2020年高考文科数学《导数的综合应用》题型归纳与训练

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

高考数学导数题型归纳(文科)

高考数学导数题型归纳(文科)

导数题型归纳 首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根; 第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.第三种:构造函数求最值题型特征:)()(x g x f >恒成立0)()()(>-=⇔x g x f x h 恒成立;从而转化为第一、二种题型例3:已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

导数常考题型归纳总结

导数常考题型归纳总结

导数常考题型归纳总结导数是微积分中的重要概念,是描述函数变化率的工具。

在高中数学中,导数是一个常考的内容。

为了帮助同学们更好地掌握导数的相关知识,本文将对导数常考题型进行归纳总结,以便同学们能够更好地应对考试。

一、常数函数求导常数函数的导数始终为零。

这个结论是很容易推导出来的,因为常数函数的图像是一条水平直线,斜率为零,所以导数为零。

二、幂函数求导对于幂函数(如x的n次方),我们可以利用求导的定义直接推导求导公式。

设y=x^n,其中n为常数,则有:dy/dx = n*x^(n-1)。

例如,对于y=x^2,求导后得到dy/dx=2x。

对于y=x^3,求导后得到dy/dx=3x^2。

这个公式是求解幂函数导数的基础公式,需要同学们熟练掌握。

三、指数函数求导对于指数函数(如e^x),其导数仍然是指数函数本身。

即dy/dx = e^x。

这个结论在微积分中是非常重要的,往往与幂函数求导相结合,可以解决很多复杂问题。

四、对数函数求导对于对数函数(如ln(x)),其导数可以通过指数函数的导数求出。

根据求导的链式法则,我们可以得到对数函数的导数公式:dy/dx = 1/x。

这个公式对于解决对数函数的导数问题非常有用。

五、三角函数求导对于三角函数(如sin(x)和cos(x)),它们的导数也具有一定的规律性。

我们可以根据求导的定义和三角函数的性质,得到以下导数公式:sin(x)的导数为cos(x);cos(x)的导数为-sin(x);tan(x)的导数为sec^2(x);cot(x)的导数为-csc^2(x)。

这些公式可以根据求导的定义进行推导,同学们需要牢记。

六、复合函数求导复合函数指的是由多个函数复合而成的函数。

对于复合函数的导数求解,我们可以利用链式法则。

链式法则的公式为:如果y=f(u),u=g(x),则有dy/dx = dy/du * du/dx。

通过链式法则,我们可以将复合函数的导数求解转化为简单函数的导数求解。

导数题型总结

导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。

题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。

例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。

题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。

求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。

2020版高考数学导数及其应用 Word版含解析

2020版高考数学导数及其应用  Word版含解析

第2课时 导数与方程题型一 求函数零点个数例1 已知函数f (x )=2a 2ln x -x 2(a >0). (1)求函数f (x )的单调区间;(2)讨论函数f (x )在区间(1,e 2)上零点的个数(e 为自然对数的底数). 解 (1)∵f (x )=2a 2ln x -x 2,∴f ′(x )=2a 2x -2x =2a 2-2x 2x =-2(x -a )(x +a )x ,∵x >0,a >0,当0<x <a 时,f ′(x )>0, 当x >a 时,f ′(x )<0.∴f (x )的单调增区间是(0,a ),单调减区间是(a ,+∞). (2)由(1)得f (x )max =f (a )=a 2(2ln a -1). 讨论函数f (x )的零点情况如下:①当a 2(2ln a -1)<0,即0<a <e 时,函数f (x )无零点,在(1,e 2)上无零点;②当a 2(2ln a -1)=0,即a =e 时,函数f (x )在(0,+∞)内有唯一零点a ,而1<a =e<e 2,∴f (x )在(1,e 2)内有一个零点;③当a 2(2ln a -1)>0,即a >e 时,由于f (1)=-1<0,f (a )=a 2(2ln a -1)>0,f (e 2)=2a 2ln(e 2)-e 4=4a 2-e 4=(2a -e 2)(2a +e 2),当2a -e 2<0,即e<a <e 22时,1<e<a <e 22<e 2,f (e 2)<0,由函数f (x )的单调性可知,函数f (x )在(1,a )内有唯一零点x 1,在(a ,e 2)内有唯一零点x 2, ∴f (x )在(1,e 2)内有两个零点.当2a -e 2≥0,即a ≥e 22>e 时,f (e 2)≥0,而且f (e)=2a 2·12-e =a 2-e>0,f (1)=-1<0,由函数的单调性可知,无论a ≥e 2,还是a <e 2,f (x )在(1,e)内有唯一的零点,在(e ,e 2)内没有零点,从而f (x )在(1,e 2)内只有一个零点.综上所述,当0<a <e 时,函数f (x )在区间(1,e 2)上无零点;当a =e 或a ≥e 22时,函数f (x )在区间(1,e 2)上有一个零点;当e<a <e 22时,函数f (x )在区间(1,e 2)上有两个零点.思维升华 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题.(2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况. 跟踪训练1 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 根据函数零点情况求参数范围例2 (2018·南京联合体调研)已知f (x )=12x 2-a ln x ,a ∈R .(1)求函数f (x )的单调增区间;(2)若函数f (x )有两个零点,求实数a 的取值范围,并说明理由. (参考求导公式:[f (ax +b )]′=af ′(ax +b ))解 (1)由题知f ′(x )=x -a x =x 2-ax,x >0,当a ≤0时,f ′(x )>0,函数f (x )的增区间为(0,+∞); 当a >0时,f ′(x )=(x +a )(x -a )x ,令f ′(x )>0,因为x >0,所以x +a >0,所以x >a , 所以函数f (x )的单调增区间为(a ,+∞). 综上,当a ≤0时,f (x )的单调增区间为(0,+∞); 当a >0时,f (x )的单调增区间为(a ,+∞).(2)由(1)知,若a ≤0,f (x )在(0,+∞)上为增函数,函数f (x )至多有一个零点,不合题意. 若a >0,当x ∈(0,a )时,f ′(x )<0,f (x )在(0,a )上为减函数; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )在(a ,+∞)上为增函数, 所以f (x )min =f (a )=12a -12a ln a =12a (1-ln a ).要使f (x )有两个零点,则f (x )min =12a (1-ln a )<0,所以a >e. 下面证明:当a >e 时,函数f (x )有两个零点.因为a >e ,所以1∈(0,a ),而f (1)=12>0,所以f (x )在(0,a )上存在唯一零点.方法一 又f (e a )=12e a 2-a ⎝⎛⎭⎫12+ln a =12a (e a -1-2ln a ), 令h (a )=e a -1-2ln a ,a >e ,h ′(a )=e -2a >0,所以h (a )在(e ,+∞)上单调递增, 所以h (a )>h (e)=e 2-3>0,所以f (x )在(a ,+∞)上也存在唯一零点. 综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞). 方法二 先证x ∈(1,+∞)有ln x <x -1, 所以f (x )=12x 2-a ln x >12x 2-ax +a .因为a >e ,所以a +a 2-2a >a >a .因为12(a +a 2-2a )2-a (a +a 2-2a )+a =0.所以f (a +a 2-2a )>0,所以f (x )在(a ,+∞)上也存在唯一零点;综上,当a >e 时,函数f (x )有两个零点.所以当f (x )有两个零点时,实数a 的取值范围为(e ,+∞).思维升华 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.跟踪训练2 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 解 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x(x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下表:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .1.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 解 f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2, 令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.2.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数.解 (1)f ′(x )=-1x 2+e x e =x 2e x-ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞, 画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.3.已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.解 由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数, 则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=24e 2ln e ln 22e-<ln 81-ln 272e 2<0, 所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .4.已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(1)解 f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明 不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1), f (x )在(-∞,1)内单调递减, 所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0. 由于222222(2)e(1)x f x x a x --=-+-,而()22222(2)e (1)0xf x x a x =-+-=, 所以222222(2)e(2)e .x x f x x x --=---设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0.而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.5.(2018·南通模拟)已知函数f (x )=e x -|x -a |,其中a ∈R . (1)若f (x )在R 上单调递增,求实数a 的取值范围;(2)若函数有极大值点x 2和极小值点x 1,且f (x 2)-f (x 1)≥k (x 2-x 1)恒成立,求实数k 的取值范围.解 (1)因为f (x )=e x -|x -a |=⎩⎪⎨⎪⎧e x -x +a ,x ≥a ,e x+x -a ,x <a ,则f ′(x )=⎩⎪⎨⎪⎧e x-1,x ≥a ,e x +1,x <a .因为f (x )在R 上单调递增, 所以f ′(x )≥0恒成立,当x <a 时,f ′(x )=e x +1>1>0恒成立; 当x ≥a 时,要使f ′(x )=e x -1≥0恒成立, 所以f ′(a )≥0,即a ≥0.所以实数a 的取值范围为[0,+∞).(2)由(1)知,当a ≥0时,f (x )在R 上单调递增,不符合题意, 所以有a <0.此时,当x <a 时,f ′(x )=e x +1>1>0,f (x )单调递增; 当x ≥a 时,f ′(x )=e x -1,令f ′(x )=0,得x =0, 所以f ′(x )<0在(a,0)上恒成立,f (x )在(a,0)上单调递减, f ′(x )>0在(0,+∞)上恒成立,f (x )在(0,+∞)上单调递增. 所以f (x )极大值=f (a )=e a ,f (x )极小值=f (0)=1+a ,即a <0符合题意. 由f (x 2)-f (x 1)≥k (x 2-x 1)恒成立, 可得e a -a -1≥ka 对任意a <0恒成立.设g (a )=e a -(k +1)a -1,求导得g ′(a )=e a -(k +1).①当k ≤-1时,g ′(a )>0恒成立,g (a )在(-∞,0)上单调递增,又因为g (-1)=1e+k <0,与g (a )≥0矛盾. ②当k ≥0时,g ′(a )<0在(-∞,0)上恒成立,g (a )在(-∞,0)上单调递减, 又因为当a →0时,g (a )→0,所以此时g (a )>0恒成立,符合题意. ③当-1<k <0时,g ′(a )>0在(-∞,0)上的解集为(ln(k +1),0), 即g (a )在(ln(k +1),0)上单调递增,又因为当a →0时,g (a )→0,所以g (ln(k +1))<0,不合题意.综上,实数k 的取值范围为[0,+∞).。

