概率论与数理统计笔记

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。

在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。

重点理解事件的概率定义、概率的性质和
概率的运算法则。

2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。

还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。

3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。

4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。

5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。

6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。

总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。

希望以上内容能够帮助你更好地理解概率论与数理统计。

概率论与数理统计笔记

概率论与数理统计笔记

AB = A ∪ B
设 A1, A2, …, An 是样本空间 Ω 的一个划分, B 是任意一 个事件,且 p(B)>0,则 P(Ai|B)=
P ( AB ) . P ( A)
P( Ai ) P( B | Ai) P( Ai ) P( B | Ai) = n , i=1,..,n P(B) P( Ak ) P( B | Ak)
k 1
概率的乘法公式: 当 P(A)>0 时,P(AB)= P(A)P(B|A) 当 P(B)>0 时,P(AB)= P(B)P(A|B) 乘法公式还可以推广到 n 个事件的情况:
n 重贝努利(Bernoulli)试验: Pn(k) =
C
k n
pk(1-p)n-k, k=0, 1, 2, …, n.(q=1-p)


k 1
Ak) =

k 1
P(Ak)
性质: (1) 0 ≤ P(A) ≤ 1, P (Φ) = 0 (2) P(A∪B) = P(A) + P(B)-P(AB) 特别地,当 A 与 B 互不相容时,P(A∪B) = P(A) + P(B) 推广: 对于任意事件 A, B, C 有 P(A∪B∪C) = P(A) + P(B)
当 0 < P(A) < 1 时,A 与 A 就是 Ω 的一个划分,又设 B 为任一事件, 则全概率公式的最简单形式为 P(B)=P(A) P(B|A)+ P( A ) P(B| A ) 运算律: 交换律:A∪B = B∪A, A∩B = B∩A 结合律:A∪(B∪C) = (A∪B)∪C, A∩(B∩C) = (A∩B)∩C 分配律:A∪(B∩C) = (A∪B)∩(A∪C), A∩(B∪C) = (A∩B)∪(A∩C)

概率论与数理统计笔记

概率论与数理统计笔记

生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。

--泰戈尔新东方考研数学冲刺·概率论与数理统计一、基本概念总结1、概念网络图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧→假设检验参数估计数分布))(多维随机变量的函四大统计分布(正态数理统计理大数定律和中心极限定F t ,,,2χ2、最重要的5个概念(1)古典概型(由比例引入概率)例1:3男生,3女生,从中挑出4个,问男女相等的概率?例2:有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有1个是黑色的概率?(2)随机变量与随机事件的等价(将事件数字化))()(A P x X P ==⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫→→≤≤=→−−→−→-→≤=→−−→−、协方差、相关系数)数字特征(期望、方差)两大分布(均匀、正态二维随机变量随机事件)数字特征(期望、方差正态)、几何、均匀、指数、、二项、泊松、超几何八大分布(一维随机变量随机事件数字化数字化),(),(),()(10)()()()(y Y x X P y x F Y X AB P x X P x F X A P ω)(),(AB P y Y x X P ===例3:已知甲、乙两箱中装有两种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品。

从甲箱中任取3件产品放入乙箱后,求:(1) 乙箱中次品件数X 的数学期望。

(2) 从乙箱中任取一件产品是次品的概率。

例4:将一枚均匀硬币连掷三次,以X 表示三次试验中出现正面的次数,Y 表示出现正面的次数与出现反面的次数的差的绝对值,求(X ,Y )的联合分布律。

(3)分布函数(将概率与函数联系起来) )()(x X P x F ≤=(4)离散与连续的关系dx x f x X P )()(==dxdy y x f y Y x X P ),(),(===例5:见“数字特征”的公式。

考研数学概率论与数理统计笔记知识点(全)

