.设且,则函数的最小值为(A )C z ∈1=z zz z z f 1)(2+-=(A ) (B ) (C ) (D )3-2-1-1二、填空题1.设,则)2)(3()3)(2)(1(i i i i i z ++--+==z 22.设,则)2)(32(i i z +--==z arg 8arctan -π3.设,则 43)arg(,5π=-=i z z =z i 21+-4.复数的指数表示式为 22)3sin 3(cos )5sin5(cos θθθθi i -+ie θ165.以方程的根的对应点为顶点的多边形的面积为 i z 1576-=6.不等式所表示的区域是曲线(或522<++-z z 522=++-z z ) 的内部1)23()25(2222=+y x 7.方程所表示曲线的直角坐标方程为 1)1(212=----zi iz 122=+y x 8.方程所表示的曲线是连接点 和 的线段的垂i z i z +-=-+22112i -+2i -直平分线9.对于映射,圆周的像曲线为zi =ω1)1(22=-+y x ()2211u v -+=10. =+++→)21(lim 421z z iz 12i -+三、若复数满足,试求的取值范围.z 03)21()21(=+++-+z i z i z z 2+z((或))]25,25[+-25225+≤+≤-z 四、设,在复数集中解方程.0≥a C a z z =+22(当时解为或10≤≤a i a )11(-±±)11(-+±a 当时解为)+∞≤≤a 1)11(-+±a 五、设复数,试证是实数的充要条件为或.i z ±≠21zz+1=z Im()0z =六、对于映射,求出圆周的像.)1(21zz +=ω4=z (像的参数方程为.表示平面上的椭圆)π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u w 1)215()217(2222=+v u 七、设,试讨论下列函数的连续性:iy x z +=1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f 2..⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f (1.在复平面除去原点外连续,在原点处不连续;)(z f 2.在复平面处处连续))(z f 第二章 解析函数(答案)一、选择题:1.函数在点处是( B )23)(z z f =0=z(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导2.函数在点可导是在点解析的( B ))(z f z )(z f z (A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件3.下列命题中,正确的是( D )(A )设为实数,则y x ,1)cos(≤+iy x (B )若是函数的奇点,则在点不可导0z )(z f )(z f 0z (C )若在区域内满足柯西-黎曼方程,则在内解析v u ,D iv u z f +=)(D (D )若在区域内解析,则在内也解析)(z f D )(z if D 4.下列函数中,为解析函数的是( C )(A ) (B )xyi y x 222--xyi x +2(C ) (D ))2()1(222x x y i y x +-+-33iy x +5.函数在处的导数( A ))Im()(2z z z f =0z =(A )等于0 (B )等于1 (C )等于 (D )不存在1-6.若函数在复平面内处处解析,那么实常)(2)(2222x axy y i y xy x z f -++-+=数( C )=a (A ) (B ) (C ) (D )0122-7.如果在单位圆内处处为零,且,那么在内( C ))(z f '1<z 1)0(-=f 1<z ≡)(z f (A ) (B ) (C ) (D )任意常数011-8.设函数在区域内有定义,则下列命题中,正确的是( C ))(z f D (A )若在内是一常数,则在内是一常数)(z f D )(z f D (B )若在内是一常数,则在内是一常数))(Re(z f D )(z f D (C )若与在内解析,则在内是一常数)(z f )(z f D )(z f D(D )若在内是一常数,则在内是一常数)(arg z f D )(z f D 9.设,则( A )22)(iy x z f +==+')1(i f (A ) (B ) (C ) (D )2i 2i +1i 22+10.的主值为( D )ii (A ) (B ) (C ) (D )012πe 2eπ-11.在复平面上( A )ze (A )无可导点 (B )有可导点,但不解析(C )有可导点,且在可导点集上解析 (D )处处解析12.设,则下列命题中,不正确的是( C )z z f sin )(=(A )在复平面上处处解析 (B )以为周期)(z f )(z f π2(C ) (D )是无界的2)(iziz e e z f --=)(z f 13.设为任意实数,则( D )αα1(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A ) (B ) (C ) (D )3)1(i -i cos i ln e 23π-15.设是复数,则( C )α(A )在复平面上处处解析 (B )的模为αz αz αz(C )一般是多值函数 (D )的辐角为的辐角的倍αz αz z α二、填空题1.设,则i f f +='=1)0(,1)0(=-→zz f z 1)(limi +12.设在区域内是解析的,如果是实常数,那么在内是 常数iv u z f +=)(D v u +)(z f D3.导函数在区域内解析的充要条件为 可微且满足x vix u z f ∂∂+∂∂=')(D xvx u ∂∂∂∂, 222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂4.设,则2233)(y ix y x z f ++==+-')2323(i f i 827427-5.若解析函数的实部,那么或iv u z f +=)(22y x u -==)(z f ic xyi y x ++-222为实常数ic z +2c 6.函数仅在点处可导)Re()Im()(z z z z f -==z i 7.设,则方程的所有根为 z i z z f )1(51)(5+-=0)(='z f 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k 8.复数的模为ii ),2,1,0(2L ±±=π-k ek 9.=-)}43Im{ln(i 34arctan -10.方程的全部解为01=--ze),2,1,0(2L ±±=πk i k 三、试证下列函数在平面上解析,并分别求出其导数z 1.();sinh sin cosh cos )(y x i y x z f -=;sin )(z z f -='2.());sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=.)1()(ze z zf +='四、已知,试确定解析函数.22y x v u -=-iv u z f +=)((.为任意实常数)c i z i z f )1(21)(2++-=c 第三章 复变函数的积分(答案)一、选择题:1.设为从原点沿至的弧段,则( D )c x y =2i +1=+⎰cdz iy x )(2(A )(B ) (C ) (D )i 6561-i 6561+-i 6561--i 6561+2.设为不经过点与的正向简单闭曲线,则为( D)c 11-dz z z zc ⎰+-2)1)(1((A )(B ) (C ) (D )(A)(B)(C)都有可能2iπ2iπ-03.设为负向,正向,则( B )1:1=z c 3:2=z c =⎰+=dz zzc c c 212sin (A )(B ) (C ) (D )i π2-0iπ2iπ44.