2015长沙中考数学真卷含答案
2015长沙中考数学试题及答案
BOAC O A C B 第8题图2015年长沙市初中毕业学业水平考试试卷数 学一、选择题(在下列各题的四个选项中,只有一项是符合题意的。
请在答题卡中填涂符合题意的选项。
本题共8个小题,每小题3分,共24分) 1.4的平方根是 A .2 B .2 C .±2 D .2± 2.函数11y x =+的自变量x 的取值范围是 A .x >-1 B .x <-1 C .x ≠-1 D .x ≠1 3.一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是 A .三棱锥 B .长方体 C .球体 D .三棱柱 4.下列事件是必然事件的是 A .通常加热到100℃,水沸腾; B .抛一枚硬币,正面朝上; C .明天会下雨;D .经过城市中某一有交通信号灯的路口,恰好遇到红灯.5.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是A .3、4、5B .6、8、10C .3、2、5D .5、12、136.已知⊙O 1、⊙O 2的半径分别是12r =、24r =,若两圆相交,则圆心距O 1O 2可能取的值是 A .2 B .4 C .6D .87.下列计算正确的是 A .2242a a a += B .2(2)4a a = C .333⨯=D .1232÷=8.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是 A .弦AB 的长等于圆内接正六边形的边长 B .弦AC 的长等于圆内接正十二边形的边长 C .AC BC = D .∠BAC =30°二、填空题(本题共8个小题,每小题3分,共24分) 9.-3的相反数是 .10.截止到2010年5月31日,上海世博园共接待8 000 000人,用科学记数法表示是 人.11.如图,O 为直线AB 上一点,∠COB =26°30′,则∠1= 度.12.实数a 、b 在数轴上位置如图所示,则| a |、| b |的大小关系是 .a ob C B A O O A B C 1yx -O 第13题图 第12题图 第11题图 .··.13.已知反比例函数1my x-=的图象如图,则m 的取值范围是 . 14.已知扇形的面积为12π,半径等于6,则它的圆心角等于 度. 15.等腰梯形的上底是4cm ,下底是10 cm ,一个底角是60︒,则等腰梯形的腰长是 cm .16.2010年4月14日青海省玉树县发生7.1级大地震后,湘江中学九年级(1)班的60名同学踊跃捐款.有15人每人捐30元、14人每人捐100元、10人每人 捐70元、21人每人捐50元.在这次每人捐款的数值中,中位数是 .三、解答题(本题共6个小题,每小题6分,共36分) 17.计算:1023tan 30(2010)π-︒+--18.先化简,再求值:2291()333x x x x x ---+其中13x =.19.为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度. 第19题图20.有四张完全一样的空白纸片,在每张纸片的一个面上分别写上1、2、3、4.某同学把这四张纸片写有字的一面朝下,先洗匀随机抽出一张,放回洗匀后,再随机抽出一张.求抽出的两张纸片上的数字之积小于6的概率.(用树状图或列表法求解)21.△ABC 在平面直角坐标系中的位置如图所示.A 、B 、C 三点在格点上. (1)作出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点C 1的坐标; (2)作出△ABC 关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标.22.在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;(2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 的度数.EBD A C F A F DE B C第22题图第21题图 yx23.长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?24.已知:AB 是O 的弦,D 是AB 的中点,过B 作AB 的垂线交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =EC ,求sin C .B ECD A O OADB EC第24题图25.已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.26.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.BAPxCQ Oy 第26题图2015年长沙市初中毕业学业水平考试试卷数学参考答案及评分标准一、选择题(本题共8个小题,每小题3分,共24分)请将你认为正确的选项的代号填在答题卡上.题号 1 2 3 4 5 6 7 8答案C C C A C B C D二、填空题(本题共8个小题,每小题3分,共24分)9.3 10.8×10611.153.5 12.|a |>|b | 13.m <1 14.120 15.6 16.50 三、解答题(本题共6个小题,每小题6分,共36分)17.原式=133123+⨯- …………………………………………………3分 =12……………………………………………………………6分 18.原式=(3)(3)13(3)x x x x x +--+ ……………………………………………2分=1x ……………………………………………………………4分 当13x =时,原式=3 …………………………………………………6分19.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分 在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD∴CA =33 …………4分 ∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分 20.解:(1)或用列表法 …………3分(2)P (小于6)=816=12………………………………………………………6分 21.解:(1)如图C 1(-3,2)…………………3分 (2)如图C 2(-3,-2) …………………6分22.(1)证明:∵四边形ABCD 是正方形 ∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分开1 2 3 41 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12∴△ABE ≌△ADE ……………………3分 (2)∵△ABE ≌△ADE ∴∠BEC =∠DEC =12∠BED …………4分 ∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分 ∴∠EFD =60°+45°=105° …………………………6分四、解答题(本题共2个小题,每小题8分,共16分)23.解:(1)设平均每次降价的百分率是x ,依题意得 ………………………1分5000(1-x )2= 4050 ………………………………………3分 解得:x 1=10% x 2=1910(不合题意,舍去) …………………………4分 答:平均每次降价的百分率为10%. …………………………………5分 (2)方案①的房款是:4050×100×0.98=396900(元) ……………………6分方案②的房款是:4050×100-1.5×100×12×2=401400(元) ……7分 ∵396900<401400∴选方案①更优惠. ……………………………………………8分24.证明:连BD ∵BD AD =∴∠A =∠ABD ∴AD =BD …………………2分 ∵∠A +∠C =90°,∠DBA +∠DBC =90°∴∠C =∠DBC ∴BD =DC∴AD =DC ………………………………………………………4分 (2)连接OD ∵DE 为⊙O 切线 ∴OD ⊥DE …………………………5分 ∵BD AD =,OD 过圆心 ∴OD ⊥AB又∵AB ⊥BC ∴四边形FBED 为矩形∴DE ⊥BC ……………………6分 ∵BD 为Rt △ABC 斜边上的中线∴BD =DC ∴BE =EC =DE∴∠C =45° …………………………………………………7分 ∴sin ∠C =22………………………………………………………………8分五、解答题(本题共2个小题,每小题10分,共20分)25.解:(1)∵一次函数过原点∴设一次函数的解析式为y =kx∵一次函数过(1,-b ) ∴y =-bx ……………………………3分 (2)∵y =ax 2+bx -2过(1,0)即a +b =2 …………………………4分 由2(2)2y bxy b x bx =-⎧⎨=-+-⎩得 ……………………………………5分22(2)20ax a x +--=① ∵△=224(2)84(1)120a a a -+=-+>∴方程①有两个不相等的实数根∴方程组有两组不同的解∴两函数有两个不同的交点. ………………………………………6分 (3)∵两交点的横坐标x 1、x 2分别是方程①的解∴122(2)24a a x x a a--+==122x x a -= ∴2121212()4x x x x x x -=+-=22248164(1)3a a a a-+=-+ 或由求根公式得出 ………………………………………………………8分∵a >b >0,a +b =2 ∴2>a >1令函数24(1)3y a=-+ ∵在1<a <2时y 随a 增大而减小.∴244(1)312a<-+< ……………………………………………9分∴242(1)323a<-+< ∴12223x x <-< ………………10分26.解:(1) ∵CQ =t ,OP =2t ,CO =8 ∴OQ =8-t∴S △OPQ =212(8)24222t t t t -=-+(0<t <8) …………………3分 (2) ∵S 四边形OPBQ =S 矩形ABCD -S △PAB -S △CBQ=11882828(822)22t t ⨯-⨯-⨯⨯-=322 ………… 5分 ∴四边形O PBQ 的面积为一个定值,且等于322 …………6分(3)当△OPQ 与△PAB 和△QPB 相似时, △QPB 必须是一个直角三角形,依题意只能是∠QPB=90°又∵BQ 与AO 不平行 ∴∠QPO 不可能等于∠PQB ,∠APB 不可能等于∠PBQ ∴根据相似三角形的对应关系只能是△OPQ ∽△PBQ ∽△ABP ………………7分 ∴828822t tt-=-解得:t =4 经检验:t =4是方程的解且符合题意(从边长关系和速度) 此时P (42,0)∵B (82,8)且抛物线214y x bx c =++经过B 、P 两点, ∴抛物线是212284y x x =-+,直线BP 是:28y x =- …………………8分 设M (m , 28m -)、N (m ,212284m m -+)∵M 在BP 上运动 ∴4282m ≤≤ ∵2112284y x x =-+与228y x =-交于P 、B 两点且抛物线的顶点是P∴当4282m ≤≤时,12y y > ………………………………9分 ∴12MN y y =-=21(62)24m --+ ∴当62m =时,MN 有最大值是2 ∴设MN 与BQ 交于H 点则(62,4)M 、(62,7)H ∴S △BHM =13222⨯⨯=32 ∴S △BHM :S 五边形QOPMH =32:(32232)-=3:29∴当MN 取最大值时两部分面积之比是3:29. …………………10分。
2015年长沙市初中毕业生学业考试数学训练试卷(12)
2015年长沙市初中毕业生学业考试数学训练试卷(12)一.选择题(每题3分,共36分)1.下列运算准确是( ). A .632aa = B.()22323-=-⨯ C.21a a a= D.1882-= 2.如图,数轴上A B 、两点对应的实数分别是1和3,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为( ).A.231-B.13+C.23+D.231+3.关于x 的一元二次方程2620x x k -+=有两个不相等的实数根,则实数k 的取值范围是( ).A.92k ≤B.92k <C. 92k ≥D. 92k > 4.如图,雷达探测器测得六个目标A B C D E F 、、、、、出现.按照规定 的目标表示方法,目标C F 、的位置表示为()()61205210.C F ,°、,°按照此方法在表示目标A B D E 、、、的位置时,其中表示不准确的是( ).A .()530A ,° B. ()290B ,° C. ()4240D ,° D. ()360E ,°第7题图5.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可 获得20%,则这种电子产品的标价为( )A. 26元B. 27元C. 28元D. 29元6、若一元二次方程0632=++-m x x 的一个根为31=x ,则该方程的另一个根是( ) A 、12-=x B 、32-=x C 、52-=x D 、52=x7、随机抽取九年级某班10位同学的年龄情况为:17岁1人,16岁5人,15岁2人,14岁2人。
则这10位同学的年龄的中位数和平均数分别是(单位:岁)( ) A 、16和15 B 、16和15.5 C 、16和16 D 、15.5和15.5 8.下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.9.已知函数21y x =与函数2132y x =-+的图象大致如图.若12y y <,则自变量x的取值范围是( ).A .322x -<< B. 322x x ><-或 C. 322x -<< D. 322x x <->或 10.如图3,四边形OABC 为菱形,点A B 、在以点O 为圆心的DE 上,若312OA =∠=∠,,则扇形ODE 的面积为( ) A.3π2 B. 2π C.5π2D. 3π 11.将边长为3cm 的正三角形各边三等分,以这六个分点为顶点构成 一个正六边形,则这个正六边形的面积为( ) A.332cm 2 B.334cm 2 C.338cm 2 D.33cm 212.如图所示,一般书本的纸张是在原纸张多次对开得到的.矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依此类推.若各种开本的矩形都相似,那么ABAD等于( ). A .0.618 B. 2C. 2D. 2二、填空题:(每题3分共24分)13.不等式642-<x x 的解集为 .14.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=________。
2015年中考数学试题及答案
2015年中考数学数 学 试 题 卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分) 1、比-2013小1的数是( )A 、-2012B 、2012C 、-2014D 、2014 2、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=( ) A 、70° B 、65° C 、60° D 、55°3、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a的小正方体, 得到一个如图所示的零件,则这个零件的左视图是( ) A 、 B 、 C 、 D 、 4、某红外线遥控器发出的红外线波长为0.000 00094m ,用科学计数法表示这个数是( )A 、9.4×10-7mB 、9.4×107mC 、9.4×10-8m D 、9.4×108m 5、下列计算正确的是( )A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2) 4=-a 4b 6D 、-2a +(2a -1)=-1 6、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( )A 、240x +4=160x -10B 、240x -4=160x -10C 、240x -10 +4=160xD 、240x -10 -4=160x二、填空题(本大题共8小题,每小题3分,共24分) 7、因式分解:xy 2-x = 。
8、已知x =1是关于x 的方程x 2+x +2k =0的一个根,则它的另一个根是 。
9、已知2x 3y =13 ,则分式x -2y x +2y的值为 。
2015年长沙中考数学模拟试卷------全8套
售价(元/件)
20
45
(2)若商店计划投入资金少于 4 000 元,
且销售完这批商品后获利多于 1 135 元,请问有哪几种购货方案?并指出获利最
大的购货方案.