高中数学导数题型归纳总结

高中数学导数题型归纳总结

高中数学导数题型归纳总结高中数学中,导数是一个重要的概念,它是微积分的基础。

在考试中,导数题型往往是必考的内容。

为了帮助同学们更好地复习导数,下面对高中数学导数题型进行归纳总结。

1. 求函数的导数:这是最基本的导数题型,要求根据函数的定义求出其导数。

常见的函数包括多项式函数、指数函数、对数函数、三角函数等。

2. 导数的四则运算:利用导数的基本性质,可以进行导数的四则运算。

例如,两个函数的和、差、积或商的导数可以通过分别求出函数的导数,然后利用四则运算的性质计算得到。

3. 链式法则:当函数是复合函数时,可以使用链式法则进行求导。

链式法则的基本思想是将复合函数分解为内层函数和外层函数,并利用导数的链式法则求出导数。

4. 隐函数求导:当一个函数的表达式中包含未知数的隐式关系时,可以利用隐函数求导的方法求出导数。

常见的隐函数求导题型包括求曲线的切线斜率、求极值等。

5. 参数方程求导:当函数由参数表示时,可以通过对参数方程进行求导,然后用参数方程的导数表达式消去参数,得到函数的导数。

6. 反函数求导:如果函数存在反函数,可以利用反函数求导的方法求出导数。

反函数求导的基本思想是将函数的自变量和因变量互换,然后求出反函数的导数。

7. 极限与导数:导数的定义中包含了极限的概念,所以在求导过程中经常需要应用极限的性质。

例如,使用极限的性质求出函数导数的极限,或者利用导数的定义证明极限存在等。

除了上述的题型,还有一些常见的应用题型,如最值问题、曲线的凹凸性、切线和法线方程等。

这些题型往往需要综合运用导数的概念和性质进行解答。

总之,高中数学导数题型的归纳总结包括基本的导数求法、导数的四则运算、链式法则、隐函数求导、参数方程求导、反函数求导以及与极限的关系等。

通过对这些题型的理解和熟练掌握,可以帮助同学们更好地应对高中数学考试中的导数题目。

2020高考北师大版文科数学-高考大题专项(一) 导数的综合应用

2020高考北师大版文科数学-高考大题专项(一) 导数的综合应用

高考大题专项(一)导数的综合应用突破1导数与函数的单调性1.已知函数f(x)=13x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)略.当a=3时,f(x)=13x3-3x2-3x-3,f'(x)=x2-6x-3.令f'(x)=0,解得x=3-2√3或x=3+2√3.当x∈(-∞,3-2√3)∪(3+2√3,+∞)时,f'(x)>0;当x∈(3-2√3,3+2√3)时,f'(x)<0.故f(x)在(-∞,3-2√3),(3+2√3,+∞)上是增加的,在(3-2√3,3+2√3)上是减少的.2.已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)略.当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0.设函数g(x)=(x2+1)e-x-1,则g'(x)=-(x2-2x+1)e-x=-(x-1)2e-x.当x≠1时,g'(x)<0,所以g(x)在(0,+∞)上是减少的.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1.3.已知函数f(x)=1x-x+a ln x.(1)讨论f(x)的单调性;(2)略.f(x)的定义域为(0,+∞),f'(x)=-12-1+a=-x2-ax+12.①若a≤2,则f'(x)≤0,当且仅当a=2,x=1时f'(x)=0,所以f(x)在(0,+∞)上是减少的.②若a>2,令f'(x)=0得,x=a-√a 2-42或x=a+√a2-42.当x∈(0,a-√a2-42)∪a+√a2-42,+∞时,f'(x)<0;当x∈a-√a2-42,a+√a2-42时,f'(x)>0.所以f(x)在(0,a-√a2-42),(a+√a2-42,+∞)上是减少的,在(a-√a2-42,a+√a2-42)上是增加的.4.(2019山东潍坊三模,21)已知函数f (x )=x 2+a ln x-2x (a ∈R ). (1)求f (x )的递增区间; (2)略.函数f (x )的定义域为(0,+∞),f'(x )=2x+ax -2=2x 2-2x+a x, 令2x 2-2x+a=0,Δ=4-8a=4(1-2a ),若a ≥12,则Δ≤0,f'(x )≥0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上是增加的; 若a<12,则Δ>0,方程2x 2-2x+a=0,两根为x 1=1-√1-2a 2,x 2=1+√1-2a2, 当a ≤0时,x 2>0,x ∈(x 2,+∞),f'(x )>0,f (x )递增;当0<a<12时,x 1>0,x 2>0,x ∈(0,x 1),f'(x )>0,f (x )递增,x ∈(x 2,+∞),f'(x )>0,f (x )递增.综上,当a ≥12时,函数f (x )递增区间为(0,+∞),当a ≤0时,函数f (x )递增区间为1+√1-2a2,+∞,当0<a<12时,函数f (x )递增区间为0,1-√1-2a 2,1+√1-2a2,+∞.5.(2018全国3,文21)已知函数f (x )=ax 2+x -1e x .(1)求曲线y=f (x )在点(0,-1)处的切线方程; (2)证明:当a ≥1时,f (x )+e ≥0.(x )=-ax 2+(2a -1)x+2x,f'(0)=2. 因此曲线y=f (x )在(0,-1)处的切线方程是2x-y-1=0.a ≥1时,f (x )+e ≥(x 2+x-1+e x+1)e -x .令g (x )=x 2+x-1+e x+1, 则g'(x )=2x+1+e x+1.当x<-1时,g'(x )<0,g (x )递减;当x>-1时,g'(x )>0,g (x )递增; 所以g (x )≥g (-1)=0. 因此f (x )+e ≥0.6.(2019河南开封一模,21)设函数f (x )=(x-1)e x -k2x 2(其中k ∈R ). (1)求函数f (x )的单调区间; (2)略.函数f (x )的定义域为(-∞,+∞),f'(x )=e x +(x-1)e x -kx=x e x -kx=x (e x -k ),①当k ≤0时,令f'(x )>0,解得x>0,∴f (x )的递减区间是(-∞,0),递增区间是(0,+∞). ②当0<k<1时,令f'(x )>0,解得x<ln k 或x>0,∴f (x )在(-∞,ln k )和(0,+∞)上是增加的,在(ln k ,0)上是减少的.③当k=1时,f'(x )≥0,f (x )在(-∞,+∞)上是增加的. ④当k>1时,令f'(x )>0,解得x<0或x>ln k ,所以f (x )在(-∞,0)和(ln k ,+∞)上是增加的,在(0,ln k )上是减少的. 7.(2019河北衡水同卷联考,21)已知函数f (x )=x 2e ax -1. (1)讨论函数f (x )的单调性; (2)略.函数f (x )的定义域为R .f'(x )=2x e ax +x 2·a e ax =x (ax+2)e ax .当a=0时,f (x )=x 2-1,则f (x )在区间(0,+∞)内是增加的,在区间(-∞,0)内是减少的; 当a>0时,f'(x )=ax x+2ae ax ,令f'(x )>0得x<-2a 或x>0,令f'(x )<0得-2a <x<0,所以f (x )在区间-∞,-2a内是增加的,在区间-2a ,0内是减少的,在区间(0,+∞)内是增加的; 当a<0时,f'(x )=ax x+2ae ax ,令f'(x )>0得0<x<-2a ,令f'(x )<0得x>-2a或x<0,所以f (x )在区间(-∞,0)内是减少的,在区间0,-2a内是增加的,在区间-2a,+∞内是减少的.8.(2019江西新余一中质检一,19)已知函数f (x )=ln (x -a )x . (1)若a=-1,证明:函数f (x )在(0,+∞)上单调递减;(2)若曲线y=f (x )在点(1,f (1))处的切线与直线x-y=0平行,求a 的值; (3)若x>0,证明:ln (x+1)x>xe x -1(其中e 是自然对数的底数).a=-1时,函数f (x )的定义域是(-1,0)∪(0,+∞),所以f'(x )=xx+1-ln (x+1)2,令g (x )=x-ln(x+1),只需证当x>0时,g (x )≤0.又g'(x )=1(x+1)2−1x+1=-x(x+1)2<0在(0,+∞)上恒成立,故g (x )在(0,+∞)上是减少的,所以g (x )<g (0)=-ln 1=0,所以f'(x )<0,故函数f (x )在(0,+∞)上是减少的.,f'(1)=1,且f'(x )=xx -a -ln (x -a )x 2,所以f'(1)=11-a -ln(1-a )=1,即有a1-a-ln(1-a )=0, 令t (a )=a-ln(1-a ),a<1, 则t'(a )=1(1-a )2+11-a >0,故t (a )在(-∞,1)上是增加的,又t (0)=0,故0是t (a )的唯一零点, 即方程a-ln(1-a )=0有唯一实根0,所以a=0.因为xx -1=ln e x x -1=ln (e x -1+1)x -1,故原不等式等价于ln (x+1)>ln (e x -1+1)x -1, 由(1)知,当a=-1时,f (x )=ln (x+1)x在(0,+∞)上是减少的,故要证原不等式成立,只需证明当x>0时,x<e x -1,令h (x )=e x -x-1,则h'(x )=e x -1>0在(0,+∞)上恒成立,故h (x )在(0,+∞)上是增加的, 所以h (x )>h (0)=0,即x<e x -1,故f (x )>f (e x -1),即ln (x+1)x>ln (e x -1+1)e x -1=xe x -1.突破2 利用导数研究函数的极值、最值1.(2019哈尔滨三中模拟)已知函数f (x )=ln x-ax (a ∈R ). (1)当a=12时,求f (x )的极值; (2)略.当a=12时,f (x )=ln x-12x ,函数的定义域为(0,+∞),f'(x )=1x−12=2-x 2x, 令f'(x )=0,得x=2,于是当x 变化时,f'(x ),f (x )的变化情况如下表:故f (x )的极大值为ln 2-1,无极小值.2.(2019河北衡水深州中学测试)讨论函数f (x )=ln x-ax (a ∈R )在定义域内的极值点的个数.(0,+∞),f'(x )=1x-a=1-axx(x>0). 当a ≤0时,f'(x )>0在(0,+∞)上恒成立,故函数f (x )在(0,+∞)上是增加的,此时函数f (x )在定义域上无极值点;当a>0时,若x ∈0,1a,则f'(x )>0,若x ∈1a,+∞,则f'(x )<0,故函数f (x )在x=1a处取极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a>0时,函数f (x )有一个极大值点. 3.(2019陕西咸阳模拟一,21)设函数f (x )=2ln x-x 2+ax+2. (1)当a=3时,求f (x )的单调区间和极值; (2)略.f (x )的定义域为(0,+∞).当a=3时,f (x )=2ln x-x 2+3x+2,所以f'(x )=2x -2x+3=-2x 2+3x+2x,令f'(x )=-2x 2+3x+2x=0,得-2x2+3x+2=0,因为x>0,所以x=2.f(x)与f'(x)在区间(0,+∞)上的变化情况如下:所以f(x)的递增区间为(0,2),递减区间为(2,+∞).f(x)的极大值为2ln 2+4,无极小值.4.已知函数f(x)=(x-a)e x(a∈R).(1)当a=2时,求函数f(x)在x=0处的切线方程;(2)求f(x)在区间[1,2]上的最小值.设切线的斜率为k.因为a=2,所以f(x)=(x-2)e x,f'(x)=e x(x-1).所以f(0)=-2,k=f'(0)=e0(0-1)=-1.所以所求的切线方程为y=-x-2,即x+y+2=0.(2)由题意得f'(x)=e x(x-a+1),令f'(x)=0,可得x=a-1.①若a-1≤1,则a≤2,当x∈[1,2]时,f'(x)≥0,则f(x)在[1,2]上是增加的.所以f(x)min=f(1)=(1-a)e.②若a-1≥2,则a≥3,当x∈[1,2]时,f'(x)≤0,则f(x)在[1,2]上是减少的.所以f(x)min=f(2)=(2-a)e2.③若1<a-1<2,则2<a<3,所以f'(x),f(x)随x的变化情况如下表:所以f(x)的递减区间为[1,a-1],递增区间为[a-1,2].所以f(x)在[1,2]上的最小值为f(a-1)=-e a-1.综上所述:当a≤2时,f(x)min=f(1)=(1-a)e;当a≥3时,f(x)min=f(2)=(2-a)e2;当2<a<3时,f(x)min=f(a-1)=-e a-1.5.(2019湖北八校联考二,21)已知函数f(x)=ln x+ax2+bx.(1)函数f(x)在点(1,f(1))处的切线的方程为2x+y=0,求a,b的值,并求函数f(x)的最大值;(2)略.+2ax+b,因为f(x)=ln x+ax2+bx,所以f'(x)=1x则在点(1,f(1))处的切线的斜率为f'(1)=1+2a+b,由题意可得,1+2a+b=-2,且a+b=-2,解得a=b=-1.所以f'(x )=1x -2x-1=-2x 2-x+1x=-2x 2+x -1x , 由f'(x )=0,可得x=12(x=-1舍去),当0<x<12时,f'(x )>0,f (x )递增;当x>12时,f'(x )<0,f (x )递减, 故当x=12时,f (x )取得极大值,且为最大值,f 12=-ln 2-34.故f (x )的最大值为-ln 2-34.6.(2019广东广雅中学模拟)已知函数f (x )=ax+ln x ,其中a 为常数. (1)当a=-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值.易知f (x )的定义域为(0,+∞),当a=-1时,f (x )=-x+ln x ,f'(x )=-1+1x=1-x x, 令f'(x )=0,得x=1.当0<x<1时,f'(x )>0;当x>1时,f'(x )<0.∴f (x )在(0,1)上是增加的,在(1,+∞)上是减少的. ∴f (x )max =f (1)=-1.∴当a=-1时,函数f (x )的最大值为-1.(2)f'(x )=a+1x,x ∈(0,e],则1x∈1e,+∞.①若a ≥-1e ,则f'(x )≥0,从而f (x )在(0,e]上是增加的,∴f (x )max =f (e)=a e +1≥0,不合题意. ②若a<-1e ,令f'(x )>0得,a+1x >0,又x ∈(0,e],解得0<x<-1a ;令f'(x )<0得,a+1x<0,又x ∈(0,e],解得-1a<x ≤e .从而f (x )在0,-1a上是增加的,在-1a,e 上是减少的,∴f (x )max =f -1a=-1+ln -1a.令-1+ln -1a=-3,得ln -1a =-2,即a=-e 2.∵-e 2<-1e ,∴a=-e 2符合题意.故实数a 的值为-e 2.7.(2019湘赣十四校联考一,21)已知函数f (x )=ln x-mx-n (m ,n ∈R ). (1)若n=1时,函数f (x )有极大值为-2,求m 的值; (2)若对任意实数x>0,都有f (x )≤0,求m+n 的最小值.函数f (x )的定义域为(0,+∞),当n=1时,f (x )=ln x-mx-1,∵函数f (x )有极大值为-2,由f'(x )=1x -m=0,得x=1m>0,∴f (1m )=-ln m-1-1=-2, ∴m=1.经检验m=1满足题意.故m 的值为1. (2)f'(x )=1x -m.①当m<0时,∵x ∈(0,+∞),∴f'(x )>0,∴f (x )在(0,+∞)上是增加的.令x=e n ,则f (e n )=ln e n -m e n -n=-m e n >0,舍去;②当m=0时,∵x ∈(0,+∞),∴f'(x )>0,∴f (x )在(0,+∞)上是增加的,令x=e n+1,则f (e n+1)=ln e n+1-n=1>0,舍去; ③当m>0时,若x ∈0,1m ,则f'(x )>0,若x ∈1m,+∞,则f'(x )<0,∴f (x )在0,1m 上是增加的,在1m,+∞上是减少的.∴f (x )的最大值为f1m=-ln m-1-n ≤0,即n ≥-ln m-1.∴m+n ≥m-ln m-1,设h (m )=m-ln m-1, 令h'(m )=1-1m=0,则m=1.当m ∈(0,1)时,h'(m )<0,∴h (m )在(0,1)上是减少的. 当m ∈(1,+∞)时,h'(m )>0.∴h (m )在(1,+∞)上是增加的. ∴h (m )的最小值为h (1)=0.综上所述,当m=1,n=-1时,m+n 的最小值为0.突破3 导数在不等式中的应用1.(2019湖南三湘名校大联考一,21)已知函数f (x )=x ln x. (1)略;(2)当x ≥1e 时,f (x )≤ax 2-x+a-1,求实数a 的取值范围.由已知得a ≥xlnx+x+1x 2+1,设h (x )=xlnx+x+1x 2+1, 则h'(x )=(1-x )(xlnx+lnx+2)(x 2+1)2.∵y=x ln x+ln x+2是增函数,且x ≥1e ,∴y ≥-1e -1+2>0, ∴当x ∈1e,1时,h'(x )>0;当x ∈(1,+∞)时,h'(x )<0,∴h (x )在x=1处取得最大值,h (1)=1,∴a ≥1.故a 的取值范围为[1,+∞).2.(2018全国1,文21)已知函数f (x )=a e x -ln x-1. (1)设x=2是f (x )的极值点,求a ,并求f (x )的单调区间; (2)证明:当a ≥1e时,f (x )≥0.(x )的定义域为(0,+∞),f'(x )=a e x -1x.由题设知,f'(2)=0,所以a=12e 2. 从而f (x )=12e 2e x -ln x-1,f'(x )=12e 2e x -1x . 当0<x<2时,f'(x )<0;当x>2时,f'(x )>0.所以f (x )在(0,2)上是减少的,在(2,+∞)上是增加的.a ≥1e 时,f (x )≥e xe -ln x-1. 设g (x )=e xe -ln x-1, 则g'(x )=e xe−1x .当0<x<1时,g'(x )<0;当x>1时,g'(x )>0. 所以x=1是g (x )的最小值点. 故当x>0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.3.(2019湖南湘潭一模,21)已知函数f (x )=e x -x 2-ax. (1)略;(2)当x>0时,f (x )≥1-x 恒成立,求实数a 的取值范围.由题意,当x>0时,e x -x 2-ax ≥1-x ,即a ≤e xx -x-1x +1.令h (x )=e x x -x-1x +1(x>0),则h'(x )=e x (x -1)-x 2+1x 2=(x -1)(e x -x -1)x 2. 令φ(x )=e x -x-1(x>0),则φ'(x )=e x -1>0. 当x ∈(0,+∞)时,φ(x )递增,φ(x )>φ(0)=0. 故当x ∈(0,1)时,h'(x )<0,h (x )递减; 当x ∈(1,+∞)时,h'(x )>0,h (x )递增. 所以h (x )min =h (1)=e -1,所以a ≤e -1. 故a 的取值范围为(-∞,e -1].4.(2019安徽合肥一模,21)已知函数f (x )=e x-1-a (x-1)+ln x (a ∈R ,e 是自然对数的底数). (1)略;(2)若对x ∈[1,+∞),都有f (x )≥1成立,求实数a 的取值范围.f'(x )=e x-1+1x-a (x ≥1),令g (x )=f'(x ),g'(x )=e x-1-1x2, 令φ(x )=g'(x ),φ'(x )=e x-1+2x 3>0,∴g'(x )在[1,+∞)上是增加的,g'(x )≥g'(1)=0. ∴f'(x )在[1,+∞]上是增加的,f'(x )≥f'(1)=2-a.当a ≤2时,f'(x )≥0,f (x )在[1,+∞)上是增加的,f (x )≥f (1)=1,满足条件; 当a>2时,f'(1)=2-a<0. 又f'(ln a+1)=e ln a -a+1lna+1=1lna+1>0, ∴存在x 0∈(1,ln a+1),使得f'(x )=0,此时,当x ∈(1,x 0)时,f'(x )<0;当x ∈(x 0,ln a+1)时, f'(x )>0,∴f (x )在(1,x 0)上是减少的,当x ∈(1,x 0)时,都有f (x )<f (1)=1,不符合题意.综上所述,实数a 的取值范围为(-∞,2].5.(2019陕西咸阳一模,21)设函数f (x )=x+1-m e x ,m ∈R . (1)当m=1时,求f (x )的单调区间; (2)求证:当x ∈(0,+∞)时,lne x -1x>x 2.m=1时,f (x )=x+1-e x ,f'(x )=1-e x ,令f'(x )=0,则x=0. 当x<0时,f'(x )>0;当x>0时, f'(x )<0.∴函数f (x )的递增区间是(-∞,0),递减区间是(0,+∞).