1.1 整式(含答案)

合集下载

整式乘法计算40道(含答案)

整式乘法计算40道(含答案)

整式乘法计算题40道(含答案)一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7 3.计算:a3•a4•a+(﹣2a4)2.4.计算:n2•n4+4(n2)3﹣5n3•n25.计算:3a(2﹣a)+3(a﹣3)(a+3).6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)27.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.8.计算a2•a4+(a3)2﹣32a610.计算:(x+3)(x﹣4)﹣x(x+2)﹣511.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2 12.计算:(a+b(a﹣b)+(2a﹣b)213.化简:(m+2)(m﹣2)−m3×3m.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)418.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)221.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)23.计算:(2m2n)2+(﹣mn)(−13m3n).24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).27.计算:(2x﹣1)2﹣x(4x﹣1)28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)233.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2 34.计算:(x+y)2﹣y(2x+y)﹣8x35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.38.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.40.4(x+1)2﹣(2x+5)(2x﹣5)参考答案与试题解析一.解答题(共40小题)1.计算:2x3•x3+(3x3)2﹣8x6.【解答】解:2x3•x3+(3x3)2﹣8x6=2x6+9x6﹣8x6=3x6.2.计算(1)4a2b(﹣2ab)3(2)(3+m)(3﹣m)﹣m(m﹣6)﹣7【解答】解:(1)原式=4a2b(﹣8a3b3)=﹣32a5b4;(2)原式=9﹣m2﹣m2+6m﹣7=﹣2m2+6m+2.3.计算:a3•a4•a+(﹣2a4)2.【解答】解:a3•a4•a+(﹣2a4)2=a8+4a8=5a8.4.计算:n2•n4+4(n2)3﹣5n3•n2【解答】解:n2•n4+4(n2)3﹣5n3•n2=n6+4n6﹣5n5=5n6﹣5n5.5.计算:3a(2﹣a)+3(a﹣3)(a+3).【解答】解:原式=6a﹣3a2+3(a2﹣9)=6a﹣3a2+3a2﹣27=6a﹣27.6.计算:m4n2+2m2⋅m4+(m2)3﹣(m2n)2【解答】解:原式=m4n2+2m6+m6﹣m4n2,=3m6.7.计算:(1)(﹣t4)3+(﹣t2)6;(2)(m4)2+(m3)2﹣m(m2)2•m3.【解答】解:(1)原式=﹣t12+t12=0;(2)原式=m8+m6﹣m8=m6.8.计算a2•a4+(a3)2﹣32a6【解答】解:原式=a6+a6﹣32a6=﹣30a6.9.化简(5x)2•x7﹣(3x3)3+2(x3)2+x3【解答】解:(5x)2•x7﹣(3x3)3+2(x3)2+x3=25x2•x7﹣27x9+2x6+x3=25x9﹣27x9+2x6+x3=﹣2x9+2x6+x3.10.计算:(x+3)(x﹣4)﹣x(x+2)﹣5【解答】解:(x+3)(x﹣4)﹣x(x+2)﹣5=x2﹣4x+3x﹣12﹣x2﹣2x﹣5=﹣3x﹣17.11.计算:①(a﹣2b+1)(a+2b+1)②(x+2y﹣1)2【解答】解:①原式=(a+1)2﹣(2b)2=a2+2a+1﹣4b2②原式=[(x+2y)﹣1]2=(x+2y)2﹣2(x+2y)+1=x2+4xy+4y2﹣2x﹣4y+1=x2+4y2+4xy﹣2x﹣4y+1.12.计算:(a+b(a﹣b)+(2a﹣b)2【解答】解:原式=a2﹣b2+4a2﹣4ab+b2=5a2﹣4ab13.化简:(m+2)(m﹣2)−m3×3m.【解答】解:原式=m2﹣4﹣m2=﹣4.14.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【解答】解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.15.计算:3(2x﹣1)﹣(﹣3x﹣4)(3x﹣4)【解答】解:原式=6x﹣3﹣(16﹣9x2)=6x﹣3﹣16+9x2=9x2+6x﹣19.16.计算:(1)(−12x2y3)3(2)m2•(2m3)2+(﹣m2)4【解答】解:(1)原式=−18x6y9;(2)原式=m2•4m6+m8=5m8.17.计算:(x+y)2﹣(x+2y)(2x﹣y).【解答】解:原式=x2+2xy+y2﹣(2x2+3xy﹣2y2)=x2+2xy+y2﹣2x2﹣3xy+2y2=﹣x2﹣xy+3y2.18.计算:(1)x2(x﹣1)﹣x(x2+x﹣1)(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:(1)x2(x﹣1)﹣x(x2+x﹣1)=x3﹣x2﹣x3﹣x2+x=﹣2x2+x;(2)(y+2)(y﹣2)﹣(y﹣1)(y+5)=y2﹣4﹣(y2+4y﹣5)=y2﹣4﹣y2﹣4y+5=﹣4y+1.19.计算﹣4(a+1)2﹣(5+2a)(5﹣2a)【解答】解:原式=﹣4(a2+2a+1)﹣(25﹣4a2)=﹣4a2﹣8a﹣4﹣25+4a2=﹣8a﹣29.20.计算:(1)(﹣3a2b)3﹣(2a3)2•(﹣b)3+3a6b3(2)(2a+b)(2a﹣b)﹣(a﹣b)2【解答】解:(1)原式=﹣27a6b3﹣4a6(﹣b3)+3 a6b3=﹣20a6b3;(2)原式=4a2﹣b2﹣(a2﹣2ab+b2)=3a2+2ab﹣2b2.21.化简:(1)(﹣2x2)3+4x2•3x4;(2)(a+1)2+(a+3)(3﹣a).【解答】解:(1)原式=﹣8x6+12x6=4x6;(2)原式=a2+2a+1+(9﹣a2)=a2+2a+1+9﹣a2=2a+10.22.计算:(2a+b)(2a﹣b)﹣2a(a﹣2b)【解答】解:(2a+b)(2a﹣b)﹣2a(a﹣2b)=4a2﹣b2﹣2a2+4ab=2a2﹣b2+4ab.23.计算:(2m2n)2+(﹣mn)(−13m3n).【解答】解:原式=4m4n2+13m4n2=(4+13)m4n2=133m4n2.24.计算(1)(x+3)(x﹣5);(2)(x﹣2y)2+(x+y)(x﹣y).【解答】解:(1)原式=x2﹣5x+3x﹣15=x2﹣2x﹣15;(2)原式=x2﹣4xy+4y2+x2﹣y2=2x2﹣4xy+3y2.25.计算:(﹣2x2)(4xy3﹣y2)+(2xy)3.【解答】解:原式=﹣8x3y3+2x2y2+8x3y3=2x2y2.26.(1)计算:(﹣3xy)2•4x2;(2)计算:(x+2)(2x﹣3).【解答】解:(1)原式=9x2y2•4x2=36x4y2;(2)解:原式=2x2﹣3x+4x﹣6=2x2+x﹣6.27.计算:(2x﹣1)2﹣x(4x﹣1)【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.28.计算:(m+n+2)(m+n﹣2)﹣m(m+4n).=m2+2mn+n2﹣4﹣m2﹣4mn,=n2﹣2mn﹣4.29.计算(1)(3x﹣2)(2x+3)﹣(x﹣1)2;(2)(x+2y)(x﹣2y)﹣2y(x﹣2y)+2xy.【解答】解:(1)原式=6x2+9x﹣4x﹣6﹣x2+2x﹣1=5x2+7x﹣7;(2)原式=x2﹣4y2﹣2xy+4y2+2xy=x2.30.计算:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y).【解答】解:(2x﹣y)2﹣(y2﹣4xy)﹣(2x+y)(x﹣2y)=4x2﹣4xy+y2﹣y2+4xy﹣(2x2﹣3xy﹣2y2)=4x2﹣2x2+3xy+2y2=2x2+3xy+2y2.31.计算:(1)(﹣2x)3(2x3−12x﹣1)﹣2x(2x3+4x2);(2)(x+3)(x﹣7)﹣x(x﹣1).【解答】解:(1)原式=−8x3(2x3−12x−1)−(4x4+8x3)=−16x6+4x4+8x3﹣4x4﹣8x3=﹣16x6;(2)原式=x2﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.32.计算:(﹣2x)2﹣(2x+1)(2x﹣1)+(x﹣2)2=x2﹣4x+5.33.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.34.计算:(x+y)2﹣y(2x+y)﹣8x【解答】解:原式=x2+2xy+y2﹣2xy﹣y2﹣8x=x2﹣8x.35.运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).【解答】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+17.36.计算:4(x﹣y)2﹣(2x﹣y)(2x+y)【解答】解:4(x﹣y)2﹣(2x﹣y)(2x+y)=4(x2﹣2xy+y2)﹣(4x2﹣y2)=4x2﹣8xy+4y2﹣4x2+y2=5y2﹣8xy.37.计算:(1)3a3b•(﹣2ab)+(﹣3a2b)2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2.【解答】解:(1)3a3b•(﹣2ab)+(﹣3a2b)2=﹣6a4b2+9a4b2=3a4b2(2)(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣538.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.【解答】解:(1)原式=﹣a6•4a=﹣4a7;(2)原式=2x2+2x+x2+2x+1=3x2+4x+1.39.计算:(a+1)(a﹣3)﹣(a﹣2)2.【解答】解:(a+1)(a﹣3)﹣(a﹣2)2.=a2﹣2a﹣3﹣(a2﹣4a+4)=2a﹣7.40.4(x+1)2﹣(2x+5)(2x﹣5)【解答】解:原式=4x2+8x+4﹣4x2+25=8x+29.。

【人教版】七年级上册数学:2.1《整式》(含答案)

【人教版】七年级上册数学:2.1《整式》(含答案)

2.1整 式班级 学号 姓名 分数一.判断题(1)31+x 是关于x 的一次两项式. ( ) (2)-3不是单项式.( )(3)单项式xy 的系数是0.( ) (4)x 3+y 3是6次多项式.( ) (5)多项式是整式.( )二、选择题1.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个 2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D 五次二项式 3.下列说法正确的是( )A .3 x 2―2x+5的项是3x 2,2x ,5 B .3x -3y 与2 x 2―2x y -5都是多项式 C .多项式-2x 2+4x y 的次数是3D .一个多项式的次数是6,则这个多项式中只有一项的次数是6 4.下列说法正确的是( ) A .整式abc 没有系数 B .2x +3y +4z不是整式 C .-2不是整式 D .整式2x+1是一次二项式5.下列代数式中,不是整式的是( )A 、23x -B 、745b a -C 、xa 523+D 、-20056.下列多项式中,是二次多项式的是( ) A 、132+xB 、23xC 、3xy -1D 、253-x7.x 减去y 的平方的差,用代数式表示正确的是( ) A 、2)(y x - B 、22y x -C 、y x -2D 、2y x -8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S 米,同学上楼速度是a 米/分,下楼速度是b 米/分,则他的平均速度是( )米/分。

A 、2b a + B 、b a s + C 、b s a s + D 、bs a s s +29.下列单项式次数为3的是( )A.3abcB.2×3×4C.41x 3y D.52x10.下列代数式中整式有( )x1, 2x +y , 31a 2b , πy x -, x y 45, 0.5 , aA.4个B.5个C.6个D.7个11.下列整式中,单项式是( )A.3a +1B.2x -yC.0.1D.21+x 12.下列各项式中,次数不是3的是( )A .xyz +1B .x 2+y +1C .x 2y -xy 2D .x 3-x 2+x -1 13.下列说法正确的是( ) A .x(x +a)是单项式 B .π12+x 不是整式 C .0是单项式 D .单项式-31x 2y 的系数是31 14.在多项式x 3-xy 2+25中,最高次项是( )A .x 3B .x 3,xy 2C .x 3,-xy 2D .2515.在代数式yy y n x y x 1),12(31,8)1(7,4322++++中,多项式的个数是( ) A .1B .2C .3D .416.单项式-232xy 的系数与次数分别是( )A .-3,3B .-21,3C .-23,2D .-23,3 17.下列说法正确的是( )A .x 的指数是0B .x 的系数是0C .-10是一次单项式D .-10是单项式 18.已知:32y x m-与nxy 5是同类项,则代数式n m 2-的值是( )A 、6-B 、5-C 、2-D 、5 19.系数为-21且只含有x 、y 的二次单项式,可以写出( )A .1个B .2个C .3个D .4个20.多项式212x y -+的次数是( )A 、1B 、 2C 、-1D 、-2三.填空题1.当a =-1时,34a = ; 2.单项式: 3234y x -的系数是 ,次数是 ; 3.多项式:y y x xy x +-+3223534是 次 项式; 4.220053xy 是 次单项式;5.y x 342-的一次项系数是 ,常数项是 ; 6._____和_____统称整式.7.单项式21xy 2z 是_____次单项式.8.多项式a 2-21ab 2-b 2有_____项,其中-21ab 2的次数是 .9.整式①21,②3x -y 2,③23x 2y ,④a ,⑤πx +21y ,⑥522a π,⑦x +1中 单项式有 ,多项式有 10.x+2xy +y 是 次多项式. 11.比m 的一半还少4的数是 ;12.b 的311倍的相反数是 ;13.设某数为x ,10减去某数的2倍的差是 ; 14.n 是整数,用含n 的代数式表示两个连续奇数 ; 15.42234263y y x y x x --+-的次数是 ; 16.当x =2,y =-1时,代数式||||x xy -的值是 ;17.当t = 时,31tt +-的值等于1; 18.当y = 时,代数式3y -2与43+y 的值相等; 19.-23ab 的系数是 ,次数是 次. 20.把代数式2a 2b 2c 和a 3b 2的相同点填在横线上:(1)都是 式;(2)都是 次. 21.多项式x 3y 2-2xy 2-43xy-9是___次___项式,其中最高次项的系数是 ,二次项是 ,常数项是 .22.若2313m x y z -与2343x y z 是同类项,则m = .23.在x 2, 21 (x +y),π1,-3中,单项式是 ,多项式是 ,整式是 .24.单项式7532c ab 的系数是____________,次数是____________.25.多项式x 2y +xy -xy 2-53中的三次项是____________. 26.当a=____________时,整式x 2+a -1是单项式. 27.多项式xy -1是____________次____________项式. 28.当x =-3时,多项式-x 3+x 2-1的值等于____________.29.如果整式(m -2n)x 2y m+n-5是关于x 和y 的五次单项式,则m+n 30.一个n 次多项式,它的任何一项的次数都____________.31.系数是-3,且只含有字母x 和y 的四次单项式共有 个,分别是 .32.组成多项式1-x 2+xy -y 2-xy 3的单项式分别是 .四、列代数式1. 5除以a 的商加上323的和;2.m 与n 的平方和;3.x 与y 的和的倒数;4.x 与y 的差的平方除以a 与b 的和,商是多少。

