大功率高压高频变压器的设计
35w12v高频变压器绕制
35w12v高频变压器绕制
35W12V高频变压器绕制通常指的是需要制作一个输出功率为35W、输入电压为12V的高频变压器。
高频变压器通常用于电子设备中,将一个电压级别转换为另一个电压级别,或者用于实现电气隔离等功能。
要绕制一个35W12V的高频变压器,需要考虑以下几个关键因素:
1.铁芯材料和尺寸:选择适当的铁芯材料和尺寸是关键,因为它们将决定变
压器的性能和效率。
2.线圈匝数:根据输入和输出电压的要求,确定适当的线圈匝数。
3.线材规格:选择适当线材规格以承载所需的电流,并保持适当的绝缘。
4.绕制方式:确定合适的绕制方式,如层绕、分布式绕制等,以提高变压器
的效率。
5.绝缘处理:确保线圈之间的绝缘和线圈与铁芯之间的绝缘,以确保电气性
能和安全。
6.磁芯选择:选择合适的磁芯材料和尺寸,以确保变压器的性能和稳定性。
总之,35W12V高频变压器绕制是指根据特定的要求和规格,设计和制造一个能够实现特定功能的高频变压器。
这个过程需要充分了解变压器的原理和设计方法,并考虑到各种因素,以确保最终的变压器性能达到要求。
开关电源之高频变压器设计
开关电源之高频变压器设计发表时间:2019-06-18T17:24:32.980Z 来源:《科技研究》2019年4期作者:张升[导读] 本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。
(中山市木林森光电有限公司 528415)摘要:开关电源设计中的难点之一就是高频变压器的设计,由于高频变压器是开关电源中进行能量储存和能量传输的重要部件,其合理性与参数计算的正确性将直接影响到开关电源的整体性能。
而衡量高频变压器的好坏,除了要考虑一般变压器中涉及的效率、运行特性等方面,还要考虑到其交直流损耗、漏感、线圈本身分布参数等诸多方面影响。
本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。
关键词:开关电源;高频变压器;设计要点1 开关电源之高频变压器的主要构成及分类从广义上来说,凡以半导体功率的开关器件为开关管,经对开关管进行高频开通以及关断控制,会将电能形态转化为其他电能形态装置,这就是所谓的开关转换器。
用开关转换器作为主要的组成部件,以闭环自动控制来稳定它的输出电压,并且在电路中增加保护环节电源,此为开关电源。
若用高频DC/DC 转换器作为开关电源工作时的开关转换器则就成为高频开关电源。
高频开关电源基本的路线是由开关型的功率变换器,整流滤波电路,交流直线转换电路以及控制电路组成。
高频开关电源变压器分类方式:(1)按照驱动方式的不同可以分为他激式和自激式;(2)按照电路的拓扑结构可以分为隔离式和非隔离式;前者包括正激式,反激式与半桥式,全桥式,推挽式;后者包括降压型与升压型等;(3)按照输出输入间是否有着电器隔离,可将其分为隔离式与非隔离式;(4)按照DC 转换器/DC 开关条件,可将其分为硬开关以及软开关。
2 开关电源之高频变压器的设计要点2.1 整体设计对于实用的可调开关电源,需能控制输出电压在合适的范围内调节,并且保证电流不超过所设计的最大值。
高频高压变压器参数设计
作者: 吴玲虹
作者机构: 闽西职业技术学院
出版物刊名: 科学中国人
页码: 29-30页
年卷期: 2017年 第2Z期
主题词: 高压变压;稳定性;可靠性
摘要:本文主要介绍高频高压变压器的一部分参数的设计思路,先从最重要的变压器磁性材料入手,分析市场上各种磁性材料的特点并从中选取铁氧体作为磁芯材料,并以EE240磁芯的规格来设计。
接下来通过高频高压变压器参数算式得出其绕组规格、低压侧匝数、漏感的具体设计值,最终根据参数设计出高频高压变压器模型。
高频高压变压器是高频电源系统的关键部分起着升压,能量传递和绝缘隔离的作用。
对于电除尘器高频电源来说,对变压器频率、电压等级和频率都有特殊要求,因此高频高压变压器的设计难度很大。
高频高压变压器性能不但影响变压器本身效率,还会影响电源系统的可靠性和稳定性。
基于散热分析的大功率电力电子变压器结构设计
基于散热分析的大功率电力电子变压器结构设计摘要:在新型的电力电子变压器逐步得到推广应用的大背景下,本文通过对新型的电力电子变压器电路拓扑及散热分析提出一种结构设计方案。
关键词:电力电子变压器、散热、结构设计电力电子变压器是智能的电力变压器,随着经济社会的快速发展,电力系统出现了新的特点,比如分布式发电系统广泛应用,电动汽车、直流空调等直流负载的迅猛增长,用户对电能质量的要求也越来越高。