考研数学概率论与数理统计笔记知识点(全)
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果.随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理)(3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) .对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=n k j i k j i n j i j i n i i n A A A P A A P A P A A A P 11121 …+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==n i i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()k k i i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2).(3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1).二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k n k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx e x f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π , Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k y X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y 其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i j ij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x y y ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2 (4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) .(X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 },{j i j i p y Y x X P ==P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛) 方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2 =E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p),}{},{•=====i j i i j i p p x X P y Y x X P2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,…随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如: 样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i k i k X X n B 1)(1( k=1,2,…) 二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) . 2.χ2分布 (1)定义 若X ~N (0,1 ) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1 ),Y~ χ2(n),且X,Y 相互独立,则t=n Y X ~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时,n S X μ-~ t (n-1) . ③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③) 22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iL θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间 μ σ2已知 n X σμ-~N (0,1) (2/ασz n X ±) μ σ2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差μ 1-μ 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为 ))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计 笔记

概率论与数理统计 笔记

概率论与数理统计笔记概率论的公理化定义1. 相关基本概念:我们首先定义以下概念:至此,我们将试验、事件等概念与集合的概念相联系,显然,我们会有以下的运算性质:2. 事件之间的关系以及运算(本质为集合运算)经过简单的推导可以得出以下运算性质:3. 事件的运算性质经过以上铺垫,我们可以引出频率、概率的定义:4. 频率 (frequency)定义:设随机事件a在n次重复试验中发生了m次,则称比值为事件a在n次重复试验中发生的「频率」。

频率越大,事件a发生就越频繁,可以用频率来预测事件a的发生的可能性大小。

当重复试验次数越多,n越大时,频率越逐渐趋于稳定于某个常数。

5. 概率的公理化定义(前苏联柯尔莫哥洛夫首次提出)设是随机试验的样本空间,对于每个事件,赋予一个实数,记为,称为事件a的「概率」,如果集合函数满足一下三个条件:理解:概率的本质一种映射,是一种将每个事件映射给一个实数的映射。

并且满足以上三个性质。

另外,注意一个常记的技巧:由以上概率的公理化定义推导出的性质:1.不可能事件的概率为02.有限可加性3.逆事件有4.减法公式5.单调性6.容斥原理,可推广至多个事件古典概型与几何概型古典概型是概率论的经典研究内容。

古典概型是指,如果一个随机试验,其中包含有限个样本点,并且所有样本点的概率都相等,那么我们就称该随机试验为古典概型。

而几何概型与以上定义基本相同,只不过包含了无限个样本点(对于几何图形来说,一块区域也包含了无穷个点)我们很容易就能够得到古典概型的计算公式(由可列可加性)关于古典概型的具体例题与技巧在此不再赘述。

如何定性认识古典概型的概率?我们可以认为,这种概率代表了一个试验中事件发生的可能性,可以认为是“ 进行无穷次试验之后事件发生频率的趋近值”。

利用这种可能性,我们可以最优化实际的决策。

条件概率与乘法公式条件概率的引入,是为了解决在某事件已经发生(或者指定某条件)的情况下具体事件的概率。

概率论与数理统计复习笔记

概率论与数理统计复习笔记

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立. 2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X ≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果 f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 . (3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .(4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i ji i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n p n p (1- p) 3.X~ π(λ) λ λ 4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则 X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定.(2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 概率论的基本概念1 随机试验1.对随机现象的观察、记录、试验统称为随机试验.2.随机试验E 的所有结果构成的集合称为E 的样本空间,记为{}S e =, 称S 中的元素e 为基本事件或样本点.3.可以在相同的条件下进行相同的实验;每次实验的可能结果不止一个,并且能事先明确试验的所有可能结果;进行一次试验之前不能确定哪一个结果会实现.2.样本空间、随机事件1.对于随机试验,尽管在每次试验之前不能预知试验结果,但试验的所有可能结果组成的集合是已知的.我们将随机试验E 的所有可能结果组成的集合称为E 的样本空间,记为S 样本空间的元素,即E 的每个结果称为样本点.2.一般我们称S 的子集A 为E 的随机事件A ,当且仅当A 所包含的一个样本点发生称事件A 发生.如果将S 亦视作事件,则每次试验S 总是发生,故又称S 为必然事件。