24.如图,已知以 Rt△ABC 的直角边 AB 为直径作⊙O 与斜边 AC 交于点 D, E 为 BC 边的中点,连接 DE. (1)求证:DE 是⊙O 的切线; (2)连接 OE,当∠CAB 为何值时,四边形 AOED 是平行四 边形? (3)请在(2)的条件下探索 OBED 的形状.
25.已知:如图①,在 Rt△ACB 中,C 90 , AC 4 cm , BC 3 cm ,点 P 由 B 出发沿 BA 方向向点 A 匀速运动,速度为 1 cm/s;点 Q 由 A 出发沿 AC 方向向点 C 匀速运动, 速度为 2 cm/s;连接 PQ .若设运动的时间为 t(s) ( 0 t 2 ),解答下列问题:
考证号、考室和座位号; 2、必须在答题卡上答题,在草稿纸、试题卷上答题无效; 3、答题时,请考生注意各大题题号后面的答题提示; 4、请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁; 5、答题卡上不得使用涂改液、涂改胶和贴纸; 6、本学科试卷共 26 个小题,考试时量 120 分钟,满分 120 分。
16.如图,在△ABC 中,点 E、F 分别为 AB、AC 的中点.若 EF 的长为 2,则 BC 的长为
___________.
第 16 题图
第 17 题图
第 18 题图
17.如图,等腰△ABC 的周长为 27 cm,底边 BC=7 cm,AB 的垂直平分线 DE 交 AB 于点
D,交 AC 于点 E,则△BEC 的周长为
C.2a+1
湖南省长沙市长沙县2015届中考数学模拟试卷
湖南省长沙市长沙县2015届中考数学模拟试卷一.选择题(共12小题)1.(3分)福布斯中文网微博通报数据显示,天猫双11成交额已经在活动开始后的60分钟内突破122亿元人民币.则122亿用科学记数法来表示是()A.1.22×1010B.122×108C.12.2×109D.1.22×1092.(3分)若2a﹣b=3,则9﹣4a+2b的值为()A.3B.6C.12 D.03.(3分)分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=44.(3分)下列各式计算正确的是()A.2a+2=3a2B.(﹣b3)2=﹣b6C.c2•c3=c5D.(m﹣n)2=m2﹣n25.(3分)一物体及其主视图如图所示,则它的左视图与俯视图分别是图形中的()A.①②B.③②C.①④D.③④6.(3分)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26°B.116°C.128°D.154°7.(3分)如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转90°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm8.(3分)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.9.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1 D.﹣210.(3分)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.211.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查12.(3分)如图,△ABC中,点D在线段AB上,且∠BAD=∠C,则下列结论一定正确的是()A.A B2=AC•BD B.A B•AD=BD•BC C.A B2=BC•BD D.AB•AD=BD•CD二.填空题(共6小题)13.(3分)﹣的相反数是.14.(3分)分解因式:2x2﹣2=.15.(3分)已知1是关于x的方程x﹣2m=0的解,则m的值为.16.(3分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.17.(3分)如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.18.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.三.解答题(共7小题)19.计算:.20.先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.21.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统计图如下:命中环数10 9 8 7命中次数 3 2(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.22.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km 的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.23.青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:甲种花卉(盆)乙种花卉(盆)A种园艺造型(个)80盆40盆B种园艺造型(个)50盆90盆(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元.若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.24.如图,以△ABC的边AB为直径的⊙O交AC边于点D,且过点D的⊙O的切线DE平分BC边,交BC于E.(1)求证:BC是⊙O的切线.(2)当△ABC满足什么条件时,以点O、B、E、D为顶点的四边形是正方形?25.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t秒(0<t<).解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.湖南省长沙市长沙县2015届中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(共12小题)1.(3分)福布斯中文网微博通报数据显示,天猫双11成交额已经在活动开始后的60分钟内突破122亿元人民币.则122亿用科学记数法来表示是()A.1.22×1010B.122×108C.12.2×109D.1.22×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将122亿用科学记数法表示为1.22×1010.故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)若2a﹣b=3,则9﹣4a+2b的值为()A.3B.6C.12 D.0考点:代数式求值.专题:计算题.分析:原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.解答:解:∵2a﹣b=3,∴原式=9﹣2(2a﹣b)=9﹣6=3,故选A点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.(3分)分式方程的解为()A.x=1 B.x=2 C.x=3 D.x=4考点:解分式方程.分析:首先分式两边同时乘以最简公分母2x(x﹣1)去分母,再移项合并同类项即可得到x的值,然后要检验.解答:解:,去分母得:3x﹣3=2x,移项得:3x﹣2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x﹣1)=12≠0,故x=3是原方程的解,故原方程的解为:X=3,故选:C.点评:此题主要考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验,这是同学们最容易出错的地方.4.(3分)下列各式计算正确的是()A.2a+2=3a2B.(﹣b3)2=﹣b6C.c2•c3=c5D.(m﹣n)2=m2﹣n2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:根据合并同类项法则,积的乘方,同底数幂的乘法,完全平方公式分别求出每个式子的值,再判断即可.解答:解:A、2a和2不能合并,故本选项错误;B、结果是b6,故本选项错误;C、结果是c5,故本选项正确;D、结果是m2﹣2mn+n2,故本选项错误;故选C.点评:本题考查了合并同类项法则,积的乘方,同底数幂的乘法,完全平方公式的应用,主要考查学生的计算能力和判断能力,难度不是很大.5.(3分)一物体及其主视图如图所示,则它的左视图与俯视图分别是图形中的()A.①②B.③②C.①④D.③④考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,从左面看得到的视图是左视图,可得答案.解答:解:从左面看下面是一个长方形,上面是一个长方形,故③符合题意,从上面看左边一个长方形,中间一个长方形,右边一个长方形,故②符合题意.故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图,从左面看得到的视图是左视图,注意所有的看到的棱都应表现在视图中.6.(3分)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A.26°B.116°C.128°D.154°考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选:C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.7.(3分)如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转90°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm考点:弧长的计算;平行四边形的性质;旋转的性质.专题:计算题.分析:根据平行四边形的性质得到OD=OB=BD=2,然后根据弧长公式计算即可.解答:解:∵四边形ABCD为平行四边形,∴OD=OB=BD=2,∴点D所转过的路径长==π(cm).故选D.点评:本题考查了弧长的计算:弧长=(n为弧所对的圆心角的度数,R为圆的半径).也考查了平行线四边形的性质以及旋转的性质.8.(3分)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于()A.B.C.D.考点:锐角三角函数的定义.专题:压轴题;网格型.分析:找到∠ABC所在的直角三角形,利用勾股定理求得斜边长,进而求得∠ABC的邻边与斜边之比即可.解答:解:由格点可得∠ABC所在的直角三角形的两条直角边为2,4,∴斜边为=2.∴cos∠ABC==.故选B.点评:难点是构造相应的直角三角形利用勾股定理求得∠ABC所在的直角三角形的斜边长,关键是理解余弦等于邻边比斜边.9.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1B.2C.﹣1 D.﹣2考点:一元二次方程的解.专题:待定系数法.分析:把x=2代入已知方程,列出关于p的一元一次方程,通过解该方程来求p的值.解答:解:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.10.(3分)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.2考点:菱形的性质.分析:利用菱形的性质以及等边三角形的判定方法得出△DAB是等边三角形,进而得出BD的长.解答:解:∵菱形ABCD的边长为2,∴AD=AB=2,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=2,则对角线BD的长是2.故选:C.点评:此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB是等边三角形是解题关键.11.(3分)下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查考点:随机事件;全面调查与抽样调查;概率的意义.分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.不易采集到数据的调查要采用抽样调查的方式,据此判断即可.解答:解:A.“打开电视,正在播放河南新闻节目”是随机事件,故A选项错误;B.某种彩票中奖概率为10%是指买十张可能中奖,也可能不中奖,故B选项错误;C.神舟飞船反射前需要对零部件进行全面调查,故C选项错误;D.解某种节能灯的使用寿命,具有破坏性适合抽样调查,故D选项正确.故选:D.点评:本题考查了调查的方式和事件的分类.不易采集到数据的调查要采用抽样调查的方式;必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.(3分)如图,△ABC中,点D在线段AB上,且∠BAD=∠C,则下列结论一定正确的是()A.A B2=AC•BD B.A B•AD=BD•BC C.A B2=BC•BD D.AB•AD=BD•CD考点:射影定理.分析:先证明△BAD∽△BCA,则利用相似的性质得AB:BC=BD:AB,然后根据比例性质得到AB2=BC•BD.解答:解:∵∠BAD=∠C,而∠ABD=∠CBA,∴△BAD∽△BCA,∴AB:BC=BD:AB,∴AB2=BC•BD.故选C.点评:本题考查了射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.也考查了相似三角形的判定与性质.二.填空题(共6小题)13.(3分)﹣的相反数是.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:﹣的相反数是,故答案为:.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.14.(3分)分解因式:2x2﹣2=2(x+1)(x﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式2,再根据平方差公式进行二次分解即可求得答案.解答:解:2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:2(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.15.(3分)已知1是关于x的方程x﹣2m=0的解,则m的值为0.5.考点:一元一次方程的解.专题:计算题.分析:把x=1代入方程求出m的值即可.解答:解:把x=1代入方程得:1﹣2m=0,解得:m=0.5,故答案为:0.5点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.16.(3分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=3.考点:三角形中位线定理.分析:由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.解答:解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.点评:本题用到的知识点为:三角形的中位线等于三角形第三边的一半.17.(3分)如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为1或5.考点:直线与圆的位置关系;坐标与图形性质;平移的性质.分析:平移分在y轴的左侧和y轴的右侧两种情况写出答案即可.解答:解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故答案为:1或5.点评:本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切时,点到圆心的距离等于圆的半径.18.(3分)如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是50°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.解答:解:∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为:50°.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.