(1)知,当m=1时,f (x )max =f (0)=0,∴当x ∈(0,+∞)时,x+1-e x <0,即e x >x+1,当x ∈(0,+∞)时,要证ln e x -1x>x 2,只需证e x -1>x e x2, 令F (x )=ex-1-x e x2=e x -x (√e )x-1, F'(x )=e x-(√e )x−12x (√e )x =(√e )x(√e )x-1-x 2=e x 2e x 2-1-x 2,由ex>x+1可得,e x 2>1+x2,故当x ∈(0,+∞)时,F'(x )>0恒成立,即F (x )在(0,+∞)上是增加的,∴F (x )>F (0)=0,即e x -1>x e x2,∴ln e x -1x>x 2.6.已知函数f (x )=-a ln x-e xx+ax ,a ∈R .(1)略;(2)当a=1时,若不等式f (x )+bx-b+1x e x -x ≥0在x ∈(1,+∞)时恒成立,求实数b 的取值范围. 解(2)由题意,当a=1时,f (x )+bx-b+1xe x -x ≥0在x ∈(1,+∞)时恒成立,整理得ln x-b (x-1)e x ≤0在(1,+∞)上恒成立. 令h (x )=ln x-b (x-1)e x ,易知,当b ≤0时,h (x )>0,不合题意,∴b>0.又h'(x )=1x -bx e x ,h'(1)=1-b e .①当b ≥1e 时,h'(1)=1-b e ≤0.又h'(x )=1x -bx e x 在[1,+∞)上是减少的. ∴h'(x )≤h'(1)≤0在[1,+∞)上恒成立,则h (x )在[1,+∞)上是减少的.所以h (x )≤h (1)=0,符合题意.②当0<b<1e 时,h'(1)=1-b e >0,h'(1b )=b-e 1b <01b>1.又h'(x )=1x -bx e x 在[1,+∞)上是减少的,∴存在唯一x 0∈(1,+∞),使得h'(x 0)=0.∴h (x )在(1,x 0)上是增加的,在(x 0,+∞)上是减少的.又h (x )在x=1处连续,h (1)=0,∴h (x )>0在(1,x 0)上恒成立,不合题意.综上所述,实数b 的取值范围为1e ,+∞.7.设函数f (x )=e mx +x 2-mx.(1)求证:f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.(x )=m (e mx -1)+2x.若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f'(x )≤0;当x ∈(0,+∞)时,e mx -1≥0, f'(x )≥0.若m<0,则当x ∈(-∞,0)时,e mx -1>0,f'(x )<0;当x ∈(0,+∞)时,e mx -1<0,f'(x )>0. 所以f (x )在(-∞,0)上是减少的,在(0,+∞)上是增加的.(1)知,对任意的m ,f (x )在[-1,0]上是减少的,在[0,1]上是增加的,故f (x )在x=0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是{f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即{e m -m ≤e -1,e -m +m ≤e -1.设函数g (t )=e t -t-e +1,则g'(t )=e t -1.当t<0时,g'(t )<0;当t>0时,g'(t )>0.故g (t )在(-∞,0)上是减少的,在(0,+∞)上是增加的. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0, g (-m )≤0,即{e m -m ≤e -1,e -m +m ≤e -1.当m>1时,由g (t )的单调性知,g (m )>0,即e m -m>e -1. 当m<-1时,g (-m )>0, 即e -m +m>e -1.综上,m 的取值范围是[-1,1].8.(2019山西太原二模,21)已知x 1,x 2(x 1<x 2)是函数f (x )=e x +ln(x+1)-ax (a ∈R )的两个极值点. (1)求a 的取值范围; (2)求证:f (x 2)-f (x 1)<2ln a.f'(x )=e x +1x+1-a ,x>-1,令g (x )=e x +1x+1-a ,x>-1,则 g'(x )=e x -1(x+1)2,令h (x )=e x -1(x+1)2,x>-1,则h'(x )=e x +2(x+1)3>0,∴h (x )在(-1,+∞)上是增加的,且h (0)=0.当x ∈(-1,0)时,g'(x )=h (x )<0,g (x )是减少的, 当x ∈(0,+∞)时,g'(x )=h (x )>0,g (x )递增.∴g (x )≥g (0)=2-a.①当a ≤2时,f'(x )=g (x )>g (0)=2-a ≥0.f (x )在(-1,+∞)上是增加的,此时无极值;②当a>2时,∵g 1a-1=e 1a -1>0,g (0)=2-a<0,∴存在x 1∈1a-1,0,g (x 1)=0,当x ∈(-1,x 1)时,f'(x )=g (x )>0,f (x )递增;当x ∈(x 1,0)时,f'(x )=g (x )<0,f (x )递减,∴x=x 1是f (x )的极大值点.∵g (ln a )=11+lna >0,g (0)=2-a<0,∴存在x 2∈(0,ln a ),g (x 2)=0,当x ∈(0,x 2)时,f'(x )=g (x )<0,f (x )递减;当x ∈(x 2,+∞)时,f'(x )=g (x )>0,f (x )递增,∴x=x 2是f (x )的极小值点.综上所述,a 的取值范围为(2,+∞).(1)得a ∈(2,+∞),1a -1<x 1<0<x 2<ln a ,且g (x 1)=g (x 2)=0,∴x 2-x 1>0,1a <x 1+1<1,1<x 2+1<1+ln a ,e x 2−e x 1=x 2-x1(x 1+1)(x 2+1), ∴1(x 1+1)(x 2+1)-a<0,1<x 2+1x 1+1<a (1+ln a )<a 2,∴f (x 2)-f (x 1)=e x 2−e x 1+ln x 2+1x 1+1-a (x 2-x 1)=(x 2-x 1)1(x 1+1)(x 2+1)-a+lnx 2+1x 1+1<ln a 2=2ln a. 突破4 导数与函数的零点1.(2018全国2,文21)已知函数f (x )=13x 3-a (x 2+x+1). (1)略;(2)证明:f (x )只有一个零点.x 2+x+1>0,所以f (x )=0等价于x 3x 2+x+1-3a=0.设g (x )=x 3x 2+x+1-3a ,则g'(x )=x 2(x 2+2x+3)(x 2+x+1)2≥0,仅当x=0时g'(x )=0,所以g (x )在(-∞,+∞)递增,故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a-1)=-6a 2+2a-13=-6(a -16)2−16<0,f (3a+1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.2.(2019河北唐山三模,21)已知函数f (x )=x ln x-a (x 2-x )+1,函数g (x )=f'(x ). (1)若a=1,求f (x )的极大值;(2)当0<x<1时,g (x )有两个零点,求a 的取值范围.f (x )=x ln x-x 2+x+1(x>0),g (x )=f'(x )=ln x-2x+2,g'(x )=1x -2=1-2xx ,当x ∈0,12时,g'(x )>0,g (x )递增; 当x ∈12,+∞时,g'(x )<0,g (x )递减.又g (1)=f'(1)=0,则当x ∈12,1时,f'(x )>0,f (x )递增;当x ∈(1,+∞)时,f'(x )<0,f (x )递减. 故当x=1时,f (x )取得极大值f (1)=1. (2)g (x )=f'(x )=ln x+1-2ax+a ,g'(x )=1x -2a=1-2axx ,①若a ≤0,则g'(x )>0,g (x )递增,至多有一个零点,不合题意. ②若a>0,则当x ∈0,12a 时,g'(x )>0,g (x )递增; 当x ∈12a,+∞时,g'(x )<0,g (x )递减.则g12a ≥g 12=ln 12+1=ln e 2>0.不妨设g (x 1)=g (x 2),x 1<x 2,则0<x 1<12a <x 2<1.一方面,需要g (1)<0,得a>1.另一方面,由(1)得,当x>1时,ln x<x-1<x ,则x<e x , 进而,有2a<e 2a ,则e -2a <12a ,且g (e -2a )=-2a e -2a +1-a<0, 故存在x 1,使得0<e -2a <x 1<12a .综上,a 的取值范围是(1,+∞). 3.(2019河南开封一模,21)已知函数f (x )=ax 2+bx+1x.(1)略;(2)若f (1)=1,且方程f (x )=1在区间(0,1)内有解,求实数a 的取值范围.由f (1)=1得b=e -1-a ,由f (x )=1得e x =ax 2+bx+1,设g (x )=e x -ax 2-bx-1,则g (x )在(0,1)内有零点,设x 0为g (x )在(0,1)内的一个零点, 由g (0)=g (1)=0知g (x )在(0,x 0)和(x 0,1)上不单调.设h (x )=g'(x ),则h (x )在(0,x 0)和(x 0,1)上均存在零点,即h (x )在(0,1)上至少有两个零点. g'(x )=e x -2ax-b ,h'(x )=e x -2a ,当a ≤12时,h'(x )>0,h (x )在(0,1)上是增加的,h (x )不可能有两个及以上零点, 当a ≥e 2时,h'(x )<0,h (x )在(0,1)上是减少的,h (x )不可能有两个及以上零点, 当12<a<e 2时,令h'(x )=0得x=ln(2a )∈(0,1),∴h (x )在(0,ln(2a ))上是减少的,在(ln(2a ),1)上是增加的,h (x )在(0,1)上存在最小值h (ln(2a )),若h (x )有两个零点,则有h (ln(2a ))<0,h (0)>0,h (1)>0, h (ln(2a ))=3a-2a ln(2a )+1-e12<a<e 2,设φ(x )=32x-x ln x+1-e(1<x<e),则φ'(x )=12-ln x ,令φ'(x )=0,得x=√e , 当1<x<√e 时,φ'(x )>0,φ(x )递增;当√e <x<e 时,φ'(x )<0,φ(x )递减.∴φmax (x )=φ(√e )=√e +1-e <0, ∴h (ln(2a ))<0恒成立.由h (0)=1-b=a-e +2>0,h (1)=e -2a-b>0,得e -2<a<1.综上,a 的取值范围为(e -2,1). 4.(2019安徽安庆二模,21)已知函数f (x )=ax-ln x (a ∈R ). (1)讨论f (x )的单调性;(2)若f (x )=0有两个相异的正实数根x 1,x 2,求证f'(x 1)+f'(x 2)<0.(x )=ax-ln x 的定义域为(0,+∞),所以f'(x )=a-1x=ax -1x. ①当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上为减少的. ②当a>0时,由f'(x )>0,得x>1a ,所以f (x )在0,1a 上为减少的,在1a ,+∞上为增加的.1:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2.由f (x 1)=f (x 2)得a=ln x 1-ln x2x 1-x 2,所以只要证2ln x 1-ln x 2x 1-x2<1x 1+1x 2.不妨设x 1>x 2>0,则只要证2ln x1x 2<(x 1-x 2)1x 1+1x 2⇔2ln x1x 2<x1x 2−x2x 1.令x 1x 2=t>1,则只要证明当t>1时,2ln t<t-1t 成立.设g (t )=2ln t-t-1t(t>1),则g'(t )=2t -1-1t 2=-(t -1)2t2<0,所以函数g (t )在(1,+∞)上是减少的,所以g (t )<g (1)=0,即2ln t<t-1t成立. 由上分析可知,f'(x 1)+f'(x 2)<0成立. 解法2:要证f'(x 1)+f'(x 2)<0,即证2a-1x 1−1x 2<0,即2a<1x 1+1x 2. 令t 1=1x 1,t 2=1x 2,下证t 1+t 2>2a.由f (x 1)=f (x 2),得ax 1-ln x 1=ax 2-ln x 2,即at 1+ln t 1=a t 2+ln t 2. 令g (t )=at +ln t ,g (t 1)=g (t 2),g'(t )=-at 2+1t =t -a t2.由g'(t )>0⇒t>a ,g'(t )<0⇒a>t>0,则g (t )在(0,a )上为减少的,在(a ,+∞)上为增加的. 设t 1∈(0,a ),t 2∈(a ,+∞),令h (t )=g (t )-g (2a-t )=at +ln t-a2a -t -ln(2a-t ). h'(t )=t -a t 2+a -t(2a -t )2 =4a (t -a )(a -t )t 2(2a -t )2,t 1∈(0,a ),h'(t 1)<0.所以h (t )在(0,a )上为减少的,h (t 1)>h (a )=0,即g (t 1)>g (2a-t 1),g (t 2)>g (2a-t 1). 又因为g (t )在(a ,+∞)上为增加的,所以t 2>2a-t 1, 即t 1+t 2>2a. 故f'(x 1)+f'(x 2)<0.5.(2019河北石家庄二模,20)已知函数f (x )=1+lnxx . (1)略;(2)当x>1时,方程f (x )=a (x-1)+1x(a>0)有唯一零点,求a 的取值范围.当x>1时,方程f (x )=a (x-1)+1x ,即ln x-a (x 2-x )=0,令h (x )=ln x-a (x 2-x ),有h (1)=0,h'(x )=-2ax 2+ax+1, 令r (x )=-2ax 2+ax+1,x ∈(1,+∞),因为a>0,所以r (x )在(1,+∞)上是减少的,①当r (1)=1-a ≤0即a ≥1时,r (x )<0,即h (x )在(1,+∞)上是减少的,所以h (x )<h (1)=0,方程f (x )=a (x-1)+1x 无实根.②当r (1)>0即0<a<1时,存在x 0∈(1,+∞),使得x ∈(1,x 0)时,r (x )>0,即h (x )递增;x ∈(x 0,+∞)时,r (x )<0,即h (x )递减;因此h (x )max =h (x 0)>h (1)=0,取x=1+1a,则h 1+1a=ln 1+1a-a (1+1a )2+a 1+1a=ln 1+1a-1+1a,令t=1+1a (t>1),h (t )=ln t-t ,则h'(t )=1t -1,t>1,所以h'(t )<0, 即h (t )在t>1时递减,所以h (t )<h (1)=0.故存在x 1∈x 0,1+1a,使得h (x 1)=0.综上,a 的取值范围为0<a<1.6.(2019山西运城二模,21)已知函数f (x )=x e x -a (ln x+x ),a ∈R . (1)当a=e 时,求f (x )的单调区间;(2)若f (x )有两个零点,求实数a 的取值范围.f (x )定义域为(0,+∞),当a=e 时,f'(x )=(1+x )(xe x -e )x.∴0<x<1时,f'(x )<0,x>1时,f'(x )>0.∴f (x )在(0,1)上为减少的;在(1,+∞)上为增加的.(2)记t=ln x+x ,则t=ln x+x 在(0,+∞)上为增加的,且t ∈R .∴f (x )=x e x -a (ln x+x )=e t -at=g (t ).∴f (x )在(0,+∞)上有两个零点等价于g (t )=e t -at 在t ∈R 上有两个零点. ①当a=0时,g (t )=e t 在R 上是增加的,且g (t )>0,故g (t )无零点; ②当a<0时,g'(t )=e t -a>0恒成立,∴g (t )在R 上是增加的.又g (0)=1>0,g1a=e 1a -1<0,故g (t )在R 上只有一个零点;③当a>0时,由g'(t )=e t -a=0可知g (t )在t=ln a 时有唯一的一个极小值g (ln a )=a (1-ln a ),若0<a<e,g (t ) 极小值=a (1-ln a )>0,g (t )无零点; 若a=e,g (t )极小值=0,g (t )只有一个零点; 若a>e 时,g (t )极小值=a (1-ln a )<0,而g (0)=1>0,由于y=lnxx 在(e,+∞)上为减少的,可知当a>e 时,e a >a a >a 2, 从而g (a )=e a -a 2>0.∴g (t )在(0,ln a )和(ln a ,+∞)上各有一个零点.综上可知,当a>e 时f (x )有两个点,即所求a 的取值范围是(e,+∞). 7.(2016全国1,理21)已知函数f (x )=(x-2)e x +a (x-1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.(x )=(x-1)e x +2a (x-1)=(x-1)(e x +2a ).①设a=0,则f (x )=(x-2)e x ,f (x )只有一个零点.②设a>0,则当x ∈(-∞,1)时,f'(x )<0;当x ∈(1,+∞)时,f'(x )>0,所以f (x )在(-∞,1)上是减少的,在(1,+∞)上是增加的. 又f (1)=-e,f (2)=a ,取b 满足b<0且b<ln a 2, 则f (b )>a2(b-2)+a (b-1)2=a (b 2-32b)>0, 故f (x )存在两个零点.③设a<0,由f'(x )=0得x=1或x=ln(-2a ).若a ≥-e 2,则ln(-2a )≤1, 故当x ∈(1,+∞)时,f'(x )>0, 因此f (x )在(1,+∞)上是增加的.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a<-e 2,则ln(-2a )>1, 故当x ∈(1,ln(-2a ))时,f'(x )<0; 当x ∈(ln(-2a ),+∞)时,f'(x )>0. 因此f (x )在(1,ln(-2a ))上是减少的, 在(ln(-2a ),+∞)上是增加的.又当x ≤1时f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),f (x )在(-∞,1)上是减少的,所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0.由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x 2-(x 2-2)e x 2. 设g (x )=-x e 2-x -(x-2)e x , 则g'(x )=(x-1)(e 2-x -e x ). 所以当x>1时,g'(x )<0, 而g (1)=0, 故当x>1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.8.(2019天津,20)设函数f (x )=ln x-a (x-1)e x ,其中a ∈R . (1)若a ≤0,讨论f (x )的单调性; (2)若0<a<1e ,①证明f (x )恰有两个零点;②设x 0为f (x )的极值点,x 1为f (x )的零点,且x 1>x 0,证明3x 0-x 1>2.,f (x )的定义域为(0,+∞),且f'(x )=1-[a e x +a (x-1)e x ]=1-ax 2e x.因此当a ≤0时,1-ax 2e x >0,从而f'(x )>0, 所以f (x )在(0,+∞)内是增加的.(2)证明①由(1)知,f'(x )=1-ax 2e xx .令g (x )=1-ax 2e x ,由0<a<1e ,可知g (x )在(0,+∞)内是减少的,又g (1)=1-a e >0,且g ln 1a=1-a ln1a 21a=1-ln1a2<0, 故g (x )=0在(0,+∞)内有唯一解,从而f'(x )=0在(0,+∞)内有唯一解,不妨设为x 0,则1<x 0<ln 1a . 当x ∈(0,x 0)时,f'(x )=g (x )x >g (x 0)x =0, 所以f (x )在(0,x 0)内是增加的; 当x ∈(x 0,+∞)时,f'(x )=g (x )x <g (x 0)x=0,所以f (x )在(x 0,+∞)内是减少的,因此x 0是f (x )的唯一极值点.令h (x )=ln x-x+1,则当x>1时,h'(x )=1x-1<0,故h (x )在(1,+∞)内是减少的,从而当x>1时,h (x )<h (1)=0,所以ln x<x-1.从而f ln1a=ln ln1a-a ln 1a-1e ln 1a =ln ln1a-ln 1a +1=h ln1a<0,又因为f (x 0)>f (1)=0,所以f (x )在(x 0,+∞)内有唯一零点.又f (x )在(0,x 0)内有唯一零点1,从而,f (x )在(0,+∞)内恰有两个零点.②由题意,{f '(x 0)=0,f (x 1)=0,即{ax 02e x 0=1,ln x 1=a (x 1-1)e x 1,从而ln x 1=x 1-1x 02e x 1-x 0,即e x 1-x 0=x 02ln x 1x 1-1.因为当x>1时,ln x<x-1,又x 1>x 0>1,故e x 1-x 0<x 02(x 1-1)x 1-1=x 02,两边取对数,得ln e x 1-x 0<ln x 02,于是x 1-x 0<2ln x 0<2(x 0-1),整理得3x 0-x 1>2.。