为方便起见,记φ为不可能事件,φ不包含任何样本点.3.若A B ⊂,则称事件B 包含事件A ,这指的是事件A 发生必导致事件的发生。

若A B ⊂且B A ⊂,即A B =,则称事件A 与事件B 相等.4.和事件{}AB x x A x A A B =∈∈或:与至少有一发生.5.当AB φ=时,称事件A 与B 不相容的,或互斥的.这指事件A 与事件B 不能同时发生.基本事件是两两互不相容的. ,{,{,,AA S AA S A A AB AA AB ===∅=∅的逆事件记为若则称互逆,互斥.6.,A B A B AB AB 当且仅当同时发生时,事件发生.也记作.,A B AB AB AB 当且仅当同时发生时,事件发生,也记作.7. 事件 A 的对立事件:设 A 表示事件 “A 出现”, 则“事件 A 不出现”称为事件 A 的对立事件或逆事件. 事件间的运算规律:,,, A B C 设为事件则有,A B B A AB BA ==(1)交换律:()(),A B C A B C =(2)结合律:()()AB C A BC = ()()()A B C A C B C ACBC ==(3)分配律:,de Morgan AB AB AB AB ==(4)律:3.频率和概率1.记()An n f A n=()A n A f A A n --其中n 发生的次数(频数);n 总试验次数.称为在这次试验中发生的频率.频率 反映了事件A 发生的频繁程度. 2.频率的性质:3.当重复试验次数n 逐渐增大时,频率 呈现出稳定性,逐渐稳定于某个常数.这种“频率稳定性”即通常所说的统计规律性.我们让试验重复大量次数,计算频率 以它来表征事件A 发生可能性的大小是合适的. 随n 的增大渐趋稳定,记稳定值为p . 的稳定值p 定义为A 的概率,记为()P A p =.4.概率定义:设E 是随机试验,S 是它的样本空间.对于E 的每一个事件A 赋予一个实数,记为()P A ,称为事件A 的概率. 满足下列条件:(1) 非负性:对于每一个事件A ,有()0;P A ≥ (2) 规范性:对于必然事件S ,有()1;P S = (3) 可列可加性:设12,,A A 是两两相互不相容的事件,即对于i j ≠,i j A A φ=,,1,2i j =,则有()()()1212P A A P A P A =++;5.概率定义推得的重要性质. (1)()0P φ=(2)有限可加性 若123A A A A n 是两两互不相容的事件 则有()()1212A A A ()()n n P P A P A P A =++(3)对于任一事件()P A ≤1(4)对于任一事件A 有 ()()1P A P A =- (5) ()()()()P AB P A P B P AB =+-4.等可能概型(古典概型)1.当试验的样本空间只含有有限个元素,并且试验中每个基本事件发生的可能性相同,具有这样特点的试验是大量存在的,则称这种试验为等可能概型.它在概率论发展初期曾是主要的研究对象,所以也称为等可能概型.2. (){}()1A jki j k A P P e n ====∑包含的基本事件数S 中基本事件的总数即是等可能概型中事件A 的概率的计算公式.5.条件概率1. 条件概率定义:设,A B 是两个事件,且()0P A >,称()()()P AB P B A P A =为在A 事件发生条件下B 事件发生的条件概率. 2.符合条件概率的三个条件,即:(1)非负性 对于每一事件B , 有 ()A 0P B ≥ (2)规范性 对于必然事件S ,有 ()A 1P S = (3)可列可加性 设12B B 是两两互不相容的事件,则有()11i i i i P B A P B A ∞∞==⎛⎫= ⎪⎝⎭∑ 3. 乘法定理:设()A 0P >,则有 ()()()AB P P B A P A = 推广: 一般设 12n A A A 为n 个事件,2n ≥,且()1210n P A A A ->有121211122211()()()()()n n n n n P A A A P A A A A P A A A A P A A P A ---=⨯.4.全概率公式:设试验E 的样本空间为S ,A 为E 的事件,12,,....,n B B B 为S 的一个划分,且()0(1,2,...,)i P B i n >=,则()()()()()()()1122n n P A P A B P B P A B P B P A B P B =+++5.贝叶斯公式:设试验E 的样本空间为S ,A 为E 的事件,12,,....,n B B B 为S 的一个划分,且()0(1,2,...,)i P B i n >=,则()()()()()1i i i njjj P A B P B P B A P A B P B ==∑6.独立性1.定义:设,A B 是两事件,如果满足等式()()()P AB P A P B =,则称事件,A B 相互独立,简称,A B 独立.若()0,()0P A P B >>,则,A B 相互独立与,A B 互不相容不能同时成立. 2. 定理一:设,A B 是两事件,且()A P >0,若,A B 相互独立,则()P B A =()P B .反之亦然.3.定理二:若事件A 与B 相互独立则A 与B ,A 与B ,A 与B 也相互独立.4.推广定义:设,,A B C 是三个事件,如果满足等式()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =,()()()()P ABC P A P B P C =则称事件,,A B C 相互独立. 5.第二章 随机变量及其分布1. 随机变量1.定义:设随机试验的样本空间{}{},S e X X e ==是定义在样本空间S 上的实值单值函数,称{}X X e =为随机变量.常见的两类随机变量{离散型连续型.2.本书中一般以大写字母如,,,,...X Y Z W 表示随机变量,而以小写字母,,,,...x y z w 表示实数.2. 离散型随机变量及其分布律1.定义:有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为离散型随机变量.2.定义:取值可数的随机变量为离散量.X 一般地,设离散型随机变量所有可能取的值为(1,2,)kx k =⋅⋅⋅⋅x 取各个可能值的概率论,即事件的概率为{},1,2,k k P X x p k ===⋅⋅⋅称为离散型随机变量X 的分布律。