设为正向圆周,则( C)c 2=z =-⎰dz z zc2)1(cos (A ) (B ) (C ) (D )1sin -1sin 1sin 2i π-1sin 2i π5.设为正向圆周,则 ( B)c 21=z =--⎰dz z z z c23)1(21cos(A ) (B ) (C ) (D ))1sin 1cos 3(2-i π01cos 6i π1sin 2i π-6.设,其中,则( A )ξξξξd ze zf ⎰=-=4)(4≠z =')i f π((A ) (B ) (C ) (D )i π2-1-i π217.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分)(z f B c B( C )dz z f z f z f z f c⎰+'+'')()()(2)((A )于 (B )等于 (C )等于 (D )不能确定i π2i π2-08.设是从到的直线段,则积分( A )c 0i 21π+=⎰cz dz ze (A ) (B) (C) (D) 21eπ-21eπ--i e21π+ie21π-9.设为正向圆周,则( A )c 0222=-+x y x =-⎰dz z z c1)4sin(2π(A )(B ) (C ) (D )i π22i π20i π22-10.设为正向圆周,则( C)c i a i z ≠=-,1=-⎰cdz i a zz 2)(cos (A ) (B )(C ) (D )ie π2eiπ20i i cos 11.设在区域内解析,为内任一条正向简单闭曲线,它的内部全属于.如果)(z f D c D D 在上的值为2,那么对内任一点,( C ))(z f c c 0z )(0z f (A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D )(A )积分的值与半径的大小无关⎰=--ra z dz az 1)0(>r r (B ),其中为连接到的线段2)(22≤+⎰cdz iy xc i -i (C )若在区域内有,则在内存在且解析D )()(z g z f ='D )(z g '(D )若在内解析,且沿任何圆周的积分等于零,则)(z f 10<<z )10(:<<=r r z c 在处解析)(z f 0=z 13.设为任意实常数,那么由调和函数确定的解析函数是 ( D)c 22y x u -=iv u z f +=)((A) (B ) (C ) (D )c iz +2ic iz +2c z +2ic z +214.下列命题中,正确的是(C)(A )设在区域内均为的共轭调和函数,则必有21,v v D u 21v v =(B )解析函数的实部是虚部的共轭调和函数(C )若在区域内解析,则为内的调和函数iv u z f +=)(D xu∂∂D (D )以调和函数为实部与虚部的函数是解析函数15.设在区域内为的共轭调和函数,则下列函数中为内解析函数的是( ),(y x v D ),(y x u D B )(A ) (B )),(),(y x iu y x v +),(),(y x iu y x v -(C ) (D )),(),(y x iv y x u -xv i x u ∂∂-∂∂二、填空题1.设为沿原点到点的直线段,则 2c 0=z i z +=1=⎰cdz z 22.设为正向圆周,则c 14=-z =-+-⎰c dz z z z 22)4(23i π103.设,其中,则 0 ⎰=-=2)2sin()(ξξξξπd zz f 2≠z =')3(f 4.设为正向圆周,则=+⎰cdz zzz c 3=z i π65.设为负向圆周,则 c 4=z =-⎰c z dz i z e 5)(π12iπ6.解析函数在圆心处的值等于它在圆周上的 平均值7.设在单连通域内连续,且对于内任何一条简单闭曲线都有,)(z f B B c 0)(=⎰cdz z f 那么在内 解析)(z f B 8.调和函数的共轭调和函数为xy y x =),(ϕC x y +-)(21229.若函数为某一解析函数的虚部,则常数 -323),(axy x y x u +==a 10.设的共轭调和函数为,那么的共轭调和函数为 ),(y x u ),(y x v ),(y x v ),(y x u -三、计算积分1.,其中且;⎰=+-R z dz z z z)2)(1(621,0≠>R R 2≠R (当时,; 当时,; 当时,)10<<R 021<<R i π8+∞<<R 202..(0)⎰=++22422z z z dz四、求积分,从而证明.()⎰=1z zdz z e πθθπθ=⎰0cos )cos(sin d e i π2五、若,试求解析函数.)(22y x u u +=iv u z f +=)(((为任意实常数))321ln 2)(ic c z c z f ++=321,,c c c 第四章 级 数(答案)一、选择题:1.设,则( C )),2,1(4)1(L =++-=n n nia n n n n a ∞→lim (A )等于 (B )等于 (C )等于 (D )不存在01i2.下列级数中,条件收敛的级数为( C )(A ) (B )∑∞=+1)231(n n i ∑∞=+1!)43(n nn i (C ) (D )∑∞=1n n n i ∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) (B )∑∞=+1)1(1n n i n ∑∞=+-1]2)1([n n n in (C) (D )∑∞=2ln n n n i ∑∞=-12)1(n n nn i 4.若幂级数在处收敛,那么该级数在处的敛散性为( A )∑∞=0n n nz ci z 21+=2=z (A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定5.设幂级数和的收敛半径分别为,则∑∑∞=-∞=01,n n n n nnznc z c∑∞=++011n n n z n c 321,,R R R 之间的关系是( D )321,,R R R (A ) (B ) 321R R R <<321R R R >>(C ) (D )321R R R <=321R R R ==6.设,则幂级数的收敛半径( D )10<<q ∑∞=02n n n z q =R (A ) (B )(C ) (D )q q10∞+7.幂级数的收敛半径( B )∑∞=1)2(2sinn n z n n π=R(A )(B ) (C ) (D )122∞+8.幂级数在内的和函数为( A )∑∞=++-011)1(n n n z n 1<z (A ) (B ))1ln(z +)1ln(z -(D ) (D) z +11lnz-11ln 9.设函数的泰勒展开式为,那么幂级数的收敛半径( C )z e z cos ∑∞=0n n n z c ∑∞=0n nn z c =R (A ) (B ) (C )(D )∞+12ππ10.级数的收敛域是( B )L +++++22111z z z z(A ) (B ) (C ) (D )不存在的1<z 10<<z +∞<<z 111.函数在处的泰勒展开式为( D)21z1-=z (A )(B ))11()1()1(11<++-∑∞=-z z n n n n)11()1()1(111<++-∑∞=--z z n n n n (C ) (D ))11()1(11<++-∑∞=-z z n n n )11()1(11<++∑∞=-z z n n n 12.函数,在处的泰勒展开式为( B )z sin 2π=z (A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn (C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n (D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn 13.设在圆环域内的洛朗展开式为,为内)(z f 201:R z z R H <-<∑∞-∞=-n n nz z c)(0c H 绕的任一条正向简单闭曲线,那么( B )0z =-⎰c dz z z z f 20)()((A) (B ) (C ) (D )12-ic π12ic π22ic π)(20z f i 'π14.