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)【知识点1:合并同类项】1. 同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.1.1 判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.1.2 同类项与系数无关,与字母的排列顺序无关.1.3 一个项的同类项有无数个,其本身也是它的同类项.2. 合并同类项2.1 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.2 法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.2.3 合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项时,只把系数相加减,字母、指数不作运算,照抄即可.【知识点2:去括号与添括号】1. 去括号法则:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2. 去括号法则诠释:2.1 去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.2.2 去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.2.3 对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.2.4 去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.3. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.4. 添括号法则诠释:4.1 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.4.2 去括号和添括号是两种相反的变形,因此可以相互检验正误:如:a +b −c 添括号→ a +(b −c) a −b +c 添括号→ a −(b −c)【知识点3:整式的加减运算法则】1. 运算顺序: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式的加减运算法则诠释:2.1 整式加减的一般步骤是:①先去括号;②再合并同类项.2.2 两个整式相加减时,减数一定先要用括号括起来.2.3 整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点1:同类项的概念】1. 下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a)5与(-3)5⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C【解析】所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.2. 判断下列各组是同类项的有 ( ) .①0.2x 2y 和0.2xy 2;②4abc 和4ac ;③-130和15;④-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组【答案】B【解析】 ①0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.②4abc 和4ac 所含字母不同.③-130和15都是常数,是同类项.④-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.3. 如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C【解析】根据题意得:a+1=2,b=3,则a=1.4. 若﹣2a m b 4与3a 2b n+2是同类项,则m+n= .【答案】4.【解析】∵﹣2a m b 4与3a 2b n+2是同类项,∴{m =2n +2=4解得:{m =2n =2则m+n=4.故答案为:4.5. 如果单项式﹣xy b+1与12x a ﹣2y 3是同类项,那么(a ﹣b )2015= .【答案】1.【解析】由同类项的定义可知,a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.6. 指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)3x 2y 3与-y 3x 2;(2)2x 2yz 与2xyz 2;(3)5x 与xy ;(4)-5与8【答案】(1)(4)是同类项;(2)不是同类项,因为2x 2yz 与2xyz 2所含字母x ,z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【解析】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.7. 若单项式13a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.【答案】8【解析】解:由13a 3b n+1和2a 2m ﹣1b 3是同类项,得{2m −1=3n +1=3, 解得{m =2n =2. 当m=2,n=2时,3m+n=3×2+2=6+2=8.8. 如果单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2021的值;(2)若5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,求(5m ﹣5n )2022的值.【答案】(1)-1;(2)0【解析】(1)由单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项,得a=2a ﹣3,解得a=3;∴(7a ﹣22)2021=(7×3﹣22)2021=(﹣1)2021=﹣1;(2)由5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,得5m ﹣5n=0,解得m=n ;∴(5m ﹣5n )2022=02022=0.9. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A.6 B.d C.c D.e【答案】D【解析】题中“?”所表示的单项式与“5e”是同类项,故“?”所代表的单项式可能是e,故选D.【考点2:“去括号”与“添括号”】1.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n【答案】C【解析】原式=m﹣n﹣m﹣n=﹣2n.故选C.2.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y);(3)8m-(3n+5);(4)n-4(3-2m);(5)2(a-2b)-3(2m-n).【答案】(1)d-6a+4b-6c;(2)xy+1-x+y【解析】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.(3)8m-(3n+5)=8m-3n-5.(4)n-4(3-2m)=n-(12-8m)=n-12+8m.(5)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.3.在各式的括号中填上适当的项,使等式成立.(1).2x+3y-4z+5t=-( )=+( )=2x-( )=2x+3y-( );(2).2x-3y+4z-5t=2x+( )=2x-( )=2x-3y-( )=4z-5t-( );(3).a-b+c-d=a-( );(4).x+2y-z=-( );(5)a2-b2+a-b=(a2-b2)+( );(6).a2-b2-a-b=a2-a-( ). 【答案】(1)-2x-3y+4z-5t,2x+3y-4z+5t,-3y+4z-5t,4z-5t(2)-3y+4z-5t,3y-4z+5t,-4z+5t,-2x+3y.(3)b-c+d (4)-x-2y+z (5)a-b (6)b2+b【解析】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.(1) 2x+3y-4z+5t=-(-2x-3y+4z-5t)=+( 2x+3y-4z+5t)=2x-(-3y+4z-5t)=2x+3y-(4z-5t)(2)2x-3y+4z-5t=2x+(-3y+4z-5t)=2x-(3y-4z+5t)=2x-3y-(-4z+5t)=4z-5t-(-2x+3y)(3)a-b+c-d=a-(b-c+d);(4)x+2y-z=-(-x-2y+z);(5)a2-b2+a-b=(a2-b2)+(a-b);(6)a2-b2-a-b=a2-a-(b2+b).4.按要求把多项式3a-2b+c-1添上括号:(1)把含a、b的项放到前面带有“+”号的括号里,不含a、b的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】(1) 3a-2b+c-1=(3a-2b)-(-c+1);(2) 3a-2b+c-1=(3a+c)-(2b+1).【考点3:整式加减】1.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0D. 5a2﹣4a2=1 【答案】C【解析】3a和2b不是同类项,不能合并,A错误;2a3和3a2不是同类项,不能合并,B错误;3a2b﹣3ba2=0,C正确;5a2﹣4a2=a2,D错误,故选:C.2.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是( ).A.十四次多项式 B.七次多项式C.不高于七次的多项式或单项式 D.六次多项式【答案】C【解析】根据多项式相加的特点,多项式次数不增加,项数增加或减少可得:A+B 一定是不高于七次的多项式或单项式.故选C.3.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( ) A.-5x-1 B.5x+1 C.-13x-1 D.13x+1【答案】A【解析】 (3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.4.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=1x2+x﹣1,C=x2+2x,那么A﹣B=2()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【答案】C.x2+x﹣1)﹣(x2+2x)【解析】根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(12=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.5.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,则代数式|a|-|c-a|+|c-b|-|-b|的值为().A.-2c B .0 C.2c D.2a-2b+2c【答案】A【解析】由图可知:a<c<0<b,所以|a|-|c-a|+|c-b|-|-b|=-a-(c-a)+(b-c)-b=-2c.6.如图所示,阴影部分的面积是( ).A.112xy B.132xy C.6xy D.3xy【答案】A【解析】S阴=2x×3y-0.5y×x=6xy-12xy=112xy7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为( ) .A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n-10)厘米【答案】C.【解析】观察上图,可知n块石棉瓦重叠的部分有(n-1)处,则n块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.8.若23a2b m与−0.5a n b4的和是单项式,则m=,n=.【答案】4,2.【解析】23a2b m与−0.5a n b4的和是单项式,∴23a2b m与−0.5a n b4是同类项,即可得:m=4,n=29.若5a|x|b3与-0.2a3b|y|可以合并,则x= ,y= .【答案】±3;±3【解析】∵5a|x|b3与-0.2a3b|y|可以合并∴5a|x|b3与-0.2a3b|y|为同类项即可得|x|=3.|y|=3解得:x=±3,y=±310.如图所示,长方形内有两个相邻的正方形,面积分别为9和a2(a>0).那么阴影部分的面积为________.【答案】3a-a2【解析】由图形可知阴影部分面积=长方形面积-a2-9,而长方形的长为3+a,宽为3,∴S阴=3(3+a)-9-a2=3a-a211.任意一个三位数,减去它的三个数字之和所得的差一定能被______整除. 【答案】9【解析】设任意一个的三位数为a×102+b×10+c.其中a是1~9的正整数,b,c分别是0~9的自然数.∵(a×102+b×10+c)-(a+b+c)=99a+9b=9(11a+b)=9m. (用m表示整数11a+b) . ∴任意一个三位数,减去它的三个数字之和所得的差一定能被9整除.12.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5【答案】(1)-7x2-4y2-6xy ;(2)8x2y-2xy2+2【解析】①所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;②在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+213.合并同类项:(1)3x-2x2+4+3x2-2x-5(2)6a2-5b2+2ab+5b2-6a2(3)-5yx2+4xy2-2xy+6x2y+2xy+5(4)3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3(注:将“x-1”或“1-x”看作整体)【答案与解析】(1)原式=(3-2)x+(-2+3)x2+(4-5)=x+x2-1(2)原式=(6-6)a2+(-5+5)b2+2ab=2ab(3)原式=(-5+6)x2y+(-2+2)xy+4xy2+5=x2y+4xy2+5(4)原式=(3-5)(x-1)2+(-2-4)(x-1)3=-2(x-1)2-6(x-1)314.一个多项式加上4x3-x2+5得3x4-4x3-x2+x-8,求这个多项式.【答案】3x4-8x3+x-13【解析】在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.(3x4-4x3-x2+x-8)-(4x3-x2+5)=3x4-4x3-x2+x-8-4x3+x2-5=3x4-8x3+x-1315.已知2a3+m b5-pa4b n+1=-7a4b5,求m+n-p的值.【答案】-4【解析】两个单项式的和仍是单项式,这就意味着2a3+m b5与pa4b n+1是同类项.可得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴ m+n-p=1+4-9=-4.【考点4:化简求值】1.若m2-2m=1则2m2-4m+2020的值是________.【答案】2024【解析】2m2-4m+2008=2(m2-2m)+2008=2×1+2022=20242.已知a=-(-2)2,b=-(-3)3,c=-(-42),则-[a-(b-c)]的值是________.【答案】15【解析】因为a=-(-2)2=-4,b=-(-3)3=27,c=-(-42)=16,所以-[a-(b-c)]=-a+b-c=15.3.有理数a,-b在数轴上的位置如图所示,化简|1-3b|-2|2+b|+|2-3a|= .【答案】b+3a-7【解析】-b<-3,b>3,所以原式=3b-1-2(2+b)+(3a-2)=b+3a-7.4.当p=2,q=1时,分别求出下列各式的值.(1)(p−q)2+2(p−q)−13(q−p)2−3(p−q);(2)8p2−3q+5q−6p2−9【答案】(1)−123;(2)1【解析】(1)把(p−q)当作一个整体,先化简再求值:(p−q)2+2(p−q)−13(q−p)2−3(p−q)=(1−13)(p−q)2+(2−3)(p−q)=−23(p−q)2−(p−q)又p−q=2−1=1;∴原式=−23(p−q)2−(p−q)=−23×12−1=−123(2)先合并同类项,再代入求值.8p2−3q+5q−6p2−9=(8−6)p2+(−3+5)q−9=2p2+2q−9当p=2,q=1时,原式=2p2+2q−9=2×22+2×1−9=1 5.先化简,再求值:(1)3x2-8x+x3-12x2-3x3+1,其中x=2;(2)4x2+2xy+9y2-2x2-3xy+y2,其中x-2,y=1.【答案】(1)-67;(2)16【解析】(1)原式=-2x3-9x2-8x+1,当x=2时,原式=-2×23-9×22-8×2+1=-67.(2)原式=2x2-xy+10y2,当x=2,y=1时,原式=2×22-2×1+10×12=16.6. 先化简,再求各式的值:12x +(−32x +13y 2)−(2x −23y 2),其中x =−2,y =23; 【答案与解析】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?原式=12x −32x +13y 2−2x −23y 2=−3x +y 2当x =−2,y =23时,原式=−3×(−2)+(23)2=6+49=649.7. 先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案与解析】(-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.8. 化简:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2.【答案】-a 2-3b 2【解析】a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2=(a 2﹣2a 2)+(﹣2ab+2ab )+(b 2﹣4b 2)=﹣a 2﹣3b 2.9. 化简求值:(1)当a =1,b =−2时,求多项式5ab −92a 3b 2−94ab +12a 3b 2−114ab −a 3b −5的值.(2)若|4a +3b |+(3b +2)2=0,求多项式2(2a+3b)2-3(2a+3b)+8(3a+3b)2-7(2a+3b)的值.【答案与解析】(1)先合并同类项,再代入求值:原式=(−92+12)a 3b 2+(5−94−114)ab −a 3b −5=−4a 3b 2−a 3b −5 将a =1,b =−2代入,得:−4a 3b 2−a 3b −5=-4×13-(-2)2-13×(-2)-5=-19(2)把(2a+3b )当作一个整体,先化简再求值:原式=(2+8)(2a+3b)2+(-3-7)(2a+3b )=10(2a+3b)2-10(2a+3b )由|4a +3b |+(3b +2)2=0可得:4a +3b =0,3b +2=0两式相加可得:4a +6b =−2,所以有2a +3b =−1代入可得:原式=10×(-1)2-10×(-1)=2010. 已知3x a+3y 4与-2xy b-2是同类项,求代数式3b 2-6a 3b-2b 2+2a 3b 的值.【答案】228【解析】∵3x a+3y 4与-2xy b-2是同类项∴a+3=1,b-2=4.∴a=-2,b=6.∵3b 2-6a 3b-2b 2+2a 3b=(3-2)b 2+(-6+2)a 3b=b 2-4a 3b∴当a=-2,b=6时,原式=62-4×(-2)3×6=22811. 先化简,再求值:3(y+2x )-[3x-(x-y )]-2x ,其中x ,y 互为相反数.【答案与解析】3(y+2x )-[3x-(x-y )]-2x=3y+6x-3x+x-y-2x=2(x+y) 因为x ,y 互为相反数,所以x+y=0所以3(y+2x )-[3x-(x-y )]-2x=2(x+y)=2×0=012. 已知代数式3y 2-2y+6的值为8,求32y 2-y+1的值.【答案】2【解析】∵3y 2-2y+6=8,∴3y 2-2y=2.当3y 2-2y=2时,原式=12(3y 2-2y )+1=12×2+1=2 13. 已知xy=-2,x+y=3,求整式(3xy+10y )+[5x-(2xy+2y-3x )]的值.【答案】22【解析】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看 成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.原式=3xy+10y+(5x-2xy-2y+3x )=3xy+10y+5x-2xy-2y+3x=8x+8y+xy=8(x+y )+xy 把xy=-2,x+y=3代入得,原式=8×3+(-2)=24-2=2214. 先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=12,且xy <0.【答案与解析】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=12,且xy <0,∴x=﹣2,y=12,则原式=﹣52﹣8=﹣212.15. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案】(1)-45;(2)-10【解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【考点5:“无关”与“不含”型问题】1. 代数式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关【答案】B【解析】合并同类项后的结果为-3x 3-2,故它的值只与x 有关.2. 多项式x 2﹣3kxy ﹣3y 2+xy ﹣8化简后不含xy 项,则k 为( )A .0B .−13C .13D .3【答案】C【解析】原式=x 2+(1﹣3k )xy ﹣3y 2﹣8,因为不含xy 项,故1﹣3k=0,解得:k=13.故选C .3. 如果对于某一个特定范围内x 的任意允许值,P=|1-2x|+|1-3x|+…+|1-10x|的值恒为一个常数,则此值为 ( ).A. 2B. 3C. 4D. 5【答案】B【解析】P 值恒为一常数,说明原式去绝对值后不含x 项,由此得:P =(1-2x )+(1-3x )+…+(1-7x )+(8x-1)+(9x-1)+(10x-1)=34. 当k = 时,代数式x 2−3kxy −3y 2−13xy −8中不含xy 项. 【答案】−19【解析】合并同类项得:x 2+(−3k −13)xy −3y 2−8.由题意得−3k −13=0. 故k =−19.5. 李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y-4x 3+2x 3y-2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案与解析】解:6x 3-2x 3y-4x 3+2x 3y-2x 3+15=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.6. 已知关于x ,y 的代数式x 2−3kxy −3y 2−13xy −8中不含xy 项,求k 的值.【答案】k =−19【解析】x 2−3kxy −3y 2−13xy −8=x 2+(−3k −13)xy −3y 2−8 因为不含xy 项,所以此项的系数应为0,即有:−3k −13=0,解得:k =−19.7. 试说明多项式x 3y 3-12x 2y+y 2-2x 3y 3+0.5x 2y+y 2+x 3y 3-2y-3的值与字母x 的取值无关.【答案】5【解析】根据题意得:m﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.8.要使关于x,y的多项式mx3+3nxy2+2x3-xy2+y不含三次项,求2m+3n的值.【答案】-3【解析】原式=(m+2)x3+(3n-1)xy2+y要使原式不含三次项,则三次项的系数都应为0,所以有:m+2=0,3n-1=0,即有:m=-2,n=13所以2m+3n=2×(-2)+3×13= -3.9.已知:ax2+2xy-x与2x2-3bxy+3y的差中不含2次项,求a2-15ab+9b2的值. 【答案】28【解析】(ax2+2xy-x)-(2x2-3bxy+3y)=ax2+2xy-x-2x2+3bxy-3y=(a-2)x2+(2+3b)xy-x-3y. ∵此差中不含二次项,∴a-2=0,2+3b=0解得:a=2,3b=-2当a=2且3b= -2时,a2-15ab+9b2=a2-5a(3b)+(3b)2=22-5×2×(-2)+(-2)2=4+20+4=28.10.若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd. 【答案】-27【解析】由已知 ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴{a=2b−1=−78=−2(c+1)−2=3a+7解得:{a=2b=−6c=−5d=−3∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.11.若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.【答案】2【解析】 -2x2+mx+nx2+5x-1=(n-2)x2+(m+5)x-1∵此多项式的值与x的值无关,∴{n−2=0m+5=0解得:{n=2m=−5当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n有最小值为2.12.若关于x,y的多项式:x m-2y2+mx m-2y+nx3y m-3-2x m-3y+m+n,化简后是四次三项式,求m+n的值.【答案】4【解析】分别计算出各项的次数,找出该多项式的最高此项:因为x m-2y2的次数是m,mx m-2y的次数为m-1,nx3y m-3的次数为m,-2x m-3y的次数为m-2,又因为是三项式 ,所以前四项必有两项为同类项,显然x m-2y2与nx3y m-3是同类项,且合并后为0,所以有m=5,1+n=0 m+n=5+(-1)=4.13.有一道题目:当a=2,b=-2时,求多项式:3a3b3-2a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。