k p 满足如下两个条件:(1)0k p ≥ (2)11k k p ∞==∑3.(0-1)分布设随机变量X 只可能取0与1两个值,它的分布律是,则称 X 服从(0-1)分布或两点分布.)1,10(1,0,}{1=+<<===-q p p k q p k X P k k(0-1)分布的分布律也可写成4.设试验只有两个可能结果:A 及A , 则称E 为伯努利试验.设()(01)P A p p =<<,此时()1P A p =-,将E 独立重复地进行n 次,则称这一串重复的独立试验为n 重伯努利试验.k k n k n C p q -刚好是二项式()n p q +的展开式中出现k P 的那一项,故称随机变量X 服从参数,n p 的二项分布,记为~(,)X B n p .特别,当1n =时二项分布化为{}1,0,1k k P X k p q k -===,这就是(0-1)分布. 5.泊松分布设随机变量X 所有可能取值为0,1,2…..而取各个值的概率为0λ>其中是常数,.3.随机变量的分布函数1. 分布函数的定义设X 是一个连续随机变量,称()()()F x p X x x =≤-∞<<+∞为 X 的分布函数.X 是随机变量, x 是自变量.由定义,对任意实数 12x x <,随机点落在区间(]12,x x 的概率为:{}{}{}122121()()P x X x P X x P X x F x F x <<=≤-≤=-. 2. 分布函数性质{}!k k X P k λλ-==e ,,,, 210=k1212(1)0()1,(,)(2)()(),()()F x x F x F x x x ≤≤∈-∞∞≤<单调不减性00(3)()lim ()0,()lim ()1(4)lim (),()x x x x F F x F F x F x x +→-∞→∞→-∞==∞===-∞<<∞即任一分布函数处处右连续. 3.公式4.连续型随机变量及其概率密度1.如果对于随机变量X 的分布函数()F x ,存在非负函数()f x ,使对任意实数x 有()()xF x f t dt -∞=⎰,则称X 为连续型随机变量,其中函数()f x 称为X 的概率密度函数简称概率密度。