三.解答题(共7小题)19.计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(﹣)0=1,()﹣1=2,按照实数的运算法则依次计算.解答:解:原式=1﹣4××+2×=1﹣+2=1+.点评:本题考查的知识点是:任何不等于0的数的0次幂是1;a﹣p=.20.先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值.考点:分式的化简求值.专题:计算题.分析:先化简分式,再把a=2代入化简后的式子计算即可.解答:解:,当a=2时,原式=2×2=4.点评:本题考查了分式的化简求值.注意除以一个数等于乘以这个数的倒数.21.在全运会射击比赛的选拔赛中,运动员甲10次射击成绩的统计表(表1)和扇形统计图如下:命中环数10 9 8 7命中次数 4 3 2 1(1)根据统计表(图)中提供的信息,补全统计表及扇形统计图;(2)已知乙运动员10次射击的平均成绩为9环,方差为1.2,如果只能选一人参加比赛,你认为应该派谁去?并说明理由.考点:方差;统计表;扇形统计图.分析:(1)根据统计表(图)中提供的信息,可列式得命中环数是7环的次数是10×10%,10环的次数是10﹣3﹣2﹣1,再分别求出命中环数是8环和10环的圆心角度数画图即可,(2)先求出甲运动员10次射击的平均成绩和方差,再与乙比较即可.解答:解:(1)命中环数是7环的次数是10×10%=1(次),10环的次数是10﹣3﹣2﹣1=4(次),命中环数是8环的圆心角度数是;360°×=72°,10环的圆心角度数是;360°×=144°,画图如下:故答案为:4,1;(2)∵甲运动员10次射击的平均成绩为(10×4+9×3+8×2+7×1)÷10=9环,∴甲运动员10次射击的方差=[(10﹣9)2×4+(9﹣9)2×3+(8﹣9)2×2+(7﹣9)2]=1,∵乙运动员10次射击的平均成绩为9环,方差为1.2,大于甲的方差,∴如果只能选一人参加比赛,认为应该派甲去.点评:本题考查了方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km 处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km 的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.考点:解直角三角形的应用-方向角问题.分析:(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.解答:解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.点评:此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.23.青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:甲种花卉(盆)乙种花卉(盆)A种园艺造型(个)80盆40盆B种园艺造型(个)50盆90盆(1)已知搭配一个A种园艺造型和一个B种园艺造型共需500元.若园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元.则A、B两种园艺造型的单价分别是多少元?(2)如果搭配A、B两种园艺造型共50个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过3490盆,乙种花卉不超过2950盆,问符合题意的搭配方案有几种?请你帮忙设计出来.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)先设A种园艺造型单价为x元,B种园艺造型单价为y元,根据搭配一个A 种园艺造型和一个B种园艺造型共需500元,园林局搭配A种园艺造型32个,B种园艺造型18个共投入11800元,列出方程组,求出x,y的值即可;(2)设搭配A种园艺造型a个,搭配B种园艺造型(50﹣a)个,根据甲种花卉不超过3490盆,乙种花卉不超过2950盆,列出不等式组,求出a的取值范围,即可得出符合题意的搭配方案.解答:解:(1)设A种园艺造型单价为x元,B种园艺造型单价为y元,根据题意得:,解此方程组得:,答:A种园艺造型单价是200元,B种园艺造型单价是300元.(2)设搭配A种园艺造型a个,搭配B种园艺造型(50﹣a)个,根据题意得:,解此不等式组得:31≤a≤33,∵a是整数,∴符合题意的搭配方案有3种,如下:A种园艺造型(个)B种园艺造型(个)方案1 31 19方案2 32 18方案3 33 17点评:此题考查了二元一次方程组和一元一次不等式组的应用,关键是读懂题意,找出题目中的数量关系,列出方程组和不等式组,注意a只能取整数.24.如图,以△ABC的边AB为直径的⊙O交AC边于点D,且过点D的⊙O的切线D E 平分BC边,交BC于E.(1)求证:BC是⊙O的切线.(2)当△ABC满足什么条件时,以点O、B、E、D为顶点的四边形是正方形?考点:切线的判定与性质;全等三角形的判定与性质;正方形的判定;圆周角定理.专题:证明题.分析:(1)要证BC是⊙O的切线,就要证OB⊥BC,只要证∠OBE=90°即可,首先作辅助线,连接OD、OE,由已知得OE为△ABC的中位线,OE∥AC,从而证得△ODE≌△OBE,推出∠ODE=∠OBE,又DE是⊙O的切线,所以得∠OBE=90°,即OB⊥BC,得证.(2)由题意使四边形OBED是正方形,即得到OD=BE,又由已知BE=CE,BC=2BE,AB=2OD,所以AB=BC,即△ABC为等腰三角形(AB=BC).再通过△ABC为等腰三角形(AB=BC)论证以点O、B、E、D为顶点的四边形是正方形.解答:解:(1)连接OD、OE,∵O为AB的中点,E为BC的中点,∴OE为△ABC的中位线,∴OE∥AC(三角形中位线性质),∴∠DOE=∠ODA,∠BOE=∠A(平行线性质),∵OA=OD∴∠A=∠ODA∴∠DOE=∠BOE(等量代换)∵OD=OB,OE=OE∴△ODE≌△OBE(边角边)∴∠ODE=∠OBE∵DE是⊙O的切线∴∠ODE=∠OBE=90°∴OB⊥BC∴BC是⊙O的切线.(2)当为等腰三角形(AB=BC)时四边形OBDE是正方形,证明如下:连接BD,∵AB是⊙O的直径,∴BD⊥AC(直径所对的圆周角为直角),∵AB=BC,∴D为AC的中点(等腰三角形的性质),∵E为BC的中点,∴DE为△ABC的中位线,∴DE∥AB,∵DE为⊙O的切线,∴OD⊥DE,∴OD⊥AB,∴∠DOB=∠OBE=∠ODE=90°,∵OD=OB,∴四边形OBED为正方形.点评:此题是切线的判定与性质、全等三角形的判定与性质、正方形的判定性质、圆周角定理的综合运用.解题的关键是通过作辅助线证明三角形全等,得到∠OBE=90°,即OB⊥BC 得出结论.第二问关键是通过以点O、B、E、D为顶点的四边形是正方形推出△ABC为等腰三角形(AB=BC).然后加以论证.25.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A 作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t秒(0<t<).解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.考点:一次函数综合题.分析:(1)如图①所示,当PQ∥BO时,利用平分线分线段成比例定理,列线段比例式=,求出t的值;(2)①求S关系式的要点是求得△AQP的高,如图②所示,过点P作过点P作PD⊥x轴于点D,构造平行线PD∥BO,由线段比例关系=求得PD,从而S可求出,S与t之间的函数关系式是一个关于t的二次函数,利用二次函数求极值的方法求出S的最大值;②本问关键是求出点P、Q的坐标.当S取最大值时,可推出此时PD为△OAB的中位线,从而可求出点P的纵横坐标,又易求Q点坐标,从而求得点P、Q的坐标;求得P、Q的坐标之后,代入“向量PQ”坐标的定义(x2﹣x1,y2﹣y1),即可求解.解答:解:(1)∵A、B两点的坐标分别是(8,0)、(0,6),则OB=6,OA=8,∴AB===10.如图①,当PQ∥BO时,AQ=2t,BP=3t,则AP=10﹣3t.∵PQ∥BO,∴=,即=,解得t=,∴当t=秒时,PQ∥BO.(2)由(1)知:OA=8,OB=6,AB=10.①如图②所示,过点P作PD⊥x轴于点D,则PD∥BO,∴=,即=,解得PD=6﹣t.S=AQ•PD=•2t•(6﹣t)=6t﹣t2=﹣(t﹣)2+5,∴S与t之间的函数关系式为:S=﹣(t﹣)2+5(0<t<),当t=秒时,S取得最大值,最大值为5(平方单位).②如图②所示,当S取最大值时,t=,∴PD=6﹣t=3,∴PD=BO,又∵PD∥BO,∴此时PD为△OAB的中位线,则OD=OA=4,∴P(4,3).又∵AQ=2t=,∴OQ=OA﹣AQ=,∴Q(,0).依题意,“向量PQ”的坐标为(﹣4,0﹣3),即(,﹣3).∴当S取最大值时,“向量PQ”的坐标为(,﹣3).点评:本题是典型的动点型问题,解题过程中,综合利用了平行线分线段成比例定理(或相似三角形的判定与性质)、勾股定理、二次函数求极值及三角形中位线性质等知识点.第(2)②问中,给出了“向量PQ”的坐标的新定义,为题目增添了新意,不过同学们无须为此迷惑,求解过程依然是利用自己所熟悉的数学知识.。
2015年湖南省长沙市中考数学试题与解析
2015年湖南省长沙市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)3.(3分)(2015•长沙)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线B6.(3分)(2015•长沙)在数轴上表示不等式组的解集,正确的是( )B7.(3分)(2015•长沙)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售某种彩票的中奖概率为,说明每买抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为10.(3分)(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是 B11.(3分)(2015•长沙)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )米B 12.(3分)(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器二、填空题(共6小题,每小题3分,满分18分) 13.(3分)(2015•长沙)一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是 . 14.(3分)(2015•长沙)圆心角是60°且半径为2的扇形面积为 (结果保留π).15.(3分)(2015•长沙)把+进行化简,得到的最简结果是 (结果保留根号).16.(3分)(2015•长沙)分式方程=的解是x= .17.(3分)(2015•长沙)如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.18.(3分)(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.三、解答题(共8小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,满分66分.解答应写出必要的文字说明,证明过程或演算步骤)19.(6分)(2015•长沙)计算:()﹣1+4cos60°﹣|﹣3|+.20.(6分)(2015•长沙)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.21.(8分)(2015•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?22.(8分)(2015•长沙)如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD 相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.23.(9分)(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?24.(9分)(2015•长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.25.(10分)(2015•长沙)在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数y=x+2的图象上所有“中国结”的坐标;(2)若函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?26.(10分)(2015•长沙)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.(1)当x1=c=2,a=时,求x2与b的值;(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.2015年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)是有理数;3.(3分)(2015•长沙)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线B6.(3分)(2015•长沙)在数轴上表示不等式组的解集,正确的是()B,再分别表示在数轴上即可得7.(3分)(2015•长沙)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售,说明每买、某种彩票的中奖概率为,说明每买、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故10.(3分)(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是B11.(3分)(2015•长沙)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()B米12.(3分)(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2015•长沙)一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是.个球,则摸出白球的概率是:=故答案为:.14.(3分)(2015•长沙)圆心角是60°且半径为2的扇形面积为π(结果保留π).S=π故答案为:π.15.(3分)(2015•长沙)把+进行化简,得到的最简结果是2(结果保留根号)..16.(3分)(2015•长沙)分式方程=的解是x=﹣5.17.(3分)(2015•长沙)如图,在△ABC中,DE∥BC,,DE=6,则BC的长是18.,18.(3分)(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.BD=CD=AB=5=4三、解答题(共8小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,满分66分.解答应写出必要的文字说明,证明过程或演算步骤)19.(6分)(2015•长沙)计算:()﹣1+4cos60°﹣|﹣3|+.×﹣20.(6分)(2015•长沙)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.21.(8分)(2015•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?22.(8分)(2015•长沙)如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD 相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.==,==,EF=2OE=23.(9分)(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?≈24.(9分)(2015•长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.,),,﹣),,=2的半径为:OAB==,OBC=∠×=,AE=EF=AE=,,25.(10分)(2015•长沙)在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数y=x+2的图象上所有“中国结”的坐标;(2)若函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?x时,x+2y=(y=x时,x+2y=y=(((y=,;,=[×+2)×)﹣x xx x2×x x2×,26.(10分)(2015•长沙)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.(1)当x1=c=2,a=时,求x2与b的值;(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.代入得:x,再根据﹣,得出2ac+,为等边三角形时(﹣﹣,,得出,2x2(,代入得:x×,∴方程为:x x+2=0=2ac+(﹣)|AB=﹣=,+2b+1==2,=,﹣2=2方程可解为x x+c=0=﹣。