完整版)整式的除法练习题(含答案)

完整版)整式的除法练习题(含答案)

完整版)整式的除法练习题(含答案) 整理后:题一、选择题1.下列计算正确的是()A。

a6÷a2=a3B。

a+a4=a5C。

(ab3)2=a2b6D。

a-(3b-a)=-3b2.计算:(-3b3)2÷b2的结果是()A。

-9b4B。

6b4C。

9b3D。

9b43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是()A。

(ab)2=ab2B。

(a3)2=a6C。

a6÷a3=a2D。

a3•a4=a124.下列计算结果为x3y4的式子是()A。

(x3y4)÷(xy)B。

(x2y3)•(xy)C。

(x3y2)•(xy2)D。

(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于() A。

6B。

9C。

12D。

816.下列等式成立的是()A。

(3a2+a)÷a=3aB。

(2ax2+a2x)÷4ax=2x+4aC。

(15a2-10a)÷(-5)=3a+2D。

(a3+a2)÷a=a2+a7.下列各式是完全平方式的是() A。

x-x+2B。

1+4x/4XXXD。

x+2x-12/38.下列计算正确的是()A。

(x-2y)(x+2y)=x2-4y2B。

(3x-y)(3x+y)=9x2-y2C。

(-4-5n)(4-5n)=25n2+16D。

(-m-n)(-m+n)=n2-m2题二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-1.10.七年级二班教室后墙上的“研究园地”是一个长方形,它的面积为6a2-9ab+3a,其中一边长为3a,则这个“研究园地”的另一边长为2a-3b。

11.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是x2+2x+1.12.计算:(6x5y-3x2)÷(-3x2)=-2y-2.13.若5x=18,5y=3,则5=3xy。

整式的加减练习100题(有答案)

整式的加减练习100题(有答案)

整式的加减练习100题(有答案)整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x y-7xy)-(xy -3x y);31、(3a2-3ab+2b2)+(a2+2ab-2b2);22、3(-3a -2a)-[a -2(5a-4a +1)-3a]. 32、2a2b+2ab2-[2(a2b-1)+2ab2+2].2 2 2 22 2 223、3a2-9a+5-(-7a2+10a-5);24、-3a2b-(2ab2-a2b)-(2a2b+4ab2).25、(5a-3a2+1)-(4a3-3a2);26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]27、(8xy-x2+y2)+(-y2+x2-8xy);28、(2x2-12+3x)-4(x-x2+12 );29、3x2-[7x-(4x-3)-2x2].30、5a+(4b-3a)-(-3a+b);33、(2a2-1+2a)-3(a-1+a2);34、2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)].35、-23 ab+34 a2b+ab+(-34 a2b)-136、(8xy-x2+y2)+(-y2+x2-8xy);37、2x-(3x-2y+3)-(5y-2);38、-(3a+2b)+(4a-3b+1)-(2a-b-3)39、4x3-(-6x3)+(-9x3)40、3-2xy+2yx2+6xy-4x2y41、 1-3(2ab+a)十[1-2(2a-3ab)].42、 3x- [5x+ (3x- 2)];43、 (3a2b- ab2)- (ab2+ 3a2b)44、 2x ?3y ??3x ? 2?3x ? y45、 (- x2+ 5+ 4x3)+ (- x3+ 5x- 4)46、( 5a2-2a+3) -( 1-2a+a2) +3( -1+3a-a2).47、 5( 3a2b-ab2) -4( -ab2+3a2b).48、 4a2+2( 3ab-2a2) -( 7ab-1).49、 12 xy+( - 14 xy) -2xy2-( -3y2x)50、 5a2-[a2-( 5a2-2a) -2( a2-3a) ]51、 5m-7n-8p+5n-9m+8p52、( 5x2y-7xy2) -( xy2-3x2y)53、 3x2y-[2x2y-3( 2xy-x2y) -xy]54、 3x2-[5x-4( 12 x2-1)]+5x255、 2a3b- 1 3 22 a b-a2b+ 12 a b-ab2;56、( a2+4ab-4b2) -3( a2+b2) -7( b2-ab).57、 a2+2a3+( -2a3) +( -3a3) +3a258、 5ab+( -4a2b2) +8ab2-( -3ab) +( -a2b) +4a2b2;59、( 7y-3z) -( 8y-5z);60、 -3( 2x2-xy) +4( x2+xy-6).61、( x3+3x2y-5xy2+9y3) +( -2y3+2xy2+x2y-2x3) - ( 4x2y-x3-3xy2+7y3)62、 -3x2y+2x2y+3xy2-2xy2;63、 3( a2-2ab) -2( -3ab+b2);64、 5abc-{2a2b-[3abc-( 4a2b-ab2]}.65、 5m2-[m2+( 5m2-2m) -2( m2-3m) ].66、 -[2m-3( m-n+1) -2]-1.67、 13 a-( 12 a-4b-6c)+3(-2c+2b)68、 -5an-an-( -7an) +( -3an)69、 x2y-3xy2+2yx2-y2x70、 1 2 24 a b-0.4ab - 12 a2b+ 25 ab2;71、 3a-{2c-[6a-( c-b) +c+( a+8b-6) ]}72、 -3( xy-2x2) -[y2-( 5xy-4x2) +2xy];73、化简、求值 12 x2- 2- (12x2+ y2) - 3 22 (- 3 x2+1243 y ),其中 x=- 2, y=- 374、化简、求值 1 x- 2(x- 1 y2)+ (- 3 x+ 1 y22 3 2 3 ),其中 x=- 2, y=- 23 .75、 1 3 ? 33 x ? ??? 2 x2 ? 23 x3 ??? ? 12 x2 ? (4x ? 6) ? 5x其中 x=- 1 12 ;76、化简,求值( 4m+n) -[1-( m-4n) ], m= 25 n=-11377、化简、求值 2(a2b+ 2b3- ab3)+ 3a3- (2ba2- 3ab2+ 3a3)- 4b3,其中 a=- 3, b= 278、化简,求值:( 2x3-xyz) -2( x3-y3+xyz) +( xyz-2y3),其中 x=1, y=2, z=-79、化简,求值: 5x2-[3x-2( 2x-3) +7x2],其中 x=-2.80、若两个多项式的和是 2x2+xy+3y2,一个加式是x2-xy,求另一个加式.81、若 2a2-4ab+b2与一个多项式的差是 -3a2+2ab-5b2,试求这个多项式.82、求5x2y-2x2y与-2xy2+4x2y的和.83、求3x2+x-5与4-x+7x2的差.84、计算 5y+3x+5z2与12y+7x-3z2的和85、计算8xy2 +3x2 y-2与-2x2 y+5xy2 -3的差86、多项式-x2 +3xy-12 y与多项式M的差是- 1 22 x-xy+y,求多项式M87、当x=- 12,y=-3时,求代数式3(x2-2xy)-[3x2-2y+2 (xy+y)]的值.88、化简再求值5abc-{2a 2 b-[3abc-(4ab2 -a2 b)]-2ab2 },其中a=-2,b=3,c=-1489、已知A=a2 -2ab+b2,B=a2 +2ab+b2 (1)求A+B;(2)求14 (B-A);90、小明同学做一道题,已知两个多项式A,B,计算A+B,他误将A+B看作A-B,求得9x2-2x+7,若B=x2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x2+2x-1,N=-x2-2+3x,求M-2N.92、已知A ? 4x2 ?4xy? y2,B ? x2 ? xy?5y2,求3A-B93、已知A=x2+xy+y2,B=-3xy-x2,求2A-3B.94、已知a 2+(b+1)2=0,求5ab2-[2a2b-(4ab2 -2a2b)]的值.95、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.96、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.97、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+ (6a-3ab)-(4ab-3b)的值.98、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5] 的值99、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.100、有两个多项式:A=2a2-4a+1,B=2(a2-2a) +3,当a取任意有理数时,请比较A与B的大小.34、2(x -xy)-3(2x -3xy)-2[x(- 2x -xy+y)]=-2x +5xy-2y2 2 2 2 2 2 235、-答案:1、 3( a+5b) -2( b-a) =5a+13b2 3 3 1ab+ a2b+ ab+ (- a2b)- 1 = ab-1 3 4 4 336、 (8xy- x2+ y2)+ (- y2+ x2- 8xy)=037、 2x- (3x- 2y+ 3)- (5y- 2)=-x-3y-12、 3a-( 2b-a) +b=4a-b.3、 2( 2a2+9b) +3( -5a2-4b) =— 11a2 +6b 24、( x3-2y3-3x2y) -( 3x3-3y3-7x2y) = -2x3+y3+4x2y5、 3x2-[7x-( 4x-3) -2x2] = 5x2 -3x-36、( 2xy-y) -( -y+yx) = xy7、 5( a 2 2b-3ab 2 ) -2( a 2 b-7ab) = -a 2 b+11ab8、( -2ab+3a) -2( 2a-b) +2ab= -2a+b9、( 7m 2 n-5mn) -( 4m 2 n-5mn) = 3m2 n10、( 5a2+2a-1) -4( 3-8a+2a2) = -3a2+34a-1311、 -3x2 y+3xy 2 +2x 2 y-2xy 2 = -x 2 y+xy 212、 2( a-1) -( 2a-3) +3. =413、 -2( ab-3a 2 ) -[2b 2 -( 5ab+a 2 ) +2ab]= 7a2 +ab-2b 214、( x 2 -xy+y) -3( x 2 +xy-2y) = -2x 2 -4xy+7y15、 3x 2 -[7x-( 4x-3) -2x 2 ]=5x 2 -3x-316、 a2b-[2( a2b-2a2c) -( 2bc+a2c) ]= -a2b+2bc+6a2c17、 -2y3+( 3xy2-x2y) -2( xy2-y3) = xy2-x2y18、 2( 2x-3y) -( 3x+2y+1) =2x-8y-119、 -( 3a2-4ab) +[a2-2( 2a+2ab) ]=-2a 2 -4a20、 5m-7n-8p+5n-9m-p = -4m-2n-9p21、( 5x2y-7xy2) -( xy2-3x2y) =4xy2-4x2y22、 3( -3a2-2a) -[a2-2( 5a-4a2+1) -3a]=-18a2 +7a+223、 3a2-9a+5-( -7a2+10a-5) =10a2-19a+1024、 -3a2b-( 2ab2-a2b) -( 2a2b+4ab2) = -4a2b-64ab225、( 5a-3a2+1) -( 4a3-3a2) =5a-4a2+126、 -2( ab-3a2) -[2b2-( 5ab+a2) +2ab]=7a 2 +ab-2b227、 (8xy- x2+ y2)+ (- y2+ x2- 8xy)=028、 (2x2- 12 + 3x)- 4(x- x2+ 1 2 52 ) = 6x -x- 229、 3x2-[ 7x- (4x- 3)- 2x2] = 5x2- 3x- 330、 5a+( 4b-3a) -( -3a+b) = 5a+3b31、( 3a2 -3ab+2b 2 ) +( a 2 +2ab-2b 2 ) = 4a 2 -ab32、 2a 2 b+2ab2 -[2( a 2 b-1) +2ab 2 +2]. = -133、( 2a2-1+2a) -3( a-1+a2) = -a2-a+238、- (3a+ 2b)+ (4a- 3b+ 1)- (2a- b- 3)= -a-4b+439、 4x3- (- 6x3)+ (- 9x3)= x340、 3- 2xy+ 2yx2+ 6xy- 4x2y = -2 x2y+441、 1- 3(2ab+ a)十 [1- 2(2a- 3ab)]=2-7a42、 3x- [5x+ (3x- 2)]=-5x+243、 (3a2b- ab2)- (ab2+ 3a2b)= -2ab244、 2x 3y ??3x ? 2?3x ? y = 5x+y45、 (- x2+ 5+ 4x3)+ (- x3+ 5x- 4)= 3x3 - x2+ 5x+146、(5a2-2a+3)-(1-2a+a2)+3(-1+3a-a2)=a2+9a-147、 5( 3a2b-ab2) -4( -ab2+3a2b). =3a2b-ab248、 4a2+2( 3ab-2a2) -( 7ab-1) =1-ab49、 12 xy+( - 14 xy) -2xy2-( -3y2x) = 1 24 xy+xy50、 5a2-[a2-( 5a2-2a) -2( a2-3a) ]=11a2-8a51、 5m-7n-8p+5n-9m+8p=-4m-2n52、( 5x2y-7xy2) -( xy2-3x2y) =8x2y-6xy253、 3x2y-[2x2y-3( 2xy-x2y) -xy]=-2x2y+7xy54、 3x2-[5x-4( 1 x2-1)]+5x2 = 10x 22 -5x-455、 2a3b- 12 a3b-a2b+ 12 a2b-ab2 = 3 12 a3b- 2 a2b-ab256、(a2+4ab-4b2)-3(a2+b2)-7(b2-ab)=-2a2+11ab-14b257、 a2+2a3+( -2a3) +( -3a3) +3a2 = -3a3+4a258、 5ab+( -4a2b2) +8ab2-( -3ab) +( -a2b)+4a2b2=8ab+8ab2-a2b59、( 7y-3z) -( 8y-5z) =-y+2z60、 -3( 2x2-xy) +4( x2+xy-6) =-2x2+7xy-2461、( x3+3x2y-5xy2+9y3) +( -2y3+2xy2+x2y-2x3) -( 4x2y-x3-3xy2+7y3) =062、 -3x2y+2x2y+3xy2-2xy2 = -x2y+xy263、 3( a2-2ab) -2( -3ab+b2) =3a2 -2b 264、 5abc-{2a2b-[3abc-( 4a2b-ab2]}=8abc-6a2b+ab265、 5m2-[m2+( 5m2-2m) -2( m2-3m) ]=m2-4m66、 -[2m-3( m-n+1) -2]-1=m-3n+467、 13 a-( 12 a-4b-6c)+3(-2c+2b)= - 16 a+10b68、 -5an-an-( -7an) +( -3an) = -2an69、 x2y-3xy2+2yx2-y2x=3x2y-4xy271、 1 1 2 4 a2b-0.4ab2- 2 a b+ 25 ab2 = - 14 a2b71、 3a-{2c-[6a-( c-b) +c+( a+8b-6) ]}= 10a+9b-2c-62 272、 -3( xy-2x) -[y-( 5xy-4x) +2xy]= 2x -y2 2 2( 5y+3x+5z2 ) +( 12y+7x-3z2 ) =17y+10x+2z2 85、计算 8xy2 +3x2 y-2 与 -2x2 y+5xy2 -3 的差 1 1 3 273、化简、求值 2 x2- 2- (2x2+ y2) - 2 (- 3 x2+13 y2),其中 x=- 2, y=-43原式 =2x2+ 12 y2- 2 =68974、化简、求值 12 x- 2(x- 1 3 13 y2)+ (- 2 x+ 3 y2),其中 x=- 2, y=- 23 .原式 =-3x+y2 =64975、 13 x3 ? ?? 3 2 2 3 ? 1 2?? 2 x ? 3 x ?? ? 2 x ? (4x ? 6) ?5x 其中 x=- 112 ;3原式 =x3+x2 -x+6=6876、化简,求值( 4m+n) -[1-( m-4n) ], m= 25 n=-113原式 =5m-3n-1=577、化简、求值 2(a2b+ 2b3- ab3)+ 3a3- (2ba2- 3ab2+ 3a3)- 4b3,其中 a=- 3, b= 2原式 =-2ab3+3ab2= 1278、化简,求值:( 2x3-xyz) -2( x3-y3+xyz) +( xyz-2y3),其中 x=1, y=2, z=-3.原式 =-2xyz=679、化简,求值: 5x2-[3x-2( 2x-3) +7x2],其中 x=-2.原式 =-2x2 +x-6=-1680、若两个多项式的和是 2x2+xy+3y2,一个加式是x2-xy,求另一个加式.( 2x2+xy+3y2 )——( x2-xy) = x2+2xy+3y281、若 2a2-4ab+b2与一个多项式的差是 -3a2+2ab-5b2,试求这个多项式.( 2a2-4ab+b2 )—( -3a2+2ab-5b2) =5a2 -6ab+6b282、求 5x2y- 2x2y 与- 2xy2+ 4x2y 的和.( 5x2y- 2x2y) +(- 2xy2+ 4x2y) =3xy2+ 2x2y83、求 3x2+ x- 5 与 4- x+ 7x2的差.( 3x2+ x- 5)—( 4- x+ 7x2) =— 4x2+ 2x- 984、计算 5y+3x+5z2 与 12y+7x-3z2 的和( 8xy2 +3x2 y-2)—( -2x2 y+5xy2 -3)=5x2 y+3xy2 +186、多项式 -x2 +3xy-12 y 与多项式 M 的差是-1 22 x-xy+y,求多项式 MM=-1 2 32 x+4xy— 2 y87、当x=- 1 ,y=-3时,求代数式3(x2-2xy)22 -[3x-2y+2( xy+y) ]的值.原式 =-8xy+y= — 1588 、化简再求值 5abc-{2a 2 b-[3abc-( 4ab2 -a2 b) ]-2ab2 },其中 a=-2, b=3, c=-14 原式 =83abc-a2 b-2ab2 =3689、已知 A=a2 -2ab+b2 , B=a2 +2ab+b2( 1)求 A+B;( 2)求 14 (B-A);A+B=2a2 +2b2 14 (B-A)=ab90、小明同学做一道题,已知两个多项式 A, B,计算A+B,他误将 A+B 看作 A-B,求得9x2-2x+7,若 B=x2+3x-2,你能否帮助小明同学求得正确答案?A=10x2+x+5 A+B=11x2+4x+391、已知: M=3x2+2x-1, N=-x2-2+3x,求 M-2N.M-2N=5x2- 4x+392、已知 A ? 4x2 ?4xy ? y2,B ? x2 ? xy ?5y2 ,求3A- B3A- B=11x2 -13xy+8y293、已知 A= x2+ xy+ y2, B=- 3xy- x2,求 2A- 3B.2A- 3B= 5x2+ 11xy+ 2y294、已知 a ?2 + (b+ 1)2= 0,求 5ab2- [2a2b- (4ab2- 2a2b)]的值.原式 =9ab2- 4a2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c =0.原式=8abc-8a b=-322296、已知a,b,z满足:(1)已知|x-2|+(y+3)2 =0,(2)z是最大的负整数,化简求值:2(x y+xyz)-3(x y-xyz)-4x y.原式=-5x y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+ (6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m +3mn=5,求5m -[+5m -(2m -mn)-7mn-5] 的值原式=2m +6mn+5=1599、设A=2x -3xy+y +2x+2y,B=4x -6xy+2y -3x-y,若2 2 222 2 2 222 2 2 2|x-2a|+(y-3)=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a) +3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A2。