若,则双边幂级数的收敛域为( A )⎩⎨⎧--==-+=L L ,2,1,4,2,1,0,)1(3n n c nn n n ∑∞-∞=n nn z c (A )(B ) 3141<<z 43<<z (C )(D )+∞<<z 41+∞<<z 3115.设函数在以原点为中心的圆环内的洛朗展开式有个,那么)4)(1(1)(++=z z z z f m ( C )=m (A )1 (B )2 (C )3 (D )4二、填空题1.若幂级数在处发散,那么该级数在处的收敛性为 发散∑∞=+0)(n n ni z ci z =2=z 2.设幂级数与的收敛半径分别为和,那么与之间的关∑∞=0n nnz c∑∞=0)][Re(n n n z c 1R 2R 1R 2R系是 .12R R ≥3.幂级数的收敛半径∑∞=+012)2(n n nz i =R 224.设在区域内解析,为内的一点,为到的边界上各点的最短距离,那么)(z f D 0z d 0z D 当时,成立,其中d z z <-0∑∞=-=0)()(n n nz z cz f 或=n c ),2,1,0()(!10)(L =n z f n n ().)0,2,1,0()()(21010d r n dz z z z f irz z n <<=-π⎰=-+L 5.函数在处的泰勒展开式为 .z arctan 0=z )1(12)1(012<+-∑∞=+z z n n n n 6.设幂级数的收敛半径为,那么幂级数的收敛半径为∑∞=0n nn z c R ∑∞=-0)12(n n n n z c 2R .7.双边幂级数的收敛域为 .∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 211<-<z 8.函数在内洛朗展开式为 .zze e 1++∞<<z 0nn nn z n z n ∑∑∞=∞=+00!11!19.设函数在原点的去心邻域内的洛朗展开式为,那么该洛朗级数z cot R z <<0∑∞-∞=n n nz c收敛域的外半径 .=R π10.函数在内的洛朗展开式为)(1i z z -+∞<-<i z 1∑∞=+--02)()1(n n n n i z i三、若函数在处的泰勒展开式为,则称为菲波那契(Fibonacci)211z z --0=z ∑∞=0n nn z a {}n a 数列,试确定满足的递推关系式,并明确给出的表达式.n a n a (,)2(,12110≥+===--n a a a a a n n n )),2,1,0(}251()251{(5111L =--+=++n a n n n 四、求幂级数的和函数,并计算之值.∑∞=12n nz n ∑∞=122n n n (,)3)1()1()(z z z z f -+=6五、将函数在内展开成洛朗级数.)1()2ln(--z z z 110<-<z ()n n nk k z k n z z z z z z )1(1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+第五章 留 数(答案)一、选择题:1.函数在内的奇点个数为 ( D )32cot -πz z2=-i z (A )1 (B )2 (C )3 (D )42.设函数与分别以为本性奇点与级极点,则为函数)(z f )(z g a z =m a z =)()(z g z f 的( B )(A )可去奇点 (B )本性奇点(C )级极点 (D )小于级的极点m m 3.设为函数的级极点,那么( C )0=z zz e xsin 142-m =m(A )5 (B )4 (C)3 (D )24.是函数的( D )1=z 11sin)1(--z z (A)可去奇点 (B )一级极点(C ) 一级零点 (D )本性奇点5.是函数的( B )∞=z 2323z z z ++(A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设在内解析,为正整数,那么( C )∑∞==)(n n n z a z f R z <k =]0,)([Re kz z f s (A ) (B ) (C ) (D )k a k a k !1-k a 1)!1(--k a k 7.设为解析函数的级零点,那么='],)()([Re a z f z f s ( A )a z =)(z f m (A) (B ) (C ) (D )m m -1-m )1(--m 8.在下列函数中,的是( D )0]0),([Re =z f s (A )(B )21)(ze zf z -=z z z z f 1sin )(-=(C ) (D) z z z z f cos sin )(+=ze zf z 111)(--=9.下列命题中,正确的是( C )(A )设,在点解析,为自然数,则为的)()()(0z z z z f mϕ--=)(z ϕ0z m 0z )(z f 级极点.m (B )如果无穷远点是函数的可去奇点,那么∞)(z f 0]),([Re =∞z f s (C )若为偶函数的一个孤立奇点,则0=z )(z f 0]0),([Re =z f s(D )若,则在内无奇点0)(=⎰c dz z f )(z f c 10. ( A )=∞],2cos[Re 3ziz s (A ) (B ) (C ) (D )32-32i 32i32-11. ( B)=-],[Re 12i e z s iz (A ) (B ) (C ) (D )i +-61i +-65i +61i +6512.下列命题中,不正确的是( D)(A )若是的可去奇点或解析点,则)(0∞≠z )(z f 0]),([Re 0=z z f s (B )若与在解析,为的一级零点,则)(z P )(z Q 0z 0z )(z Q )()(],)()([Re 000z Q z P z z Q z P s '=(C )若为的级极点,为自然数,则0z )(z f m m n ≥)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-=(D )如果无穷远点为的一级极点,则为的一级极点,并且∞)(z f 0=z )1(zf )1(lim ]),([Re 0zzf z f s z →=∞13.设为正整数,则( A )1>n =-⎰=211z ndz z (A) (B ) (C )(D )0i π2niπ2i n π214.积分( B )=-⎰=231091z dz z z (A ) (B ) (C ) (D )0i π2105iπ15.积分( C )=⎰=121sin z dz z z (A ) (B ) (C ) (D )061-3i π-iπ-二、填空题1.设为函数的级零点,那么 9 .0=z 33sin z z -m =m 2.函数在其孤立奇点处的留数zz f 1cos1)(=),2,1,0(21L L ±±=+=k k z k ππ.=]),([Re k z z f s 2)2()1(π+π-k k3.设函数,则 0 }1exp{)(22zz z f +==]0),([Re z f s 4.设为函数的级极点,那么 .a z =)(z f m ='],)()([Re a z f z f s m -5.设,则 -2 .212)(zzz f +==∞]),([Re z f s 6.设,则 .5cos 1)(z z z f -==]0),([Re z f s 241-7.积分.=⎰=113z zdz e z 12iπ8.积分.=⎰=1sin 1z dz z i π2三、计算积分.()⎰=--412)1(sin z z dz z e z z i π-316四、设为的孤立奇点,为正整数,试证为的级极点的充要条件是a )(z f m a )(z f m ,其中为有限数.b z f a z m az =-→)()(lim 0≠b 五、设为的孤立奇点,试证:若是奇函数,则;a )(z f )(z f ]),([Re ]),([Re a z f s a z f s -=若是偶函数,则.)(z f ]),([Re ]),([Re a z f s a z f s --=。