2020高考数学-导数压轴题型归类总结(解析版)

2020高考数学-导数压轴题型归类总结(解析版)

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

2020高考数学(文科)二轮专题辅导与训练课件:导数的综合应用

2020高考数学(文科)二轮专题辅导与训练课件:导数的综合应用
• (2)结合条件(1),利用零点存在性定理 找出函数在极值点一侧的零点,然后证明 其倒数为函数在极值点另一侧的一个零点 即可.
[证明] (1)f(x)的定义域为(0,+∞). f′(x)=x-x 1+ln x-1=ln x-1x. 因为 y=ln x 在(0,+∞)上单调递增,
y=1x在(0,+∞)上单调递减, 所以 f′(x)在(0,+∞)上单调递增. 又 f′(1)=-1<0,f′(2)=ln 2-12=ln 42-1>0, 故存在唯一 x0∈(1,2),使得 f′(x0)=0. 又当 x<x0 时,f′(x)<0,f(x)单调递减, 当 x>x0 时,f′(x)>0,f(x)单调递增, 因此,f(x)存在唯一的极值点.
=-2x2+(k+x+6)2 x+2k+2.
由(2)知,当 k=2 时,f(x)<g(x)恒成立, 即对于 x>-1,2ln(x+2)-(x+1)2<2(x+1), 不存在满足条件的 x0; 当 k>2 时,对于 x>-1,x+1>0, 此时 2(x+1)<k(x+1). 2ln(x+2)-(x+1)2<2(x+1)<k(x+1), 即 f(x)<g(x)恒成立,不存在满足条件的 x0; 当 k<2 时,令 t(x)=-2x2-(k+6)x-(2k+2), 可知 t(x)与 h′(x)符号相同.
• 3.含有双变量的不等式问题的常见 转化策略
• (1)∀x1∈[a,b],x2∈[c,d],f(x1)> g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c, d]上的最大值. • (2)∃x1∈[a,b],x2∈[c,d],f(x1)> g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c, d]上的最小值. • (3)∀x1∈[a,b],∃x2∈[c,d],f(x1)> g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c, d]上的最小值.

(整理)导数应用的题型与解题方法.

(整理)导数应用的题型与解题方法.