7年级上册数学电子课本(带答案)

7年级上册数学电子课本(带答案)

7年级上册数学电子课本(带答案)7年级上册数学电子课本带答案第一章整式的基本概念1.1 整式的定义和性质整式的定义:由有限个同一变量的变量、常数和它们的积或商的有理数指数幂组成的代数式称为整式。

整式的性质:(1)整式的项有多项式项和常数项两种;(2)整式的次数是指所有单项式次数的最大值;(3)同次异项相加得同次项;(4)同底数指数幂相乘,指数相加;(5)整式可以化简成同类项相加的形式。

1.2 多项式的概念和运算多项式的定义:只含有同一个变量的各项代数和式称为多项式。

多项式的运算:(1)同类项之间可以相加减;(2)多项式和多项式相加减;(3)多项式和数相乘。

1.3 整式的因式分解因式分解的步骤:(1)提公因式;(2)区分平方差公式、立方差公式、两数平方差等特殊公式;(3)配方法;(4)求根公式。

第二章一元一次方程2.1 一元一次方程的概念一元一次方程的定义:形如ax+b=0(a≠0)的式子称为一元一次方程,其中x是未知数,a和b是已知数。

2.2 一元一次方程的解法(1)移项法;(2)等式两边乘以相同的数;(3)约分;(4)去分母。

2.3 较复杂的运算问题第三章图形的基本概念3.1 图形的基本概念和性质图形的基本概念和性质:(1)点、线、面的概念;(2)图形的相似和全等性质;(3)图形的投影和投影的性质。

3.2 平面几何问题的解法平面几何问题的解法:(1)全等三角形的性质;(2)相似三角形的性质;(3)平行四边形的性质。

第四章勾股定理4.1 勾股定理的概念勾股定理的定义:直角三角形的斜边的平方等于两条直角边的平方和。

4.2 勾股定理的应用(1)求一条直角边;(2)求斜边;(3)证明两个角是否为直角;(4)在平面直角坐标系中求距离和中点坐标等。

第五章平面向量5.1 平面向量的概念和性质平面向量的定义:既有大小又有方向的量称为向量。

平面向量的性质:(1)向量的加法和减法;(2)数与向量的乘法;(3)向量的数量积和向量积的概念和计算公式。

20121.2整式(含答案)

20121.2整式(含答案)

选择题(每小题x 分,共y 分)---整式(含答案)(2012赤峰)2.下列运算正确的是(D)A .532x x x -=B .222()a b a b +=+C .336()m n m n =D .624p p p ÷=(2012•江苏常州)2.下列运算正确的是( C )A.3a +2a =a 5B.a 2·a 3= a 6C.(a +b)(a -b)= a 2-b 2D.(a +b)2= a 2+b 2(2012•毕节贵州省)4.下列计算正确的是( C )A .3a -2a=1B .a 4•a 6=a 24C .a 2÷a=aD .(a+b)2=a 2+b 2 +=2+ (2012•云南)8.若,,则a+b 的值为( B )A .B .C .1D .2 (2012•云南)3.下列运算正确的是( D )A .x 2•x 3=6B .3﹣2=﹣6C .(x 3)2=x 5D .40=1(2012•漳州)2.计算a 6·a 2的结果是( B )A .a 12B .a 8C .a 4D .a 3(2012•山东枣庄市)1.下列运算,正确的是( A )A .22232x x x -=B .()2222a a -=-C .()222a b a b +=+ D .()2121a a --=-- (2012•陕西省)3.计算23)5(a -的结果是( D )A .510a -B .610aC .525a -D .625a (2012•宁夏)1.下列运算正确的是( C )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a (2012•河北省)2.计算3()ab 的结果是( C )A .3ab B.3a b C.33a b D.3a b(2012•广西北海市)5.下列运算正确的是:( B ) A .x 3·x 5=x 15 B .(2x 2)3=8x 6 C .x 9÷x 3=x 3 D .(x -1)2=x 2-12 (2012•东营市)2. 下列运算正确的是( A )A .523x x x =⋅B .336()x x =C .5510x x x +=D . 336x x x =- (2012•东营市)8.若43=x ,79=y ,则y x 23-的值为( A ) A .74 B .47 C .3-D .72A .3a-a=3B .a 2·a 3=a 5C .a 15÷a 3=a 5(a ≠0)D .(a 3)3=a 6(2012•福建省南安)2.下列运算,正确的是( D ).A.22a a a =⋅B. 523a a a =+C. 236a a a =÷D. 623)(a a =(2012宜宾)5.将代数式x 2+6x+2化成(x+p)2+q 的形式为(B )A . (x ﹣3)2+11B . (x+3)2﹣7C . (x+3)2﹣11D . (x+2)2+4 (2012宜宾)3.下面运算正确的是( D )A . 7a 2b ﹣5a 2b=2B . x 8÷x 4=x 2C . (a ﹣b)2=a 2﹣b 2D . (2x 2)3=8x 6 (2012•湛江)6. 下列运算中,正确的是( C )A .3a 2﹣a 2=2B .(a 2)3=a 5C .a 3•a 6=a 9D .(2a 2)2=2a 4 (2012•南通)6.已知x 2+16x +k 是完全平方式,则常数k 等于( A )A .64B .48C .32D .16(2012•南通)2.计算(-x )2·x 3的结果是( A )A .x 5B .-x 5C .x 6D .-x 6(2012南昌)8.已知(m ﹣n)2=8,(m+n)2=2,则m 2+n 2=(C)A . 10B . 6C . 5D . 3(2012•福建省泉州)2、42)(a 等于( C ).A.42aB.24aC.8aD. 6a(2012江西)4.下列运算正确的是( D )A . a 3+a 3=2a 6B . a 6÷a ﹣3=a 3C . a 3a 3=2a 3D .(﹣2a 2)3=﹣8a 6(2012南昌)2.在下列表述中,不能表示代数式“4a ”的意义的是( D )A . 4的a 倍B . a 的4倍C . 4个a 相加D . 4个a 相乘 (2012六盘水)6.下列计算正确的是( D )A .B . (a+b)2=a 2+b 2C .(﹣2a)3=﹣6a 3D .﹣(x ﹣2)=2(2012•桂林)4.计算2xy 2+3xy 2的结果是( A )A .5xy 2B .xy 2C .2x 2y 4D .x 2y 4(2012•常德市)9、下列运算中,结果正确的是 ( D )A.1243a a a =∙B.5210a a a =÷C.532a a a =+ D.a a a 3-4= (2012•连云港)5.下列各式计算正确的是( C )A .(a +1)2=a 2+1B .a 2+a 3=a 5C .a 8÷a 2=a 6D .3a 2-2a 2=1(2012重庆)3.计算()2ab 的结果是( C ) A .2ab B .b a 2 C .22b a D .2ab(2012•益阳)2.下列计算正确的是( D )A .2a +3b =5abB .22(2)4+=+x xC .326()=ab abD .0(1)1-=(2012•浙江省义乌市)3.下列计算正确的是( C )A .a 3·a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a )2=a 6 (2012绍兴)2.下列运算正确的是( C )A . 2x x x +=B .623x x x ÷=C .34x x x ⋅=D .235(2)6x x =A .5552a a a +=B .()32622a a -=- C .2122a a a -⋅= D .()322221a a a a -÷=-(2012•上海)1.在下列代数式中,次数为3的单项式是( A )A 2xy ;B 33+x y ;C .3x y ; D .3xy . (2012安徽,4分)3.计算32)2(x -的结果是( B )A.52x -B. 68x -C.62x -D.58x -(2012•成都)4.下列计算正确的是( B )A .223a a a +=B .235a a a ⋅=C .33a a ÷=D .33()a a -= (2012•广州)4.下面的计算正确的是( C )A .6a ﹣5a=1B .a+2a 2=3a 3C .﹣(a ﹣b)=﹣a+bD .2(a+b)=2a+b(2012•杭州)5.下列计算正确的是( D )A .(﹣p 2q)3=﹣p 5q 3B .(12a 2b 3c)÷(6ab 2)=2abC .3m 2÷(3m ﹣1)=m ﹣3m 2D .(x 2﹣4x)x ﹣1=x ﹣4(2012金华市)3.下列计算正确的是( C )A .a 3a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .(3a)2=a 6(2012•乐山)3. 计算32()()x x -÷-的结果是( A )(A)x - (B)x (C)5x - (D)5x(2012•丽水) 2.计算3a •(2b )的结果是( C )A .3abB .6aC .6abD .5ab(2012•临沂)3.下列计算正确的是( D )A .2a 2+4a 2=6a 4B .(a +1)2=a 2+1C .(a 2)3=a 5D .x 7÷x 5=x 2(2012•聊城)2.下列计算正确的是( D )A .x 2+x 3=x 5B .x 2•x 3=x 6C .(x 2)3=x 5D .x 5÷x 3=x 2(2012•南充) 2.下列计算正确的是( D )(A)x 3+ x 3=x 6 (B)m 2·m 3=m 6 (C)32-2=3 (D)14×7=72(2012•衢州)3.下列计算正确的是( D )A .2a 2+a 2=3a 4B .a 6÷a 2=a 3C .a 6•a 2=a 12D .(﹣a 6)2=a 12(2012江苏苏州,3分)8.若,则的值是( B ) A .3 B .4 C .5 D . 6(2012•济宁)下列运算正确的是( D )A .﹣2(3x ﹣1)=﹣6x ﹣1B .﹣2(3x ﹣1)=﹣6x+1C .﹣2(3x ﹣1)=﹣6x ﹣2D .﹣2(3x ﹣1)=﹣6x+2二、填空题(每小题x 分,共y 分)(2012•厦门)8.计算: 3a -2a = a . .(2012•河北省)15.已知1y x =-,则2()()1x y y x -+-+的值为 1 .(2012•南通)11.单项式3x 2y 的系数为 3 .(2012•梅州)7. 若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为 3(2012滨州)15.根据你学习的数学知识,写出一个运算结果为a 6的算式 a 4a 2=a 6(答案不唯一) .(2012•厦门)16.已知a +b =2,ab =-1,则3a +ab +3b = 5 ;a 2+b 2= .(2012•黔东南州)13.二次三项式x 2﹣kx+9是一个完全平方式,则k 的值是 __±6_______ .(2012•福建省南安)14.已知3=+b a ,1=ab ,则22b a +的值为_7______.(2012•江苏常州)15.已知x=y+4,则代数式22x 2xy+y 25--的值为 -9 。