复变函数14套题目和答案

复变函数14套题目和答案

复变函数14套题目和答案《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析.()2.有界整函数必在整个复平面为常数.()3.若收敛,则与都收敛.()4.若f(z)在区域D内解析,且,则(常数).()5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()6.若z0是的m阶零点,则z0是1/的m阶极点.()7.若存在且有限,则z0是函数f(z)的可去奇点.()8.若函数f(z)在是区域D内的单叶函数,则.()9.若f(z)在区域D内解析, 则对D内任一简单闭曲线C.()10.若函数f(z)在区域D内的某个圆内恒等于常数,则f(z)在区域D内恒等于常数.()二.填空题(20分)1.__________.(为自然数)2._________.3.函数的周期为___________.4.设,则的孤立奇点有__________.5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若,则______________.8.________,其中n为自然数.9.的孤立奇点为________.10.若是的极点,则.三.计算题(40分):1.设,求在内的罗朗展式.2.3.设,其中,试求4.求复数的实部与虚部.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.试证: 在割去线段的平面内能分出两个单值解析分支, 并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)1、判断题.(20分)1.若函数在D内连续,则u(x,y)与v(x,y)都在D内连续.()2.cos z 与sin z在复平面内有界.()3.若函数f(z)在z0解析,则f(z)在z0连续.()4.有界整函数必为常数.()5.如z0是函数f(z)的本性奇点,则一定不存在.()6.若函数f(z)在z0可导,则f(z)在z0解析.()7.若f(z)在区域D内解析, 则对D内任一简单闭曲线C.()8.若数列收敛,则与都收敛.()9.若f(z)在区域D内解析,则|f(z)|也在D内解析.()10.存在一个在零点解析的函数f(z)使且.()二.填空题.(20分)1.设,则 2.设,则________.3._________.(为自然数)4.幂级数的收敛半径为__________.5.若z0是f(z)的m阶零点且m>0,则z0是的_____零点.6.函数ez的周期为__________.7.方程在单位圆内的零点个数为________.8.设,则的孤立奇点有_________.9.函数的不解析点之集为________.10..三.计算题.(40分)1.求函数的幂级数展开式.2.在复平面上取上半虚轴作割线.试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值.3.计算积分:,积分路径为(1)单位圆()的右半圆.4.求.四.证明题.(20分)1.设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析.2.试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一.判断题.(20分).1.cos z与sin z的周期均为.()2.若f(z)在z0处满足柯西-黎曼条件, 则f(z)在z0解析.()3.若函数f(z)在z0处解析,则f(z)在z0连续.()4.若数列收敛,则与都收敛.()5.若函数f(z)是区域D内解析且在D内的某个圆内恒为常数,则数f(z)在区域D内为常数.()6.若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.()7.如果函数f(z)在上解析,且,则.()8.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()9.若z0是的m阶零点, 则z0是1/的m阶极点.()10.若是的可去奇点,则.()二.填空题.(20分)1.设,则f(z)的定义域为___________.2.函数ez的周期为_________.3.若,则__________.4.___________.5._________.(为自然数)6.幂级数的收敛半径为__________.7.设,则f(z)的孤立奇点有__________.8.设,则.9.若是的极点,则.10..三.计算题.(40分)1.将函数在圆环域内展为Laurent级数.2.试求幂级数的收敛半径.3.算下列积分:,其中是.4.求在|z|<1内根的个数.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。

复变函数目标检测练习册_2011年

复变函数目标检测练习册_2011年

WORD 格式整理版专业学习 参考资料练习一 复数及其代数运算、复数的几何表示一、填空题 1.(ii +-11)4= 2.i +1= Arg )(i +1= arg )(i +13.已知z=())())((i i i i +--+131131,则z = argz= 4.将z=-cos 5π + isin 5π表示成三角形式为 表示成指数形式为Argz= argz=5.3-i 的三角表示形式为 ,指数表示形式为二.分别就0<α≤π与-π<α<-2π两种情形将复数z=1 - cos α + isin α化成三角形式与指数形式,并求它的辐角主值。