同时逐步走向碳达峰、碳中和的大环境下,衍生出了更多样的用能场景,传统的变压器已难以满足电力系统发展的需求,新型的电力电子变压器将逐步得到推广应用。
电力电子变压器以电力电子器件为基础,其结构上与传统变压器完成不同,随着设备功率越来越大,功率器件的发热量也随即增大而导致热源集中。
散热分析与结构设计对于电力电子变压器能否长期稳定运行有着重要影响,本文通过对新型的电力电子变压器电路拓扑及散热分析提出一种结构设计方案,供读者参考。
1电力电子变压器的基本原理随着电力电子技术不断往大功率方向发展,一种基于电力电子变换技术的新型变压器得到了广泛关注,该新型变压器普遍称为电力电子变压器。
电力电子变压器结合电力电子变换技术和高频电能变换技术,其核心为电力电子开关器件,通过对开关器件与常规电路元件、变压器的应用与组合,可实现如电气隔离、电压变换、能量传输、功率调节等诸多功能[1]。
半桥或全桥结构是电力电子变压器拓扑中最基本的结构,也是最常用的拓扑结构,但不能对变换器一次侧和二次侧的电流、电压实现灵活调节能力。
随着电力电子变压器的进一步发展,在变换环节中间增加了直流环节,结构虽然复杂一些,但其可控性能更好,同时由于采用了高频变压器,变压器的体积也得到了大幅度缩小。
目前常用的电力电子变压器采用双有源桥加H桥的结构,单个变换电路如图 1 所示,根据图中所示,电力电子变压器的工作原理为:高压10kV交流电,经过输入端的电力电子变换器将高压低频交流变换成高频交流,而后经高频变压器将高频交流电进行降压,传输至输出端的整流变换器,变换成所需的低压直流电,再向负载供电[2]。
高频变压器的设计与制作
(12)
B (4)一般来说,采用铁氧体磁芯 E128 时,要把 m 控制在 3kGs 以下。
图 1 开关电源原理图 本文介绍了一款如图 1 所示的 DC—DC 变换器,输入电压为直流 24V,输出电压分别为 5V 及 12V 的多 路直流输出。要求各路输出 电流都在 lA 以上,核心器件是美国 Unitrode 公司生产的一种高性能单端输出 式电流控制型脉宽调制器芯片 UC3842,最高工作频率可达 200kHz。根据锌锰铁氧体合金的优异电磁性能, 通过具体示例介绍工作频率为 100kHz 的高频开关电源变压器的设计及注意事项。
小,但存在副边二极管的反向恢复问题,需要给二极管加吸收 电路。这两种工作模式可根据实际需求来选 择,本文采用了后者。
f U U 设计变压器时大多需要考虑下面问题:变换器 频率 (H2);初级电压 1(V),次级电压 2(V);次级电 i n n u 流 2(A);绕组线路参数 1、, 2;温升 τ (℃);绕组相对电压降 ;环境温度 τ HJ(℃);绝缘材料密度 γ
W W E = 2i
0 2i
7)初级绕组电流
(2) (3)
(4) (5)
(6) 8)次级绕组电流
(7)
n n 其中, 1、 2:分别是初级绕组和次级绕组的每层匝数。
9)初级绕组线径
(8) 10)次级绕组线径(来自)j 其中, 是电流密度。
详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的 高频变压器。 3.1 确定变压器的变比
高频变压器设计范本
Corp:xxx Designer:xxx TEL:xxx Date:2010-2-26
变压器型号:xxxxxx VER: 2.0
CHE200-30GT1
NP8NP7NP6NP5NP4NP3
图1、变压器原理图
技术要求:
1、绕制要求紧密、均匀,不同绕组间要用绝缘胶带隔开(见图3)
2、NS2、NS3并绕,NP3~NP8并绕。
3、引出线要套高压铁氟龙套管,套管伸至边空内。
4、原副边耐压要求:各绕组-绕组之间及绕组-磁芯之间3000V AC/1分钟,要求无闪
烙,漏电流<1mA 。
(NP为原边绕组,NS为副边绕组)
5、磁芯型号:PC40
6、骨架:采用我司最新开模骨架:ETD34 (18+18PIN)
7、NP1绕组电感:3.5 mH±5%
8、漏感:<80 uH(1kHz,1V,短NP2~NP8、NS1~NS4,测NP1)
9、变压器要浸漆烘干并拔掉不用的引脚
10、变压器铁芯最外层加焊宽12mm的铜铂,并外包一层绝缘胶带。
请标示出第
1脚。
11、标明变压器型号和生产日期。
图2、变压器骨架引脚图(引脚朝下,俯视图)
1T 1T
1T 1T 1T 1T 1T
2T