整式的加减(含答案)

整式的加减(含答案)

整式的加减1.下列各题中合并同类项结果正确的是( )A .134=-xy xy B .222632a a a =+C .222532a a a =+D .02222=-mn n m2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=-3.计算223a a +的结果是( ) A.23a B.24a C.43a D.44a4.下列运算正确的是( ).A .2323a a a +=B .()2a a a -÷= C .()325a a a -=- D .()32628a a =5.下列运算正确的是( ).A .3x+3y= 6 xyB .-y 2-y 2=0C .3(x+8)=3x +8D .- (6 x +2 y)=-6 x -2 y6.下列运算正确的是( ).A .623x x x ÷=B .532x x x =⋅C .624x x x -=D .325()x x =7.下列各式的变形正确的是( )A.235257a a aB.2276t tC.4x+5y=9xyD.22330x y yx8.下列各式计算正确的是( ).A.266a a a =+B.ab b a 352=+-C.mn mn n m 22422=-D.222253ab a b ab -=-9.如果2592++kx x 是一个完全平方式,那么k 的值是:A .±30B .30C .15 D.±1510.下列各式可以分解因式的是 ( )A .()-22x y -B .+224x 2xy y + C. 22x 4y -+ D.-22x 2xy y -11.计算()()()+2x 1x 1x 1-+的结果是 ( )A.-2x 1B.-3x 1C.+4x 1D.-4x 112.分解因式:m 3-4m 2+4m=____.13.因式分解:3x x -= ;14.分解因式:a -2ax+a 2x = .15.计算(π﹣3)0=_________.16.分解因式:=-2282b a ___________________.17.因式分解:22273b a -= 。

整式的加减练习100题(有答案)

整式的加减练习100题(有答案)

整式的加减练习100题(有答案)不好意思,由于篇幅较长,无法在此处完整呈现100道整式加减的练习题。

以下是30道以及相关答案。

建议在做题之前充分掌握整式的基础知识。

1. (2x+3)+(4x-2)=答案:6x+12. (3x²+5x+7)-(x²+2x+3)=答案:2x²+3x+43. (2x⁴-3x²+5)+(4x²-2)=答案:2x⁴+x²+34. (5x³-2x²+3x)+(3x⁴-4x²+2)=答案:3x⁴+5x³-6x²+3x+25. (3x²+4x-2)-(x²-2x+5)=答案:2x²+6x-76. (2x⁵+3x³-7x)+(4x³-2x)=答案:2x⁵+7x³-9x7. (x⁴+x²+2)+(2x⁴+3x²-1)=答案:3x⁴+4x²+18. (3x⁴-2x²+5)+(2x⁴+3x²-1)=答案:5x⁴+x²+49. (5y⁴-3y²+2)+(2y²+1)=答案:5y⁴-1y²+310. (7x³-5x²+8x)+(2x⁴-7x³+5x²-8x+1)=答案:2x⁴+2x²+111. (4x⁴-2x³+6)+(2x³-3x²+1)+(3x⁴-4x³+2x²-3x+5)=答案:7x⁴-x²+412. (6y⁵-5y³+7)+(5y³-3y²+1)+(2y⁴-4y³+3y²-2y+1)=答案:6y⁵+2y⁴-2y²-2y+913. (2x⁴-3x²+1)-(3x³-5x²+2)+(5x³-2x²+1)=答案:2x⁴-8x³+6x²+214. (3y⁴+2y³+5)-(2y²-3y+1)+(4y²-2y+3)+(5y³-3y^2+y-4)=答案:3y⁴+7y³+4y²-415. (2x³+4x²-5x+7)-(5x³+3x²-2x+1)+(3x⁴-2x²+1)=答案:3x⁴-3x³+3x²-6x+716. (4y³-3y²+6y)+(5y⁴-2y³+4y²-6y+1)-(2y⁴+3y³-2y²+3y-1)= 答案:3y⁴-3y³+8y²-3y+217. (2a³-5a²+7a)+(3a²-2a+1)+(5a³-2a²+4a-1)-(4a³+a²-3a+5)= 答案:3a³-3a²+12a-418. (3x⁴-2x³+5)-(4x³-2x²+3)+(2x²-3x+1)+(6x⁴-3x³+2x-1)= 答案:9x⁴-6x²19. (5y⁴-3y²+2)+(2y²+1)-(6y³-2y²+3)+(-3y^3+2y^2-y+4)= 答案:5y⁴-9y³+3y²-y+420. (2x³-x+3)-(3x²+x-2)+(5x⁴-2x³+1)-(4x²-3x+7)=答案:5x⁴-x²+421. (6x³-2x²+1)+(2x⁴-5x³+3x²-5x+1)-(3x⁴+4x³-3x²+2x-3)=答案:-x⁴-x³+6x²-6x+322. (2y³-4y²+6y)+(5y⁴-3y³+2y²-1)-(3y⁴+y²+5y-1)+(y⁴-2y³+3y²-2y+7)=答案:4y⁴-y³-2y²+12y+623. (3x²-2x+1)-(x⁴-2x³+3x²-2x+1)+(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)=答案:-x⁴+6x³-2x²-x+424. (2y²-3y+5)+(5y³-2y²+7)+(3y⁴-4y³+2y²-1)-(4y³+y²+3y-5)=答案:3y⁴+y³-4y²+4y+1225. (4x³-2x²+5x-1)-(5x⁴-3x²+1)+(2x⁴+x³+3x²-5x+1)+(3x³-2x²+x-4)=答案:-3x⁴+2x³+6x²-2x-326. (3a³-2a²+1)+(2a²-3a+5)-(5a³-3a²+2a-1)+(6a⁴-2a³+1)=答案:6a⁴-2a³-6a²+6a+727. (2y⁴-3y³+2y)+(3y⁴-2y³+y²-1)-(4y³+2y²-3y+1)+(y⁴-y³+3y²-4y+7)=答案:1y⁴+4y³-y²+4y+628. (5x²-2x+1)-(2x³+x²-3x+5)-(5x⁴-3x³+2x²+1)+(3x³-4x²+3x-2)= 答案:5x⁴-5x²+529. (2a²-3a+5)-(5a³-2a²+7)+(3a⁴-4a³+2a²-1)+(4a³+a²-3a+5)=答案:3a⁴-2a³+2a²+130. (3x³-2x²+1)+(2x²-x+3)-(3x³+4x²-3x+2)+(5x⁴-2x³+1)=答案:5x⁴-3x²+2整式加减是初中数学中的重点内容之一。

整式练习题(含答案)

整式练习题(含答案)

整式练习题(含答案)七年级整式练题一、判断题1) x+1是关于x的一次两项式。

( )2) -3不是单项式。

( )3) 单项式xy的系数是1.( )4) x^3+y^3是三次多项式。

( )5) 多项式是整式。

( )二、选择题1.在下列代数式中,整式的个数是()。

A。

2个 B。

3个 C。

4个 D。

5个2.多项式-23m^2-n^2是()。

A。

二次二项式 B。

三次二项式 C。

四次二项式 D。

五次二项式3.下列说法正确的是()。

A。

3x^2-2x+5的项是3x^2、2x、5B。

在1a+b/3、ab、ab^2+b+1、x^3+x^2-3中,多项式有22xy/3、xy/3、-与2x^2-2xy-5都是多项式C。

多项式-2x^2+4xy的次数是2D。

一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是()。

A。

整式abc没有系数B。

xyz/2+不是整式C。

-2不是整式D。

整式2x+1是一次二项式5.下列代数式中,不是整式的是()。

A。

-3x^2 B。

5a-4b/3a+2 C。

75x D。

-20056.下列多项式中,是二次多项式的是()。

A。

32x+1 B。

3x^2 C。

3xy-1 D。

3x-57.x减去y的平方的差,用代数式表示正确的是()。

A。

(x-y)^2 B。

x^2-y^2 C。

x^2-y D。

x-y^28.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是()米/分。

A。

(a+b)/2 B。

S/(a+b) C。

(2S)/(s+ab) D。

(S^2+ab)/2S9.下列单项式次数为3的是()A。

3abc B。

2×3×4 C。

1/3xy^4 D。

52x10.下列代数式中整式有()。

11x-y。

5y。

2x+y。

a^2b。

0.5.a/x^4A。

4个 B。

5个 C。

6个 D。

7个11.下列整式中,单项式是()。

整式的除法练习题(含答案)

整式的除法练习题(含答案)

整式的除法练习题(含答案).doc 整式的除法》题一、选择题1.正确答案是B。

改写为:a+a4=a5是错误的,应为a+a4=a4+a,所以选项B正确。

2.正确答案是D。

改写为:(-3b3)2÷b2=9b6÷b2=9b4,所以选项D正确。

3.正确答案是A。

改写为:(ab)2=a2b2,所以选项A正确。

4.正确答案是C。

改写为:(x3y2)•(xy2)=x4y4,所以选项C正确。

5.正确答案是B。

改写为:(a3b6)÷(a2b2)=a(b4),所以a2b8=a(b4)•a2b2=ab6•a2b2=9a2b8,所以选项B正确。

6.正确答案是D。

改写为:(a3+a2)÷a=a2+a,所以选项D正确。

7.正确答案是D。

改写为:x+2x-12=(x-2)(x+6),所以选项D正确。

8.正确答案是C。

改写为:(-4-5n)(4-5n)=-16+20n+20n-25n2=25n+16,所以选项C正确。

二、填空题9.计算:(a2b3-a2b2)÷(ab)2=ab-a,所以答案为ab-a。

10.另一边长为2a-3b,所以答案为2a-3b。

11.除式为x2+4x-1,所以答案为x2+4x-1.12.计算:(6x5y-3x2)÷(-3x2)=-2y,所以答案为-2y。

13.计算:5=1·5=18·xy,所以xy=1/18.14.计算:-2x2y·(-x)·(-y)=2x3y3,所以答案为2x3y3/8x2=-y/4.15.计算:x=(x+y)+(x-y)=1004+2=1006,所以x-y=1006-2=1004.16.计算:2x-4=5,所以x=3.5.代入4x2-16x+16得到答案为16.25.17.计算:m=3,n=6,所以2a3b9+3=8a9b15,解得a=2/3,b=3/2.所以答案为2a3b6+3.18.加上的单项式为4x,因为16x2+4x=(4x)2,所以答案为4x。

整式及其运算(含答案)

整式及其运算(含答案)