三.利用复数表示圆的方程)(0≠a a (x 2+y2)+ bx + cy + d = 0,其中a , b , c , d 是实常数。

四.求下列方程所表示的曲线 ①)(i +1z + )(i —1z = 1②z z -)(i +2z -)(i -2z = 4五.证明⑴若z1 + z2 + z3 = 0且z1=z2=z3=1,则点z1 , z2 , z3为一内接单位圆的等边三角形的顶点。

⑵若z1 + z2 + z3 + z4 = 0且z1=z2=z3=z4,则点z1 , z2 , z3 , z4或者为一矩形的顶点,或者两两重合。

练习二复数的乘幂与方根、区域一、填空题1.(1+i)3+(1-i)3=2.31-=3.{z1<z<2}的内点是外点是边界点是4.0<Re(z)<1所确定的是(区域、闭区域)它是(有界、无界)二、求下列复数的值(1)⎪⎪⎭⎫⎝⎛-+ii313110(2)32221)+(i三、已知正方形的两个相对顶点为z1(0,-1)于z3(2,5),求另外两个顶点z2于z4的坐标。

四、画出23--zz≥1所表示的图形,并指出所表示的图形是否是区域,是否有界?五、已知x2+x+1=0,求x11+x7+x3的值。

六、求证:(1+cosθ+isinθ)n=2ncosn2θ(cos2θn+isin2θn)练习三复变函数、复变函数的极限和连续性一、选择题1.下列函数极限存在的是()A.lim→z zz)Re(B.lim→z zzC.lim→z1222---+zzzz zD.lim→z i21(zz-zz)2.将Z平面上的曲线x2+y2=4映射成W平面上的曲线u2+v2=41的映射函数f(z)为()A.W=Z B.W=Z2 C.W=Z1D.W=Z3.复变函数W=Z2确定的两个实元函数为()A.u=x2+y2 v=2xyB.u=2xy v=x2-y2C.u=x2v=2xyD.u=x2+y2v=2xy 4.两个实二元函数u=5.在映射W=Z2之下,Z平面的双曲线x2-y2=4映射成W平面上的图形为()A.直线u=4 B.圆u2+v2=4 C.直线v=4 D.双曲线uv=4二、考虑f(z)=z z +zz在z=0的极限三、函数W=Z1把下列z 平面上的 曲线映射成W 平面上怎样的曲线? (1)y=x (2) x=1 (3) (x -1)2+y 2=1 四、试讨论函数f(z)=⎪⎪⎩⎪⎪⎨⎧+022y x xy00=≠z z 的连续性练习四 解析函数的概念 函数解析的充要条件 一、选择题1.下列命题正确的是( )A .如果)(z f 在z 0连续,那么)('0z f 存在B .如果)('0z f 存在,那么)(z f 在z 0解析C .如果)(z f 在z 0解析,那么)('0z f 存在D .如果z 0是)(z f 的奇点,那么)(z f 在z 0不可导 2.下列函数仅在z=0处可导的是( )A. )(z f =z 2B. )(z f =x+2yiC. )(z f =z 2D. )(z f =z13.下列函数在复平面内处处解析的是( )A .f(z)=z B.f(z)=e x(cosy+isiny) C.f(z)=z 1 D.f(z)=zz 4.下面各式是柯西—黎曼方程的极坐标形式的是( )A .r u ∂∂=θ∂∂v θ∂∂u =-r v ∂∂ B.r u ∂∂=r 1θ∂∂v θ∂∂u =-r 1r v ∂∂ C.r u ∂∂=r 1θ∂∂v r v ∂∂=-r 1θ∂∂u D.r u ∂∂=r θ∂∂v θ∂∂u =-r rv ∂∂ 5.下列说法正确的是( )A .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)+g(z)的一个奇点B .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)-g(z)的一个奇点C .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)g(z)的一个奇点D .如果z 0是f(z)和g(z)的一个奇点,那么z 0也是f(z)/g(z)的一个奇点 二.设ay 3+bx 2y+i(x 3+pxy 2)为解析函数,试求a,b,p 之值。