绕组
绝缘胶带
边空档带
图3、内部绕线示意图
注: 1、各层之间的绝缘胶带必须要绕;(尤其NP1绕组层间绝缘胶带必须有); 2、内层NP1绕60匝,最外层NP1绕38匝。
3、NP1、NP2均留边墙胶带。
请打样 10 PCS ,希望3月5日前完成。
谢谢合作! 如有疑问,请电话联系。
大功率高频高压整流电源的研制
3 运 行 方 式
采用上述主 电路及 驱动电路结构 .研制 出输
出为 16A 8 V 的 电除尘 用 高 频 高压 整 流 电源 。 . /0k 电源 实 际运 行 波 形 如 图 5 示 .其 中 i 谐 振 电 a所 为
驱动器主要采用 2 D 0C 7S提供 了 2 驱 E 3 0 1一 个
串联 谐 振 频 率 的 12时 。谐 振 电流 会 出 现 连 续 现 1 象 ,G T开通 时就 处 于 非 零 电流 开 通 状 态 ,导 致 IB 开 通 损 耗 较 大 . 容 易造 成 较 高 的 电压 尖 峰 。 流 且 整
作者 简 介 : 陈 颖 (9 0 , , 建 龙 岩 人 , 17 一) 男 福 高级 工 程 师 ,
CO M A 4 2
V . A 4 0 S ne e s A 3 9 RC A 2 ED3 O 7 S O C1 . CO M B 3 0
,
的大幅波动和 因 电场闪络带来的 电流冲击 ,从而 迅 速 熄 灭 闪络 并 且 快速 恢 复 电场 能 且 【 , 1 。
图 2 主 电 路 原 理 图
其 中整 流 电路 为不 可控 整流 桥 。滤 波 电路 由 滤波 电感 及 滤 波 电容 C 组成 。 可 抑 制 d/t i , d 保 护 C, 同 时 起 到 调 节 系 统 功 率 因 数 的 作 用 , C 可保 证 后 面 的 I B G T能够 安 全 稳 定 运 行 。 桥 逆变 全 电路 由 4个 IB G T模 块 组 成 。G T模 块 内 部 集 成 IB 有 续 流 二 极 管 。 输 出 功 率 由 IB G T的 开 关 频 率 调 节 。 串 联 谐 振 电 路 由谐 振 电感 L 和 谐 振 电容 C 组成。 减小 IB 为 G T开 关 时 的损 耗 ,G T需 要 做 到 IB 零 电流 开通 和 零 电压 关 断 ,即 要 求 其 开 关 频 率 小 于 串联谐 振 频 率 的 12 当 I B 1。 G T的开 关 频 率 大 于
面向电力电子变压器应用的大容量高频变压器技术综述
4、大容量高频变压器的检测与 维护
4、大容量高频变压器的检测与维护
为了保证大容量高频变压器的可靠性和稳定性,需要进行严格的检测和维护。 检测主要包括电气性能测试、机械性能测试和环境适应性测试等。电气性能测试 主要包括电压比、阻抗、绝缘电阻等测试项目,以检验变压器的电气性能是否符 合设计要求。机械性能测试则主要包括振动测试、冲击测试和寿命测试等,以检 验变压器的机械强度和稳定性。环境适应性测试则主要包括高温、低温、湿度等 环境因素对变压器性能的影响。
参考内容
内容摘要
电力电子变压器是现代电力系统中不可或缺的重要组成部分,而高频变压器 在其中扮演着关键的角色。本次演示将深入探讨电力电子变压器中高频变压器磁 芯和绕组特性的相关问题,以期为相关领域的研究和实践提供有益的参考。
内容摘要
在过去的研究中,高频变压器得到了广泛的。它的基本原理是通过在变压器 铁芯上绕制线圈,利用电磁感应原理实现电能的传递。由于高频变压器的频率较 高,因此具有小型化、高效化和轻量化等优点。在电力电子变压器领域,高频变 压器的设计主要涉及到磁芯和绕组的特性,这些特性对变压器的性能和稳定性有 着至关重要的影响。
谢谢观看
1、可以实现交直流的自由转换,提高电网的灵活性和稳定性; 2、可以实现能量的双向传递,提高能源利用效率;
一、交直流配电网电力电子变压器的概念和应用背景
3、具有较宽的调节范围,可以满足不同负荷的需求;
4、具有较高的效率,可以减少 能源损耗。
4、具有较高的效率,可以减少能源损耗。
在实际应用中,交直流配电网电力电子变压器已经得到了广泛的应用,例如 风力发电、太阳能发电、直流微电网、智能楼宇等领域。
主体部分
1、大容量高频变压器的技术概 述
一种80kV高压脉冲变压器设计
Telecom Power Technology设计应用kV高压脉冲变压器设计邹祖娇(合肥华耀电子工业有限公司,安徽合肥介绍了一款用于电除尘设备脉冲高压电源中高压脉冲变压器的设计方法,主要分析脉冲变压器的关键设计点,并建模进行电场仿真。