整式及其运算试卷简介:整式的加减,整式的乘除,探索与表达规律一、单选题(共7道,每道5分)1.下列说法正确的是( )A.与a的积用代数式表示为B.单项式的系数是,次数是4C.如果一个多项式的次数是6,则这个多项式的任何一项的次数都不大于 6D.若是同类项,则m+n=2答案:C解题思路:A中代数式的表达为,B中单项式的系数是,次数是3,D中m=0,n=1,m+n=1.试题难度:三颗星知识点:多项式的次数2.当x=1时,代数式2px5+3qx3+1的值是2013;则当x=-1时,代数式2px5+3qx3+1的值是( )A.-2013B.-2012C.-2011D.2013答案:C解题思路:将x=1代入2p5+3q3+1可得2p+3q的值,将x=-1代入代数式,然后将2p+3q 的值代入可得出答案.试题难度:三颗星知识点:代数式求值3.若4x2+kxy+64y2是完全平方式,则k的值为( )A.16B.32C.±16D.±32答案:D解题思路:根据完全平方公式有或,则k=32或-32.试题难度:三颗星知识点:完全平方公式的应用4.若,则a,b,c的大小关系是( )A.b>c>B.>b>cC.c>>bD.c>b>答案:A解题思路:将,b,c的指数化为相等,均化为11,比较底数大小便可以得到结果.试题难度:三颗星知识点:有理数比较大小5.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一长方形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )图1 图2A.(-b)(+2b)=B.(a+b)2=a2+2ab+b2C. D.(a-b)(a+b)=a2-b2答案:D解题思路:分别根据两个图的阴影部分列式,最终列出等式就可以得到.试题难度:三颗星知识点:多项式乘法的几何表示6.下列多项式乘法中,能用平方差公式计算的是( )A.(x+1)(-1-x)B.(a+b)(a-b)C.(3b+2a)(2a-3b)D.(x2-y)(x+y2)答案:C解题思路:根据平方差公式的特点,两数和与两数差的乘积,故选C试题难度:三颗星知识点:平方差公式7.给出下列式子:①(-2y-1)2;②(-2y-1)(-2y+1);③(-2y+1)(2y+1);④(2y-1)2;⑤(2y+1)2.其中相等的是( )A.①④B.②③C.①⑤D.②④答案:C解题思路:观察是否可以去负号,去负号后利用完全平方公式与平方差公式比较是否可以相等.试题难度:三颗星知识点:平方差公式二、填空题(共13道,每道5分)8.一家商店某种服装成本价为a元,按成本价提高50%后标价,又以8折优惠卖出,则这种服装每件的售价是____.答案:1.2a解题思路:a(1+50%)0.8=1.2a试题难度:知识点:列代数式9.若m表示一个两位数,n表示一个一位数,把m放在n的左边组成一个三位数,则这个三位数用代数式可表示为____.答案:10m+n解题思路:列数位表,再乘以相应的计量单位.试题难度:知识点:列代数式10.按一定规律排列的一列数:2,-6,12,-20,30,-42,…,则它的第n个数是____.答案:解题思路:先判断符号,(-1)n+1,再判断数值n2+n,因此答案为.试题难度:知识点:数的规律11.下列图案由边长相等的黑白两色正方形按一定规律拼接而成,依此规律,第n个图案中白色正方形个数为____.答案:5n+3解题思路:根据图形的特点,第一个图中(1×5+3)个白色正方形,第二个图中(2×5+3)个白色正方形,第三个图中(3×5+3)个白色正方形,……第n个图中(5n+3)个白色正方形.试题难度:知识点:图形规律12.下列运算正确的序号有____个.①a3·a3=2a3②(3a3)2=9a6③m3m3=m0④b2m÷b2=b m⑤a0÷a1=a-1⑥答案:3解题思路:同底数幂相乘(除)底数不变指数相加(减),同类项相加系数向加,字母和字母的指数不变,积的乘方等于乘方的积.因此只有②⑤⑥正确.试题难度:知识点:合并同类项13.若2x2-x=1,则4x4-4x3+3x2-x+4=____.答案:6解题思路:2x2=x+1代入后面的式子不断化简.试题难度:知识点:整体代入14.已知=7,ab=5,则=____.答案:69解题思路:试题难度:知识点:完全平方公式知二求二问题15.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.虽然PM2.5只是地球大气成分中含量很少的组分,但富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对空气质量和能见度等有重要的影响.某市出现阴霾天气,空气质量和能见度都比较低,经市监测站监测PM2.5浓度为1.98×10-4(克/每立方米),一个成年人每天吸入空气达15~20立方米,已知1微克=10-3毫克,1毫克=10-3克,则一个成年人每天最少吸入PM2.5____微克.答案:2970解题思路:先算出成年人每天最少的吸入量1.98×10-4×15g,然后再转化为微克.试题难度:知识点:用科学记数法——表示较小的数16.计算:a2·(-a)3-a3·(-2a2)+[-3(-a)2]3÷(-a)=____.答案:解题思路:略试题难度:知识点:整式的运算17.计算:____.答案:解题思路:略试题难度:知识点:整式的运算18.计算:(-x-2y)(-x+2y)-4x(-2x-3y)+(-3x-2y)(3x+2y)=____.答案:解题思路:略试题难度:知识点:整式的运算19.计算____.答案:解题思路:略试题难度:知识点:整式的运算20.已知m是最小的正整数,n是绝对值最小的负整数,则-2(mn-3m2)-2[m2-3(mn-m2)+2mn]____.答案:-2解题思路:先求出m=1,n=1,化简后代入求值试题难度:知识点:整式的运算。

人教版七年级数学上册 第2---4章同步测试题含答案

人教版七年级数学上册 第2---4章同步测试题含答案

人教版七年级数学上册 第二章同步测试题含答案 2.1 整式一、选择题(本大题共8道小题)1. 下列式子:1.2,3ab ,m +2,2x -3=1,2a -3b >0,y 2,xyx +y中,整式共有( )A .3个B .4个C .5个D .6个2. 我们知道,用字母表示的式子具有一般意义,则下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的单价是3元/千克,则3a 元表示购买a 千克该种葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .王师傅每天做a 个零件,则3a 个表示王师傅3天做的零件个数D .若3和a 分别表示一个两位数的十位数字和个位数字,则3a 表示这个两位数3. 多项式2x 2-x -3的项分别是( )A .2x 2,x ,3B .2x 2,-x ,-3C .2x 2,x ,-3D .2x 2,-x ,34. 用语言叙述式子“a -12b ”所表示的数量关系,下列说法正确的是( ) A .a 与b 的差的12 B .a 与b 的一半的积 C .a 与b 的12的差D .a 比b 大125. 下列说法正确的是()A .-1不是单项式B .2πr 2的次数是3 C.x 2y3的次数是3D .-xy2的系数是-16. 下列叙述中,错误的是()A .a 2-2ab +b 2是二次三项式B .x -5x 2y 2+3xy -1是二次四项式C .2x -3是一次二项式D .3x 2+xy -8是二次三项式7. 正方体的棱长为a ,那么它的表面积和体积分别是( ) A .6a ,a 3B .6a 2,a 3C .6a 3,a 3D .6a ,3a 38. 按图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =-4,y =-2C .x =2,y =4D .x =4,y =2二、填空题(本大题共8道小题)9. 某企业去年的年产值为a 万元,今年比去年增长10%,则今年的年产值是________万元.10. -12x 2y 是________次单项式.11. 如图,将长和宽分别是a ,b 的长方形纸片的四个角各剪去一个边长为x 的小正方形.用含a ,b ,x 的式子表示长方形纸片剩余部分的面积为__________.12. 把下列式子:①-3x 2y ;②-5+4a ;③12;④-m 7;⑤a 3-b 3;⑥x 2+2xy +y 2;⑦1x -y;⑧1-x 3;⑨xπ;⑩π+x 中的单项式填入单项式集合内,多项式填入多项式集合内.(填序号)单项式集合:{ …}; 多项式集合:{ …}.13. 对于多项式-2x +4xy 2-5x 4-1,它的次数是______,最高次项是______,三次项的系数是______,常数项是______.14. 一列单项式:-x 2,3x 3,-5x 4,7x 5,…,按此规律排列,则第7个单项式为__________.15. 妞妞家新装修了楼房,每面墙上都贴有长方形的壁纸,每张壁纸长a m ,宽bm .如果所用壁纸的张数为n ,那么墙壁的面积S 为________m 2,这个式子是________项式,系数为________,次数为________(壁纸无重叠、无缝隙).16. 一个单项式含x ,y ,z 三个字母,次数是5,系数是x 的指数的相反数,写出满足这些条件的所有单项式:___________________________________________.三、解答题(本大题共2道小题)17. 材料阅读题要对一组对象进行分类,关键是要选定一个分类标准,不同的分类标准有不同的结果,如下面给出的7个单项式:2x 3z ,xyz ,3y 2,-5y 2x ,-z 2y 2,13x 2yz ,z 3,若按系数分类:系数为正数的有2x 3z ,xyz ,3y 2,13x 2yz ,z 3;系数为负数的有-5y 2x ,-z 2y 2.请你再按两种不同的分类标准对上述7个单项式进行分类.18. 已知多项式-a12+a11b-a10b2+…+ab11-b12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?人教版七年级数学上册 2.1 整式(含答案)-答案一、选择题(本大题共8道小题)1. 【答案】B[解析] 其中2x-3=1,2a-3b>0,xyx+y不是整式,其余4个是整式.故选B.2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】C6. 【答案】B7. 【答案】B8. 【答案】C[解析] 将四个选项分别按运算程序进行计算.A.当x=3,y=3时,输出结果为32+2×3=15,不符合题意;B.当x=-4,y=-2时,输出结果为(-4)2-2×(-2)=20,不符合题意;C.当x=2,y=4时,输出结果为22+2×4=12,符合题意;D.当x=4,y=2时,输出结果为42+2×2=20,不符合题意.故选C.二、填空题(本大题共8道小题)9. 【答案】1.1a【解析】增长率问题,今年为(1+10%)a=1.1a.10. 【答案】三11. 【答案】ab-4x212. 【答案】①③④⑨②⑤⑥⑧⑩13. 【答案】4-5x44-114. 【答案】-13x8[解析] 第7个单项式的系数为-(2×7-1)=-13,x的指数为8,所以第7个单项式为-13x8.故答案为-13x8.15. 【答案】nab单1 316. 【答案】-3x3yz,-2x2y2z,-2x2yz2,-xy3z,-xy2z2,-xyz3三、解答题(本大题共2道小题)17. 【答案】12[解析] 分类的方法有很多,例如按单项式的次数分类、按字母的个数分类等.解:答案不唯一,如按单项式的次数分类:二次单项式有3y2;三次单项式有xyz,-5y2x,z3;四次单项式有2x3z,-z2y2,13x2yz.按含有字母的个数分类:只含有一个字母的有3y2,z3;含有两个字母的有2x3z,-5y2x,-z2y2;含有三个字母的有xyz,13x2yz.[点析] 确定分类的标准时应考虑到既不重复又不遗漏.18. 【答案】[解析] 观察所给条件,a的指数逐次减1,b的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a8b4,它的系数为-1,次数为12.(2)十二次十三项式.2.2 整式的加减一.选择题1.下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an22.已知x2a y4﹣b与﹣x3﹣b y3a是同类项,则a+b的值为()A.﹣1B.0C.1D.23.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a24.下列变形正确的是()A.﹣(a+2)=a﹣2B.﹣(2a﹣1)=﹣2a+1C.﹣a+1=﹣(a﹣1)D.1﹣a=﹣(a+1)5.计算x3+x3的结果是()A.x6B.x9 C.2x6 D.2x36.若2x+y=1,﹣y+2z=﹣3,则x+y﹣z的值是()A.1B.2C.3D.47.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x28.已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣19.已知A=x2+2y2﹣z,B=﹣4x2+3y2+2z,且A+B+C=0,则多项式C为()A.5x2﹣y2﹣z B.x2﹣y2﹣z C.3x2﹣y2﹣3z D.3x2﹣5y2﹣z 10.设M=x2+8x+12,N=﹣x2+8x﹣3,那么M与N的大小关系是()A.M>N B.M=N C.M<N D.无法确定二.填空题11.若7a x b2与﹣a3b y的和为单项式,则y x=.12.若关于x、y的代数式mx3﹣3nxy2﹣(2x3﹣xy2)+xy中不含三次项,则m﹣6n的值为.13.不改变式子的值,把括号前的符号变成相反的符号x﹣y﹣(﹣y3+x2﹣1)=.14.在等式的括号内填上恰当的项,x2﹣y2+8y=x2﹣().15.若m2+3mn=5,则5m2﹣3mn﹣(﹣9mn+3m2)=.三.解答题16.已知:①单项式x m y3与﹣xy n(其中m、n为常数)是同类项,②多项式x2+ax+b(其中a、b为常数)和x2+2x﹣3+(2x﹣1)相等.求(a+b)+(﹣2m)n的值.17.下面的去括号有没有错?若有错,请改正.(1)a2﹣(2a﹣b﹣c)=a2﹣2a﹣b﹣c;(2)﹣(x﹣y)+(xy﹣1)=﹣x﹣y+xy+1.18.计算:9m2﹣4(2m2﹣3mn+n2)+4n2.19.先化简,再求值:2ab+6(a2b+ab2)﹣[3a2b﹣2(1﹣ab﹣2ab2)],其中a为最大的负整数,b为最小的正整数.参考答案1.D2.D3.D4.C5.D6.B7.D8.D9.D10.A11.812.013.x﹣y+(y3﹣x2+1)14.y2﹣8y15.1016.解:由单项式单项式x m y3与﹣xy n同类项得m=1,n=3,∵x2+ax+b=x2+2x﹣3+(2x﹣1)=x2+4x﹣4,∴a=4,b=﹣4,∴(a+b)+(﹣2m)n=(4﹣4)+(﹣2×1)3=﹣8.17.解:(1)有错.a2﹣(2a﹣b﹣c)=a2﹣2a+b+c;(2)有错.﹣(x﹣y)+(xy﹣1)=﹣x+y+xy+1.18.解:原式=9m2﹣8m2+12mn﹣4n2+4n2=m2+12mn.19.解:原式=2ab+3a2b+6ab2﹣3a2b+2﹣2ab﹣4ab2=(2ab﹣2ab)+2+(3a2b﹣3a2b)+(6ab2﹣4ab2)=2ab2+2,∵a为最大的负整数,b为最小的正整数,∴a=﹣1,b=1,∴原式=2×(﹣1)×1+2=0.人教版七年级上册数学第三章同步测试题3.1一元一次方程1、下列说法正确的是:A 、方程的解就是方程的根B 、不是等式就不是方程C 、方程中未知数的值就是方程的解D 、方程3x = 2x 没有解。

初中数学整式的乘法(含答案)

初中数学整式的乘法(含答案)