(完整版)复变函数测试题及答案

(完整版)复变函数测试题及答案

第一章 复数与复变函数一、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π=+z arc ,65)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.复数)2(tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )(A )2 (B )i 31+(C )i -3 (D )i +37.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( )(A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )221=+-z z (B )433=--+z z (C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.00)Im()Im(lim0z z z z x x --→( )(A )等于i (B )等于i - (C )等于0 (D )不存在14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续(C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为( )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.设43)arg(,5π=-=i z z ,则=z 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为 6.不等式522<++-z z 所表示的区域是曲线 的内部7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为8.方程i z i z +-=-+221所表示的曲线是连续点 和 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为 10.=+++→)21(lim 421z z iz三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围.四、设0≥a ,在复数集C 中解方程a z z =+22.五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或0)(=z IM .六、对于映射)1(21zz +=ω,求出圆周4=z 的像.七、试证1.)0(0221≠≥z z z 的充要条件为2121z z z z +=+; 2.)),,2,1,,,0(021n j k j k z z z j =≠≠≥的充要条件为 n n z z z z z z +++=+++ 2121.八、若0)(lim 0≠=→A z f x x ,则存在0>δ,使得当δ<-<00z z 时有A z f 21)(>.九、设iy x z +=,试证y x z y x +≤≤+2.十、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f第二章 解析函数一、选择题:1.函数23)(z z f =在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( )(A )设y x ,为实数,则1)cos(≤+iy x(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( )(A )xyi y x 222-- (B )xyi x +2(C ))2()1(222x x y i y x +-+- (D )33iy x +5.函数)Im()(2z z z f =在=z 处的导数( )(A )等于0 (B )等于1 (C )等于1- (D )不存在6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( )(A )0 (B )1 (C )2 (D )2-7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( )(A )0 (B )1 (C )1- (D )任意常数 8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数 (D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.ii 的主值为( )(A )0 (B )1 (C )2πe (D )2π-e11.z e 在复平面上( )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于1 14.下列数中,为实数的是( )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( )(A )αz 在复平面上处处解析 (B )αz 的模为αz(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(lim2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 3.导函数xvix u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 4.设2233)(y ix y x z f ++=,则=+-')2323(i f 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f 6.函数)Re()Im()(z z z z f -=仅在点=z 处可导7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 8.复数ii 的模为 9.=-)}43Im{ln(i 10.方程01=--ze 的全部解为三、设),(),()(y x iv y x u z f +=为iyx z +=的解析函数,若记)2,2()2,2(),(izz z z iv i z z z z u z z w -++-+=,则0=∂∂z w .四、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -=2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f xx++-=五、设023=+-ze zw w ,求22,dz w d dz dw .六、设⎪⎩⎪⎨⎧=≠++=0,00,)()(422z z y x iy x xy z f 试证)(z f 在原点满足柯西-黎曼方程,但却不可导.七、已知22y x v u -=-,试确定解析函数iv u z f +=)(.八、设s 和n 为平面向量,将s按逆时针方向旋转2π即得n .如果iv u z f +=)(为解析函数,则有s v n u n v s u ∂∂-=∂∂∂∂=∂∂,(s ∂∂与n∂∂分别表示沿s ,n 的方向导数).九、若函数)(z f 在上半平面内解析,试证函数)(z f 在下半平面内解析.十、解方程i z i z 4cos sin =+.第三章 复变函数的积分一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( ) (A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则=-⎰dz z zc 2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )17.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c⎰+'+'')()()(2)( ( )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( ) (A )i π22 (B )i π2 (C )0 (D )i π22- 10.设c 为正向圆周i a i z ≠=-,1,则=-⎰c dz i a zz 2)(cos ( ) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分⎰=--ra z dz az 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段 (C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )(A)c iz +2(B ) ic iz +2(C )c z +2(D )ic z +214.下列命题中,正确的是( )(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -(C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(233.设⎰=-=2)2sin()(ξξξξπd zz f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.设c 为负向圆周4=z ,则=-⎰c zdz i z e 5)(π6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内8.调和函数xy y x =),(ϕ的共轭调和函数为9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为三、计算积分 1.⎰=+-Rz dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; 2.⎰=++22422z z z dz.四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证1.在B 内处处有0)(≠z f ; 2.对于B 内任意一条闭曲线c ,都有0)()(=''⎰cdz z f z f五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f ra z <<==-,则),2,1()(!)()( =≤n rr M n a f nn .六、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限⎰=+∞→--R z R dz b z a z z f ))(()(lim并由此推证)()(b f a f =(刘维尔Liouville 定理).八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设iv u z f +=)(是z 的解析函数,证明222222222))(1()(4))(1ln())(1ln(z f z f y z f x z f +'=∂+∂+∂+∂.十、若)(22y x u u +=,试求解析函数iv u z f +=)(.第四章 级 数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n n n i(C ) ∑∞=1n nni (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为( )(B ) ∑∞=+1)1(1n n in(B )∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n nn i (D )∑∞=-12)1(n nn n i 4.若幂级数∑∞=0n n nz c在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛 (B )条件收敛(C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为 (A ))1ln(z + (B ))1ln(z -(D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n n n z c ,那么幂级数∑∞=0n nn z c 的收敛半径=R ( )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的11.函数21z在1-=z 处的泰勒展开式为( ) (A ))11()1()1(11<++-∑∞=-z z n n n n(B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 20)()(( )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+= ,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n nn z c 的收敛域为( ) (A )3141<<z (B )43<<z (C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( )(A )1 (B )2 (C )3 (D )4二、填空题 1.若幂级数∑∞=+0)(n n ni z c在i z =处发散,那么该级数在2=z 处的收敛性为 . 2.设幂级数∑∞=0n nnz c与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 . 3.幂级数∑∞=+012)2(n n nz i 的收敛半径=R4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=0)()(n n nz z cz f 成立,其中=n c .5.函数z arctan 在0=z 处的泰勒展开式为 . 6.设幂级数∑∞=0n nnz c的收敛半径为R ,那么幂级数∑∞=-0)12(n n n nz c 的收敛半径为 .7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R . 10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式.四、试证明 1.);(11+∞<≤-≤-z ez ee zzz2.);1()1(1)3(<-≤-≤-z z e e z e z五、设函数)(z f 在圆域R z <内解析,∑==nk kk n z k f S 0)(!)0(试证 1.)()(21)(111R r z d z z f iz S n rn n n <<--=+=++⎰ξξξξξπξ.2.)()()(2)((11R r z d z f iz z S z f r n n n <<-=-⎰=++ξξξξπξ)。

复变函数与积分变换练习册参考答案

复变函数与积分变换练习册参考答案
5 5
分析:显然原方程可化简为一个典型的二项方程。
⎛ 1+ z ⎞ 解:由直接验证可知原方程的根 z ≠ 1 。所以原方程可改写为 ⎜ ⎟ = 1。 ⎝ 1− z ⎠

5
ω=
1+ z , ……………(1) 1− z
2π i 5
则 ω = 1 , ……………………(2)
5
方程(2)的根为 ω = 1, e
(5) lim
z →1
zz + 2 z − z − 2 3 = 。 2 z2 −1 zz + 2 z − z − 2 ( z + 2)( z − 1) z +2 3 = lim = lim = 。 2 z →1 ( z − 1)( z + 1) z →1 z + 1 2 z −1
提示: lim
z →1
(1 − cos α ) 2 + sin 2 α = 4sin 2
α
2
= 2sin
α
2
;因为当 0 < α < π 时,
sin α > 0 , 1 − cos α > 0 ,则 arg z = arctan
= arctan(tan +i sin
π −α
2
)=
π −α
2 e
π −α i 2
sin α α = arctan(cot ) 1 − cos α 2