2015年湖南省长沙市中考数学试题及
2015年湖南省长沙市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)3.(3分)(2015•长沙)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线B6.(3分)(2015•长沙)在数轴上表示不等式组的解集,正确的是( )B7.(3分)(2015•长沙)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售,说明每买10.(3分)(2015•长沙)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是 B11.(3分)(2015•长沙)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )米B 12.(3分)(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器二、填空题(共6小题,每小题3分,满分18分) 13.(3分)(2015•长沙)一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是 . 14.(3分)(2015•长沙)圆心角是60°且半径为2的扇形面积为 (结果保留π).15.(3分)(2015•长沙)把+进行化简,得到的最简结果是 (结果保留根号).16.(3分)(2015•长沙)分式方程=的解是x= .17.(3分)(2015•长沙)如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.18.(3分)(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.三、解答题(共8小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,满分66分.解答应写出必要的文字说明,证明过程或演算步骤)19.(6分)(2015•长沙)计算:()﹣1+4cos60°﹣|﹣3|+.20.(6分)(2015•长沙)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.21.(8分)(2015•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?22.(8分)(2015•长沙)如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD 相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.23.(9分)(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?24.(9分)(2015•长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.25.(10分)(2015•长沙)在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数y=x+2的图象上所有“中国结”的坐标;(2)若函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?26.(10分)(2015•长沙)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.(1)当x1=c=2,a=时,求x2与b的值;(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.2015年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)是有理数;3.(3分)(2015•长沙)2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线B6.(3分)(2015•长沙)在数轴上表示不等式组的解集,正确的是()B,再分别表示在数轴上即可得7.(3分)(2015•长沙)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售,说明每买、某种彩票的中奖概率为,说明每买、抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故10.(3分)(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是B11.(3分)(2015•长沙)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()B米12.(3分)(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器二、填空题(共6小题,每小题3分,满分18分)13.(3分)(2015•长沙)一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是.个球,则摸出白球的概率是:=故答案为:.14.(3分)(2015•长沙)圆心角是60°且半径为2的扇形面积为π(结果保留π).S=π故答案为:π.15.(3分)(2015•长沙)把+进行化简,得到的最简结果是2(结果保留根号)..16.(3分)(2015•长沙)分式方程=的解是x=﹣5.17.(3分)(2015•长沙)如图,在△ABC中,DE∥BC,,DE=6,则BC的长是18.,18.(3分)(2015•长沙)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.BD=CD=AB=5=4三、解答题(共8小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,满分66分.解答应写出必要的文字说明,证明过程或演算步骤)19.(6分)(2015•长沙)计算:()﹣1+4cos60°﹣|﹣3|+.×﹣20.(6分)(2015•长沙)先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.21.(8分)(2015•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?22.(8分)(2015•长沙)如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD 相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.==,==,EF=2OE=23.(9分)(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?≈24.(9分)(2015•长沙)如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.,),,﹣),,=2的半径为:OAB==,OBC=∠×=,AE=EF=AE=,,25.(10分)(2015•长沙)在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数y=x+2的图象上所有“中国结”的坐标;(2)若函数y=(k≠0,k为常数)的图象上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标;(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图象与x轴相交得到两个不同的“中国结”,试问该函数的图象与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?x时,x+2y=(y=x时,x+2y=y=(((y=,;,=[×+2)×)﹣x xx x2×x x2×,26.(10分)(2015•长沙)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.(1)当x1=c=2,a=时,求x2与b的值;(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.代入得:x,再根据﹣,得出2ac+,为等边三角形时(﹣﹣,,得出,2x2(,代入得:x×,∴方程为:x x+2=0=2ac+(﹣)|AB=﹣=,+2b+1==2,=,﹣2=2方程可解为x x+c=0=﹣。
2015年中考数学试题及答案(Word版)
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
2015年湖南省长沙市中考数学试卷(含详细答案)
说明每买 1000 张,有可能中奖,也有可能不中奖,故 B 错误;C,抛掷一枚质地均匀的硬币一次,出现正 面朝上的概率为 1 ,故 C 错误;D,想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D
2
正确;故选:D。 【考点】统计和概率的知识
9.【答案】C
【解析】∵一次函数 y 2x 1中 k 2<0 , b 1>0 ,∴此函数的图象经过一、二、四象限,不经过第
坐标原点. 1 2 1 2
(1)当 x c 2,a 1
12
(2)当 x 2c 时,试问△ABM 能否为等边三角形?判断并证明你的结论;
(3)当
1
x
mc(m
0)
时,记
△MAB,△PAB
的面积分别为
S
,
S
,若△BPO∽△PAO ,
且S
11
S
2
,求
m
的值.
12
数学试卷 第 6 页(共 22 页)
湖南省长沙市 2015 年初中学业水平考试
,
AD AB
1 3
,
DE
6 ,则 BC
的长是
.
18.如图, AB 是 O 的直径,点 C 是 O 上的一点,若 BC 6, AB 10,OD BC 于点 D ,
则 OD 的长为
.
三、解答题(本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分 6 分)
答
为 185000 人次,则数据 185000 用科学计数法表示为
--------------------
()
__ __
A.1.85 105
B.1.85 104
2015年湖南省长沙市岳麓区麓山国际学校中考直升数学试卷和解析答案
2015年湖南省长沙市岳麓区麓山国际学校中考直升数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣5地倒数是()A.5 B.C.﹣5 D.2.(3分)下列四个数﹣2,0,0.5,中,属于无理数地是()A.﹣2 B.0 C.0.5 D.3.(3分)下列等式成立地是()A.a2•a5=a10B.C.(﹣a3)6=a18 D.4.(3分)如图所示地几何体地俯视图是()A.B.C.D.5.(3分)某射击小组有20人,教练根据他们某次射击地数据绘制成如图所示地统计图,则这组数据地众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.56.(3分)下列函数中,y随x地增大而减小地是()A.y=x B.y=x2 C.y= D.y=(x<0)7.(3分)如图,AC是旗杆AB地一根拉线,测得BC=6米,∠ACB=50°,则拉线AC地长为()A.6sin50°B.6cos50°C.D.8.(3分)如图,直线l1∥l2,∠1=35°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°9.(3分)如图,线段AB是圆O地直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A.20°B.30°C.35°D.70°10.(3分)在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB地长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°11.(3分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,将△ABC绕点C 逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,A′B′与BC交于点D,则△A′CD地面积为()A.1 B.C.D.212.(3分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16,点P是斜边AB上任意一点,过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ地面积为y,则y与x之间地函数图象大致是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)单项式地次数是.14.(3分)在函数y=中,自变量x地取值范围是.15.(3分)生物学家发现一种病毒地长度约为0.00000043mm,用科学记数法表示这个数为mm.16.(3分)某花园内有一块五边形地空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径地扇形区域(阴影部分)种上花草,那么种上花草地扇形区域总面积是.17.(3分)平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC(2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形地概率为.18.(3分)已知m、n是方程x2+2x+1=0地两根,则代数式值为.三、解答题(共8小题,满分66分)19.(6分)计算:2﹣2﹣2cos60°+|﹣|+(3.14﹣π)0.20.(6分)解不等式组:,并写出它地所有整数解.21.(8分)某校举办初中生演讲比赛,每班派两名学生参赛,现某班有A、B、C三名学生竞选,他们地笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图(1):(1)m=,并将图(1)补充完整;(2)竞选地最后一个程序是由本校地300名学生代表进行投票,每票计1分,三名候选人地得分情况如图(2)(没有弃权票,每名学生只能推荐一人);①若将笔试、口试、得票三项测试得分按4:3:3地比例确定最后成绩,请计算学生A地最后成绩;②若A、B、C三名学生中有一名男生,两名女生,选其中两名学生参赛,求恰好选中一男一女地概率.(要求用树状图或列表法写出分析过程)22.(8分)如图,△ABC中,∠BCA=90°,CD是边AB上地中线,分别过点C,D作BA,BC地平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AB=10,tan∠BAC=,求菱形ADCE地面积.23.(9分)某一工程,在工程招标时,接到甲、乙两个工程队地投标书.甲工程队每天施工费需12万元,乙工程队每天施工费需5万元.工程领导小组根据甲、乙两队地投标书测得,有如下三种方案:①由甲队单独完成这项工程,刚好如期完全;②由乙队单独完成这项工程,要比规定日期多用6天;③先由甲、乙两队合做3天,余下地工程再由乙队单独做,正好如期完成.试问:(1)这项工程地工期是多少天?(2)在不耽误工期前提下,你觉得哪一种施工方案所需费用最节省?