第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。

部编数学七年级上册必刷提高练【整式及整式的加减】(解析版)考点必刷精编讲义(人教版)含答案

部编数学七年级上册必刷提高练【整式及整式的加减】(解析版)考点必刷精编讲义(人教版)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第2章《整式的加减》2.1-2.2 整式及整式的加减知识点1:列代数式【典例分析01】(2021秋•舒兰市期末)苹果进价是每千克x元,要得到10%的利润,则该苹果售价应是每千克 1.1x 元(用含x的代数式表示)解:由题意可得,该苹果售价应是每千克:x(1+10%)=1.1x元,故答案为:1.1x.【变式训练1-1】(2021秋•仁怀市期末)某楼盘在今年国庆节期间,为了增加销售业绩,提高销售量,该楼盘在原单价为a元/平方米的基础上降价10%,则降价后的单价为( )元/平方米.A.(1+10%)a B.(1﹣10%)a C.1+10%a D.10%a解:由题意得,降价后的单价为(1﹣10%)a,故选:B.【变式训练1-2】(2021秋•成华区期末)某超市出售一商品,在原标价上有如下四种调价方案,其中调价后售价最低的是( )A.先提价25%,再打八折B.先提价50%,再打六折C.先提价30%,再打七折D.先打九折,再打九折解:设商品原标价为a元,A.先提价25%,再打八折后的售价为:(1+25%)×0.8a=a(元);B.先提价50%,再打六折后的售价为:(1+50%)×0.6a=0.9a(元);C.先提价30%,再打七折后的售价为:(1+30%)×0.7a=0.91a(元);D.先打九折,再打九折的售价为:0.90×0.90a=0.81a(元);∵0.81a<0.9a<0.91a<a,∴D选项的调价方案调价后售价最低,故选:D.【变式训练1-3】(2021秋•船山区校级期末)如图,已知长方形ABCD中,AD=20cm,DC=12cm,点F是DC 的中点,点E从A点出发在AD上以每秒2cm的速度向D点运动,运动时间设为t秒.(假定0<t<10)(1)当t=5秒时,求阴影部分(即三角形BEF)的面积;(2)用含t的式子表示阴影部分的面积;并求出当三角形EDF的面积等于6时,阴影部分的面积是多少?(3)过点E作EG∥AB交BF于点G,过点F作FH∥BC交BE于点H,请直接写出在E点运动过程中,EG 和FH的数量关系.解:(1)长方形ABCD中,AD=20(cm),DC=12(cm),点F是DC的中点,∴DF=CF=6(cm),当t=5秒时,AE=10(cm),DE=20﹣10=10(cm),∴S阴影=S矩形ABCD﹣S△ABE﹣S△DEF﹣S△BCF=20×12﹣×12×10−×10×6−×20×6=90(cm2).(2)由题意得:AE=2t,DE=20﹣2t,∵S阴影=S矩形ABCD﹣S△ABE﹣S△DEF﹣S△BCF=20×12﹣×12×2t−×(20×6)−×6×(20−2t)=120﹣6t,∴阴影部分的面积为:(120−6t)(cm)2.∵S△DEF==6(cm)2,∴t=9(cm),∴S阴影=120﹣6t=66(cm2).(3)∵长方形ABCD,∴AD⊥CD、AB∥CD、AD∥BC,∵EG∥AB、FH∥BC,∴EG⊥HF、AD⊥EG、CD⊥HF,∴DE、AE分别等于△EGF,△EGB的EG边上的高;DF、CF分别等于△EHF、△BHF的FH边上的高,=EG•DE+EG•AE=EG•(DE+AE)=EG•AD,∴S△BEF同理得:S△BEF=HF•DC,∴GE•AD=HF•DC,即:20GE=12HF,∴==.知识点2:代数式求值【典例分析02】(2022•九龙坡区模拟)按如图所示的运算程序,能使输出y值为3的是( )A.x=1B.x=2C.x=3D.x=4解:当x=1时,1是奇数,y==6;当x=2时,2是偶数,y=+1=2;当x=3时,3是奇数,y==2;当x=4时,4是偶数,y=+1=3;∴按如图所示的运算程序,能使输出y值为3的是x=4.故选:D.【变式训练2-1】(2022春•包河区校级期中)若x2=4,y3﹣8=0,则x+y的值为( )A.0B.4C.士4D.0或4解:∵x2=4,y3﹣8=0,∴x=±2,y=2,∴x+y=0或4.故选:D.【变式训练2-2】(2022春•新罗区校级月考)已知3x﹣6y=﹣1,那么代数式﹣x+2y+1的值是 1 .解:∵3x﹣6y=﹣1,∴x﹣2y=﹣.∴﹣x+2y+1=﹣(x﹣2y)+1=﹣(﹣)+1=1.故答案为:1.【变式训练2-3】(2022•鹿城区校级模拟)(1)已知非零实数a,b满足ab=a﹣b,试求的值.(2)已知实数a,b,c满足a﹣7b+8c=4,8a+4b﹣c=7,试求a2﹣b2+c2的值.解:(1)∵ab=a﹣b,∴====ab+2﹣ab=2;(2)由题意得:,②×8+①得:65a+25b=60,则有:a=,把a=代入①得:﹣7b+8c=4,则有:c=,∴a2﹣b2+c2=()2﹣b2+()2===1+b2﹣b2=1.【变式训练2-4】(2022春•宜黄县月考)如图,一块长方形铁片,从中挖去直径分别为xcm,ycm的四个半圆.(1)用含x、y的式子表示剩下的面积.(2)当x=6,y=2时,剩下铁片的面积是多少平方厘米?(结果保留π)解:(1)剩下的面积为:(x+y)•x﹣π﹣π=(x2+xy﹣x2﹣)cm2;(2)当x=6,y=2时,剩下铁片的面积为:62+6×2﹣×62﹣=36+12﹣9π﹣π=(48﹣10π)cm2.答:当x=6,y=2时,剩下铁片的面积是(48﹣10π)平方厘米.知识点3:同类项【典例分析03】(2021秋•沙坪坝区期末)已知单项式2a3与﹣3a n b2是同类项,则代数式2m2﹣6m+2022的值是 2020 .解:根据题意得:m2﹣3m+n=2,n=3,∴m2﹣3m=﹣1,∴2m2﹣6m+2022=2(m2﹣3m)+2022=﹣2+2022=2020,故答案为:2020.【变式训练3-1】(2021秋•西青区期末)下列说法错误的是( )A.xy﹣7+x是二次三项式B.﹣x+2不是单项式C.﹣a2b系数是﹣1D.﹣32与3a2是同类项解:A.多项式xy﹣7+x是二次三项式,故A不符合题意;B.﹣x+2,是多项式,故B不符合题意;C.单项式﹣a2b的系数是﹣1,故C不符合题意;D.单项式﹣32与3a2不是同类项,故D符合题意;故选:D.【变式训练3-2】(2020秋•饶平县校级期末)已知单项式﹣m2x﹣1n9和m5n3y是同类项,求代数式x﹣5y 的值.解:∵单项式﹣m2x﹣1n9和m5n3y是同类项,∴2x﹣1=5,3y=9,∴x=3,y=3,∴x﹣5y=×3﹣5×3=﹣13.5.【变式训练3-3】(2018秋•惠东县校级期中)如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.解:(1)由题意,得3a﹣6=a,解得a=3;(2)由题意,得2m﹣4n=0,解得m=2n,(m﹣2n﹣1)2017=(﹣1)2017=﹣1.知识点4:合并同类项【典例分析04】(2022•沙坪坝区校级三模)下列各式中运算正确的是( )A.3m﹣n=2B.a2b﹣ab2=0C.3xy﹣5yx=﹣2xy D.3x+3y=6xy解:A、3m与﹣n不能合并,故A不符合题意;B、a2b与﹣ab2不能合并,故B符合题意;C、3xy﹣5yx=﹣2xy,故C符合题意;D、3x与3y不能合并,故D不符合题意;故选:C.【变式训练4-1】(2021秋•邹平市校级期末)下列计算正确的是( )A.2c+3c=5c2B.8y2﹣2y2=6C.5x6+3x6=8x12D.﹣4ab+3ab=﹣ab解:A、2c+3c=5c,故A不符合题意;B、8y2﹣2y2=6y2,故B不符合题意;C、5x6+3x6=8x6,故C不符合题意;D、﹣4ab+3ab=﹣ab,故D符合题意;故选:D.【变式训练4-2】(2021秋•句容市期末)如果单项式x a+b y3与5x2y b的和仍是单项式,则a﹣b的值为 ﹣4 .解:∵单项式y3与5x2y b的和仍是单项式,∴y3与5x2y b是同类项,∴a+b=2,3=b,解得:a=﹣1,b=3,∴原式=﹣1﹣3=﹣4,故答案为:﹣4.【变式训练4-3】(2021秋•靖江市期中)若单项式﹣7x m+2y与﹣3x3y n的和仍是单项式,则mn= 1 .解:∵﹣7x m+2y与﹣3x3y n的和仍是单项式,∴7x m+2y与﹣3x3y n是同类项.∴m+2=3,n=1.解得:m=1.∴mn=1×1=1.故答案为:1.【变式训练4-4】(2018秋•和平区校级月考)请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.知识点5:去括号和添括号【典例分析05】(2018秋•夹江县期末)在括号内填上恰当的项:ax﹣bx﹣ay+by=(ax﹣bx)﹣( ay﹣by ).解:ax﹣bx﹣ay+by=(ax﹣bx)﹣(ay﹣by).故答案是:ay﹣by.【变式训练5-1】(2021秋•金沙县期末)下列去括号中正确的是( )A.x+(3y+2)=x+3y﹣2B.y2+(﹣2y﹣1)=y2﹣2y﹣1C.a2﹣(3a2﹣2a+1)=a2﹣3a2﹣2a+1D.m2﹣(2m2﹣4m﹣1)=m2﹣2m2+4m﹣1解:A、x+(3y+2)=x+3y+2,故本选项不符合题意;B、y2+(﹣2y﹣1)=y2﹣2y﹣1,故本选项符合题意;C、a2﹣(3a2﹣2a+1)=a2﹣3a2+2a﹣1,故本选项不符合题意;D、m2﹣(2m2﹣4m﹣1)=m2﹣2m2+4m+1,故本选项不符合题意;故选:B.【变式训练5-2】(2018秋•陵城区期中)在计算:A﹣(5x2﹣3x﹣6)时,小明同学将括号前面的“﹣”号抄成了“+”号,得到的运算结果是﹣2x2+3x﹣4,则多项式A是 ﹣7x2+6x+2 .解:根据题意得:A=(﹣2x2+3x﹣4)﹣(5x2﹣3x﹣6)=﹣2x2+3x﹣4﹣5x2+3x+6=﹣7x2+6x+2,故答案为:﹣7x2+6x+2.【变式训练5-3】(2014秋•铁西区期中)计算:3b﹣2c﹣[﹣4a﹣(c﹣3b)]+c.解:3b﹣2c﹣[﹣4a﹣(c﹣3b)]+c=3b﹣2c﹣(﹣4a﹣c+3b)+c=3b﹣2c+4a+c﹣3b+c=4a.知识点6:单项式【典例分析06】(2021秋•庄河市期末)下列说法正确的是( )A.πa2次数为3B.次数为2C.ab系数为1D.系数为﹣6解:A、πa2次数为2,原说法错误,故此选项不符合题意;B、﹣ab2次数为3,原说法错误,故此选项不符合题意;C、ab系数为1,原说法正确,故此选项符合题意;D、﹣系数为﹣,原说法错误,故此选项不符合题意.故选:C.【变式训练6-1】(2021秋•滨江区期末)单项式的系数为 ,次数为 3 .解:单项式的系数为;次数为3;故答案为,3.【变式训练6-2】(2016秋•荔城区校级期中)若3x m y n是含有字母x和y的五次单项式,求m、n可能的值.解:因为3x m y n是含有字母x和y的五次单项式所以m+n=5所以m=1,n=4或m=2,n=3或m=3,n=2或m=4,n=1【变式训练6-3】(2014秋•香洲区校级期中)若(m+n)x2y n+1是关于x,y的五次单项式且系数为6,试求m,n的值.解:∵(m+n)x2y n+1是关于x、y的五次单项式,且系数为6,∴m+n=6,2+n+1=5.解得:m=4,n=2.知识点7:多项式【典例分析07】(2021秋•常宁市期末)下列说法错误的是( )A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.2ab2是二次单项式D.﹣xy2的系数是﹣1解:A.2x2﹣3xy﹣1是二次三项式,故本选项不符合题意;B.﹣x+1是多项式,不是单项式,故本选项不符合题意;C.2ab2是三次单项式,故本选项符合题意;D.﹣xy2的系数是﹣1,故本选项不符合题意;故选:C.【变式训练7-1】.(2021秋•大余县期末)下列说法正确的是( )A.的系数是B.x3y+x2﹣1是三次三项式C.x2﹣2x﹣1的常数项是1D.是多项式解:A.根据单项式系数的定义,得的系数为,那么A不符合题意.B.根据多项式的次数以及项数的定义,得x3y+x2﹣1的次数为4,项数为3,即多项式x3y+x2﹣1为四次三项式,那么B不符合题意.C.x2﹣2x﹣1的常数项是﹣1,那么C不符合题意.D.根据多项式的定义,含、﹣这两项,是多项式.故选:D.【变式训练7-2】(2021秋•建华区校级期中)已知多项式(m+4)x|m|y2+xy﹣4x+1六次四项式,单项式5x2n y6﹣m与多项式的次数相同,(m,n是常数),则m n= 16 .解:∵多项式(m+4)x|m|y2+xy﹣4x+1六次四项式,单项式5x2n y6﹣m与多项式的次数相同,∴|m|+2=6且m+4≠0,2n+6﹣m=6,解得m=4,n=2,则m n=42=16.故答案为:16.【变式训练7-3】(2021秋•惠城区期末)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x3y2z﹣3x2y2﹣4x+1的次数是b,且2a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B表示数b.设点M在数轴上对应的数为m.(1)由题可知:A,B两点之间的距离是 9 .(2)若满足AM+BM=12,求m.(3)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了1009次时,求出M所对应的数m.解:(1)由多项式2x3y2z﹣3x2y2﹣4x+1的次数是6,可知b=6,又2a与b互为相反数,∴2a+b=0,故a=﹣3,∴A,B两点之间的距离是6﹣(﹣3)=9,故答案为:9;(2)①当M在A左侧时,∵AM+MB=12,∴﹣3﹣m+6﹣m=12,解得:m=﹣4.5;②M在A和B之间时,∵AM+MB=AB=9≠12,∴点M不存在;③点M在B点右侧时,∵AM+MB=12,∴m+3+m﹣6=12,解得:m=7.5,综上,m的值是﹣4.5或7.5;(3)依题意得:﹣3﹣1+2﹣3+4﹣5+6﹣7+……+1008﹣1009=﹣3+(﹣1+2)+(﹣3+4)+••+(﹣1007+1008)﹣1009=﹣3+504﹣1009=﹣508,∴点M对应的有理数m为﹣508.故答案为:﹣508.知识点8:整式【典例分析08】(2021春•南岗区校级月考)下列式子x3﹣yz,+3,abc+6,0,,中,整式有( )A.2个B.3个C.4个D.5个解:根据整式的定义,可知整式有:x3﹣yz,abc+6,0,,共有4个.故选:C.【变式训练8-1】(2021•锦江区校级开学)下列代数式:﹣,,﹣π,﹣5x2y3,,,﹣x,其中整式有 5 个.解:下列代数式:﹣,,﹣π,﹣5x2y3,,,﹣x,属于整式的有:.,是分式,不是整式.故答案为:5.【变式训练8-2】下列代数式中,哪些是整式?①x2+y2;②﹣x;③;④6xy+1;⑤;⑥0;⑦.解:①x2+y2,是整式;②﹣x,是整式;③,是整式;④6xy+1,是整式;⑤,不是整式;⑥0,是整式;⑦,不是整式.知识点9:整式的加减【典例分析09】(2022•长沙模拟)已知多项式A=﹣3x2+5x﹣4,B=﹣x2﹣2x,则A﹣3B的结果为( )A.﹣6x2﹣x﹣4B.11x﹣4C.﹣x﹣4D.﹣6x2﹣5解:∵A=﹣3x2+5x﹣4,B=﹣x2﹣2x,∴A﹣3B=(﹣3x2+5x﹣4)﹣3(﹣x2﹣2x)=﹣3x2+5x﹣4+3x2+6x=11x﹣4.故选:B.【变式训练9-1】(2022•九龙坡区模拟)已知多项式A=x2+2y+m和B=y2﹣2x+n(m,n为常数),以下结论中正确的是( )①当x=2且m+n=1时,无论y取何值,都有A+B≥0;②当m=n=0时,A×B所得的结果中不含一次项;③当x=y时,一定有A≥B;④若m+n=2且A+B=0,则x=y;⑤若m=n,A﹣B=﹣1且x,y为整数,则|x+y|=1.A.①②④B.①②⑤C.①④⑤D.③④⑤解:①当x=2且m+n=1时,A=x2+2y+m=2y+4+m,B=y2﹣2x+n=y2﹣4+n,∴A+B=y2+2y+m+n=y2+2y+1=(y+1)2≥0,故①正确;②当m=n=0时,A=x2+2y+m=x2+2y,B=y2﹣2x+n=y2﹣2x,A×B=(x2+2y)(y2﹣2x)=x2y2﹣2x3+2y3﹣4xy,∴所得的结果中不含一次项,故②正确;③当x=y时,A=x2+2y+m=A=x2+2x+m,B=y2﹣2x+n=x2﹣2x+n,A﹣B=x2+2x+m﹣(x2﹣2x+n)=x2+2x+m﹣x2+2x﹣n=4x+m﹣n,不确定4x+m﹣n的正负,故③错误;④若m+n=2且A+B=0,∴A+B=x2+2y+m+y2﹣2x+n=x2+y2﹣2x+2y+2=(x﹣1)2+(y+1)2=0,∴,解得,∴x≠y,故④错误;⑤∵m=n,∴A﹣B=x2+2y+m﹣y2+2x﹣n=x2+2y﹣y2+2x=(x+y)(x﹣y+2)=﹣1,若|x+y|=1正确,则|x﹣y+2|=1,即x﹣y+2=±1,当x﹣y+2=1时,代入(x+y)(x﹣y+2)=﹣1,得x+y=﹣1,此时|x+y|=1,正确;当x﹣y+2=﹣1时,代入(x+y)(x﹣y+2)=﹣1,得x+y=1,此时|x+y|=1,正确.故⑤正确.故选:B.【变式训练9-2】(2021秋•石狮市期末)一棵桃树结了m个桃子,有三只猴子先后来摘桃.第一只猴子摘走,再从树上摘一个吃掉;第二只猴子摘走剩下的,再从树上摘一个吃掉;第三只猴子再摘走剩下的,再从树上摘一个吃掉,则树上最后剩下的桃子数为 个.(用含m的代数式表示)解:根据题意得:m﹣m﹣1﹣(m﹣m﹣1)﹣1﹣{m﹣[m﹣m﹣1﹣(m﹣m﹣1)﹣1)]}﹣1=(个),则树上最后剩下的桃子数为个.故答案为:.【变式训练9-3】(2022•兴隆县一模)某企业有A,B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别是多少小时?(2)某一天,该企业把5吨原材料分配到A、B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?解:(1)当a=b=1时,A生产线的加工时间为:4×1+1=5(小时),B生产线的加工时间为:2×1+3=5(小时),答:A生产线的加工时间为5小时,B生产线的加工时间为5小时;(2)A生产线每小时加工原材料为:(吨),B生产线每小时加工原材料为:(吨),令分配到A生产线的吨数为x吨,依题意得:,整理得:x=,则分配到B生产线的吨数为:5﹣=.答:分配到A生产线的吨数为:吨,分配到B生产线的吨数为:吨.知识点10:整式的加减——化简求值【典例分析10】(2021秋•重庆月考)若m2﹣2m+2=0,则2(m2﹣m)+2(2021﹣m)的值为( )A.4038B.4040C.4042D.4044解:∵m2﹣2m+2=0,∴m2﹣2m=﹣2,则原式=2m2﹣2m+4042﹣2m=2(m2﹣2m)+4042=﹣4+4042=4038.故选:A.【变式训练10-1】(2021秋•威县期中)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(1)化简6A﹣9B= 21x+21y﹣33xy .(2)若x+y=,xy=2,则6A﹣9B的值为 ﹣57 .解:(1)∵A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy,∴6A﹣9B=6(3x2﹣x+2y﹣4xy)﹣9(2x2﹣3x﹣y+xy)=18x2﹣6x+12y﹣24xy﹣18x2+27x+3y﹣9xy=21x+21y﹣33xy,故答案为:21x+21y﹣33xy;(2)当x+y=,xy=2时,6A﹣9B=21x+21y﹣33xy=21(x+y)﹣33xy=21×()﹣33×2=9﹣66=﹣57.故答案为:﹣57.【变式训练10-2】(2021秋•巫溪县期末)已知代数式A=2m2+3my+2y﹣1,B=m2﹣my.(1)若(m﹣1)2+|y+2|=0,求3A﹣2(A+B)的值;(2)若3A﹣2(A+B)的值与y的取值无关,求m的值.解:(1)∵(m﹣1)2+|y+2|=0,∴m﹣1=0,y+2=0,∴m=1,y=﹣2,∵A=2m2+3my+2y﹣1,B=m2﹣my,∴3A﹣2(A+B)=3(2m2+3my+2y﹣1)﹣2(2m2+3my+2y﹣1+m2﹣my)=6m2+9my+6y﹣3﹣4m2﹣6my﹣4y+2﹣2m2+2my=5my+2y﹣1,当m=1,y=﹣2时,原式=5×1×(﹣2)+2×(﹣2)﹣1=﹣15;(2)∵3A﹣2(A+B)=5my+2y﹣1=(5m+2)y﹣1,又∵此式的值与y的取值无关,∴5m+2=0,∴m=﹣.【变式训练10-3】(2021秋•平舆县期末)已知A=x2﹣ax﹣1,B=2x2﹣ax﹣1,且多项式A﹣B的值与字母x取值无关,求a的值.解:∵A=x2﹣ax﹣1,B=2x2﹣ax﹣1,∴A﹣B=(x2﹣ax﹣1)﹣(2x2﹣ax﹣1)=x2﹣ax﹣1﹣x2+ax+=﹣ax﹣,∵多项式A﹣B的值与字母x取值无关,∴﹣a=0,∴a=0。