在实际应用中遇到的基本上是离散型或连续型随机变量. 2.概率密度()f x 性质: (1)()0f x ≥(2)()1f x dx ∞-∞=⎰(3)对于任意实数12,x x ,()12x x ≤,{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰(4)若()f x 在点x 处连续则有 ()F x '=()f x3.均匀分布:设连续型随机变量X 具有概率密度()f x =1,0,a x b b a ⎧<<⎪=-⎨⎪⎩其他,则称X 在区间(),a b 上服从均匀分布.记为).(1}{)2(a F a X P -=>(),XU a b .易知-()0,()=1f x f x dx ∞∞≥⎰且.4指数分布:设连续型随机变量X 具有概率密度()/1,00,x e x f x θθ-⎧>⎪=⎨⎪⎩其他,其中0θ>为常数,则称X 服从参数为θ的指数分布.易知-()0,()=1f x f x dx ∞∞≥⎰且.5 正态分布:设连续型随机变量X 具有概率密度()()222,x f x x μσ--=-∞<<∞, 则称X 服从参数为,μσ的正态分布.特别的,当0,1μσ==时,称X 服从标准正态分布.5.随机变量的函数分布定理:设随机变量X 具有概率密度()X f x ,x -∞<<∞,又设函数()g x 处处可导且恒有''()0(()0)g x g x ><或恒有,则Y=g(X)是连续型随机变量,其概率密度为 ()[]{()()X f h y h y y Y f x αβ'<<=其它.第三章 多维随机变量及其分布1.二维随机变量1.设随机试验E 的样本空间为:{}()(),S e X e Y e =、 为定义在S 上的随机变量,由它们构成一个随机向量 ()X Y 、,叫二维随机向量或二维随机变量.2.定义:设二维随机变量()X Y 、,对任意实数x y 、,二元函数{}(),F X Y P X x Y y =≤≤,,称为()X Y 、的(联合)概率分布函数.二维随机变量分布函数的性质:(1)(),F x y 是变量x 和y 的不减函数,即对任意固定的y ,当21x x >时()2,F x y ≥()1,F x y ;对于任意固定的x ,当21y y >时()2,F x y ≥()1,F x y .(2)()0,1F x y ≤≤,且对于任意固定的y ,(),0F y -∞=,对于任意固定的x ,(),0F x -∞=,(),0F -∞-∞=,(), 1.F ∞∞=(3) (),F x y =()0,F x y +,(),F x y =(),0F x y +,即(),F x y 关于x 右连续,关于y 也右连续.(4) 对于任意()11,x y ,()22,x y ,21x x >,21y y >,下述不等式成立: ()()()()22211112,,,,0F x y F x y F x y F x y -+-≥.如果二维随机变量(,)X Y 全部可能取到的不相同的值是有限对或可列无限多对,则称(,)X Y 是离散型的随机变量.3. 对于二维随机变量(),X Y 的分布函数(),F x y .如果存在非负的函数(),f x y 使对于任意()X Y 、有()(),,y xF x y f d d μυμυ-∞-∞=⎰⎰,则称(),X Y 是连续型的二维随机变量,函数(),f x y 称为二维随机变量(),X Y 的概率密度,或称为随机变量X 和Y 的联合概率密度. 概率密度(),f x y 具有以下性质: (1)(,)0f x y ≥ (2) (,)(,)1f x y dxdy F ∞∞-∞-∞=∞∞=⎰⎰(3) 设G 是xOy 平面上的区域,点()X Y 、落在G 内的概率为{}(,)(,)GP X Y G f x y dxdy ∈=⎰⎰(4) 若(),f x y 在点()X Y 、连续 则有2(,)(,)F x y f x y x y∂=∂∂4. 两个常用的分布(1)均匀分布:定义设D 为闭区域面积为A ,若随机变量()X Y 、 的(联合)密度为: 则称: ()X Y 、服从D 上的均匀分布.(2)二维正态分布:若二维随机变量 ()X Y 、的概率密度为:则称: ()X Y 、服从参数为1、2、1、2、的二维正态分布.其中1>0,2>0,||1是常数.记为:()X Y 、~N (1、2、12、22、) .2.边缘分布1.二维随机变量(),X Y 作为一个整体,具有分布函数(),F x y ,而X 和Y 都是随机变量,也有也有分布函数,将他们分别记为()X F x ,()Y F y ,依次称为二维随机变量(),X Y 关于X 和Y 的边缘分布函数。

相关文档
最新文档