请说明理由.24.(9分)如图,在△ABC中,∠ABC=∠ACB,AC为直径地⊙O分别交AB、BC 于点M,N,点P在AB地延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O地切线;(2)若BC=2,sin∠BCP=,求△ACP地周长.25.(10分)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P地限变点.例如:点(2,3)地限变点地坐标是(2,3),点(﹣2,5)地限变点地坐标是(﹣2,﹣5).(1)①点地限变点地坐标是;②在点A(﹣2,﹣1),B(﹣1,2)中有一个点是函数图象上某一个点地限变点,这个点是;(2)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)地图象上,其限变点Q地纵坐标b′地取值范围是﹣5≤b′≤2,求k地取值范围;(3)若点P在关于x地二次函数y=x2﹣2tx+t2+t地图象上,其限变点Q地纵坐标b′地取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t地函数解析式及s地取值范围.26.(10分)如图,抛物线y=ax2+bx+c(a≠0)地图象经过点A,B,C,已知点A地坐标为(﹣3,0),点B坐标为(1,0),点C在y轴地正半轴,且∠CAB=30°.(1)求抛物线地函数解析式;(2)若直线l:y=x+m从点C开始沿y轴向下平移,分别交x轴、y轴于点D、E.①当m>0时,在线段AC上否存在点P,使得点P,D,E构成等腰直角三角形?若存在,求出点P地坐标;若不存在,请说明理由.②以动直线l为对称轴,线段AC关于直线l地对称线段A′C′与二次函数图象有交点,请直接写出m地取值范围.2015年湖南省长沙市岳麓区麓山国际学校中考直升数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣5地倒数是()A.5 B.C.﹣5 D.【解答】解:﹣5与﹣地乘积是1,所以﹣5地倒数是﹣.故选:D.2.(3分)下列四个数﹣2,0,0.5,中,属于无理数地是()A.﹣2 B.0 C.0.5 D.【解答】解:无理数为.故选D.3.(3分)下列等式成立地是()A.a2•a5=a10B.C.(﹣a3)6=a18 D.【解答】解:A、a2•a5=a7,故选项错误;B、当a=b=1时,≠+,故选项错误;C、正确;D、当a<0时,=﹣a,故选项错误.故选C.4.(3分)如图所示地几何体地俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体是从左到右排成一排地三个长方形,其中左右两个长方形是一样大小,故选B5.(3分)某射击小组有20人,教练根据他们某次射击地数据绘制成如图所示地统计图,则这组数据地众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.5【解答】解:由条形统计图中出现频数最大条形最高地数据是在第三组,7环,故众数是7(环);因图中是按从小到大地顺序排列地,最中间地环数是7(环)、8(环),故中位数是7.5(环).故选C.6.(3分)下列函数中,y随x地增大而减小地是()A.y=x B.y=x2 C.y= D.y=(x<0)【解答】解:A、∵一次函数y=x中,k=1>0,∴y随x地增大而增大,故本选项错误;B、∵二次函数y=x2中a=1>0,开口向上,∴在对称轴地右侧y随x地增大而减小,故本选项错误;C、∵反比例函数y=中,k=2>0,∴在每一象限内,y随x地增大而减小,故本选项错误;D、∵反比例函数y=中,k=4>0,∴当x<0时,y随x地增大而减小,故本选项正确.故选D.7.(3分)如图,AC是旗杆AB地一根拉线,测得BC=6米,∠ACB=50°,则拉线AC地长为()A.6sin50°B.6cos50°C.D.【解答】解:∵BC=6米,∠ACB=50°,∴拉线AC地长为=,故选:D.8.(3分)如图,直线l1∥l2,∠1=35°,∠2=75°,则∠3等于()A.55°B.60°C.65°D.70°【解答】解:∵l1∥l2,∴∠4=∠2=75°,∴∠3=180°﹣∠1﹣∠4=180°﹣35°﹣75°=70°.故选D.9.(3分)如图,线段AB是圆O地直径,弦CD⊥AB,如果∠BOC=70°,那么∠BAD等于()A.20°B.30°C.35°D.70°【解答】解:∵弦CD⊥直径AB,∴=,∴∠BAD=∠BOC=×70°=35°.故选C.10.(3分)在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于AB地长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=()A.40°B.50°C.60°D.70°【解答】解:∵根据作图过程和痕迹发现MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=35°,∵CD=BC,∴∠CDB=∠CBD=2∠A=70°,∴∠C=40°,故选A.11.(3分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,将△ABC绕点C 逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,A′B′与BC交于点D,则△A′CD 地面积为()A.1 B.C.D.2【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=2,∠ABC=30°,∴AB=2AC=4,BC===2,∵∠A=90°﹣∠B=60°,CA=CA′,∴△ACA′是等边三角形,∴AA′=AC=A′C=2,∴A′C=A′B=2,∴∠A′CB=∠B=30°,∵∠CA′B′=60°,∴∠CDA′=180°﹣∠A′CD﹣∠CA′D=90°,∴A′D=A′C=1,CD==,=×1×=.∴S△A′CD故选B.12.(3分)如图,△ABC中,∠ACB=90°,∠A=30°,AB=16,点P是斜边AB上任意一点,过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ地面积为y,则y与x之间地函数图象大致是()A.B.C.D.【解答】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=x,∴y=×AP×PQ=×x×x=x2;当点Q在BC上时,如下图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴S△APQ=AP•PQ=x•(16﹣x)=﹣x2+8x,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选:D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)单项式地次数是3.【解答】解:地次数是2+1=3,故答案为:3.14.(3分)在函数y=中,自变量x地取值范围是x>2.【解答】解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.15.(3分)生物学家发现一种病毒地长度约为0.00000043mm,用科学记数法表示这个数为 4.3×10﹣7mm.【解答】解:0.000 00043=4.3×10﹣7;故答案为:4.3×10﹣7.16.(3分)某花园内有一块五边形地空地如图所示,为了美化环境,现计划在五边形各顶点为圆心,2m长为半径地扇形区域(阴影部分)种上花草,那么种上花草地扇形区域总面积是6πm2.【解答】解:∵五边形地内角和=(5﹣2)×180°=540°,∴五个扇形地面积和==6π,∴种上花草地扇形区域总面积6πm2.故答案为6πm2.17.(3分)平行四边形中,AC、BD是两条对角线,现从以下四个关系中(1)AB=BC(2)AC=BD(3)AC⊥BD(4)AB⊥BC中任取一个作为条件,即可推出平行四边形ABCD是菱形地概率为.【解答】解:四边形ABCD是平行四边形,(1)若AB=BC,则AB=BC=CD=AD,符合“有一组邻边相等地平行四边形是菱形”地判定定理,故此小题正确;(2)若AC=BD,则此平行四边形是矩形,故此小题错误;(3)若AC⊥BD,符合“对角线互相垂直地平行四边形是菱形”地判定定理,此小题正确;(4)若AB⊥BC,则此平行四边形是矩形,故此小题错误.故正确地有(1)、(3)两个,所以可推出平行四边形ABCD是菱形地概率为:=.故答案为:.18.(3分)已知m、n是方程x2+2x+1=0地两根,则代数式值为3.【解答】解:∵m、n是方程x2+2x+1=0地两根,∴m+n=﹣2,mn=1,∴===3.故答案为:3.三、解答题(共8小题,满分66分)19.(6分)计算:2﹣2﹣2cos60°+|﹣|+(3.14﹣π)0.【解答】解:原式=﹣2×+2+1=+2.20.(6分)解不等式组:,并写出它地所有整数解.【解答】解:解不等式①,得x<2解不等式②,得x>﹣1即:原不等式组地解为:﹣1<x<2故满足条件地整数解为:0,121.(8分)某校举办初中生演讲比赛,每班派两名学生参赛,现某班有A、B、C三名学生竞选,他们地笔试成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图(1):(1)m=90,并将图(1)补充完整;(2)竞选地最后一个程序是由本校地300名学生代表进行投票,每票计1分,三名候选人地得分情况如图(2)(没有弃权票,每名学生只能推荐一人);①若将笔试、口试、得票三项测试得分按4:3:3地比例确定最后成绩,请计算学生A地最后成绩;②若A、B、C三名学生中有一名男生,两名女生,选其中两名学生参赛,求恰好选中一男一女地概率.(要求用树状图或列表法写出分析过程)【解答】解:(1)m=90,如图,故答案为90;(2)①学生A地最后成绩=85×0.4+90×0.3+300×35%×0.3=92.5(分);②画树状图:共有6种等可能地结果数,其中一男一女地结果数为4,所以恰好选中一男一女地概率==.22.(8分)如图,△ABC中,∠BCA=90°,CD是边AB上地中线,分别过点C,D作BA,BC地平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AB=10,tan∠BAC=,求菱形ADCE地面积.【解答】解:(1)∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形,∴EC∥DB,且EC=DB,在Rt△ABC中,CD是边AB上地中线,∴AD=DB=CD,∴EC=AD,∴四边形ADCE是平行四边形,∴ED∥BC,∴∠AOD=∠ACB,∴∠ACB=90°,∴∠AOD=∠ACB=90°,∴四边形ADCE是菱形;(2)在Rt△ABC中,tan∠BAC==,设BC=x,∴AC=2BC=2x,由勾股定理得:x2+(2x)2=102,解得:x=2,∵四边形DBCE是平行四边形,∴DE=BC=2,∴S ADCE=×AC×DE=×4×2=20.23.(9分)某一工程,在工程招标时,接到甲、乙两个工程队地投标书.甲工程队每天施工费需12万元,乙工程队每天施工费需5万元.工程领导小组根据甲、乙两队地投标书测得,有如下三种方案:①由甲队单独完成这项工程,刚好如期完全;②由乙队单独完成这项工程,要比规定日期多用6天;③先由甲、乙两队合做3天,余下地工程再由乙队单独做,正好如期完成.试问:(1)这项工程地工期是多少天?(2)在不耽误工期前提下,你觉得哪一种施工方案所需费用最节省?请说明理由.【解答】解:(1)设这项工程规定日期是x天,由题意得:+=1,解得:x=6,经检验:x=6是分式方程地解,答:这项工程规定日期是6天;(2)方案①:甲队单独完成地费用:6×12=72(万元),方案②:延误工期,故舍去,方案③:3×12+6×5=66(万元),答:方案③最节省工程款.24.(9分)如图,在△ABC中,∠ABC=∠ACB,AC为直径地⊙O分别交AB、BC 于点M,N,点P在AB地延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O地切线;(2)若BC=2,sin∠BCP=,求△ACP地周长.【解答】(1)证明:连接AN,∵∠ABC=∠ACB,∴AB=AC,∵AC是⊙O地直径,∴AN⊥BC,∴∠CAN=∠BAN,BN=CN,∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴CP⊥AC∵OC是⊙O地半径∴CP是⊙O地切线;(2)解:∵∠ANC=90°,sin∠BCP=,∴=,∴AC=5,∴⊙O地半径为如图,过点B作BD⊥AC于点D.由(1)得BN=CN=BC=,在Rt△CAN中,AN==2,在△CAN和△CBD中,∠ANC=∠BDC=90°,∠ACN=∠BCD,∴△CAN∽△CBD,∴=,∴BD=4.在Rt△BCD中,CD==2,∴AD=AC﹣CD=5﹣2=3,∵BD∥CP,∴=,=∴CP=,BP=∴△APC地周长是AC+PC+AP=20.25.(10分)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P地限变点.例如:点(2,3)地限变点地坐标是(2,3),点(﹣2,5)地限变点地坐标是(﹣2,﹣5).(1)①点地限变点地坐标是(,1);②在点A(﹣2,﹣1),B(﹣1,2)中有一个点是函数图象上某一个点地限变点,这个点是点B;(2)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)地图象上,其限变点Q地纵坐标b′地取值范围是﹣5≤b′≤2,求k地取值范围5≤k≤8;(3)若点P在关于x地二次函数y=x2﹣2tx+t2+t地图象上,其限变点Q地纵坐标b′地取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t地函数解析式及s地取值范围s≥2.【解答】解:(1)①根据限变点地定义可知点地限变点地坐标为(,1);②(﹣1,﹣2)限变点为(﹣1,2),即这个点是点B.(2)依题意,y=﹣x+3(x≥﹣2)图象上地点P地限变点必在函数y=地图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=﹣2时,﹣2=﹣x+3.∴x=5.当b′=﹣5时,﹣5=x﹣3或﹣5=﹣x+3.∴x=﹣2或x=8.∵﹣5≤b′≤2,由图象可知,k地取值范围是5≤k≤8.(3)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′地取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y地最小值为t,即m=t;当x<1时,y地值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t地函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s地取值范围是s≥2.故答案为(,1);点B;5≤k≤8;s≥2.26.(10分)如图,抛物线y=ax2+bx+c(a≠0)地图象经过点A,B,C,已知点A地坐标为(﹣3,0),点B坐标为(1,0),点C在y轴地正半轴,且∠CAB=30°.(1)求抛物线地函数解析式;(2)若直线l:y=x+m从点C开始沿y轴向下平移,分别交x轴、y轴于点D、E.①当m>0时,在线段AC上否存在点P,使得点P,D,E构成等腰直角三角形?若存在,求出点P地坐标;若不存在,请说明理由.②以动直线l为对称轴,线段AC关于直线l地对称线段A′C′与二次函数图象有交点,请直接写出m地取值范围.【解答】解:(1)如图1,连结AC,在Rt△AOC中,∠CAB=30°,∵A(﹣3,0),即OA=3,∴OC=,即C(0,),设抛物线解析式为,将A(﹣3,0),B(1,0)代入得.解得.∴;(2)①由题意可知,OE=m,OD=,∠DEO=30°,由A(﹣3,0),C(0,)得到直线AC地解析式为:y=x+(i)如图2,当PD⊥DE,DP=DE,作PQ⊥x轴∴∠PQD=∠EOD=90°,∠PDQ+∠EDO=90°,∠EDO+∠DEO=90°,∴∠DEO=∠PDQ=30°,在△DPQ与△EDO中,,∴△DPQ≌△EDO(AAS),∴DQ=OE=m,∴AQ=DQ=m,∴OA=2m+=3,∴;此时P(,)(ii)如图3,当PE⊥DE,PE=DE,作PQ⊥y轴,同理可得CQ=EQ=OD=,∵OC=m+=,∴;此时P(3﹣6,3﹣)(iii)如图4,当DP⊥PE,DP=PE,作DM⊥AC,EN⊥AC,同理可得AP=AD=,PN=DM=,CN=∴AC=++=,∴;此时P(,).综上所述,点P地坐标是(,)或(3﹣6,3﹣)或(,).②当x=0,y=时,=0+m,解得m=;当x=0,y=﹣时,﹣=0+m,解得m=﹣.故m地取值范围为:.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