结果表明,产品上机工作正常并可靠运行。
高压电源;脉冲变压器;电场仿真Design of an 80 kV High Voltage Pulse TransformerZOU Zu-jiaoECU Electronics Industrial Co.,Ltd.,HefeiThe design method of a high voltage pulse transformer used in pulse high voltage power supply of electrostatic precipitator is introduced. The key design points of the pulse transformer are mainly analyzedis carried out based on the model. The results show that the product works normally and reliably on the computer.pulse transformer;electric field simulationVoltage [V]1.2000e+0051.1249e+0051.0498e+0059.7476e+0048.9968e+0048.2460e+0047.4951e+0046.7443e+0045.9935e+0045.2427e+0044.4919e+0043.7411e+0042.9903e+0042.2395e+0041.4887e+0047.3787e+003-1.2935e+002。
高频变压器的设计方法
高频变压器设计方法高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。
下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。
(1) 高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。
原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。
如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。
副绕组匝数由输出电压决定。
导线截面(直径)决定于绕组的电流密度。
还要注意的是导线截面(直径)的大小还与漏感有关。
高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排;②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。
另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。
对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。
等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。
其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。
另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。
如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。
(2) 高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。
软磁材料有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此在输出功率一定的情况下,可减轻磁芯体积。
高频变压器设计方法
8、效率η; 9、温升∝。
二、计算步骤:1、计算视在功率PT ;视在功率PT 因工作电路不同而别,如下图:7、选用磁芯型式;高频变压器的设计方法之一一、设计条件: 1、工作电路; 2、原边电压Vp ; 3、输出电压Vo; 4、输出电流Io ; 5、开关工作频率fs ; 6、工作磁通密度Bw ; AP=Aw · Ae视在功率与线路结构关系线路(b ) PT=Po ( + 1 )线路(a ) PT=Po (1+ )线路(b) PT=Po ( +√ )AP 值是磁芯窗口面积Aw 与磁芯有效截面积Ae 的乘积,即各种磁芯的AP 示意图如下:1η1η1η2EI 叠片铁芯GC 型铁芯环形铁芯R( b )R( a )AP=()Ae Aw Le Wt Ml 其中:V01=KvAP 0.75 Wt=KwAP 0.75As=KsAP 0.5根据选取的磁芯,查出(计算)出如下参数:Le ——磁芯有效磁路长度(cm ); Wt ——磁芯重量(KG ); Ml ——绕组平均匝长(cm )。