导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。

也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。

整个过程可简记为分解——求导——回代。

熟练以后,可以省略中间过程。

若遇多重复合,可以相应地多次用中间变量。

三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。

2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算

2020年 高考数学(文科)常考基础题、易错题 提分必刷题之 导数的概念及运算

第1讲导数的概念及运算一、填空题1.设y=x2e x,则y′=________.解析y′=2x e x+x2e x=(2x+x2)e x.答案(2x+x2)e x2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)=________.解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.答案-13.曲线y=sin x+e x在点(0,1)处的切线方程是________.解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x -y+1=0.答案2x-y+1=04.(2017·苏州调研)已知曲线y=ln x的切线过原点,则此切线的斜率为________.解析y=ln x的定义域为(0,+∞),且y′=1x,设切点为(x0,ln x0),则y′|x=x0=1x0,切线方程为y-ln x0=1x0(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为1 e.答案1 e5.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.解析因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2.答案1 26.(2017·南师附中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.解析由图形可知:f(3)=1,f′(3)=-13,∵g′(x)=f(x)+xf′(x),∴g′(3)=f(3)+3f′(3)=1-1=0. 答案07.(2017·苏北四市模拟)设曲线y=1+cos xsin x在点⎝⎛⎭⎪⎫π2,1处的切线与直线x-ay+1=0平行,则实数a=________.解析∵y′=-1-cos xsin2x,∴由条件知1a=-1,∴a=-1.答案-18.(2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.解析由y=x+ln x,得y′=1+1x,得曲线在点(1,1)处的切线的斜率为k=y′|x=1=2,所以切线方程为y-1=2(x-1),即y=2x-1.又该切线与y=ax2+(a+2)x+1相切,消去y,得ax2+ax+2=0,∴a≠0且Δ=a2-8a=0,解得a=8.答案8二、解答题9.已知点M是曲线y=13x3-2x2+3x+1上任意一点,曲线在M处的切线为l,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1,所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0.(2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数:①y =sin x ;②y =ln x ;③y =e x ;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k∈Z)时,结论成立;对于②:y′=1x,若有1x1·1x2=-1,即x1x2=-1,∵x1>0,x2>0,∴不存在x1,x2,使得x1x2=-1;对于③:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1.显然不存在这样的x1,x2;对于④:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.答案①12.(2017·合肥模拟改编)点P是曲线x2-y-ln x=0上的任意一点,则点P到直线y=x-2的最小距离为________.解析点P是曲线y=x2-ln x上任意一点,当过点P的切线和直线y=x-2平行时,点P到直线y=x-2的距离最小,直线y=x-2的斜率为1,令y=x2-ln x,得y′=2x-1x=1,解得x=1或x=-12(舍去),故曲线y=x2-ln x上和直线y=x-2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x-2的距离等于2,∴点P到直线y=x-2的最小距离为 2.答案 213.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x(x>0).∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,即x+1x-a=0有解,∴a=x+1x≥2(当且仅当x=1时取等号).答案[2,+∞)14.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。

高考大题专项(一) 导数的综合应用

高考大题专项(一) 导数的综合应用

高考大题专项(一) 导数的综合应用突破1 利用导数研究与不等式有关的问题1.(2020全国1,理21)已知函数f (x )=e x +ax 2-x. (1)当a=1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020山东潍坊二模,20)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性; (2)证明:当a=1时,f (x )+g (x )-(1+ex 2)ln x>e .3.已知函数f (x )=ln x+a x(a ∈R )的图象在点1e ,f (1e)处的切线斜率为-e,其中e 为自然对数的底数.(1)求实数a 的值,并求f (x )的单调区间; (2)证明:xf (x )>x ex .4.(2020广东湛江一模,文21)已知函数f (x )=ln ax-bx+1,g (x )=ax-ln x ,a>1. (1)求函数f (x )的极值;(2)直线y=2x+1为函数f (x )图象的一条切线,若对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立,求实数a 的取值范围.5.(2020山东济宁5月模拟,21)已知两个函数f(x)=e xx ,g(x)=lnxx+1x-1.(1)当t>0时,求f(x)在区间[t,t+1]上的最大值;(2)求证:对任意x∈(0,+∞),不等式f(x)>g(x)都成立.6.(2020湖北武汉二月调考,理21)已知函数f(x)=(x-1)e x-kx2+2.(1)略;(2)若∀x∈[0,+∞),都有f(x)≥1成立,求实数k的取值范围.7.(2020山东济南一模,22)已知函数f(x)=a(e x-x-1)x2,且曲线y=f(x)在(2,f(2))处的切线斜率为1.(1)求实数a的值;(2)证明:当x>0时,f(x)>1;(3)若数列{x n}满足e x n+1=f(x n),且x1=13,证明:2n|e x n-1|<1.8.(2020湖南长郡中学四模,理21)已知函数f(x)=x ln x.(1)若函数g(x)=f'(x)+ax2-(a+2)x(a>0),试研究函数g(x)的极值情况;(2)记函数F(x)=f(x)-xe x 在区间(1,2)上的零点为x0,记m(x)=min f(x),xe x,若m(x)=n(n∈R)在区间(1,+∞)上有两个不等实数解x1,x2(x1<x2),证明:x1+x2>2x0.突破2 利用导数研究与函数零点有关的问题1.(2020山东烟台一模,21)已知函数f (x )=1+lnxx -a (a ∈R ).(1)若f (x )≤0在(0,+∞)上恒成立,求a 的取值范围,并证明:对任意的n ∈N *,都有1+12+13+ (1)>ln(n+1); (2)设g (x )=(x-1)2e x ,讨论方程f (x )=g (x )的实数根的个数.2.(2020北京通州区一模,19)已知函数f (x )=x e x ,g (x )=a (e x -1),a ∈R . (1)当a=1时,求证:f (x )≥g (x );(2)当a>1时,求关于x 的方程f (x )=g (x )的实数根的个数.3.(2020湖南长郡中学四模,文21)已知函数f(x)=2a e2x+2(a+1)e x.(1)略;(2)当a∈(0,+∞)时,函数f(x)的图象与函数y=4e x+x的图象有唯一的交点,求a的取值集合.4.(2020天津和平区一模,20)已知函数f(x)=ax+be x,a,b∈R,且a>0.x,求函数f(x)的解析式;(1)若函数f(x)在x=-1处取得极值1e(2)在(1)的条件下,求函数f(x)的单调区间;的取值范(3)设g(x)=a(x-1)e x-f(x),g'(x)为g(x)的导函数,若存在x0∈(1,+∞),使g(x0)+g'(x0)=0成立,求ba围.x3+2(1-a)x2-8x+8a+7.5.已知函数f(x)=ln x,g(x)=2a3(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)={f(x),f(x)<g(x),g(x),f(x)≥g(x),若函数y=h(x)有三个零点,求实数a的取值集合.参考答案高考大题专项(一)导数的综合应用突破1利用导数研究与不等式有关的问题1.解(1)当a=1时,f(x)=e x+x2-x,f'(x)=e x+2x-1.故当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f(x)≥12x3+1等价于12x3-ax2+x+1e-x≤1.设函数g(x)=(12x3-ax2+x+1)e-x(x≥0),则g'(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12x[x2-(2a+3)x+4a+2]e-x=-12x(x-2a-1)(x-2)e-x.①若2a+1≤0,即a≤-12,则当x∈(0,2)时,g'(x)>0.所以g(x)在(0,2)上单调递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1.③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1.综上,a 的取值范围是[7-e 24,+∞).2.(1)解 函数的定义域为(0,+∞),f'(x )=-1x 2+ax =ax -1x 2,当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上单调递减; 当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a , 所以f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增, 综上可知:当a ≤0时,f (x )在(0,+∞)上单调递减;当a>0时,f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增. (2)证明 因为x>0,所以不等式等价于e x -e x+1>elnxx ,设F (x )=e x -e x+1,F'(x )=e x -e,所以当x ∈(1,+∞)时,F'(x )>0,F (x )单调递增;当x ∈(0,1)时,F'(x )<0,F (x )单调递减,所以F (x )min =F (1)=1.设G (x )=elnxx ,G'(x )=e (1-lnx )x 2, 所以当x ∈(0,e)时,G'(x )>0,G (x )单调递增,当x ∈(e,+∞)时,G'(x )<0,G (x )单调递减,所以G (x )max =G (e)=1.虽然F (x )的最小值等于G (x )的最大值,但1≠e,所以F (x )>G (x ),即e x -e x+1>elnxx ,故原不等式成立.3.(1)解因为函数f(x)的定义域为(0,+∞),f'(x)=1x −ax2,所以f'(1e)=e-a e2=-e,所以a=2e,所以f'(x)=1x−2ex2.令f'(x)=0,得x=2e,当x∈(0,2e)时,f'(x)<0,当x∈(2e,+∞)时,f'(x)>0,所以f(x)在(0,2e)上单调递减,在(2e,+∞)上单调递增.(2)证明设h(x)=xf(x)=x ln x+2e ,由h'(x)=ln x+1=0,得x=1e,所以当x∈(0,1e)时,h'(x)<0;当x∈(1e,+∞)时,h'(x)>0,所以h(x)在(0,1e)上单调递减,在(1e,+∞)上单调递增,所以h(x)min=h(1e )=1e.设t(x)=xe x(x>0),则t'(x)=1-xe x,所以当x∈(0,1)时,t'(x)>0,t(x)单调递增,当x∈(1,+∞)时,t'(x)<0,t(x)单调递减,所以t(x)max=t(1)=1e.综上,在(0,+∞)上恒有h(x)>t(x),即xf(x)>x e x .4.解(1)∵a>1,∴函数f(x)的定义域为(0,+∞).∵f(x)=ln ax-bx+1=ln a+ln x-bx+1,∴f'(x)=1x-b=1-bxx.①当b≤0时,f'(x)>0,f(x)在(0,+∞)上为增函数,无极值;②当b>0时,由f'(x)=0,得x=1b.∵当x∈(0,1b)时,f'(x)>0,f(x)单调递增;当x∈(1b,+∞)时,f'(x)<0,f(x)单调递减,∴f(x)在定义域上有极大值,极大值为f(1b )=ln ab.(2)设直线y=2x+1与函数f(x)图像相切的切点为(x0,y0),则y0=2x0+1.∵f'(x)=1x -b,∴f'(x0)=1x0-b=2,∴x0=1b+2,即bx0=1-2x0.又ln ax 0-bx 0+1=2x 0+1,∴ln ax 0=1,∴ax 0=e . ∴x 0=ea .∴ae =b+2.∵对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立, ∴只需g (x 1)min >f'(x 2)max . ∵g'(x )=a-1x =ax -1x, ∴由g'(x )=0,得x=1a . ∵a>1,∴0<1a <1.∴当x ∈(0,1a )时,g'(x )<0,g (x )单调递减; 当x ∈(1a ,1)时,g'(x )>0,g (x )单调递增.∴g (x )≥g (1a )=1+ln a , 即g (x 1)min =1+ln a.∵f'(x 2)=1x 2-b 在x 2∈[1,2]上单调递减,∴f'(x 2)max =f'(1)=1-b=3-ae .∴1+ln a>3-ae .即lna+a e -2>0.设h (a )=ln a+ae -2,易知h (a )在(1,+∞)上单调递增.又h (e)=0,∴实数a 的取值范围为(e,+∞). 5.(1)解 由f (x )=e x x 得,f'(x )=xe x -e xx 2=e x (x -1)x 2,∴当x<1时,f'(x )<0,当x>1时,f'(x )>0,∴f (x )在区间(-∞,1)上单调递减,在区间(1,+∞)上单调递增.①当t ≥1时,f (x )在区间[t ,t+1]上单调递增,f (x )的最大值为f (t+1)=e t+1t+1.②当0<t<1时,t+1>1,f (x )在区间(t ,1)上单调递减,在区间(1,t+1)上单调递增,∴f (x )的最大值为f (x )max =max{f (t ),f (t+1)}.下面比较f (t )与f (t+1)的大小.f (t )-f (t+1)=e tt−e t+1t+1=[(1-e )t+1]e tt (t+1).∵t>0,1-e <0,∴当0<t ≤1e -1时,f (t )-f (t+1)≥0,故f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当1e -1<t<1时,f (t )-f (t+1)<0,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1.综上可知,当0<t ≤1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当t>1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1. (2)证明 不等式f (x )>g (x )即为e xx>lnx x +1x -1.∵x>0,∴不等式等价于e x >ln x-x+1,令h (x )=e x -(x+1)(x>0),则h'(x )=e x -1>0,∴h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,即e x >x+1,所以,要证e x >ln x-x+1成立,只需证x+1>ln x-x+1成立即可. 即证2x>ln x 在(0,+∞)上成立. 设φ(x )=2x-ln x ,则φ'(x )=2-1x=2x -1x,当0<x<12时,φ'(x )<0,φ(x )单调递减,当x>12时,φ'(x )>0,φ(x )单调递增,∴φ(x )min =φ(12)=1-ln 12=1+ln 2>0,∴φ(x )>0在(0,+∞)上成立,∴对任意x ∈(0,+∞),不等式f (x )>g (x )都成立. 6.解 (1)略(2)f'(x )=x e x -2kx=x (e x -2k ),①当k ≤0时,e x -2k>0,所以,当x<0时,f'(x )<0,当x>0时,f'(x )>0,则f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意; ②当k>0时,令f'(x )=0,得x=0或x=ln 2k ,所以当0<k ≤12时,ln 2k ≤0,在区间(0,+∞)上f'(x )>0,f (x )单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意;当k>12时,ln 2k>0,当x ∈(0,ln 2k )时,f'(x )<0,f (x )在区间(0,ln 2k )上单调递减, 所以f (ln 2k )<f (0)=1,不满足对任意的x ∈[0,+∞),f (x )≥1恒成立, 综上,k 的取值范围是(-∞,12].7.(1)解 f'(x )=a [(x -2)e x +x+2)]x 3,因为f'(2)=a2=1,所以a=2.(2)证明 要证f (x )>1,只需证h (x )=e x -12x 2-x-1>0.h'(x )=e x -x-1,令c (x )=e x -x-1,则c'(x )=e x -1.因为当x>0时,c'(x )>0,所以h'(x )=e x -x-1在(0,+∞)上单调递增,所以h'(x)=e x-x-1>h'(0)=0.所以h(x)=e x-12x2-x-1在(0,+∞)上单调递增,所以h(x)=e x-12x2-x-1>h(0)=0成立.所以当x>0时,f(x)>1.(3)证明(方法1)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0,φ'(x)=12x2+x-2e x+x+2,令α(x)=12x2+x-2e x+x+2,则α'(x)=12x2+2x-1e x+1,令β(x)=12x2+2x-1e x+1,则β'(x)=12x2+3x+1e x>0,所以β(x)在区间(0,+∞)上单调递增,故β(x)=12x2+2x-1e x+1>β(0)=0.所以α(x)在区间(0,+∞)上单调递增,故α(x)=12x2+x-2e x+x+2>α(0)=0.所以φ(x)在区间(0,+∞)上单调递增,所以φ(x)=12x2-2e x+12x2+2x+2>φ(0)=0,所以原不等式成立.(方法2)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0.因为φ(x)=12(x2-4)e x+12(x2+4x+4)=12(x+2)[(x-2)e x+(x+2)],设u(x)=(x-2)e x+(x+2),故只需证u(x)>0.u'(x)=(x-1)e x+1,令v(x)=(x-1)e x+1,则v'(x)=x e x>0,所以v(x)在区间(0,+∞)上单调递增,故v(x)=(x-1)e x+1>v(0)=0,所以u(x)在区间(0,+∞)上单调递增,故u(x)=(x-2)e x+(x+2)>u(0)=0,所以原不等式成立.8.(1)解由题意,得f'(x)=ln x+1,故g(x)=ax2-(a+2)x+ln x+1,故g'(x)=2ax-(a+2)+1x=(2x-1)(ax-1)x,x>0,a>0.令g'(x)=0,得x1=12,x2=1a.①当0<a<2时,1a >12,由g'(x)>0,得0<x<12或x>1a;由g'(x)<0,得12<x<1a.所以g(x)在x=12处取极大值g12=-a4-ln 2,在x=1a处取极小值g1a=-1a-ln a.②当a=2时,1a =12,g'(x)≥0恒成立,所以不存在极值.③当a>2时,1a <12,由g'(x)>0,得0<x<1a或x>12;由g'(x)<0,得1a<x<12.所以g(x)在x=1a处取极大值g1a=-1a-ln a,在x=12处取极小值g12=-a4-ln 2.综上,当0<a<2时,g(x)在x=12处取极大值-a4-ln 2,在x=1a处取极小值-1a-ln a;当a=2时,不存在极值;当a>2时,g(x)在x=1a处取极大值-1a-ln a,在x=12处取极小值-a4-ln 2.(2)证明F(x)=x ln x-xe x ,定义域为x∈(0,+∞),F'(x)=1+ln x+x-1e x.当x∈(1,2)时,F'(x)>0,即F(x)在区间(1,2)上单调递增.又因为F(1)=-1e<0,F(2)=2ln 2-2e2>0,且F(x)在区间(1,2)上的图像连续不断,故根据函数零点存在定理,F(x)在区间(1,2)上有且仅有一个零点.所以存在x0∈(1,2),使得F(x0)=f(x0)-x0e x0=0.且当1<x<x0时,f(x)<xe x;当x>x0时,f(x)>xe x.所以m(x)=min f(x),xe x={xlnx,1<x<x0,xe x,x>x0.当1<x<x0时,m(x)=x ln x,由m'(x)=1+ln x>0,得m(x)单调递增;当x>x 0时,m (x )=x e x ,由m'(x )=1-xe x <0,得m (x )单调递减. 若m (x )=n 在区间(1,+∞)上有两个不等实数解x 1,x 2(x 1<x 2), 则x 1∈(1,x 0),x 2∈(x 0,+∞).要证x 1+x 2>2x 0,即证x 2>2x 0-x 1.又因为2x 0-x 1>x 0,而m (x )在区间(x 0,+∞)上单调递减, 所以可证m (x 2)<m (2x 0-x 1).由m (x 1)=m (x 2),即证m (x 1)<m (2x 0-x 1),即x 1ln x 1<2x 0-x 1e 2x 0-x 1. 记h (x )=x ln x-2x 0-xe 2x 0-x,1<x<x 0, 其中h (x 0)=0. 记φ(t )=t e t ,则φ'(t )=1-te t . 当t ∈(0,1)时,φ'(t )>0; 当t ∈(1,+∞)时,φ'(t )<0. 故φ(t )max =1e .而φ(t )>0,故0<φ(t )<1e . 因为2x 0-x>1, 所以-1e <-2x 0-xe 2x 0-x<0. 因此h'(x )=1+ln x+1e2x 0-x −2x 0-x e 2x 0-x>1-1e >0,即h (x )单调递增,故当1<x<x 0时,h (x )<h (x 0)=0, 即x 1ln x 1<2x 0-x 1e 2x 0-x 1, 故x 1+x 2>2x 0,得证.突破2 利用导数研究 与函数零点有关的问题1.(1)证明 由f (x )≤0可得,a ≥1+lnxx(x>0),令h (x )=1+lnx x ,则h'(x )=1x ·x -(1+lnx )x 2=-lnxx 2. 当x ∈(0,1)时,h'(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减,故h (x )在x=1处取得最大值,要使a ≥1+lnxx,只需a ≥h (1)=1,故a 的取值范围为[1,+∞). 显然,当a=1时,有1+lnxx≤1,即不等式ln x<x-1在(1,+∞)上成立,令x=n+1n >1(n ∈N *),则有ln n+1n <n+1n -1=1n ,所以ln 21+ln 32+…+ln n+1n <1+12+13+…+1n , 即1+12+13+…+1n >ln(n+1).(2)解 由f (x )=g (x ),可得1+lnxx -a=(x-1)2e x ,即a=1+lnxx -(x-1)2e x ,令t (x )=1+lnxx -(x-1)2e x , 则t'(x )=-lnx x 2-(x 2-1)e x ,当x ∈(0,1)时,t'(x )>0,t (x )单调递增;当x ∈(1,+∞)时,t'(x )<0,t (x )单调递减,故t (x )在x=1处取得最大值t (1)=1,又当x →0时,t (x )→-∞,当x →+∞时,t (x )→-∞,所以,当a=1时,方程f (x )=g (x )有一个实数根;当a<1时,方程f (x )=g (x )有两个不同的实数根; 当a>1时,方程f (x )=g (x )没有实数根. 2.(1)证明 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a=1时,F (x )=x e x -e x +1,所以F'(x )=x e x . 所以当x ∈(-∞,0)时,F'(x )<0; 当x ∈(0,+∞)时,F'(x )>0.所以F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 所以当x=0时,F (x )取得最小值F (0)=0. 所以F (x )≥0,即f (x )≥g (x ).(2)解 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a>1时,F'(x )=(x-a+1)e x ,令F'(x )>0,即(x-a+1)e x >0,解得x>a-1; 令F'(x )<0,即(x-a+1)e x <0,解得x<a-1.所以F (x )在(-∞,a-1)上单调递减,在(a-1,+∞)上单调递增.所以当x=a-1时,F (x )取得最小值,即F (a-1)=a-e a-1. 令h (a )=a-e a-1,则h'(a )=1-e a-1.因为a>1,所以h'(a )<0.所以h (a )在(1,+∞)上单调递减. 所以h (a )<h (1)=0,所以F (a-1)<0.又因为F (a )=a>0,所以F (x )在区间(a-1,a )上存在一个零点. 所以在[a-1,+∞)上存在唯一的零点.又因为F (x )在区间(-∞,a-1)上单调递减,且F (0)=0, 所以F (x )在区间(-∞,a-1)上存在唯一的零点0.所以函数F (x )有且仅有两个零点,即方程f (x )=g (x )有两个实数根.3.解 (1)略.(2)设t=e x ,则f (t )=2at 2+2(a+1)t 的图像与y=4t+ln t 的图像只有一个交点,其中t>0,则2at 2+2(a+1)t=4t+ln t 只有一个实数解,即2a=2t+lntt 2+t只有一个实数解. 设g (t )=2t+lnt t 2+t,则g'(t )=-2t 2+t -2tlnt+1-lnt(t 2+t )2,g'(1)=0.令h (t )=-2t 2+t-2t ln t+1-ln t , 则h'(t )=-4t-1φ-2ln t-1.设y=1t +2ln t ,令y'=-1t 2+2t =2t -1t 2=0,解得t=12,则y ,y'随t 的变化如表所示0,1212,+∞y' - 0+则当t=12时,y=1t +2ln t 取最小值为2-2ln 2=2×(1-ln 2)>0. 所以-1t -2ln t<0, 即h'(t )=-4t-1t -2ln t-1<0.所以h (t )在(0,+∞)上单调递减. 因此g'(t )=0只有一个根,即t=1. 当t ∈(0,1)时,g'(t )>0,g (t )单调递增; 当t ∈(1,+∞)时,g'(t )<0,g (t )单调递减. 所以,当t=1时,g (t )有最大值为g (1)=1.由题意知,y=2a 与g (t )图像只有一个交点,而a ∈(0,+∞), 所以2a=1,即a=12,所以a 的取值集合为12.4.解 (1)函数f (x )的定义域为(-∞,0)∪(0,+∞).f'(x )=ax 2+bx -b x 2e x,由题知{f '(-1)=0,f (-1)=1e ,即{(a -2b )e -1=0,(-a+b )-1e -1=1e ,解得{a =2,b =1,所以函数f (x )=2x+1x e x (x ≠0). (2)f'(x )=2x 2+x -1x 2e x =(x+1)(2x -1)x 2e x. 令f'(x )>0得x<-1或x>12, 令f'(x )<0得-1<x<0或0<x<12.所以函数f (x )的单调递增区间是(-∞,-1),12,+∞, 单调递减区间是(-1,0),0,12.(3)根据题意易得g (x )=ax-b x -2a e x (a>0), 所以g'(x )=bx 2+ax-bx -a e x .由g (x )+g'(x )=0,得ax-bx -2a e x +bx 2+ax-bx -a e x =0.整理,得2ax 3-3ax 2-2bx+b=0.存在x 0∈(1,+∞),使g (x 0)+g'(x 0)=0成立,等价于存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立.设u (x )=2ax 3-3ax 2-2bx+b (x>1),则u'(x )=6ax 2-6ax-2b=6ax (x-1)-2b>-2b. 当b ≤0时,u'(x )>0,此时u (x )在(1,+∞)上单调递增, 因此u (x )>u (1)=-a-b.因为存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立, 所以只要-a-b<0即可,此时-1<ba ≤0. 当b>0时,令u (x )=b , 解得x 1=3a+√9a 2+16ab4a>3a+√9a 24a=32>1,x 2=3a -√9a 2+16ab 4a(舍去),x 3=0(舍去),得u (x 1)=b>0.又因为u (1)=-a-b<0,于是u (x )在(1,x 1)上必有零点,即存在x 0>1,使2a x 03-3a x 02-2bx 0+b=0成立,此时ba >0.综上,ba 的取值范围为(-1,+∞). 5.解 (1)因为g (x )=2a3x 3+2(1-a )x 2-8x+8a+7,所以g'(x )=2ax 2+4(1-a )x-8,所以g'(2)=0. 所以a=0,即g (x )=2x 2-8x+7. g (0)=7,g (3)=1,g (2)=-1.所以g (x )在[0,3]上的值域为[-1,7].(2)①当a=0时,g (x )=2x 2-8x+7,由g (x )=0,得x=2±√22∈(1,+∞),此时函数y=h (x )有三个零点,符合题意.②当a>0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x=2. 当x ∈(0,2)时,g'(x )<0; 当x ∈(2,+∞)时,g'(x )>0.若函数y=h (x )有三个零点,则需满足g (1)>0且g (2)<0,解得0<a<316.③当a<0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x 1=2,x 2=-2a .(ⅰ)当-2a <2,即a<-1时,因为g (x )极大值=g (2)=163a-1<0,此时函数y=h (x )至多有一个零点,不符合题意.(ⅱ)当-2a =2,即a=-1时,因为g'(x )≤0,此时函数y=h (x )至多有两个零点,不符合题意. (ⅲ)当-2a >2,即-1<a<0时,若g (1)<0,函数y=h (x )至多有两个零点,不符合题意; 若g (1)=0,得a=-320;因为g -2a =1a 28a 3+7a 2+8a+83,所以g -2a >0,此时函数y=h (x )有三个零点,符合题意;若g (1)>0,得-320<a<0. 由g -2a =1a 28a 3+7a 2+8a+83.记φ(a)=8a3+7a2+8a+83,则φ'(a)>0.所以φ(a)>φ-320>0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-220∪0,316.。