[精品]2015年湖南省长沙市长郡双语中学中考直升数学试卷与参考答案
2015年湖南省长沙市长郡双语中学中考直升数学试卷一、选择题:每小题3分,共36分.1.(3分)6的相反数是()A.﹣6 B.C.±6 D.2.(3分)下列计算正确的是()A.x4+x2=x6B.x4﹣x2=x2C.x4•x2=x8D.(x4)2=x83.(3分)同学们,你们知道“大白”吗?你们看过美国著名动画电影《超能陆战队》吗?该片在3月26日宣告内地票房累积达5.01亿,创造了迪士尼动画电影在中国内地的最高票房纪录,数据“5.01亿”用科学记数法表示为()A.5.01×107B.5.01×108C.5.01×109D.50.1×1074.(3分)在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.6.(3分)如图,正方形OABC的边长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.1 B.C.1.5 D.27.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°8.(3分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ9.(3分)⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定10.(3分)小伟5次引体向上的测试成绩(单位:个)分别为:16、18、20、18、18,对此成绩描述错误的是()A.平均数为18 B.众数为18 C.方差为0 D.极差为411.(3分)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.812.(3分)如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3 B.C.4 D.二、填空题:每小题3分,共18分.13.(3分)已知∠α=13°,则∠α的余角大小是.14.(3分)已知2a﹣3b2=5,则10﹣2a+3b2的值是.15.(3分)有一个能自由转动的转盘如图,盘面被分成8个大小与形状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.16.(3分)如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB=m.17.(3分)元旦期间,商业大厦推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了折优惠.18.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:当k 时,方程ax2+bx+c=k有两个不相等的实数根.三、解答题:本题8个小题,共66分.19.(6分)计算:2sin60°+2﹣1﹣20150﹣|1﹣|.20.(6分)解不等式组,并把解集在数轴上表示出来.21.(8分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.23.(9分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?24.(9分)已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP 于点G,E在CD的延长线上,EP=EG.(1)求证:直线EP为⊙O的切线;(2)点P在劣弧上运动,其他条件不变,若BG2=BF•BO,⊙O的半径为3,sinB=,求弦CD的长.25.(10分)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后,小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.26.(10分)如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.2015年湖南省长沙市长郡双语中学中考直升数学试卷参考答案与试题解析一、选择题:每小题3分,共36分.1.(3分)6的相反数是()A.﹣6 B.C.±6 D.【解答】解:6的相反数就是在6的前面添上“﹣”号,即﹣6.故选A.2.(3分)下列计算正确的是()A.x4+x2=x6B.x4﹣x2=x2C.x4•x2=x8D.(x4)2=x8【解答】解:A、x4、x2不是同类项,不能合并,故本选项错误;B、同A,故本选项错误;C、应为x4•x2=x4+2=x6,故本选项错误;D、(x4)2=x4×2=x8,故本选项正确;故选D.3.(3分)同学们,你们知道“大白”吗?你们看过美国著名动画电影《超能陆战队》吗?该片在3月26日宣告内地票房累积达5.01亿,创造了迪士尼动画电影在中国内地的最高票房纪录,数据“5.01亿”用科学记数法表示为()A.5.01×107B.5.01×108C.5.01×109D.50.1×107【解答】解:5.01亿=501 000 000=5.01×108.故选:B.4.(3分)在平面直角坐标系中,点P的坐标为(﹣2,a2+1),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(﹣,+)∴点P在第二象限.故选:B.5.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.6.(3分)如图,正方形OABC的边长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.1 B.C.1.5 D.2【解答】解:应用勾股定理得,正方形的对角线的长度为:,OA为圆的半径,则OD=,所以数轴上的点A表示的数为.故选B.7.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.140°【解答】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故选B.8.(3分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.abπD.acπ【解答】解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故选B.9.(3分)⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定【解答】解:∵圆心O到直线l的距离d=3,⊙O的半径R=4,则d<R,∴直线和圆相交.故选A.10.(3分)小伟5次引体向上的测试成绩(单位:个)分别为:16、18、20、18、18,对此成绩描述错误的是()A.平均数为18 B.众数为18 C.方差为0 D.极差为4【解答】解:16、18、20、18、18的平均数是(16+18=20+18+18)÷5=18;18出现了三次,出现的次数最多,则众数为18;方差=[(16﹣18)2+(18﹣18)2+(20﹣18)2+(18﹣18)2+(18﹣18)2]=;极差为:20﹣16=4;故选C.11.(3分)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.8【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.12.(3分)如图,在等边△ABC中,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=1,那么△ABC的面积为()A.3 B.C.4 D.【解答】解:∵⊙O是等边△ABC的外接圆,OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AC、AB的中点,∴MN是等边△ABC的中位线,∵MN=1,∴AB=AC=BC=2MN=2,=×2×2×sin60°=2×=.∴S△ABC故选:B.二、填空题:每小题3分,共18分.13.(3分)已知∠α=13°,则∠α的余角大小是77°.【解答】解:∵∠α=13°,∴∠α的余角=90°﹣13°=77°.故答案为:77°.14.(3分)已知2a﹣3b2=5,则10﹣2a+3b2的值是5.【解答】解:10﹣2a+3b2=10﹣(2a﹣3b2),又∵2a﹣3b2=5,∴10﹣2a+3b2=10﹣(2a﹣3b2)=10﹣5=5.故答案为:5.15.(3分)有一个能自由转动的转盘如图,盘面被分成8个大小与形状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.【解答】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,∴落在白色扇形部分的概率为:=.故答案为:.16.(3分)如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB=40m.【解答】解:∵E、F是AC,AB的中点,∴EF是△ABC的中位线,∴EF=AB∵EF=20m,∴AB=40m.故答案为40.17.(3分)元旦期间,商业大厦推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1000元的商品,共节省280元,则用贵宾卡又享受了九折优惠.【解答】解:设用贵宾卡又享受了x折优惠,依题意得:1000﹣1000×80%x=280,解得:x=0.9.即用贵宾卡又享受了九折优惠.故答案为:九.18.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:当k <2时,方程ax2+bx+c=k有两个不相等的实数根.【解答】解:由二次函数和一元二次方程的关系可知y的最大值即为k的最大值,因此当k<2时,方程ax2+bx+c=k有两个不相等的实数根.三、解答题:本题8个小题,共66分.19.(6分)计算:2sin60°+2﹣1﹣20150﹣|1﹣|.【解答】解:原式=2×+﹣1﹣+1=.20.(6分)解不等式组,并把解集在数轴上表示出来.【解答】解:,解不等式2x+3<9,得:x<3,解不等式﹣x﹣1≤2,得:x≥﹣2,则不等式组的解集为:﹣2≤x<3,将不等式解集表示在数轴上如图:21.(8分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【解答】解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:所有等可能的结果为12种,其中符合要求的只有2种,则P==.22.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【解答】(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF;(2)解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∵BC=2,∴AC=2BC=4,∴AB===6.23.(9分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.24.(9分)已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP 于点G,E在CD的延长线上,EP=EG.(1)求证:直线EP为⊙O的切线;(2)点P在劣弧上运动,其他条件不变,若BG2=BF•BO,⊙O的半径为3,sinB=,求弦CD的长.【解答】(1)证明:连接OP,如下图所示:∵OP=OB,∴∠OPB=∠B,∵EP=EG,∴∠EPG=∠EGP又∵∠EGP=∠BGF,∠BGF+∠B=90°∴∠OPB+∠EPG=90°,又∵OP经过圆心,∴直线EP为⊙O的切线;(2)解:∵BG2=BF•BO∴又∵∠GBF=∠OBG∴△BGF∽△OBG∴∠GFB=∠OGB=90°在Rt△OGB中.sinB===∴OG=由勾股定理得BG==由题意可知:BG2=BF•BO∴BF==2,∴OF=1连接OD,在Rt△OFD中,FD=2∵OF⊥CD,FO经过圆心,∴FD=FC∴CD=2FD=425.(10分)甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,下图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象.请结合图象回答下列问题:(1)A、B两市的距离是120千米,甲到B市后,5小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相距15千米.【解答】解:(1)由题意,得40×3=120km.120÷20﹣3+2=5小时,故答案为:120,5;(2)∵AB两地的距离是120km,∴A(3,120),B(10,120),D(13,0).设线段BD的解析式为S1=k1t+b1,由题意,得.,解得:,∴S1=﹣40t+520.t的取值范围为:10≤t≤13;(3)设EF的解析式为s2=k2t+b2,由题意,得,解得:,S2=﹣20t+280.当﹣20t+280﹣(﹣40t+520)=15时,t=;∴﹣10=(小时),当﹣40t+520﹣(﹣20t+280)=15时,t=,∴﹣10=(小时),当120﹣20(t﹣8)=15时,t=,∴﹣10=(小时),答:甲车从B市往回返后再经过小时或小时或两车相距15千米.26.(10分)如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,=S△BOF=;∴S△AOE(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).。
2015年湖南省长沙市中考数学试卷含答案