式中:AP ——为Aw 和Ae 两面积乘积(cm 4); PT ——变压器视在功率(w ); Bw ——工作磁通密度(T ); Fs ——开关工作频率(Hz ); Ko ——窗口使用系数,一般取0.4;Kf ——波形系数,方波Kf =4.0,正弦波Kf =4.44; Kj ——电流密度比例系数; X ——与磁芯有关常数。
J= KjAP X带绕铁芯罐形铁芯KoKf FsBwKjPT ×10411 + XNp=(匝)Ip=(A)(A/cm 2)(cm )(cm 2)(Ω)(W )3、计算原边绕组匝数Np :平均匝长计算如下图:4、计算原边电流I p :5、计算电流密度J :J=Kj (Aw · Ae )X6、计算原边绕组裸线直径dP 和截面积Axp :Ppcu = I p 2Rp 8、计算副边绕组匝数:dP=1.13※式中,在有中心抽头电路时,Ip 需乘0.707的修正因素,根据计算的dP 值选取初级导线,并查出带漆皮的线径、截面积和每cm 电阻(Ω/cm )值。
高频变压器超实用经验分享——民熔专家的血泪经验
高频变压器设计经验分享高频变压器的设计包括:线圈参数设计、磁性材料选择、铁芯结构选择、铁芯参数设计、变压器结构选型等。
以下简要介绍高频变压器线圈参数设计、磁性材料选择、磁芯结构选择、磁芯参数设计和变压器结构选择。
1、线圈参数设计高频变压器的线圈参数包括线圈数、线径、线型、绕组布置和安全绝缘设计。
一次绕组匝数由施加的励磁电压或一次绕组的励磁电感决定。
转弯次数不宜过多或过少。
匝数过多,漏感增大,绕组工时增加;匝数过小,在外激励电压较高时,匝间电压降和层间电压降可能增大,必须加强安全绝缘。
二次绕组的数量由输出电压决定。
线径取决于绕组的电流密度。
此外,盘条直径也与强漏感有关。
2、绕组布置如果是降压变压器,二次绕组可以靠近磁芯,然后再绕上反馈绕组。
一次绕组在最外层的布置有利于一次绕组对磁芯的安全绝缘设计。
如果要增加一次绕组和二次绕组之间的耦合,一次绕组的一半靠近磁芯,然后将反馈绕组和二次绕组绕在一起,最外层绕上一次绕组的一半,这有利于降低漏感。
降压变压器的一次绕组数量不宜过小,否则匝间或层间电压差过大,容易造成局部短路。
对于安全绝缘的布置,首先,线材、骨架和绝缘材料的等级应与磁芯和绕组的允许工作温度相匹配。
如果温度太低,就不能满足耐热要求。
如果温度过高,会增加不必要的材料成本。
其次,圆柱形磁路上的线圈绕组应采用骨架结构,以保证安全绝缘,简化缠绕工艺。
此外,应加强线圈外层和最内层以及高低压绕组之间的安全绝缘。
如果一般绝缘可以用一层绝缘胶带覆盖,加强绝缘应覆盖2-3层绝缘胶带。
3、磁性材料的选择高频变压器的磁芯一般采用软磁材料。
软磁材料具有磁导率高、矫顽力低、电阻率高的特点。
当磁导率较高且线圈数一定时,通过较小的励磁电流,可以提高磁感应强度,并能承受较高的外加电压。
因此,在输出功率不变的情况下,可以减小磁芯的体积。
若矫顽力较低,磁芯磁滞回线面积较小,则铁损较小。
电阻率越高,涡流越小,铁损也越小。
铁氧体材料是一种软磁材料。
大功率高压高频变压器模式和损耗分析
大功率高压高频变压器模式和损耗分析陈桂文1,张周胜2,肖登明2(1.上海电力变压器修试厂有限公司,上海200436;2.上海交通大学,上海200240)摘要:介绍了大功率、高压、高频变压器的特性及设计特点,并对其设计模式及损耗特性进行了分析。