整式的加减计算题训练(含答案)

整式的加减计算题训练(含答案)

整式的加减计算题训练(含答案)1、已知A=4x^2-4xy+y^2,B=x^2-xy-5y^2,求3A-B。

解:将3A-B展开,得3A-B=12x^2-12xy+3y^2-x^2+xy+5y^2=11x^2-11xy+8y^2.2、已知A=x^2+xy+y^2,B=-3xy-x^2,求2A-3B。

解:将2A-3B展开,得2A-3B=2x^2+4xy+2y^2+9xy+3x^2=5x^2+13xy+2y^2.3、已知A=3a^2-2a+1,B=5a^2-3a+2,求2A-3B。

解:将2A-3B展开,得2A-3B=6a^2-4a+2-15a^2+9a-6=-9a^2+5a-4.4、已知A=x^3-5x^2,B=x^2-11x+6,求:⑴A+2B;⑵、当x=-1时,求A+5B的值。

解:⑴将A+2B展开,得A+2B=x^3-3x^2-22x+12.⑵将A+5B展开,得A+5B=-4x^3+20x^2+46x-19.5、3(x^2-y^2)+(y^2-z^2)-4(z^2-y^2)解:将式子展开,得3x^2-3y^2+y^2-z^2-4z^2+4y^2=3x^2+y^2-5z^2.6、2(a^2b+2b^3-ab^3)+3a^3-(2ba^2-3ab^2+3a^3)-4b^3,其中a=-3,b=2.解:将式子展开,得-12b^3+6ab^2-12a^2b+9a^3.7、1/2x-2(x-1/3y^2)+(-3x+1/3y^2),其中x=-2,y=-2.解:将式子代入,得1/2(-2)-2(-2-1/3(-2)^2)+(-3(-2)+1/3(-2)^2)=-1/2.8、1/2x-2(x-1/3y^2)+(-3x+1/3y^2),其中x=-2,y=-2.解:将式子代入,得1/2(-2)-2(-2-1/3(-2)^2)+(-3(-2)+1/3(-2)^2)=-1/2.9、7(p^3+p^2-p-1)-2(p^3+p)解:将式子展开,得5p^3+7p^2-5p-7.10、1/x-3(2x-2/y^2)+(3x+2/y^2)解:将式子展开,得1/x-6x+6/y^2+3x+2/y^2=-5x+8/y^2.11、1/x-3(2x-2/y^2)+(3x+2/y^2),其中x=-3,y=2.解:将式子代入,得1/-3-3(2(-3)-2/2^2)+(3(-3)+2/2^2)=-47/12.12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]解:将式子展开,得-2a+7b+8c。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 整式
一、选择题(让你算的少,要你想的多,只选一个可要认准啊!) 1、下面说法中正确的是( )
A 、一个代数式不是单项式,就是多项式
B 、单项式是整式
C 、整式是单项式
D 、以上说法都不对
2、下列代数式中整式有( )
x 1,2x +y ,31a 2b ,πy x -,x
y 45,0.5,a A 、4个 B 、5个 C 、6个
D 、7个
3、制造一种产品,原来每件成本a 元,先提价5%,后降价5%,则此时该产品的成本价为( )
A 、不变
B 、a (1+5%)2
C 、a (1+5%)(1-5%)
D 、a (1-5%)2
4、随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m 元后,又降低20%,现售价为n 元,那么该电脑的原售价为( ) A 、(
5
4
n +m )元 B 、(
4
5
n +m )元 C 、(5m +n )元
D 、(5n +m )元
二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!) 5、_____和_____统称整式. 6、多项式a 2-
21ab 2-b 2有_____项,其中-2
1
ab 2的次数是_____. 7、整式21,3x -y 2,23x 2y ,a ,πx +2
1
y ,
522
a π,x +1中_____是单项式,_____是多项式
8、有一棵树苗,刚栽下去时,树高2.1米,以后每年长0.3米,则n 年后树高_____米.
三、解答题(耐心计算,仔细观察,表露你萌动的智慧!) 9、某人买了50元的月票卡,乘车后的余额如下表
求:(1)乘车m次时的余额为多少元?
(2)乘车13次时的余额是多少?
(3)最多能乘多少次?
10、如图,长方形的ABCD的长是a,宽为b,在长方形内画两个扇形,大扇形的半径为b,求图中阴影部分的面积.
参考答案
一、1 C 2 B 3 C 4 B 二、5、单项式 多项式 6. 三 3
7、21 23x 2y a 5
22a ;3x -y 2 πx +21
y x +1 8. 2.1+0.3n
三、9、 (1)50-0.8m (2)50-0.8×13=39.6(元) (3)62
10、【解题思路】 扇形面积我们目前可以没法用公式求出,但可知图中的扇形的面积等于对应半径圆的面积的41.分别求出图中的半径为a-b 、b 的扇形面积,再用长方形形面积减去
两扇形面积即可.
解:图中的扇形的面积等于对应半径圆的面积的
.所以阴影部分的面积
=ab-41πb 2
-4
1π(a-b )2.
附:整式的加减导航
一、学习提要
1.理解单项式、多项式以及整式的概念.
2.理解同类项的概念,会判断同类项,并能熟练地合并同类项. 3.掌握去括号法则,能正确依据法则去括号
4.会进行整式的加减运算,并能根据整式的加减解决一些实际问题; 二、重点、易考点提示
1.重点:(1)单项式的概念、系数与次数的辨别;(2)同类项的概念、合并同类项法则的应用;(3)根据整式的加减解决实际问题.
2.易考点:(1)辨别单项式的系数;(2)同类项的辨别;(3)整式的化简求值;(4)根据整式的加减解决实际问题.
三、知识扫描 (一)有关概念
1.整式:单项式和多项式统称为整式.
友情提示:单独一个单项式是整式;单独一个多项式也是整式不能说整式是单项式,也不能说整式是多项式整式是代数式,但一个代数式不一定是整式
2.单项式:数与字母的积的代数式单独一个数或一个字母也是单项式. (1)单项式的系数:单项式中的数字因数. (2)单项式的次数:单项式中所有字母的指数的和.
友情提示:(1)判别一个代数式是否是单项式的依据是单项式的概念,如2
1
mn 是单项式,因为它是数
21与字母m 、n 的积;而m 2就不是单项式;因为m 2
不是数与字母的积. (2)识别单项式的系数要注意将单项式写成数字与字母的积的形式,然后找数字因式;如确定单项式
52ab -系数,应将单项式写成ab 52-,然后确定其系数为5
2
-而不是-2. (3)单项式的次数是单项式中所有字母的指数和,而不包括系数的指数,如b a 2
3
2次数是3,而不是5.
3.多项式;几个单项式的和.
(1)常数项:多项式中不含有字母的项.
(2)多项式的次数:多项式中,次数最高项的次数就是多项式的次数.
友情提示:项的次数实际就是单项式的次数,也是这一项中所有字母的指数的和.
4.同类项:在多项式中,所含字母相同,且各相同字母的指数也相同的项叫做同类项几个常数项也是同类项.
友情提示:同类项应具备两个条件:(1)所含字母相同;(2)相同字母的指数相同同类项与系数无关,与字母的顺序无关.
5.合并同类项:把多项式中几个同类项合并成一项的过程,叫做合并同类项.
友情提示:合并同类项是整式加减的基础.
(二)有关法则
1.合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母的指数保持不变.
友情提示:合并同类项的依据是加法交换律和结合律.
2.去括号法则:
(1)括号前是“+”时,把括号和它前面的“+”去掉,原括号里的各项都不改变符号.
(2)括号前是“-”时,把括号和它前面的“-”去掉,原括号里的各项都改变符号.
友情提示:去括号时首先要看清括号前是“+”还是“-”,然后再依据法则去括号注意改变符号时,改变是括号内的项的符号,而不是括号外的项的符号.
3.整式的加减:整式加减的实质是先去括号,再合并同类项.
友情提示:整式的加减一般分成以下几步:(1)写出算式;(2)去括号;(3)合并同类项在运算的过程中要保证每一步都要正确;求多项式的值实际上是整式的加减的应用,化简的过程就是整式加减运算的过程.
四、几点说明
1.单项式的系数包括它前面的符号.
2.多项式的次数不是各项字母的指数的和,多项式没有系数的说法.
3.同类项的识别应注意满足两个相同,即所含字母相同,相同字母的指数也分别相同.
4.用分配律去括号时,一是不要漏乘括号中的项,二是括号前是“-”时,括号内各项都要变号.
5.在整式的加减运算中,应注意整体思想是灵活应用.。

相关文档
最新文档