2015年湖南省长沙市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列实数,为无理数的是()A.0.2 B.C.D.﹣52.下列运算,正确的是()A.x3+x=x4B.(x2)3=x6C.3x﹣2x=1 D.(a﹣b)2=a2﹣b23.2014年,长沙地铁2号线的开通运营,极大地缓解了城市中心的交通压力,为我市再次获评“中国最具幸福感城市”提供了有力支撑,据统计,长沙地铁2号线每天承动力约为185000人次,则数据185000用科学记数法表示为()A.1.85×105B.1.85×104C.1.8×105D.18.5×1044.下列图形,是轴对称图形,但不是中心对称图形的是()A. B.C. D.5.下列命题,为真命题的是()A.六边形的内角和为360°B.多边形的外角和与边数有关C.矩形的对角线互相垂直D.三角形两边的和大于第三边6.在数轴上表示不等式组的解集,正确的是()A.B.C.D.7.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的()A.平均数B.中位数C.众数 D.方差8.下列说法正确的是()A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖概率为,说明每买1000张,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查9.一次函数y=﹣2x+1的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.11.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米 D.30cosα米12.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元二、填空题(共6小题,每小题3分,满分18分)13.一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是.14.圆心角是60°且半径为2的扇形的面积为(结果保留π).15.把+进行化简,得到的最简结果是(结果保留根号).16.分式方程=的解是x=.17.如图,在△ABC中,DE∥BC,,DE=6,则BC的长是.18.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.三、解答题(共8小题,第19,20题每小题6分,第21,22题每小题6分,第23,24题每小题6分,第25,26题每小题6分,满分66分.解答应写出必要的文字说明,证明过程或演算步骤)19.计算:()﹣1+4cos60°﹣|﹣3|+.20.先化简,再求值:(x+y)(x﹣y)﹣x(x+y)+2xy,其中x=(3﹣π)0,y=2.21.中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?22.如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC,BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.(1)求证:△AOE≌△COF.(2)当α=30°时,求线段EF的长度.23.现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?24.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径.(2)求证:BD平分∠ABO.(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.25.(10分)在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为“中国结”.(1)求函数y=x+2的图像上所有“中国结”的坐标.(2)若函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”,试求出常数k的值与相应“中国结”的坐标.(3)若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图像与x轴相交得到两个不同的“中国结”,试问该函数的图像与x轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?26.(10分)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图像的顶点为点M,点O为坐标原点.(1)当x1=c=2,a=时,求x2与b的值.(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论.(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.2015年湖南省长沙市中考数学试卷参考答案与解析一、1.C 解析:∵﹣5是整数,∴﹣5是有理数.∵0.2是有限小数,∴0.2是有理数.∵,0.5是有限小数,∴是有理数.∵是无限不循环小数,∴是无理数.故选C.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.B 解析:A.x3与x不能合并,故A错误;B.(x2)3=x6,故B正确;C.3x﹣2x=x,故C错误;D.(a﹣b)2=a2﹣2ab+b2,故D错误.故选B.3.A 解析:将185 000用科学记数法表示为1.85×105.故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B 解析:A.既是轴对称图形也是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项符合题意;C.既是轴对称图形也是中心对称图形,故此选项不符合题意;D.既是轴对称图形也是中心对称图形,故此选项不符合题意.故选B.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形要寻找对称中心,旋转180°后与原图形重合.5.D 解析:A.六边形的内角和为720°,故A错误;B.多边形的外角和与边数无关,都等于360°,故B错误;C.矩形的对角线相等,故C错误;D.三角形的两边之和大于第三边,故D正确.故选D.点评:此题考查命题的真假性,是易错题.注意对六边形的内角和、多边形的外角和、矩形的性质和三角形三边关系的准确掌握.6.A 解析:由x+2>0,得x>﹣2.由2x﹣6≤0,得x≤3.把不等式组的解集画在数轴上为.故选A.点评:此题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”“≤”要用实心圆点表示;“<”“>”要用空心圆圈表示.7.C 解析:∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店最喜欢的是众数.故选C.点评:此题主要考查了统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.D 解析:A.“打开电视机,正在播放《动物世界》”是随机事件,故A错误;B.某种彩票的中奖概率为,说明每买1000张,有可能中奖,也有可能不中奖,故B错误;C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为,故C错误;D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查,故D正确.故选D.点评:此题考查了全面调查与抽样调查,正确区分全面调查与抽样调查是解题的关键,注意概率是事件发生可能性的大小,并不一定发生.9.C 解析:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图像经过第一、第二、第四象限,不经过第三象限.故选C.点评:此题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图像经过第一、第二、第四象限.10.A 点评:此题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.11.C 解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BO·tanα=30tanα(米).故选C.点评:此题考查了解直角三角形的应用,解答此题的关键是根据仰角构造直角三角形,利用三角函数求解.12.B 解析:设该商品的进价为x元,标价为y元.由题意,得,解得x=2500,y=3750,则3750×0.9﹣2500=875(元).故选B.点评:此题考查二元一次方程的实际运用,掌握销售中的基本数量关系是解决问题的关键.二、13.解析:∵一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,∴随机从袋中摸出1个球,则摸出白球的概率是=.点评:此题考查了概率公式的应用.用到的知识点为概率=所求情况数与总情况数之比.14.π解析:由扇形的面积公式,得S==π.点评:此题考查了扇形面积公式的运用.注意:圆心角为n°,半径为r的扇形的面积为S=.15.2解析:原式=+=2.点评:此题考查了二次根式的混合运算,解答此题的关键是掌握二次根式的化简.16.﹣5 解析:去分母,得5(x﹣2)=7x,解得x=﹣5.经检验:x=﹣5是原方程的解.点评:解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽略检验.17.18 解析:∵DE∥BC,∴DE:BC=AD:AB=,即6:BC=1:3.∴BC=18.点评:此题主要考查平行线分线段成比例定理,掌握平行线分线段所得线段对应成比例是解题的关键.18.4 解析:∵OD⊥BC,∴BD=CD=BC=3.∵OB=AB=5,∴OD==4.点评:此题考查了垂径定理、勾股定理,此题非常重要,学生要熟练掌握.三、19.解:原式=2+4×﹣3+3=4.点评:此题考查了实数的运算,熟练掌握运算法则是解此题的关键.20.解:(x+y)(x﹣y)﹣x(x+y)+2xy=x2﹣y2﹣x2﹣xy+2xy=xy﹣y2.∵x=(3﹣π)0=1,y=2,∴原式=2﹣4=﹣2.点评:此题主要考查了整式的化简求值的知识,解答此题的关键是掌握平方差公式以及单项式乘多项式的运算法则,此题难度不大.21.解:(1)样本容量是10÷0.05=200,a=200×0.30=60,b=30÷200=0.15.(2)补全频数分布直方图,如图.(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段.(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.点评:此题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.22.解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴AE=CF,OE=OF.在△AOE和△COF中,,∴△AOE≌△COF.(2)当α=30°时,即∠AOE=30°.∵四边形ABCD是菱形,∠ABC=60°,∴∠OAD=60°,∴∠AEO=90°.在Rt△AOB中,sin∠ABO===,∴AO=1.在Rt△AEO中,cos∠AOE=cos30°==,∴OE=,∴EF=2OE=.点评:此题主要考查了菱形的性质以及解三角形的知识,解答此题的关键是熟练掌握菱形的性质,解答(2)问时需要正确作出图形,此题难度不大.23.解:(1)设该快递公司投递总件数的月平均增长率为x.根据题意,得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不符合题意舍去).答:该快递公司投递总件数的月平均增长率为10%.(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.点评:此题考查了一元二次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.解:(1)∵点A(,0)与点B(0,﹣),∴OA=,OB=,∴AB==2.∵∠AOB=90°,∴AB是⊙M的直径,∴⊙M的半径为.(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO.(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线.∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°﹣∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°.∴OC=OB•tan30°=×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°.∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=.∴AF=AE=,EF=AE=,∴OF=OA﹣AF=.∴点E的坐标为(,).点评:此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.25.解:(1)∵x是整数,x≠0时,x是一个无理数,∴x≠0时,x+2不是整数,∴x=0,y=2,即函数y=x+2的图像上“中国结”的坐标是(0,2).(2)①当k=1时,函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”:(1,1),(﹣1,﹣1);②当k=﹣1时,函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”:(1,﹣1),(﹣1,1).③当k≠±1时,函数y=(k≠0,k为常数)的图像上最少有4个“中国结”:(1,k),(﹣1,﹣k),(k,1),(﹣k,﹣1),这与函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”矛盾.综上可得,k=1时,函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”:(1,1),(﹣1,﹣1);k=﹣1时,函数y=(k≠0,k为常数)的图像上有且只有两个“中国结”:(1,﹣1),(﹣1,1).(3)令(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=0,则[(k﹣1)x+k][(k﹣2)x+(k﹣1)]=0,∴,∴k=.整理,可得x1x2+2x2+1=0,∴x2(x1+2)=﹣1.∵x1,x2都是整数,∴或,∴或.①当时,∵,∴k=;②当时,∵,∴k=k﹣1,无解.综上,可得k=,x1=﹣3,x2=1,y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k=[2﹣3×+2]x2+[2×()2﹣4×+1]x+()2﹣=﹣x2﹣x.①当x=﹣2时,y=﹣x2﹣x=×(﹣2)2×(﹣2)+=;②当x=﹣1时,y=﹣x2﹣x=×(﹣1)2×(﹣1)+=1;③当x=0时,y=.另外,该函数的图像与x轴所围成的平面图形中x轴上的“中国结”有3个:(﹣2,0),(﹣1,0),(0,0).综上,可得若二次函数y=(k2﹣3k+2)x2+(2k2﹣4k+1)x+k2﹣k(k为常数)的图像与x 轴相交得到两个不同的“中国结”,该函数的图像与x轴所围成的平面图形中(含边界),一共包含有6个“中国结”:(﹣3,0),(﹣2,0),(﹣1,0),(﹣1,1),(0,0),(1,0).点评:(1)此题主要考查了反比例函数的问题,考查了分类讨论思想的应用,要熟练掌握反比例函数的图像和性质.(2)此题还考查了对新定义“中国结”的理解和掌握,解答此题的关键是要明确:横坐标、纵坐标均为整数的点称之为“中国结”.26.解:(1)设ax2+bx+c=0的两根为x1,x2.把a=,c=2代入上式,得x2+bx+2=0.∵x1=2是它的一个根,∴×22+2b+2=0,解得b=﹣.∴方程为x2﹣x+2=0,∴x2=3.(2)当x1=2c时,x2==,此时b=﹣a(x1+x2)=﹣(2ac+),4ac=﹣2b﹣1.∵M(﹣,),当△ABM为等边三角形时,||=AB,即||=(﹣2c),∴||=•,∴b2+2b+1=(1+2b+1),解得b1=﹣1,b2=2﹣1(舍去).此时4ac=﹣2b﹣1=1,即2c=,A,B重合,∴△ABM不可能为等边三角形.(3)∵△BPO∽△PAO,∴=,即x1x2=c2=,∴ac=1,a=.由S1=S2,得c=||=﹣c,∴b2=4a•2c=8ac=8,∴b1=﹣2,b2=2(舍去).方程可变形为x2﹣2x+c=0,∴x1===(﹣1)c,x2==(+1)c.∵x1<x2,x1=mc,∴mc=(﹣1)c,∴m=﹣1.点评:此题考查了二次函数的综合,用到的知识点是二次函数的图像与性质、相似三角形的判定与性质、等边三角形的性质、一元二次方程,关键是综合运用有关知识求解,注意把不符合题意的解舍去.。
2015学年湖南省长沙中考数学年试题