关键词:高频变压器;大功率;损耗中图分类号:TM401+.1文献标识码:B文章编号:1001-8425(2009)01-0016-04Mode and Loss Analysis of High Power,High Voltageand High Frequency TransformerCHEN Gui 蛳wen 1,ZHANG Zhou 蛳sheng 2,XIAO Deng 蛳ming 2(1.Shanghai Power Transformer Repair and Test Works Co.,Ltd.,Shanghai 200436,China;2.Shanghai Jiaotong University,Shanghai 200030,China )Abstract :The design and characteristics of high power,high voltage and high frequency transformer are presented.Its design mode and loss characteristics are analyzed.Key words :High frequency transformer ;High power ;Loss1前言近年来,大功率(大于10kW)、高压(大于10kV)、高频(大于20kHz)AC-DC 电源变换器的应用越来越广泛,如应用于氩弧焊、静电除尘、脱水以及脱硫脱硝等工业领域。
如图1所示,这些工业过程需要获得一个高压DC 的电源输出,一般先通过逆变后经升压变压器整流输出。
高频变压器安规介绍
2023-11-07
目录
• 高频变压器概述 • 高频变压器安规要求 • 高频变压器安规标准解读 • 高频变压器安规测试方法 • 高频变压器安规认证流程 • 高频变压器安规对于产品研发的意义
01
高频变压器概述
高频变压器的定义
• 高频变压器是一种用于将输入电压升高或降低至所需水平的 电气设备。它通常由一个或多个磁芯、绕组和绝缘材料组成 。
变压器外壳应可靠接地,接地电阻 应符合相关规定。
变压器的引线应采用绝缘导线,绝 缘导线的截面积应满足载流量的要 求。
变压器的操作应由专业人员执行, 操作时应注意安全。
变压器安全操作规程
操作变压器前,应检查变压器的绝缘是否良好,有无 破损或老化现象。
变压器的接线端子应连接牢固,接触良好,防止发生 过热现象。
05
高频变压器安规认证流程
准备阶段
了解相关安规标准
在开始准备认证前,需要了解与高频变压器 相关的安规标准和要求,包括国家或地区的 电气安全法规、行业标准等。
选择认证机构
根据产品应用领域和目标市场,选择合适的认证机 构,如权威的第三方检测机构或行业认可的认证机 构。
准备技术文件
准备与高频变压器有关的技术文件,包括电 路图、结构图、规格书等,并确保这些文件 符合相关安规要求。
安全性能测试
要点一
总结词
安全性能测试是高频变压器安规测试的关键环节,它主 要涉及到对变压器在异常工作条件下的安全性能进行测 试。
要点二
详细描述
安全性能测试包括温升测试、短路测试、过载测试和绝 缘耐压测试等。温升测试是为了确保变压器在正常工作 时各部分的温度不会超过安全范围;短路测试是为了检 查变压器在短路情况下的性能表现;过载测试是为了验 证变压器在过载情况下的稳定性和寿命;绝缘耐压测试 是为了检验变压器的绝缘性能和耐压能力。
高频变压器制作与技术参数
2.1 磁芯材料的选择
从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。磁芯的材料只有从坡莫合 金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁
PDF 文h件tt使p:/用/app"sp.hdif.Fbaaicdtuo.croymP/srhoa"re试/de用ta版il/6本36创76建71
3.6 导线线径的选取
PDF 文h件tt使p:/用/app"sp.hdif.Fbaaicdtuo.croymP/srhoa"re试/de用ta版il/6本36创76建71
2011-3-29 6
根据输入输出的估算,初线线圈的平均电流值应该允许达到2A。
U=4.44fN1Φ m可推知在工频时的Φ m值。要求不高时,可根据测算出的Φ m,粗略估算出原线圈的匝数,
。
图2 工作点测试示意图
3 变压器主要参数的计算
本 例中的变换器采用单端反激式工作方式,单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。单端反激 电源的工作模式有两种:电流连续模 式和电流断续模式。前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值 电流相对较大;后者MOS管的峰值电流相对较小,但存在副边 二极管的反向恢复问题,需要给二极管加吸收电路。这两种工作模式可根 据实际需求来选择,本文采用了后者。