2020年高考数学(文)二轮复习命题考点串讲系列-专题04 导数及其应用(含答案解析)

2020年高考数学(文)二轮复习命题考点串讲系列-专题04 导数及其应用(含答案解析)

2020年高考数学(文)二轮复习命题考点串讲系列-专题04 导数及其应用1、考情解读高考将以导数的几何意义为背景,重点考查运算及数形结合能力,导数的综合运用涉及的知识面广,综合的知识点多,形式灵活,是每年的必考内容,经常以压轴题的形式出现.2、重点知识梳理1.闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.2.若f(x)=ax3+bx2+cx+d有两个极值点,且x1<x2,当a>0时,f(x)的图象如图,x1为极大值点,x2为极小值点,当a<0时,f(x)图象如图,x1为极小值点,x2为极大值点.3.若函数y=f(x)为偶函数,则f′(x)为奇函数;若函数y=f(x)为奇函数,则f′(x)为偶函数.4.y=e x在(0,1)处的切线方程为y=x+1;y=ln x在(1,0)处的切线方程为y=x-1.学#科网5.不等式恒成立问题(1) a>f(x)恒成立⇔a>f(x)max;a≥f(x)恒成立⇔a≥f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;a≤f(x)恒成立⇔a≤f(x)min6.不等式有解问题(1)a >f (x )有解⇔a >f (x )min ;a ≥f (x )有解⇔a ≥f (x )min ; (2)a <f (x )有解⇔a <f (x )max ;a ≤f (x )有解⇔a ≤f (x )max . 7.常用的不等关系(1)e x ≥x +1(x ∈R ) (2)x -1≥ln x (x >0)(3)e x >ln x (x >0) (4)tan x >x >sin x ⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫0,π2(5)||a |-|b ||≤|a +b |≤|a |+|b | 8.常见构造函数 (1)xf ′(x )+f (x )联想[xf (x )]′; (2)xf ′(x )-f (x )联想⎣⎢⎡⎦⎥⎤f x x ′;(3)f ′(x )+f (x )联想[]e x fx ′;(4)f ′(x )-f (x )联想⎣⎢⎡⎦⎥⎤f x e x ′;(5)f ′(x )±k 联想(f (x )±kx )′. 3、高频考点突破考点1 导数的几何意义及应用例1、(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.【答案】1【变式探究】 (1)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.【答案】1【解析】基本法:由题意可得f ′(x )=3ax 2+1, ∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.速解法:∵f (1)=2+a ,由(1,f (1))和(2,7)连线斜率k =5-a1=5-a ,f ′(x )=3ax 2+1,∴5-a=3a+1,∴a=1.(2)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=______.【答案】8【方法技巧】1.求曲线y=f(x)的切线方程的三种类型及方法(1)已知切点P(x0,y0),求y=f(x)过点P的切线方程:可先求出切线的斜率f′(x0),由点斜式写出方程.(2)已知切线的斜率k,求y=f(x)的切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程.(3)已知切线上一点(非切点),求y=f(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),然后由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.2.利用切线(或方程)与其他曲线的关系求参数已知过某点的切线方程(斜率)或其与某线平行、垂直,利用导数的几何意义、切点坐标、切线斜率之间的关系构建方程(组)或函数求解.【变式探究】(1)(2016·高考全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.【答案】y=-2x-1【解析】令x>0,则-x<0,f(-x)=ln x-3x,又f(-x)=f(x),∴f(x)=ln x-3x(x>0),则f′(x)=1x-3(x>0),∴f′(1)=-2,∴y=f(x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.(2)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2 D.3【答案】D【解析】y′=a-1x+1,当x=0时,y′=a-1=2,∴a=3,故选D.(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.【答案】8考点2 利用导数研究函数的单调性例2、【2017课标3,文21】已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 学@科网 【解析】 (1)f (x )的定义域为(0,+∞),()()‘1211221x ax f x ax a x x++=+++=. 若a ≥0,则当x ∈(0,+∞)时, ’0f x >,故f (x )在(0,+∞)单调递增. 若a <0,则当x ∈10,2a-时,’0f x >; 当x ∈12a ∞-+,时, ’0f x <.故f (x )在10,2a -单调递增,在12a∞-+,单调递减.(2)由(1)知,当a <0时,f (x )在12x a=-取得最大值,最大值为111ln 1224f a a a-=---. 所以324fx a ≤--等价于113ln 12244a a a ---≤--,即11ln 1022a a-++≤.设g (x )=ln x -x +1,则’11g x x=-.当x ∈(0,1)时,()0g x '>;当x ∈(1,+∞)时, ()0g x '<.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时, 11ln 1022a a-++≤, 即324fx a≤--.【变式探究】(1)定义在R 上的函数f (x )满足f (1)=1,且对任意x ∈R 都有f ′(x )<12,则不等式f (x 2)>x 2+12的解集为( )A .(1,2)B .(0,1)C .(-1,1)D .(1,+∞)【答案】C【解析】令g (x )=f (x )-12(x +1),∴g ′(x )=f ′(x )-12<0,故g (x )在(-∞,+∞)上单调递减且g (1)=0.令g (x )>0,则x <1,f (x 2)>x 2+12⇔f (x 2)-x 2+12>0⇔g (x 2)>0⇔x 2<1⇔-1<x <1.故选C.(2)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞是增函数,则a 的取值范围是( )A .[-1,0]B .[-1,+∞)C .[0,3]D .[3,+∞)【答案】D 【方法技巧】1.若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可.2.若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解. 【变式探究】已知函数f (x )=x 2+3x -2ln x ,则函数f (x )的单调递减区间为________. 【答案】⎝ ⎛⎦⎥⎤0,12【解析】函数f (x )=x 2+3x -2ln x 的定义域为(0,+∞).f ′(x )=2x +3-2x ,令2x +3-2x <0,即2x 2+3x -2<0,解得x ∈⎝ ⎛⎭⎪⎫-2,12.又x ∈(0,+∞),所以x ∈⎝ ⎛⎭⎪⎫0,12.所以函数f (x )的单调递减区间为⎝ ⎛⎦⎥⎤0,12.考点3 含参数的函数的单调性例3、【2017课标3,文21】已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】 (1)f (x )的定义域为(0,+∞),()()‘1211221x ax f x ax a x x++=+++=.在12a∞-+,单调递减. (2)由(1)知,当a <0时,f (x )在12x a=-取得最大值,最大值为 111ln 1224f a a a-=---. 所以324fx a ≤--等价于113ln 12244a a a ---≤--,即11ln 1022a a-++≤.设g (x )=ln x -x +1,则’11g x x=-.当x ∈(0,1)时, ()0g x '>;当x ∈(1,+∞)时,()0g x '<.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时, 11ln 1022a a -++≤,即324fx a≤--. 【变式探究】(2016·高考全国卷Ⅰ)已知函数f (x )=(x -2)e x +a (x -1)2.(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).(ⅰ)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,f (x )在(1,+∞,,)上单调递增.【方法技巧】1.求函数的单调区间的“三个”方法方法一第1步:确定函数y=f(x)的定义域;第2步:求导函数y′=f′(x);第3步:解不等式f′(x)>0或f′(x)<0,解集在定义域内的部分为单调区间.方法二第1步:确定函数y=f(x)的定义域:第2步:求导函数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;第3步:把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义域分成若干个小区间;第4步:确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.方法三第1步:确定函数y=f(x)的定义域;第2步:求导函数y′=f′(x),并将其化简表示为某些基本初等函数的和、差、积、商.第3步:利用相应基本初等函数的图象与性质,确定f′(x)在某些区间的正、负,进而得到单调区间.2.根据函数y =f (x )在(a ,b )上的单调性,求参数范围的方法(1)若函数y =f (x )在(a ,b )上单调递增;转化为f ′(x )≥0在(a ,b )上恒成立求解. (2)若函数y =f (x )在(a ,b )上单调递减,转化为f ′(x )≤0在(a ,b )上恒成立求解.(3)若函数y =f (x )在(a ,b )上单调,转化为f ′(x )在(a ,b )上不变号,即f ′(x )在(a ,b )上恒正或恒负.(4)若函数y =f (x )在(a ,b )上不单调,转化为f ′(x )=0在(a ,b )上有解. 【变式探究】设f (x )=e x (ln x -a )(e 是自然对数的底数,e =2.71 828…) (1)若y =f (x )在x =1处的切线方程为y =2e x +b ,求a ,b 的值. (2)若函数f (x )在区间⎣⎢⎡⎦⎥⎤1e ,e 上单调递减,求a 的取值范围.x ⎝ ⎛⎭⎪⎫1e ,1 (1,e) g ′(x ) - +g (x )g ⎝ ⎛⎭⎪⎫1e =ln 1e +e =e -1,g (e)=1+1e ,因为e -1>1+1e , 所以g (x )max =g ⎝ ⎛⎭⎪⎫1e =e -1.故a ≥e -1.考点4 利用导数求函数极值例4、【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R .,(I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(I)390x y --=,(2)(II)⑴0a =无极值;⑵0a <极大值为31sin 6a a --,极小值为a -;⑶0a >极大值为a -,极小值为31sin 6a a --.【解析】所以,当0x >时, ()0h x >;当0x <时, ()0h x <.当0a <时,函数()g x 在(),a -∞和()0,+∞上单调递增,在(),0a 上单调递减,函数既有极大值,又有极小值,极大值是()31sin 6g a a a =--,极小值是()0g a =-;当0a =时,函数()g x 在(),-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(),0-∞和(),a +∞上单调递增,在()0,a 上单调递减,函数既有极大值,又有极小值,极大值是()0g a =-,极小值是()31sin 6g a a a =--.【变式探究】(2016·高考山东卷)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R .(1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x . 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减, 所以f (x )在x =1处取得极大值,符合题意. 综上可知,实数a 的取值范围为a >12.【方法规律】1.求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.2.若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. 3.求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.【变式探究】已知函数f (x )=ax-2x -3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线的斜率为1时,求函数f (x )在⎣⎢⎡⎦⎥⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围.x 32 ⎝ ⎛⎭⎪⎫32,2 2 (2,3)3 f ′(x ) - 0 + f (x )1-3ln 2∴min (2)f ′(x )=a +2x 2-3x =ax 2-3x +2x 2(x >0),由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0,也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h 0>0解得0<a <98.故a 的取值范围为⎝ ⎛⎭⎪⎫0,98.考点5 利用导数研究较复杂函数的零点或方程的根例5、【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)2239a b a=+,定义域为(3,)+∞.(2)见解析(3)(]36,. 【解析】列表如下x1(,)x -∞1x()12,x x2x 2(,)x +∞()f x '+0 –0 +()f xZ极大值]极小值Z故()f x 的极值点是12,x x .(3)由(1)知, ()f x 的极值点是12,x x ,且1223x x a +=-, 22212469a b x x -+=.从而()()32321211122211f x f x x ax bx x ax bx +=+++++++()()()()2222121122121212323223333x x x ax b x ax b a x x b x x =++++++++++ 346420279a ab ab -=-+=记()f x , ()f x '所有极值之和为()h a ,因为()f x '的极值为221339a b a a -=-+,所以213()=9h a a a-+, 3a >.因为223()=09h a a a '--<,于是()h a 在(3,)+∞上单调递减.因为7(6)=2h -,于是()(6)h a h ≥,故6a ≤.因此a 的取值范围为(]36,.【变式探究】已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值; (3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根.所以|f (x )|≥1.令g (x )=ln x x +12,则g ′(x )=1-ln x x 2. 当0<x <e 时,g ′(x )>0; 当x >e 时,g ′(x )<0,从而g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减.所以g(x)max=g(e)=1e+12<1,所以,|f(x)|>g(x),即|f(x)|>ln xx+12,所以,方程|f(x)|=ln xx+12没有实数根.【方法规律】1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点的一般思路(1)转化为可用导数研究其函数的图象与x轴(或直线y=k)在该区间上的交点问题;(2)利用导数研究该函数在该区间上的单调性、极值(最值)、端点值等性质,进而画出其图象;(3)结合图象求解.2.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值结构方程根的个数问题的一般方法将问题转化为可用导数研究的某函数的零点问题或用导数能研究其图象的两个函数的交点个数问题求解.3.证明复杂方程在某区间上有且仅有一解的步骤第一步:利用导数证明该函数在该区间上单调.第二步:证明端点值异号.【变式探究】已知函数f(x)=x ln x-k(x-1),k∈R.(1)当k=1时,求函数f(x)的单调区间;(2)若函数y=f(x)在区间(1,+∞)上有1个零点,求实数k的取值范围;(3)是否存在正整数k,使得f(x)+x>0在(1,+∞)上恒成立?若存在,求出正整数k的最大值;若不存在,请说明现由.综上,实数k的取值范围为(1,+∞).(3)假设存在正整数k,使得f(x)+x>0在(1,+∞)上恒成立,由x>1知x-1>0,从而k<x ln x+xx-1在(1,+∞)上恒成立.(*)4、真题感悟(2014-2017年)1.【2017浙江,7】函数y=f (x )的导函数()y f x '=的图像如图所示,则函数y=f (x )的图像可能是【答案】D【解析】原函数先减再增,再减再增,且由增变减时,极值点大于0,因此选D . 2.【2017课标1,文14】曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+【解析】设()y f x =,则()212f x x x-'=,所以()1211f ='-=, 所以曲线21y x x=+在点()1,2处的切线方程为()211y x -=⨯-,即1y x =+. 3.【2017课标1,文21】已知函数()f x =e x (e x ﹣a )﹣a 2x . (1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.4.【2017课标II ,文21】设函数2()(1)x f x x e =-. (1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(Ⅰ)在(,12)-∞-- 和(12,)-++∞单调递减,在(12,12)---+单调递增(Ⅱ)[1,)+∞【解析】(1)f ’(x )=(1-2x -x 2)e x 令f’(x )=0得x =-1- ,x =-1+当x ∈(-∞,-1-)时,f’(x )<0;当x ∈(-1-,-1+)时,f’(x )>0; 当x ∈(-1-,+∞)时,f’(x )<0所以f (x )在(-∞,-1-),(-1+,+∞)单调递减,在(-1-,-1+)单调递增 (2) f (x )=(1+x )(1-x )e x当a ≥1时,设函数h (x )=(1-x )e x ,h ’(x )= -xe x <0(x >0), 因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1当0<a <1时,设函数g (x )=e x -x -1,g ’(x )=e x -1>0(x >0), 所以g (x )在在[0,+∞)单调递增,而g (0)=0,故e x ≥x +1综上,a 的取值范围[1,+∞)5.【2017课标3,文21】已知函数()f x =ln x +ax 2+(2a +1)x . (1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)f (x )的定义域为(0,+∞),()()‘1211221x ax f x ax a x x++=+++=. 若a ≥0,则当x ∈(0,+∞)时,’0f x >,故f (x )在(0,+∞)单调递增. 若a <0,则当x ∈10,2a -时,’0f x >;当x ∈12a ∞-+,时, ’0f x <.故f (x )在10,2a-单调递增,在12a∞-+,单调递减.在(1,+∞)单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时, 11ln 1022a a -++≤,即324fx a≤--. 6.【2017山东,文20】(本小题满分13分)已知函数()3211,32f x x ax a =-∈R .,(I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(I)390x y --=,(2)(II)⑴0a =无极值;⑵0a <极大值为31sin 6a a --,极小值为a -;⑶0a >极大值为a -,极小值为31sin 6a a --.【解析】(Ⅰ)由题意()2f x x ax '=-,所以,当2a =时, ()30f =, ()22f x x x '=-, 所以()33f '=,因此,曲线()y f x =在点()()3,3f 处的切线方程是()33y x =-, 即390x y --=.当(),x a ∈-∞时, 0x a -<, ()0g x '>, ()g x 单调递增; 当(),0x a ∈时, 0x a ->, ()0g x '<, ()g x 单调递减; 当()0,x ∈+∞时, 0x a ->, ()0g x '>, ()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是()31sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是()0g a =-.(2)当0a =时, ()()sin g x x x x -'=,当(),x ∈-∞+∞时, ()0g x '≥, ()g x 单调递增;当0a <时,函数()g x 在(),a -∞和()0,+∞上单调递增,在(),0a 上单调递减,函数既有极大值,又有极小值,极大值是()31sin 6g a a a =--,极小值是()0g a =-;当0a =时,函数()g x 在(),-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(),0-∞和(),a +∞上单调递增,在()0,a 上单调递减,函数既有极大值,又有极小值,极大值是()0g a =-,极小值是()31sin 6g a a a =--.7.【2017北京,文20】已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(Ⅰ)1y =;(Ⅱ)最大值1;最小值2π-.【解析】8.【2017江苏,20】 已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()f x '的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23b a >;(3)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求a 的取值范围.【答案】(1)2239a b a=+,定义域为(3,)+∞.(2)见解析(3)(]36,. 【解析】(1)由()321f x x ax bx =+++,得()22232333a a f x x ax b x b ⎛⎫=++=++- ⎪⎝⎭'.x1(,)x -∞ 1x()12,x x2x 2(,)x +∞()f x '+0 –0 +()f xZ极大值]极小值Z故()f x 的极值点是12,x x .从而3a >,因此2239a b a=+,定义域为(3,)+∞. (2)由(1)知,2a a a a a设23()=9t g t t+,则22223227()=99t g t t t --='. 当36()2t ∈+∞时, ()0g t '>,从而()g t 在36(,)2+∞上单调递增. 因为3a >,所以33a a >,故((33)=3g a g >3a因此2>3b a .1.【2016高考新课标1文数】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a的取值范围是( )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦ 【答案】C【解析】()21cos2cos 03f x x a x '=-+…对x ∈R 恒成立, 故()2212cos 1cos 03x a x --+…,即245cos cos 033a x x -+…恒成立, 即245033t at -++…对[]1,1t ∈-恒成立,构造()24533f t t at =-++,开口向下的二次函数()f t 的最小值的可能值为端点值,故只需保证()()11031103f a f a ……⎧-=-⎪⎪⎨⎪=+⎪⎩,解得1133a -剟.故选C2.【2016高考四川文科】设直线l 1,l 2分别是数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A【解析】设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线3.【2016高考四川文科】已知a 函数3()12f x x x =-的极小值点,则a =( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D【解析】()()()2312322f x x x x '=-=+-,令()0f x '=得2x =-或2x =,易得()f x 在()2,2-上单调递减,在()2,+∞上单调递增,故()f x 的极小值点为2,即2a =,故选D.4. [2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x e x --=-,则曲线()y f x =在(1,2)处的切线方程式__________________.【答案】2y x =【解析】当0x >时,0x -<,则1()x f x e x --=+.又因为()f x 为偶函数,所以1()()x f x f x e x -=-=+,所以1()1x f x e -'=+,则切线斜率为(1)2f '=,所以切线方程为22(1)y x -=-,即2y x =.5.【2016高考新课标1文数】(本小题满分12分)已知函数()()()22e 1x f x x a x =-+-.(I)讨论()f x 的单调性(II)若()f x 有两个零点,求a 的取值范围. 【答案】见解析(II) ()0,+∞【解析】单调递减.③若e2a <-,则()ln 21a ->,故当()()(),1ln 2,x a ∈-∞-+∞U 时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(Ⅱ)(Ⅰ)设0a >,则由(Ⅰ)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()e 12f f a =-=,,取b 满足b <0且ln 2ab <, 则()()()22321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. (Ⅱ)设a=0,则()()2e x f x x =-,所以()f x 只有一个零点.(iii )设a <0,若e2a ≥-,则由(Ⅰ)知,()f x 在()1,+∞单调递增.又当1x ≤时,()f x <0,故()f x 不存在两个零点;若e2a <-,则由(Ⅰ)知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点.综上,a 的取值范围为()0,+∞.6.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 【答案】(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞ 【解析】单调递增,因此()0>g x ;(ii )当2>a 时,令()0'=g x 得22121(1)1,1(1)1=---=-+--x a a x a a 由21>x 和121=x x 得11<x ,故当2(1,)∈x x 时,()0'<g x ,()g x 在2(1,)x 单调递减,因此()0<g x .综上,a 的取值范围是(],2.-∞7.[2016高考新课标Ⅲ文数]设函数()ln 1f x x x =-+. (I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.【答案】(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析.【解析】8.【2016高考北京文数】(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件.【答案】(Ⅰ)y bx c =+;(Ⅱ)320,27c ⎛⎫∈ ⎪⎝⎭;(III )见解析.【解析】(Ⅰ)由()32f x x ax bx c =+++,得()232f x x ax b '=++. 因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+.(Ⅱ)当4a b ==时,()3244f x x x x c =+++, 所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-.()f x 与()f x '在区间(),-∞+∞上的情况如下:x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x ' + 0-+ ()f xZc]3227c - Z综上所述,若函数()f x 有三个不同零点,则必有24120a b =->∆. 故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,()()232442f x x x x x x =++=+只有两个不同零点,所以230a b ->不是()f x 有三个不同零点的充分条件.因此230a b ->是()f x 有三个不同零点的必要而不充分条件. 9.【2016高考山东文数】(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 【答案】(Ⅰ)当0a ≤时,函数()g x 单调递增区间为()0,+∞;当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭.(Ⅱ)12a >.【解析】10.【2016高考天津文数】((本小题满分14分) 设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ;(Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.【答案】(Ⅰ)递减区间为33(,33a a -,递增区间为3(,)3a -∞-,3(,)3a-+∞.(Ⅱ)详见解析(Ⅲ)详见解析【解析】(Ⅰ)解:由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论: (1)当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调递增区间为(,)-∞+∞. (2)当0a >时,令()0f x '=,解得33a x =或33a x =-. 当x 变化时,()f x ',()f x 的变化情况如下表:x 3(,)3a-∞-33a -33(,)33a a -33a3(,)3a+∞ ()f x '+ 0 - 0 +()f x单调递增 极大值单调递减极小值 单调递增所以()f x 的单调递减区间为33(,)a a -,单调递增区间为3(,)a -∞-,3(,)a +∞.种情况讨论:(1)当3a ≥时,3311a a≤-<≤ 知,()f x 在区间[1,1]-上单调递减,max{|(1)|,|(1)|}max{|1|,|1|}M f f a b a b =-=-+---max{|1|,|1|}a b a b =-+--11||4a b =-+>. 综上所述,当0a >时,()g x 在区间[1,1]-上的最大值不小于14. 11.【2016高考浙江文数】(本题满分15分)设函数()f x =311x x++,[0,1]x ∈.证明: (I )()f x 21x x ≥-+; (II )34<()f x 32≤. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【解析】设函数2()ln f x ax a x =--,1()x eg x x e=-,其中q R ∈,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性; (Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立.【答案】(1)当x ∈2a (时,'()f x <0,()f x 单调递减;当x ∈+)2a∞(时,'()f x >0,()f x 单调递增;(2)证明详见解析;(3)a ∈1+)2∞[,.【解析】(Ⅰ)2121()20).ax f x ax x x x -'=-=>( 0a 当≤时, ()f x '<0,()f x 在0+∞(,)内单调递减. 0a >当时,由()f x '=0有2x a=当x ∈10,)2a(时,()f x '<0,()f x 单调递减; 当x ∈1+)2a∞(,时,()f x '>0,()f x 单调递增. (Ⅱ)令()s x =1e x x --,则()s x '=1e 1x --.当12a ≥时,令()h x =()f x -()g x (1x ≥).当1x >时,()h x '=122111112e xax x x x x x x--+->-+-=322221210x x x x x x -+-+>>. 因此,()h x 在区间1+)∞(,单调递增.又因为(1)h =0,所以当1x >时,()h x =()f x -()g x >0,即()f x >()g x 恒成立.综上,a ∈1+)2∞[,.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 【答案】A【解析】函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1), 函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x=+=+-- , 在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A. 【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性; (Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞U ,,.2222)()(r xr x axr x ax x f ++=+=,422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -(Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减. 因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(1,e ⎤⎦上仅有一个零点. 【答案】(I )单调递减区间是(0,)k ,单调递增区间是(,)k +∞;极小值(1ln )()2k k f k -=;(II )证明详见解析.所以,()f x 的单调递减区间是k ,单调递增区间是,)k +∞;()f x 在x k =(1ln )()2k k f k -=. (Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )()2k k f k -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥. 当k e =时,()f x 在区间)e 上单调递减,且()0f e =,所以x e =是()f x 在区间(1,]e 上的唯一零点. 当k e >时,()f x 在区间(0,)e 上单调递减,且1(1)02f =>,()02e kf e -=<, 所以()f x 在区间(1,]e 上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间(1,]e 上仅有一个零点.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+. 证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )e e 12x x x x g x --=+>=,即() 1.g x >(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+- ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧ 于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥, 有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=, 即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.【2015高考山东,文20】设函数. 已知曲线 在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =({},min p q 表示,,p q 中的较小值),求()m x 的最大值.【答案】(I )1a = ;(II) 1k = ;(III) 24e. 【解析】(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln8110,h e e=-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩.'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e.1.(2014·陕西卷) 设函数f (x )=ln x +mx ,m ∈R. (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数; (3)若对任意b >a >0,f (b )-f (a )b -a<1恒成立,求m 的取值范围.【解析】解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2, ∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减; 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增.①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点. (3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立, 得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14⎝ ⎛⎭⎪⎫对m =14,h ′(x )=0仅在x =12时成立,∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.2.(2014·安徽卷) 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.大值.②当0<a<4时,x2<1,由(1)知,f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=-1+4+3a3处取得最大值.又f(0)=1,f(1)=a,所以当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处同时取得最小值;当1<a<4时,f(x)在x=0处取得最小值.3.(2014·北京卷)已知函数f(x)=2x3-3x.(1)求f(x)在区间[-2,1]上的最大值;学科%网(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)x (-∞,0) 0 (0,1) 1 (1,+∞) g′(x) + 0 - 0 +g(x)t +3t +1所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎨⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1). (3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切.4.(2014·福建卷) 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x .【解析】解:方法一:(1)由f(x)=e x-ax,得f′(x)=e x-a.即g′(x)>0.所以g(x)在R上单调递增,又g(0)=1>0,所以当x>0时,g(x)>g(0)>0,即x2<e x.(3)证明:对任意给定的正数c,取x0=1 c,由(2)知,当x>0时,x2<e x.所以当x>x0时,e x>x2>1c x,即x<c ex.因此,对任意给定的正数c,总存在x0,当x∈(x0,+∞)时,恒有x<c e x. 方法二:(1)同方法一.(2)同方法一.(3)证明:令k=1c(k>0),要使不等式x<c ex成立,只要e x>kx成立.而要使e x>kx成立,则只需要x>ln(kx),即x>ln x+ln k成立.①若0<k≤1,则ln k≤0,易知当x>0时,x>ln x≥ln x+ln k成立.即对任意c∈[1,+∞),取x0=0,当x∈(x0,+∞)时,恒有x<c e x.即x <c e x . ②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1.令h ′(x )=0得x =ln 1c.当x >ln 1c 时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c ,则h (x 0)=c e2ln 2c -2ln 2c =2⎝ ⎛⎭⎪⎫2c -ln 2c , 易知2c -ln 2c >0,又h (x )在(x 0,+∞)内单调递增, 所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 5.(2014·广东卷) 曲线y =-5e x +3在点(0,-2)处的切线方程为________. 【答案】5x +y +2=0【解析】∵y ′=-5e x ,∴所求切线斜是k =-5e 0=-5, ∴切线方程是y -(-2)=-5(x -0),即5x +y +2=0.6.(2014·江苏卷) 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【答案】-3【解析】易知y ′=2ax -bx 2.根据题意有⎩⎪⎨⎪⎧-5=4a +b2,4a -b 4=-72,解得⎩⎨⎧a =-1,b =-2,故a +b =-3.7.(2014·江苏卷) 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪⎪⎪nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=22都成立.(i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝ ⎛⎭⎪⎫x +k π2.因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫x +k π2′=cos ⎝ ⎛⎭⎪⎫x +k π2·⎝ ⎛⎭⎪⎫x +k π2′=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎢⎡⎦⎥⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝ ⎛⎭⎪⎫x +n π2对所有的n ∈N *都成立.令x =π4,可得nf n -1⎝ ⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+n π2(n ∈N *),所以⎪⎪⎪⎪⎪⎪nf n -1⎝⎛⎭⎪⎫π4+π4f n ⎝ ⎛⎭⎪⎫π4= (n ∈N *).8.(2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a2x 2-bx (a ≠1),曲线y =f (x )在点(1, f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0.f (x )在⎝ ⎛⎭⎪⎫1,a 1-a 上单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <aa -1.。