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省南京市2015年初中毕业生学业考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算|53|-+的结果是 ( ) A .2- B .2 C .8- D .8 2.计算32()xy -的结果是( )A .26x yB .26x y -C .29x yD .29x y - 3.如图,在ABC △中,DE BC ∥,12AD DB =,则下列结论中正确的是( )A.AE AC =B .2DE DB = C .1=3ADC ABC △的周长△的周长 D .1=3ADC ABC △的面积△的面积 4.某市2013年底机动车的数量是6210⨯辆,2014年新增5310⨯辆.用科学记数法表示该市2014年底机动车的数量是( )A .52.310⨯辆B .53.210⨯辆C .62.310⨯辆D .63.210⨯辆 5.( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间6.如图,在矩形ABCD 中,4AB =,5AD =,AD ,AB ,BC 分别与O 相切于E ,F ,G 三点,过点D 作O 的切线交BC于点M ,切点为N ,则DM 的长为 ( ) A .133 B .92CD.第Ⅱ卷(非选择题 共108分)二、填空题(本大题共10小题,每小2分,共20分.把答案填写在题中的横线上) 7.4的平方根是 ;4的算术平方根是 .8.,则x 的取值范围是 .9.的结果是 . 10.分解因式()(4)a b a b ab --+的结果是 .11.不等式组211,213x x +⎧⎨+⎩>-<的解集是 .12.已知方程230x mx ++=的一个根是1,则它的另一个根是 ,m 的值是 .13.在平面直角坐标系中,点A 的坐标是(2,3)-,作点A 关于x 轴的对称点,得到点A ',再作点A '关于y 轴的对称点,得到点A '',则点A ''的坐标是( , ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”“不变”或“变大”).15.如图,在O 的内接五边形ABCDE 中,35CAD ∠=,则B E ∠+∠= o .16.如图,过原点O 的直线与反比例函数1y ,2y 的图像在第一象限内分别交于点,A B ,且A 为OB 的中点.若函数11y x=,则2y 与x 的函数表达式是 .毕业学校_____________ 姓名________________考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)三、解答题(本大题共11小题,88分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分) 解不等式2(1)132x x +-+≥,并把它的解集在数轴上表示出来.18.(本小题满分7分)解方程233x x=-.19.(本小题满分7分)计算:22221()aa b a ab a b-÷--+.20.(本小题满分8分)如图,ABC △中,CD 是边AB 上的高,且AD CDCD BD=. (1)求证:ACD CBD △∽△; (2)求ACB ∠的大小.21.(本小题满分8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测.整理样本数据,并结合2010年抽样结果,得到下列统计图.2014年某地区抽样学生人数分布扇形统计图2010年、2014年某地区抽样学生50米跑成绩合格率条形统计图(1)本次检测抽取了大、中、小学生共 名,其中小学生 名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为 名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(本小题满分8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币. (1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(本小题满分8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得45CAO ∠=.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h 和36km/h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得58DBO ∠=,此时B 处距离码头O 有多远?(参考数据:sin580.85,cos580.53,tan58 1.60≈≈≈)24.(本小题满分8分)如图,AB CD ∥,点,E F 分别在,AB CD 上,连接EF .,AEF CFE ∠∠的平分线交于点G ,,BEF DFE ∠∠的平分线交于点H .(1)求证:四边形EGFH 是矩形.(2)小明在完成(1)的证明后继续进行了探索.过G作MN EF ∥,分别交,AB CD 于点,M N ,过H 作PQ EF ∥,分别交,AB CD 于点,P Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.小明的证明思路数学试卷 第5页(共6页) 数学试卷 第6页(共6页)25.(本小题满分10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3).26.(本小题满分8分)如图,四边形ABCD 是O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC DE =.(1)求证:A AEB ∠=∠.(2)连接OE ,交CD 于点F ,OE CD ⊥.求证:ABE △是等边三角形.27.(本小题满分10分)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本1y (单位:元)、销售价2y (单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的1y 与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2015年中考数学试题及答案(解析版)
中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。
)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。
长沙2015中考黑白卷狂押到底(数学)含答案解析
扫扫刊——数学特殊题型猜押题型一 四边形的性质1.顺次连接对角线相等的四边形的各边中点,所得图形一定是 ( )A .平行四边形B .矩形C .菱形D 正方形2.若四边形的对角线互相垂直且相等,则它一定是 ( )A .菱形B .平行四边形C .正方形D .以上说法均不正确 题型二 旋转、图形识别1.如图,该图形绕其旋转中心旋转一定角度后与自身重合,则旋转的度数可能是( )A.150°B.120°C.90°D.60°第1题图 第2题图2.如图是一个旋转对称图形,要使它旋转后与自身重合,那么至少应将它绕旋转中心逆时针方向旋转的度数为 ( )A.180°B.120°C.60°D.30°题型三 三视图1.下列几何体的主视图、左视图、俯视图的图形完全相同的是 ( )A .三棱锥B .长方体C .三棱柱D .球体2.下列几何体中,三视图既有圆又有长方形的是 ( )A .棱柱B .圆柱C .圆锥D .球题型四 新概念阅读理解题1.我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左(或向右)平移||m 个单位,再向上(或向下)平移||k 个单位得到,我们称函数2y ax=为“基本函数”,而称它平移得到的二次函数2()y a x m k =++为“基本函数” 2y ax=的“朋友函数”.22m k +称为朋友距离.如一次函数25y x =-是基本函数2y x =的朋友函数,由252(1)3y x x =-=--可知朋友路径可以是向右平移1个单位,再向下平移3个单位,朋22(1)310-+(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径为由基本函数2y x =先向 ,再向下平移7个单位,相应的朋友距离为 ; (2)探究二:将函数y =431x x --化成y= ,使它和基本函数y=1x 成为基本 函数,并写出路径和相应的朋友距离;(3)探究三:将二次函数23y x =先向 平移 个单位,再向 平移 个单位,得到朋友函数23(2)5y x =-+,相应的朋友距离为 .2.对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足-M ≤ y ≤M 则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.第2题图(1)分别判断函数1(0)y x x=>和1(42)y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1(,)y x a x b b a =-+≤≤>的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤? 创新题猜押1.12-的绝对值的相反数是( ) A.21 B.21- C.2 D.-2 2.若121442=⋅-+-w aa )(,则w =( ) A.2(2)a a +≠- B.2(2)a a -+≠±C.2(2)a a -≠D.2(2)a a --≠±名校内部模拟题命题点 三视图(2015邵阳市模拟考试7题3分)如图,直线AB 、CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3的大小是( )A .80°B .70°C .90°D .100°命题点 实数的运算(2015邵阳市模拟考试19题8分)计算:︒-+60cos 49201510)(. 扫扫刊——数学答案 特殊题型猜押题型一 四边形的性质【答案】1.C 2.C题型二 旋转、图形识别【答案】1.B 2.C题型三 三视图【答案】1.D 2.C题型四 新概念阅读理解题1.解:(1)左平移1个单位,52【解答提示】∵y =2x -5化为y =2(x +1)-7的形式,∴基本函数y =2x 先向左平移1个单位,再向下平移7个单位,相应的朋友距离=221752+=.(2)1+41x -;【解答提示】y =431411411x x x x x ---==+--()+1,因此函数可化为y =1+41x - 朋友函数为先向左平移1个单位,再向上平移4个单位,相应的朋友距离为221+4=17;(3)右,2,上,5,29.【解答提示】将二次函数23y x =先向右平移2个单位,再向上平移5个单位得到朋友函数23(2)5y x =-+,相应的朋友距离为222529+=.2.解:(1)1(0)y x x=>没有最大值与最小值,所以不是有界函数; 1(42)y x x =+-<≤是有界函数,边界为-3;(2)∵1(,)y x a x b b a =-+≤≤>,∴y 随着x 的增大而减小,当x a =时,max 1y a =-+,又∵max 2y =,∴12a -+=,∴1a =-,当x b =时,min 1y b =-+,则2121b b -≤-+≤⎧⎨>-⎩, ∴13b -<≤;(3)当m >1时,函数2y x =的图象向下平移m 个单位后,其解析式为2'y x m =-. 当0x =时,函数的最小值小于1-,故此时函数的边界大于1,与题中1t ≤不符,故m 的取值范围为1m ≤.对于函数2(1,0)y x x m m =-≤≤≥,2max (1)1y =-=,2min 00y ==.故平移后的函数2'y x m =-满足2max '(1)1y m m =--=-,2min '0y m m =-=-. ∵边界t 满足314t ≤≤, ∴max 3'14y ≤≤,min 31'4y -≤≤-,即3114m ≤-≤,314m -≤-≤-, 故m 的取值范围为104m ≤≤或314m ≤≤. 创新题猜押【答案】1.B 2.D名校内部模拟题命题点 三视图【答案】A命题点 实数的运算解:原式=1+3-4×12=1+3-2=2.狂押到底·扫扫刊——数学特殊题型猜押题型一四边形的性质1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.菱形具有而矩形不具有的性质是()A.对角相等B.四边相等C.对角线互相平分D.四角相等题型二旋转、图形识别1.如图,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案重合,其中有一个图案与其余三个图案旋转的角度不同,它是()A B C D2.下列图案中,可以由一个“基本图案”连续旋转45°得到的是()A B C D题型三三视图1.下列几何体中,主视图和俯视图都为矩形的是()A.圆柱体B.圆锥C.三棱柱D.长方体2.下列几何体中,主视图是三角形的是()A.圆B.圆锥C.正方体D.圆柱题型四新概念阅读理解题把一条线段关于原点位似变换,如果原线段的两个端点坐标分别是(a,b)与(c,d),前后两条线段的位似比是1: k,易得位似变换后的线段的两个端点的坐标分别是(ka,kb)与(kc,kd),或者是(-ka,-kb)与(-kc,-kd),把从点(a,b)到(ka,kb)的变换称为正向变换,点(a,b)到(-ka,-kb)的变换称为反向变换,运用位似变换可以把常见的图形,如三角形、四边形与圆等位似变换,得出图形顶点或圆心的坐标,下面我们把几种函数图象关于原点进行位似变换,探究位似变换后函数图象的解析式:(1)反比例函数y =1x 图象关于原点O 位似变换,前后两个函数图象的位似比是1: 4,判断正向与反向位似变换后函数图象是否一致?通过计算加以说明.(2)把一次函数y =kx +b (k ≠0)图象关于原点O 作正向位似变换,使得前后函数图象的位似比是1: m (m ≠0),确定变换后函数图象的解析式.(3)已知抛物线解析式是y = x 2-2x +2,如果关于点M (-2,-1)作位似变换,使得变换前后两条抛物线的位似比是1:2,确定正向位似变换后抛物线的解析式,并直接运用中心对称的性质,写出反向位似变换后,所得抛物线的对称轴与顶点坐标.创新题猜押1.若关于x 的不等式13a x ->()的解集为ax -<13,则a 的取值范围是 ( ) A.1<a B.1>a C.1≠a D.1-<a2.下列图形中,阴影部分面积最大的是 ( )A B C D 名校内部模拟题命题点 整式的化简求值(2015常德模拟考试18题5分)先化简,再求值:2)2()1(4)32(32-+---+x x x x x )(,其中3-=x .命题点 三视图(2015邵阳模拟考试3题4分)如图,是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A B C D狂押到底·扫扫刊——数学答案特殊题型猜押题型一 四边形的性质1.【答案】C2.【答案】B题型二 旋转、图形识别1.【答案】A2.【答案】B题型三 三视图1.【答案】D2.【答案】B题型四 新概念阅读理解题解:(1)在反比例函数y =1x图象上取点A (1,1),按照题目中的要求,正向位似变换后,点A 对应点B 1坐标是(4,4),反向变换后对应点坐标是B 2(-4,-4), 设经过点B 1、B 2 的反比例函数的解析式y =1k x 、y =2k x; 因此k 1=4×4=16,k 2=(-4)×(-4)=16.显然都是y =16x ,所以正向与反向位似变换后的图象一致,都是y =16x. (2)在一次函数y =kx +b (k ≠0)图象上取两点A (b k -,0)、B (0,b ), 把线段AB 关于原点正向位似变换,前后线段位似比是1:m (m ≠0),则线段对应端点坐标分别是C (bm k-,0)、D (0,mb ). 设经过C 、D 两点的一次函数解析式是y =px +q ,则0q mb bm p mb k ⎧⎪⎨⎪⎩==(-)+,解得p =k . 因此位似变换后经过两点C 、D 的一次函数解析式是y =kx +mb .(3)如图,抛物线解析式y = x 2-2x +2,变化为顶点式为2(1)1y x =-+,顶点坐标是A (1,1),在图象上取一点B (2,2),连接MA 、MB 并分别延长,在MB 延长线上截取BB '=MB ,在MA 延长线上截取AA '=MA ,过点A 、B 、A ' 、B '分别作经点M 所引的x 轴的平行线的垂线,垂足分别是点C 、E 、D 、F ,根据三角形相似,因此得出MF =2ME ,DM =2CM ,B F '=2BE ,A D '=2AC ,设点A '坐标是(x 1,y 1),点B '坐标是(x 2,y 2),点M 坐标是(-2,-1),因此有:x 1+2=2×(1+2)、y 1+1=2(1+1);解得x 1=4,y 1=3,x 2+2=2×(2+2)、y 2+1=2(2+1);解得x 2=6,y 2=5,则点A '坐标是(4,3),点B '坐标是(6,5),设经过点A '、B '的抛物线解析式是y =a (x -4)2+3,代入点B '坐标(6,5),则a ·(6-4)2+3=5,解得a =12, 因此位似变换后抛物线的解析式是21(4)32y x =-+,即是y =12x 2-4x +11. 根据中心对称的性质,点A '坐标是(4,3)关于点M (-2,-1)的中心对称点是A ''(-8,-5),因此反向位似变换后抛物线的对称轴是直线x =-8,顶点坐标是A ''(-8,-5).创新题猜押1.【答案】B2.【答案】C名校内部模拟题命题点 整式的化简求值解:原式=222494444x x x x x --++-+=25x -.当3x =-时,25x -=2352--=-(). 命题点 三视图的判断【答案】C。