(9) 其中,j是电流密度。 详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。 3.1 确定变压器的变比 根据输出电压U0的关系式
高频高压变压器设计
IGBT大功率高频高压开关电源变压器的研制栾松张海峰(辽宁大连大连电子研究所 116021)摘要:主要分析了高频高压变压器的等效电路和研制难点,提出了设计方案。
关键词:开关器件微晶体在国外,70年代开始,日本的一些公司开始采用开关电源技术,将市电整流后逆变为3kHz左右的中频,然后升压,从而减小变压器体积和重量。
进入80年代,高压开关电源技术迅速发展。
德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kH:以上。
使变压器系统的体积进一步减小。
近十年来,随着电力电子技术的进步和开关器件的发展,高压开关电源技术不断发展。
突出的表现是频率在不断提高,如德国的霍夫曼公司高压发生器频率高达40kHz。
另外,高压开关电源的功率也在不断地提高,30kW的大功率高压开关电源在产品上己很成熟,更高功率的高压开关电源也有很快的发展。
可以看出,高压开关电源的发展的主要趋势是:①频率不断提高,②功率不断增加。
我国自90年代初开始对高频化的高压大功率开关电源技术进行研究,静电除尘高压直流电源也实现了高频化,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压,在电阻负载条件下,输出直流电压达到72kV,电流达到0.8A,工作频率为20kHz。
因此,高频高压变压器研制是高压开关电源重点。
一、高频高压变压器的等效电路图1(a)图1(b)图1(c)图1高频高压变压器的等效电路图1(a)为变压器等效电感模型,励磁电感Lm 很大,并且与原边绕组并联,因此可以忽略副边的漏感L2折合到原边值,L2和原边的漏感Ll的和为变压器的等效漏感Ls。
图1(b)为变压器分布电容的等效模型,Clg为原边匝间及对地电容;C2g为副边匝间及对地电容;C2为副边各层间电容;C12原副边间电容。
在各分布电容中,C2g较其它分布电容都小,可以忽略;Clg C12和C2的电容值大约为10-100pF,而C2折合到原边后则比Clg和C12大得多,因此Clg和C12可以忽略,在各分布电容中C2起着主导作用,将其折合到原边,可以得到变压器的等效电路模型图1(c),它由等效漏感Ls,等效电容Cp和理想变压器组成。
(完整)高压大功率脉冲电源的设计
1.绪论1.1论文的研究背景电源设备用以实现电能变换和功率传递,是一种技术含量高、知识面宽、更新换代快的产品。
现今已广泛应用到工业、能源、交通、运输、信息、航空、航天、航运、国防、教育、文化等领域。
在信息时代,上述各行各业都在迅猛地发展,发展的同时又对电源产业提出了更多更高的要求。
显然,电源技术的发展将带动相关技术的发展,而相关技术的发展反过来又推动了电源产业的发展。
当前在电源产业,占主导地位的产品有各种线性稳压电源、通讯用的AC/Dc开关电源、DC/DC开关电源、交流变频调速电源、电解电镀电源、高频逆变式整流焊接电源、中频感应加热电源、电力操作电源、正弦波逆变电源、大功率高频高压直流稳压电源、绿色照明电源、化学电源、UPS、可靠高效低污染的光伏逆变电源、风光互补型电源等。
而与电源相关的技术有高频变换技术、功率转换技术、数字化控制技术、全谐振高频软开关变换技术、同步整流技术、高度智能化技术、电磁兼容技术、功率因数校正技术、保护技术、并联均流控制技术、脉宽调制技术、变频调速技术、智能监测技术、智能化充电技术、微机控制技术、集成化技术、网络技术、各种形式的驱动技术和先进的工艺技术。
1.2脉冲电源的特点及发展动态脉冲电源是各种电源设备中比较特殊的一种,顾名思义,它的电压或电流波形为脉冲状。
按脉冲电源的输出特性分类,有高频、低频、单向、双向、高压、低压等不同的分类,具体选择怎样的输出电压、输出电流和开关频率,根据具体的应用场合而定。
按脉冲波形分,有矩形波、三角波、梯形波、锯齿波等多种形式,如图1.1所示。
图1.1各种脉冲波形由于矩形波具有较好的可控性和易操作性,所以这种波形的应用居多。
究其本质,脉冲电源实质上是一种通断的直流电源,它的基本工作原理是:首先经过慢储能,使初级能源具有足够的能量,然后向中间储能和脉冲成形系统放电(或流入能量),能量经过储存、压缩、形成脉冲或转化等复杂过程之后,形成了脉冲电源。
高频变压器 参数
高频变压器参数高频变压器是一种常见的电力转换设备,它在现代电力系统中起着至关重要的作用。