6、 ( 2)
=e
2 ln 2 − 2kπ
7、方程 sinh z = i 的解为 三、计算和证明 1、试证函数
1 在复平面上任何点都不解析。 z
利用 C-R 条件,即用解析的充要条件判别,即 u =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 复数与复变函数一、选择题1.当iiz -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z ( )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+- 3.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数( )(A )2 (B )i 31+ (C )i -3 (D )i +3 4.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 5.方程232=-+i z 所代表的曲线是( )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周6.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )(A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续 (D )),(),(y x v y x u +在),(00y x 处连续学号:____________ 姓名:______________ 班级:_____________二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg3.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为4.方程i z i z +-=-+221所表示的曲线是连接点 和 的线 段的垂直平分线5.=+++→)21(lim 421z z iz三、将下列复数化为三角表达式和指数表达式:(1)i (2)13i -+四、求下列各式的值: (1)5(3)i - (2)100100(1)(1)i i ++- (3)1i +五、解方程:5()1z i +=六、设复数1≠z ,且满足,1||=z ,试证21]11Re[=-z .七 、证明复平面上的直线方程可写成:0,(0a z a z c a ++=≠其中为复常数,c 为实常数)八、证明复平面上的圆周方程可写成:0,(z z a z az c a +++=其中为复常数,c 为实常数)九 、函数1w z=把下列z 平面上的曲线映成w 平面中的什么曲线? (1) yx = (2) 224x y +=十、)0(),(21)(≠-=z zzz z i z f 试证当0→z 时)(z f 的极限不存在。

第二章 解析函数一、判断题(1)若)(z f 在点0z 不连续,则)(z f 在点0z 不可导.( )(2)若)(z f 在点0z 可导,则)(z f 在点0z 解析.( )(3)若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析.( )(4)指数函数ze 是以i π2为周期的函数.( ) (5)z sin 在整个复平面上有界. ( )二、选择题1.函数22)(iy x z f +=在点0=z 处是( )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.假设点0z 是函数)(z f 的奇点,则函数)(z f 在点0z 处( ) (A )不可导 (B )不解析(C )不连续 (D )以上答案都不对 3.下列函数中,为整个复平面上解析函数的是( ) (A )xyi y x 222-- (B )xyi x +2 (C ))33(332323y y x y i x xy x ++-++- (D )Z 4.函数)Re()(z z z f =在0=z 处的导数( ) (A )等于0 (B )等于1 (C )等于1- (D )不存在三、填空题学号:____________ 姓名:______________ 班级:_____________1.设)1sin()2cos()(zi z z f +=,则=dz df 2.复数=)Ln(21i3.=-)}43Im{ln(i 4.方程01=--z e 的全部解为四、证明区域D 内满足下列条件之一的解析函数必为常数. (1)若)(z f 也在D 内解析; (2) 若()f z 在D 内为常数;(3) ,au bv c +=其中a,b 与c 为不全为零点实常数。

五、讨论下列函数的解析性:(1) z z 2||2+ (2)y ix xy 22+ (3) )sin (cos x i x e y +- 六、求2z e 和2z Arge七、求下列初等函数的值。

(1))42(i e π+ (2)i 2sin ;(3) ()Ln i - (4) (1)i i +(5) ln(34)i -+八、解方程:(1)0cos sin =+z z ;(2)i iz 22)2ln(π+=; (3) cos 0z =九、当,,l m n 取何值时3232()()f z my nx y i x lxy =+++在复平面上处处解析?第三章 复变函数的积分一、 判断题 1. 积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关。

( ) 2. 若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析。

( ) 3. 若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析。

( )4. 设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =。

( )5. 解析函数的实部是虚部的共轭调和函数。

( )6. 以调和函数为实部与虚部的函数是解析函数。

( ) 二、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( )(A )2i π (B )2i π- (C )0 (D )(A)(B)(C)都有可能 3.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π学号:____________ 姓名:______________ 班级:_____________4.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( )(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-5.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )1 6.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( )(A )21eπ- (B) 21eπ-- (C)i e21π+(D) i e21π-7.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xvi x u ∂∂-∂∂ 三、填空题1.设C 为正向圆周1||=z ,则=⎰Cz z d2.设C 为正向圆周14=-z ,则20153sin 2d ππθθ=+⎰3.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则=+⎰cdz zzz 5.解析函数在圆心处的值等于它在圆周上的6.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a 四、利用牛顿-莱布尼兹公式计算下列积分.(1)240ize dz π⎰(2)2sin iizdz ππ-⎰ (3)1sin z zdz ⎰五、计算下列复积分,圆周均为正向 (1)11()(2)2z dz i z z =-+⎰; (2)23221izz i e dz z -=+⎰, (3)2232(1)(4)z dz z z =++⎰; (4) ⎰=-45)(z zdz i z e π六、计算积分312(1)zce dz iz z π-⎰,其中c 为下列正向圆周: (6)12z =(2)112z -= (3)2z =七、已知下列各调和函数,试求解析函数()f z u iv =+(1) 22, ()1u x xy y f i i =+-=-+,(2) 22, (2)u xy y f i =-=-,八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分⎰=+122)()1(z dz z z f z 并由此得出⎰πθθθ202)(2cos d e f i 之值.九、设(),()f z g z 都在简单闭曲线c 上及c 内解析,且在c 上()()f z g z =, 证明: 在c 内也有()()f z g z =。

十、设1C 与2C 为两条互不包含,也互不相交的正向简单闭曲线,证明:1222001000021sin []2sin C C z z C z zdz dz i z z z z z z C π⎧+=⎨--⎩⎰⎰当在内时,当在内时。