2020年高考文科数学高考大题专项一 函数与导数的综合压轴大题

2020年高考文科数学高考大题专项一 函数与导数的综合压轴大题
高考大题专项一 函数与导数的综合压轴大题
考情分析
高考大题专项 一
知识梳理
函数与导数的综合压轴大题
突破1
突破2
从近五年的高考试题来看,对导数在函数中应用的考查常常是一 大一小两个题目,其中解答题的命题特点是:以二次或三次函数、 对数函数、指数函数及分式函数为命题载体,以切线问题、单调性 问题、极值最值问题、恒成立问题、存在性问题、函数零点问题 为设置条件,与参数的范围、不等式的证明,方程根的分布综合成 题,重点考查应用分类讨论思想、函数与方程思想、数形结合思想 及化归与转换思想来分析问题、解决问题的能力.
考情分析
高考大题专项 一
知识梳理
函数与导数的综合压轴大题
突破1
突破2
3.函数不等式的类型与解法
(1)∀x∈D,f(x)≤k⇔f(x)max≤k; (2)∃x∈D,f(x)≤k⇔f(x)min≤k; (3)∀x∈D,f(x)≤g(x)⇔f(x)max≤g(x)min; (4)∃x∈D,f(x)≤g(x)⇔f(x)min≤g(x)max.
高考大题专项 一
函数与导数的综合压轴大题
突破1
突破2
考情分析 知识梳理
1.常见恒成立不等式
(1)ln x<x-1;(2)ex>x+1. 2.构造辅助函数的四种方法 (1)移项法:证明不等式f(x)>g(x)(f(x)<g(x))的问题转化为证明f(x)g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对 数等,把不等式两边变成具有相同结构的式子,根据“相同结构”构造 辅助函数; (3)主元法:对于(或可化为)f(x1,x2)≥A的不等式,可选x1(或x2)为主 元,构造函数f(x,x2)(或f(x1,x)); (4)放缩法:若所构造函数的最值不易求解,可将所证明的不等式 进行放缩,再重新构造函数.

2020年高考数学 大题专练 导数综合问题(20题含答案详解)

2020年高考数学 大题专练 导数综合问题(20题含答案详解)

2020年高考数学大题专练导数综合问题1.已知函数f(x)=ax3+bx+4,当x=-2时,函数f(x)有极大值8.(1)求函数f(x)的解析式;(2)若不等式f(x)+mx>0在区间[1,3]上恒成立,求实数m的取值范围.2.设函数f(x)=ln x-2mx2-n(m,n∈R).(1)讨论f(x)的单调性;(2)若f(x)有最大值-ln 2,求m+n的最小值.3.已知函数f(x)=(x-1)e x+1,g(x)=e x+ax-1(其中a∈R,e为自然对数的底数,e=2.718 28…).(1)求证:函数f(x)有唯一零点;(2)若曲线g(x)=e x+ax-1的一条切线方程是y=2x,求实数a的值.4.已知函数f(x)=ln x+ax.(1)讨论函数f(x)的单调性;(2)当a=1时,函数g(x)=f(x)-x+12x-m有两个零点x1,x2,且x1<x2.求证:x1+x2>1.5.已知函数f(x)=1-ln x x ,g(x)=ae e x +1x-bx ,若曲线y=f(x)与曲线y=g(x)的一个公共点是 A(1,1),且在点A 处的切线互相垂直.(1)求a ,b 的值;(2)证明:当x≥1时,f(x)+g(x)≥2x.6.已知函数f(x)=(x -1)e x +1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x -1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.7.已知f(x)=12x 2-a 2ln x ,a>0. (1)若f(x)≥0,求a 的取值范围;(2)若f(x 1)=f(x 2),且x 1≠x 2,证明:x 1+x 2>2a.8.已知函数f(x)=ln x +a x,a ∈R. (1)讨论函数f(x)的单调性;(2)当a>0时,证明f(x)≥2a -1a.9.已知a 为实数,函数f(x)=aln x +x 2-4x.(1)若x=3是函数f(x)的一个极值点,求实数a 的取值;(2)设g(x)=(a-2)x ,若∃x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f(x 0)≤g(x 0)成立,求实数a 的取值范围.10.已知函数f(x)=2a -x 2e x (a ∈R). (1)求函数f(x)的单调区间;(2)若∀x ∈[1,+∞),不等式f(x)>-1恒成立,求实数a 的取值范围.11.设函数f(x)=-x 2+ax +ln x(a ∈R).(1)当a=-1时,求函数f(x)的单调区间;(2)若函数f(x)在⎣⎢⎡⎦⎥⎤13,3上有两个零点,求实数a 的取值范围.12.设函数f(x)=e 2x -aln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f (x)≥2a+aln 2a.13.已知函数f(x)=ae x -ln x -1.(1)设x=2是f(x)的极值点,求a ,并求f(x)的单调区间;(2)证明:当a≥1e时,f (x)≥0.14.设函数f(x)=e x -x 2-ax -1(e 为自然对数的底数),a∈R.(1)证明:当a <2-2ln 2时,f ′(x)没有零点;(2)当x >0时,f(x)+x≥0恒成立,求a 的取值范围.15.已知函数f(x)=lnx-mx2,g(x)=0.5mx2+x,mϵR,令F(x)=f(x)+g(x).(1)求函数f(x)的单调区间;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.16.已知f(x)=(x3-6x2+3x+t)ex.(1)当t=-3时,求函数f(x)的单调递增区间.(2)如果f(x)有三个不同的极值点,求t的取值范围.17.已知y=f(x),f(x)=x3+ax2-a2x+2.(1)若a=1,求曲线在点(1,f(1))处的切线方程;(2)若a<0, 求函数f(x)的单调区间;(3)若不等式2xlnx≤f/(x)+a2+1恒成立,求实数a的取值范围.18.已知函数.(1)若函数f(x)在区间[2,3]上不是单调函数,求实数a的取值范围;(2)是否存在实数a>0,使得函数y=f(x)图像与直线y=2a有两个交点?若存在,求出所有a的值;若不存在,请说明理由.19.设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0恒成立,求a的取值范围.20.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)答案详解1.解:(I )∵当时,函数有极大值8 ∴,解得∴所以函数的解析式为. (II )∵不等式在区间上恒成立∴在区间上恒成立 令,则由解得,解得所以当时,单调递增,当时,单调递减所以对,都有,所以,即实数的取值范围是.2.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=1x -4mx=1-4mx2x,当m≤0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增;当m>0时,令f′(x)>0,得0<x<m 2m ,令f′(x)<0,得x>m2m ,∴f(x)在⎝⎛⎭⎪⎫0,m 2m 上单调递增,在⎝ ⎛⎭⎪⎫m 2m ,+∞上单调递减. (2)由(1)知,当m≤0时,f(x)在(0,+∞)上单调递增,无最大值.当m>0时,f(x)在⎝ ⎛⎭⎪⎫0,m 2m 上单调递增,在m 2m ,+∞上单调递减.∴f(x)max =f ⎝⎛⎭⎪⎫m 2m =ln m 2m -2m·14m -n=-ln 2-12ln m-12-n=-ln 2, ∴n=-12ln m-12,∴m +n=m-12ln m-12.令h(x)=x-12ln x-12(x>0),则h′(x)=1-12x =2x -12x,由h′(x)<0,得0<x<12;由h′(x)>0,得x>12,∴h(x)在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,+∞上单调递增,∴h(x)min =h ⎝ ⎛⎭⎪⎫12=12ln 2,∴m +n 的最小值为12ln 2.3.解:(1)证明:因为f(x)=(x-1)e x+1(x∈R),所以f′(x)=xe x,由f′(x)=xe x =0,得x=0,f′(x)=xe x >0时,x>0;f′(x)=xe x<0时,x<0;所以f(x)=(x-1)e x+1在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f(x)=(x-1)e x+1的最小值为f(0)=0,即函数f(x)=(x-1)e x+1有唯一零点.(2)设曲线g(x)=e x+ax-1与切线y=2x 相切于点(x 0,y 0),因为g(x)=e x +ax-1,所以g′(x)=e x+a ,所以⎩⎪⎨⎪⎧ex 0+a =2,y 0=ex 0+ax 0-1,y 0=2x 0,消去a ,y 0,得(x 0-1)ex 0+1=0,由(1)知方程(x 0-1)ex 0+1=0有唯一根x 0=0,则e 0+a=2,所以a=1. 4.解:(1)f′(x)=1x+a ,x ∈(0,+∞).①当a≥0时,f′(x)>0恒成立,∴f(x)在(0,+∞)上单调递增;②当a<0时,令f′(x)=0,解得x=-1a,令f′(x)>0,得0<x<-1a ,令f′(x)<0,得x>-1a,∴f(x)在0,-1a 上单调递增,在-1a,+∞上单调递减.(2)证明:当a=1时,g(x)=ln x +12x-m.由已知得ln x 1+12x 1=m ,ln x 2+12x 2=m.两式相减得ln x 1x 2+12x 1-12x 2=0,整理得x 1x 2=x 1-x 22lnx 1x 2,∴x 1=x 1x 2-12ln x 1x 2,x 2=1-x 2x 12ln x 1x 2.∴x 1+x 2=x 1x 2-x 2x 12lnx 1x 2,令t=x 1x 2∈(0,1),h(t)=t -1t -2ln t.则h′(t)=1+1t 2-2t =t 2-2t +1t 2>0, ∴h(t)在(0,1)上单调递增.∴h(t)<h(1)=0,即t -1t <2ln t ,又∵ln t<0,∴t -1t 2ln t>1.∴x 1+x 2>1. 5.解:(1)f′(x)=ln x -1x 2,g′(x)=-ae 1-x-1x2-b. 由⎩⎪⎨⎪⎧g (1)=1,g′(1)·f′(1)=-1,得⎩⎪⎨⎪⎧a =b ,a +b =-2,所以a=b=-1.(2)证明:由(1)可知g(x)=-e e x +1x+x.f(x)+g(x)≥2x ⇔1-ln x x -e 1-x +1x +x≥2x ⇔x -ln x≥ex ex +1-x 2.记h(x)=x -ln x ,则h′(x)=x -1x ≥0,所以h(x)在[1,+∞)上单调递增,因此h(x)≥h(1)=1.记φ(x)=ex ex ,则φ′(x)=(1-x)e 1-x≤0,所以φ(x)在[1,+∞)上单调递减,因此φ(x)≤φ(1)=1.而当x≥1时,1-x 2≤0,所以xe 1-x +1-x 2≤x-ln x.综上所述,当x≥1时,f(x)+g(x)≥2x.6.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e).①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a .当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 7.解:(1)f′(x)=x -a 2x =x +a x -ax(x>0).当x ∈(0,a)时,f′(x)<0,f(x)单调递减; 当x ∈(a ,+∞)时,f′(x)>0,f(x)单调递增.当x=a 时,f(x)取最小值f(a)=12a 2-a 2ln a.令12a 2-a 2ln a≥0,解得0<a< e. 故a 的取值范围是(0,e].(2)证明:由(1)知,f(x)在(0,a)上单调递减,在(a ,+∞)上单调递增, 不失一般性,设0<x 1<a<x 2<2a ,则2a-x 2<a.要证x 1+x 2>2a ,即x 1>2a-x 2,则只需证f(x 1)<f(2a-x 2). 因为f(x 1)=f(x 2),则只需证f(x 2)<f(2a-x 2). 设g(x)=f(x)-f(2a-x),a≤x≤2a.则g′(x)=x -a 2x +2a-x-a 22a -x =-2a a -x2x 2a -x≤0,所以g(x)在[a,2a)上单调递减,从而g(x)≤g(a)=0. 又a<x 2<2a ,于是g(x 2)=f(x 2)-f(2a-x 2)<0, 即f(x 2)<f(2a-x 2). 因此x 1+x 2>2a. 8.解:(1)f′(x)=1x -a x 2=x -ax2(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.当a>0时,若x>a ,则f′(x)>0,函数f(x)在(a ,+∞)上单调递增; 若0<x<a ,则f′(x)<0,函数f(x)在(0,a)上单调递减. (2)证明:由(1)知,当a>0时,f(x)min =f(a)=ln a +1.要证f(x)≥2a -1a ,只需证ln a +1≥2a -1a ,即证ln a +1a-1≥0.令函数g(a)=ln a +1a -1,则g′(a)=1a -1a 2=a -1a2(a>0),当0<a<1时,g′(a)<0,当a>1时,g′(a)>0,所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(a)min =g(1)=0.所以ln a +1a-1≥0恒成立,所以f(x)≥2a -1a.9.解:(1)函数f(x)的定义域为(0,+∞),f′(x)=a x +2x-4=2x 2-4x +ax.∵x=3是函数f(x)的一个极值点, ∴f′(3)=0,解得a=-6.经检验a=-6时,x=3是函数f(x)的一个极小值点,符合题意,∴a=-6.(2)由f(x 0)≤g(x 0),得(x 0-ln x 0)a≥x 20-2x 0,记F(x)=x-ln x(x>0),∴F′(x)=x -1x(x>0),∴当0<x<1时,F′(x)<0,F(x)单调递减; 当x>1时,F′(x)>0,F(x)单调递增.∴F(x)≥F(1)=1>0,∴a≥x 20-2x 0x 0-ln x 0.记G(x)=x 2-2x x -ln x ,x ∈⎣⎢⎡⎦⎥⎤1e ,e , ∴G′(x)=2x -2x -ln x -x -2x -1x -ln x 2=x -1x -2ln x +2x -ln x2. ∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴2-2ln x=2(1-ln x)≥0, ∴x-2ln x +2>0,∴x ∈⎝ ⎛⎭⎪⎫1e ,1时,G′(x)<0,G(x)单调递减; x ∈(1,e)时,G′(x)>0,G(x)单调递增. ∴G(x)min =G(1)=-1,∴a≥G(x)min =-1. 故实数a 的取值范围为[-1,+∞). 10.解:(1)f′(x)=x 2-2x -2aex, 当a≤-12时,x 2-2x-2a≥0,f′(x)≥0,∴函数f(x)在(-∞,+∞)上单调递增.当a>-12时,令x 2-2x-2a=0,解得x 1=1-2a +1,x 2=1+2a +1.∴函数f(x)的单调递增区间为(-∞,1-2a +1)和(1+2a +1,+∞), 单调递减区间为(1-2a +1,1+2a +1).(2)f(x)>-1⇔2a -x 2e x >-1⇔2a>x 2-e x,由条件知,2a>x 2-e x对∀x≥1恒成立.令g(x)=x 2-e x ,h(x)=g′(x)=2x -e x ,∴h′(x)=2-e x.当x ∈[1,+∞)时,h′(x)=2-e x≤2-e<0,∴h(x)=g′(x)=2x -e x在[1,+∞)上单调递减,∴h(x)=2x-e x≤2-e<0,即g′(x)<0,∴g(x)=x 2-e x在[1,+∞)上单调递减,∴g(x)=x 2-e x≤g(1)=1-e ,故若f(x)>-1在[1,+∞)上恒成立, 则需2a>g(x)max =1-e ,∴a>1-e 2,即实数a 的取值范围是⎝ ⎛⎭⎪⎫1-e 2,+∞. 11.解:(1)函数f(x)的定义域为(0,+∞),当a=-1时,f′(x)=-2x-1+1x =-2x 2-x +1x,令f′(x)=0,得x=12(负值舍去),当0<x<12时,f′(x)>0;当x>12时,f′(x)<0.∴f(x)的单调递增区间为⎝ ⎛⎭⎪⎫0,12,单调递减区间为( 12,+∞ ). (2)令f(x)=-x 2+ax +ln x=0,得a=x-ln x x .令g(x)=x-ln x x ,其中x ∈⎣⎢⎡⎦⎥⎤13,3,则g′(x)=1-1-ln x x 2=x 2+ln x -1x2,令g′(x)=0,得x=1, 当13≤x<1时,g′(x)<0;当1<x≤3时,g′(x)>0, ∴g(x)的单调递减区间为⎣⎢⎡⎭⎪⎫13,1,单调递增区间为(1,3], ∴g(x)min =g(1)=1,∵函数f(x)在⎣⎢⎡⎦⎥⎤13,3上有两个零点,g ⎝ ⎛⎭⎪⎫13=3ln 3+13,g(3)=3-ln 33, 3ln 3+13>3-ln 33,∴实数a 的取值范围是⎝ ⎛⎦⎥⎤1,3-ln 33. 12.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e 2x-a x(x >0).当a≤0时,f ′(x)>0,f ′(x)没有零点;当a >0时,设u(x)=e 2x,v(x)=-a x,因为u(x)=e 2x在(0,+∞)上单调递增,v(x)=-a x在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b 满足0<b <a 4且b <14时,f ′(b)<0,故当a >0时,f ′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x 0, 当x∈(0,x 0)时,f ′(x)<0;当x∈(x 0,+∞)时,f ′(x)>0. 故f(x)在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x=x 0时,f(x)取得最小值,最小值为f(x 0).由于2e2x 0-a x 0=0,所以f(x 0)=a 2x 0+2ax 0+aln 2a ≥2a +aln 2a.故当a >0时,f (x)≥2a+aln 2a.13.解:(1)f(x)的定义域为(0,+∞),f ′(x)=ae x-1x.由题设知,f ′(2)=0,所以a=12e2.从而f(x)=12e 2e x -ln x -1,f ′(x)=12e 2e x -1x.当0<x <2时,f ′(x)<0;当x >2时,f ′(x)>0. 所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥1e 时,f (x)≥exe -ln x -1.设g(x)=e x e -ln x -1,则g′(x)=e x e -1x.当0<x <1时,g ′(x)<0;当x >1时,g ′(x)>0.所以x=1是g(x)的最小值点. 故当x >0时,g (x)≥g(1)=0.因此,当a≥1e时,f (x)≥0.14.解:(1)证明:∵f′(x)=e x -2x -a ,令g(x)=f′(x),∴g ′(x)=e x-2. 令g′(x)<0,解得x <ln 2;令g′(x)>0,解得x >ln 2,∴f ′(x)在(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增, ∴f ′(x)min =f′(ln 2)=2-2ln 2-a. 当a <2-2ln 2时,f ′(x)min >0,∴f ′(x)的图象恒在x 轴上方,∴f ′(x)没有零点.(2)当x >0时,f(x)+x≥0恒成立,即e x -x 2-ax +x -1≥0恒成立,∴ax ≤e x -x 2+x -1,即a≤e x x -x -1x+1恒成立.令h(x)=e x x -x -1x +1(x >0),则h′(x)=(x -1)(e x-x -1)x2. 当x >0时,e x-x -1>0恒成立,令h′(x)<0,解得0<x <1,令h′(x)>0,解得x >1, ∴h(x)在(0,1)上单调递减,在(1,+∞)上单调递增, ∴h(x)min =h(1)=e -1.∴a 的取值范围是(-∞,e -1]. 15.解:16.解:19.解:(1)a=0时,f(x)=e x-1-x,f′(x)=e x-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加(2)f′(x)=e x-1-2ax.由(1)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤0.5时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)得e-x>1-x(x≠0),从而当a>时,f′(x)<e x-1+2a(e-x-1)=e-x(e x-1)(e x-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,综上可得a的取值范围为(-∞,0.5].20.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以由=0得①若,即时,在上,有,故函数单调递增所以②若,即时,在上,有,故函数在上单调递减,在上,有.故函数在上单调递增,所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故。