它具有许多独特的参数,这些参数决定了它的性能和应用范围。
高频变压器的重要参数之一是变比。
变比是指高频变压器的输入电压与输出电压之间的比值。
这个参数非常重要,因为它决定了变压器的功率转换效率。
变比越大,输出电压相对于输入电压的增益就越高,功率转换效率就越高。
高频变压器的另一个重要参数是频率响应。
频率响应描述了变压器在不同频率下的响应能力。
高频变压器通常被设计为能够在广泛的频率范围内工作,以适应不同的应用需求。
频率响应的宽度越大,变压器的适用范围就越广。
高频变压器的绕组电阻也是一个重要参数。
绕组电阻决定了变压器的损耗和发热情况。
较低的绕组电阻可以提高变压器的效率,减少能量损耗。
因此,在设计高频变压器时,需要尽量减小绕组电阻,以提高整体性能。
高频变压器的绝缘电阻也是一个关键参数。
绝缘电阻决定了变压器在高压下的安全性能。
较高的绝缘电阻可以保证变压器在工作时不会出现漏电等安全隐患。
因此,在制造高频变压器时,需要采用高质量的绝缘材料,以提高绝缘电阻。
除了上述参数之外,高频变压器还有许多其他重要的参数,如效率、温升、尺寸等。
这些参数都直接影响到变压器的性能和可靠性。
因此,在设计和选择高频变压器时,需要综合考虑这些参数,并根据具体应用需求进行合理的选择。
总的来说,高频变压器的参数是多样的,每个参数都有其独特的作用和影响。
理解和掌握这些参数对于正确应用和使用高频变压器至关重要。
通过合理选择和设计高频变压器的参数,可以提高电力转换效率,减少能量损耗,并确保变压器的安全可靠运行。
高频变压器设计
1.磁芯材质的选取:高频变压器磁芯多是低磁场下使用的软磁材料,有着较高磁导率、低的矫磁顽力和高的电阻率。
一般来说,磁芯材料磁导率高,在一定的线圈匝数时,通过不大的励磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此输出一定功率要求下,可减小磁芯体积。
磁芯矫磁顽力低,磁滞回环面积小,则铁损也小。
高的电阻率则使得涡流小,铁损小。
(/manage/shownews.asp?ArticleID=1109)目前,高频开关电源变压器所用的磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。
根据使用情况铁氧体不适合高温工作,暂时选用非晶态合金的磁芯。
●通过下面表格可以发现硅钢的饱和磁感应强度最大,可以达到2T,但由于最大导磁率太小且矫顽力太大不能满足要求一般都不选用它做高频变压器。
●通过下面表格可以发现铁基非晶铁芯饱和磁感应强度也很大,可以达到1.5T以上。
但由于我们选用的开关频率为20KHZ,现在一般铁基非晶铁芯无法达到这个工作频率,故不采用。
●通过下面表格可以发现铁基纳米晶和坡莫合金饱和磁感应强度也较大,可以达到1.2T以上。
但由于坡莫合金磁芯矫磁顽力高,故一般厂家选用铁基纳米晶作为高频变压器磁芯。
本设计中同样采用铁基纳米晶作为高频变压器磁芯。
以下是安泰公司用于做磁芯的纳米基铁芯的具体参数:2.变压器设计:高频变压器的设计通常采用两种方法:第一种是先求出磁芯窗口面积A m与磁芯有效截面积Ac 的乘积AP(AP=Ac×Am,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大功率高压高频变压器的设计
大家都知道,在高压开关电源中,实现能量的存储和传递、用以隔离和升压的高频变压器是项目设计的关键和难点,其性能的好坏不仅直接影响到输出是否产生波形的畸变及能量传输的效率,它在绝缘、寄生、损耗、电晕放电及整流等方面与其它普通变压器有着明显的不同,我在这里抛砖引玉,请大家就就如何提高此类变压器的可靠性、降低分布参数(漏感、分布电容),提高生产工艺进行探讨。
那我只好自己先说几句,如有不对之处欢迎批评谢绝拍砖,先从分布电容说起:
在变压器中,由于两个导体之间分布或寄生的电气耦合,绕组线匝之间、同一绕组上下层之间、不同绕组之间、绕组对屏蔽层之间沿着某一线长度方向的电位分布是变化的,这样就形成了分布电容,由下式表示:
式中:M为分段的段数;N为每段的层数;Co为静态电容(pf);U为层间的电位差;UP为初级电压。
高频变压器的分布电容主要是由绕组对磁芯(或对屏蔽层)分布电容、各绕组之间分布电容、绕组与绕组之间分布电容、以及初、次级之间分布电容四部分组成(其中初、次级之间的分布电容由于高频高压变压器基本都设有屏蔽绕组,由于屏蔽层的存在,大大减小了原副边耦合电容,其影响可以忽。