十一、设解析函数()f z u iv =+,试证:(1) 2()u v i f z -是的共轭调和函数;()也是解析函数。

十二、设()f z 在圆环域 12R z a R <-<内解析,作两圆周: 121122,;z a K z a K R K K R -=-=<<<且, 当z 满足102K z a K <-<,试证:柯西积分公式仍成立,其中12C K K -=+第四章 级 数一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( ) (A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( )(A )∑∞=+1)231(n ni (B )∑∞=+1!)43(n n n i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i 3.下列级数中,绝对收敛的级数为( )(A) ∑∞=+1)1(1n n i n (B)∑∞=+-1]2)1([n n n i n (C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定5.设幂级数∑∑∞=-∞=010,n n n n n n z nc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( ) (A) 1 (B )2 (C )2 (D )∞+7.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( )(A ))1ln(z + (B ))1ln(z - (D )z +11ln (D) z-11ln 8.级数+++++22111z z z z的收敛域是( ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 9.函数z sin ,在2π=z 处的泰勒展开式为( )学号:____________ 姓名:______________ 班级:_____________(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n n n(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n n n二、填空题1.幂级数∑∞=+012)2(n n n z i 的收敛半径=R .2.设)(z f 在区域D 内解析,0z 为D 内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c .3.函数z arctan 在0=z 处的泰勒展开式为 .4.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为 .5.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 .三、下列级数是否收敛?是否绝对收敛?(1)1!n n i n ∞=∑ ; (2) 2ln nn i n ∞=∑(3) 0cos 2n n in ∞=∑ (4) ()035!nn i n ∞=+∑四、试确定下列幂级数的收敛半径.(1) ()01nnn i z ∞=+∑ (2) 0!nn n n z n ∞=∑(3) 1inn n e z π∞=∑ (4) 221212n nn n z ∞-=-∑五、把下列函数展开成z 的幂级数,并指出收敛半径.(1) 221(1)z + (2) 1zz e -六、求下列函数展开在指定点0z 处的泰勒展式,并写出展式成立的区域. (1)0,2(1)(2)zz z z =++ (2)021,1z z =(3)01,143z i z=+-七 、将函数1(1)(2)z z --在指定的圆域内展开成洛朗级数.(1)011,(2)12z z <-<<-<+∞八、如果级数0n n n c z ∞=∑在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区域上绝对收敛.第五章 留 数一、选择题: 1.函数221(1)z z z -+在2=z 内的奇点个数为 ( ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 以a z =为m 级零点,则a z =为函数)(1z f 的( ) (A )可去奇点 (B )本性奇点(C )m 级极点 (D )小于m 级的极点3.设0=z 为函数3sin zz的m 级极点,那么=m ( )(A )2 (B )4 (C)3 (D )5 4.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re kz z f s ( ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k 5.在下列函数中,0]0),([Re =z f s 的是( )(A) 21()z e f z z-= (B )z z z z f 1sin )(-=(C )zzz z f cos sin )(+= (D) z z z f sin )(=二、填空题1.设0=z 为函数2(1)z z e -的m 级零点,那么=m .学号:____________ 姓名:______________ 班级:_____________2.函数241()ze f z z -=在其孤立奇点0=z 处的留数=]0),([Re z f s .3.若)(0∞≠z 是)(z f 的可去奇点或解析点,则=]),([Re 0z z f s . 4.积分=⎰=113z zdz e z.三、求下列函数在有限孤立奇点处的留数.(1) 212z z z +- (2)241ze z-(3)21sin z z (4)4231(1)z z ++(5)1sin z z四、利用留数计算下列积分(积分曲线均取正向).(1)222(1)zz e dz z =-⎰ (2)232(1)(3)z z e dz z z =-+⎰(3)12sin (1)z z z dz z e =-⎰ (4)221sin z z dz z =⎰五、证明:如果0z 是()f z 的(1)m m >级零点,那么0z 是'()f z 的1m -级零点.六 *、求出下列函数在∞的留数(1)21z e z - (2) 41(1)(4)z z z +-七 *、求下列各积分之值:(1). 20153sin d πθθ+⎰ (2).201cos d a πθθ+⎰ (3).2401x dx x+∞+⎰; (4) 2cos 45x dx x x +∞-∞++⎰积分变换一、填空题1.[1]F = .2.设[()]()F f t F w =,则()F w 与()f t 有 (相同,不同)的奇偶性.3.[()]F u t = .4.函数0()sin 3()f t t t t =δ-的傅立叶变换 ..5.e t2-⎡⎤=⎣⎦L .6.[]sin cos t t =L ..7.124s s -⎡⎤=⎢⎥+⎣⎦L..8.()()1112s s -⎡⎤=⎢⎥++⎣⎦L..二、综合题1.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.学号:____________ 姓名:______________ 班级:_____________2.已知(),0,00,⎩⎨⎧<≥=-t t e t f t β ()[]t f F -求3.求函数()3sin f t t =的Fourier 变换.4.求函数()cos sin t f t t =的Fourier 变换.5.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .6.求下列函数的Laplace 变换:1)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩. 2) ()()2e 5δt f t t =+3) ()1e t f t t =- 4) ()cos f t t at =7*、设()()212,0,0,0,00,0t t t t f t f t t t ≥⎧≥⎧==⎨⎨<<⎩⎩,求:()()t f t f 21*8*.若()()f t F s ⎡⎤=⎣⎦L ,证明(象函数的微分性质):()()()()()1,Re nn nF s t f t s c ⎡⎤=->⎣⎦L特别地,()()tf t F s '⎡⎤=-⎣⎦L ,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并利用此结论计算下式:(1)()30e sin 2d t tf t t t t -=⎰,求()F s .(2) ()1ln1s F s s +=-,求()f t .三、利用Laplace 变换求解下列方程:1.()()43,001ty y y e y y -''''++===2.222e cos2,(0)(0)0t y y y t y y ''''-+=⋅==3.2e ,(0)(0)(0)0t y y y y y '''''''+====e 4.,322et t x x y y x y '⎧+-=⎪⎨'+-=⎪⎩()()00,0 1.x x '==-答案第一章 复数与复变函数一、BAADCC二、1,2;2,8arctan -π;3,ie θ16;4,12i -+;2i - 5,12i -+三、(1)2ieπ;(2)232i eπ四、(1)16(3)i -+ ;(2)512- ;(3)1i +48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩五、 25k i z ei π=-, (0,1,2,3,4)k =六、略 ; 七、略 ;八 、略 九、(1)2214u v +=,表示一半径为12的圆周。

相关文档
最新文档