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类

完整版)导数的综合大题及其分类.导数在高考中是一个经常出现的热点,考题难度比较大,多数情况下作为压轴题出现。

命题的主要热点包括利用导数研究函数的单调性、极值、最值,不等式,方程的根以及恒成立问题等。

这些题目体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用。

题型一:利用导数研究函数的单调性、极值与最值这类题目的难点在于分类讨论,包括函数单调性和极值、最值综合问题。

1.单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,将函数定义域分段,在各段上讨论导数的符号。

如果不能确定导数等于零的点的相对位置,还需要对导数等于零的点的位置关系进行讨论。

2.极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点。

3.最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的。

在极值和区间端点函数值中最大的为最大值,最小的为最小值。

例题:已知函数f(x)=x-,g(x)=alnx(a∈R)。

x1.当a≥-2时,求F(x)=f(x)-g(x)的单调区间;2.设h(x)=f(x)+g(x),且h(x)有两个极值点为x1,x2,其中h(x1)=h(x2),求a的值。

审题程序]1.在定义域内,依据F′(x)=0的情况对F′(x)的符号进行讨论;2.整合讨论结果,确定单调区间;3.建立x1、x2及a间的关系及取值范围;4.通过代换转化为关于x1(或x2)的函数,求出最小值。

规范解答]1.由题意得F(x)=x-x/(x2-ax+1)-alnx,其定义域为(0,+∞)。

则F′(x)=(x2-ax+1)-x(2ax-2)/(x2-ax+1)2.令m(x)=x2-ax+1,则Δ=a2-4.①当-2≤a≤2时,Δ≤0,从而F′(x)≥0,所以F(x)的单调递增区间为(0,+∞);②当a>2时,Δ>0,设F′(x)=0的两根为x1=(a+√(a2-4))/2,x2=(a-√(a2-4))/2,求h(x1)-h(x2)的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a-a(- ),( , +∞) 单调递增, 在 (- (2020 年高考文科数学《导数的综合应用》题型归纳与训练【题型归纳】题型一 含参数的分类讨论例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) ,(1)求函数 f ( x ) 的单调区间;(2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。

【答案】略【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分类标准是零)当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减;当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表:x(-∞, -2)22 2, ) a a2 a(2a, +∞)f '( x )+0 —+f ( x )极大值极小值此时, f ( x )在(-∞, - 2 26 a 2 2 , ) 单调递减; a a(II )由 f '(1) = 3a -12 = -6, 得a = 2.由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。

【易错点】搞不清分类讨论的时机,分类讨论不彻底【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理,由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不重复一遗漏。

还要注意一点的是,最后注意将结果进行合理的整合。

题型二 已知单调性求参数取值范围问题例 1 已知函数 f ( x) = 13x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围≥ a【答案】【解析】 f '( x ) = x 2 + 2 x + a ,依题意在[1,+∞) 上恒有 y ' ≥ 0 成立,方法 1:函数 f '( x ) = x 2 + 2 x + a ,对称轴为 x = -1 ,故在 [1,+∞) 上 f '( x ) 单调递增,故只需 f '(1) ≥ 0 即可,得a ≥ -3 ,所以 a 的取值范围是 [3, +∞ ) ;方法 2: 由 y ' = x 2 + 2 x + a ≥ 0 ,得 a ≥ - x 2 - 2 x ,只需 a (-x 2 -2 x ) ,易得(-x 2 -2 x ) = -3 ,因此maxmaxa ≥ -3 ,,所以 a 的取值范围是 [3, +∞ ) ;【易错点】本题容易忽视 f '(1) ≥ 0 中的等号【思维点拨】已知函数 f ( x ) 在区间 (a, b ) 可导:1. f ( x ) 在区间 (a, b ) 内单调递增的充要条件是如果在区间 (a, b ) 内,导函数 f '( x ) ≥ 0 ,并且 f '( x ) 在 (a, b ) 的任何子区间内都不恒等于零;2. f ( x ) 在区间 (a, b ) 内单调递减的充要条件是如果在区间 (a, b ) 内,导函数 f '( x ) ≤ 0 ,并且 f '( x ) 在 (a, b ) 的任何子区间内都不恒等于零;说明:1.已知函数 f ( x ) 在区间 (a, b ) 可导,则 f '( x ) ≥ 0 在区间内 (a, b ) 成立是 f ( x ) 在 (a, b ) 内单调递增的必要不充分条件2.若 f ( x ) 为增函数,则一定可以推出 f '( x ) ≥ 0 ;更加具体的说,若 f ( x ) 为增函数,则或者 f '( x ) > 0 ,或者除了 x 在一些离散的值处导数为零外,其余的值处都 f '( x ) > 0 ;3. f '( x ) ≥ 0 时,不能简单的认为 f ( x ) 为增函数,因为 f '( x ) ≥ 0 的含义是 f '( x ) > 0 或 f '( x ) = 0 ,当 函数在某个区间恒有 f '( x ) = 0 时,也满足 f '( x ) ≥ 0 ,但 f ( x ) 在这个区间为常函数.题型三 方程与零点1.已知函数 f (x ) = ax 3 - 3x 2 + 1,若 f (x )存在三个零点,则 a 的取值范围是()A. (-∞, -2)B. (-2,2 )C. (2, +∞ )D. (-2,0 )⋃ (0,2 )【答案】D【解析】很明显 a ≠ 0 ,由题意可得:f ' (x ) = 3ax 2 - 6x = 3x (ax - 2) , 则 由 f ' (x ) = 0 可 得x = 0, x =21 22,a 2 1. 已知函数 f ( x ) = 1“[ ) 0 , , ) 0 , ,由题意得不等式: f (x 1 ) f (x ) = 82 12 4- + 1 < 0 ,即: a 2 a 2> 1,a 2 < 4, -2 < a < 2 ,综上可得 a 的取值范围是 (-2,0 )⋃ (0,2 ) .本题选择 D 选项.【易错点】找不到切入点,有三个零点”与函数的单调性、极值有什么关系?挖掘不出这个关系就无从下手。

【思维点拨】函数零点的求解与判断(1)直接求零点:令 f(x)=0,如果能求出解,则有几个解就有几个零点. (2)零点存在性定理:利用定理不仅要函数在区间 a ,b ]上是连续不断的曲线,且 f (a )· f (b )<0,还必须结合函 数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同 的值,就有几个不同的零点.题型四、导数证明不等式例 1 当 x ∈ (0, π )时,证明不等式 s in x < x 成立。

【答案】略【解析】设 f ( x ) = sin x - x, 则 f '( x ) = cos x - 1.∵ x ∈ (0, π ), ∴ f '( x ) < 0. ∴ f ( x ) = sin x - x 在 x ∈ (0, π ) 内单调递减,而 f (0) = 0.∴ f ( x ) = sin x - x < f (0) = 0, 故当 x ∈ (0, π ) 时, sin x < x 成立。

【易错点】不能顺利把不等式转化为等价的函数、方程问题【思维点拨】注意观察不等式的结构,选择合理的变形,构造函数,把不等式问题转化为函数的极值、最值问题。

【巩固训练】题型一 含参的分类讨论1x 3 + (2 - a) x 2 + (1- a) x (a ≥ 0).3 2(I )求 f ( x ) 的单调区间; (II )若 f ( x ) 在[0,1]上单调递增,求 a 的取值范围。

【答案】略【解析】(I ) f '( x ) = x 2 + (2 - a ) x + 1 - a = ( x + 1)(x + 1 - a ).当a = 0时 , f ' ( x = (x + 21 ) ≥ 恒成立 当且仅当 x = -1 时取“=”号, f ( x )在(-∞, +∞) 单调递增。

当a > 0时 由 f ' ( x = 得 x = - 1x = a -且 1 , x < x 1212,)(1),1,∞1), )1,)0,1]【解析】由f'(x)=1-a当x变化时,f'(x)、f(x)的变化如下表:xf'(x)(-∞,-1)+—1(-1,a-1)—a-1(a-1,+∞)+f(x)极大值极小值f(x在-∞,-单调递增在,-(a1-单调递减在a-(+单调递增(II)当a=0时,f(x)在[0,1]上单调递增,f(x)≥f(0)=1恒成立。

当a>0时,由(I)可知若0<a≤时则f(x在[上单调递增若a>1,则f(x)在[0,a-1]上单调递减,f(x)在[0,1]上不单增,不符合题意;综上,a的取值范围是[0,1]2.已知函数f(x)=x-a ln x(a∈R),求函数f(x)的极值.【答案】略x-a=,x>0可知:x x①当a≤0时,f'(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f'(x)=0,解得x=a;x∈(0,a)时,f'(x)<0,x∈(a,+∞)时,f'(x)>0∴f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.3.已知a∈R,求f(x)=x2e ax的单调区间。

【答案】略4,可知在 (-∞,0) 必有一个零点,也不符合;当 a < 0 时, f ( ) > 0 ,得 a < -2 ,【解析】函数的导数 f '( x ) = (2 x + ax 2 )e ax(ⅰ)当 a = 0 时,若 x < 0 ,则 f '( x ) < 0 ;若 x > 0 ,则 f '( x ) > 0 ;则在(-∞,0)内为减函数,在(0,+∞)内为增函数。

(ⅱ)当 a>0 时,由 2x + ax 2 >0 ⇔ x < - 2a或x > 0则在(-∞,- 2 a)内为增函数,在(0,+∞)内为增函数。

2 2由 2x + ax 2 <0 ⇔ - < x < 0 ,在(- ,0)内为减函数。

a a2 2(ⅲ)当 a<0 时,由 2x + ax 2 >0 ⇔ 0<x<- ,在(0,- )内为增函数。

a a2 2由 2x + ax 2 <0 ⇔ x<0 或 x>- ,在(-∞,0)∪(- ,+∞)内为减函数。

a a题型二 已知单调性求参数范围已知 f ( x ) = ax 3 + 3x 2 - x + 1 在 R 上是减函数,求 a 的取值范围。

【答案】略【解析】:对 f ( x ) 求导得 f '( x ) = 3ax 2 + 6 x - 1 ,由题意可知对任意实数恒有 f '( x) ≤ 0 ,讨论:(1) 当 a > 0 ,显然不符合题意; (2) 当 a = 0 时也不符合题意;(3) 当 a < 0 时,依题意必有 ∆ = 36 + 12a ≤ 0 ,即 a ≤ -3 ,综上可知 a 的取值范围是 (-∞, -3]题型三 方程与零点1.已知函数 f ( x ) = ax 3 - 3 x 2 + 1 ,若 f ( x ) 存在唯一的零点 x ,且 x > 0 ,则 a 的取值范围是()A . (2, +∞)B . (1,+∞)C . (-∞, -2)D . (-∞, -1)【答案】C【解析】当 a = 0 时, f ( x ) = -3x 2 + 1 ,函数有两个零点,不符合;当 a > 0 时, f '( x ) = 3ax 2 - 6 x ,令f '( x ) = 0 ,得 x = 0, 2 2a a故选 C2.设 a 为实数,函数 f ( x ) = - x 3 + 3 x + a ,当 a 为何值时,方程 f ( x) = 0 恰好有两个实数根.【答案】略4 ⎩ ⎩x【解析】求导得 f '( x ) = -3( x + 1)( x - 1) ,∵当 x < -1 或 x > 1 时, f '( x ) < 0 ;当 -1 < x < 1 , f '( x ) > 0 ;∴ f ( x ) 在 (-∞, -1) 和 (1,+∞ ) 单调递减,在 (-1,1) 在单调递增,∴ f ( x ) 的极小值为 f (-1) = a - 2 , f ( x ) 的极大值为 f (1) = a - 2 ;要使方程 f ( x ) = 0 恰好有两个实数根,只需 f ( x ) 的图象与 x 轴恰有两个公共点,画出 f ( x ) 的草图,∴ a - 2 = 0 且 a + 2 = 0 或 a + 2 = 0 且 a - 2 < 0 ; ∴ a = 2 或 a = -2故当 a = 2 或 a = -2 时,方程恰有两个实数根.3.若函数 f ( x ) = ax 3 - bx + 4 ,当 x = 2 时,函数 f ( x ) 有极值 -(1)求函数 f ( x ) 的解析式;(2)若函数 f ( x ) = k 有 3 个解,求实数 k 的取值范围.【答案】略 【解析】求导得 f '(x ) = 3ax 2 - b ,⎧ ⎧1 ⎪ f (2) = - ⎪a =(1)由题意 ⎨ 3 ,得 ⎨ 3⎪ f '(2) = 0 ⎪ b = 44 3,∴所求解析式为 f (x ) = 13x 3 - 4 x + 4(2)由(1)可得: f '(x ) = x 2 - 4 = (x - 2 )( + 2 )令 f '(x ) = 0 ,得 x = 2 或 x = -2当 x 变化时, f '(x )、 f (x )的变化情况如下表:6∴函数f (x)=x3-4x+4的图象大致如图:x(-∞,-2)-2(-2,2)2(2,+∞)f'(x) f(x)+单调递增↗283—单调递减↘-43+单调递增↗因此,当x=-2时,f (x)有极大值283当x=2时,f (x)有极小值-4313428由图可知:-<k<33题型四、导数证明不等式1、当x>0时,证明不等式e x>1+x+【答案】略12x2成立。

相关文档
最新文档