最新地下水水质在线自动监测系统
地下水自动监测预警系统
谢谢聆听!
罗丹明,荧光素
优势
可以简单的交换所有传感器。 长期观测用安装在传感器除污 装置。
实时监测系统
系统框架
现场
数据收集 笔记本电脑
观测井
电池箱
RS-USB转 换器
※可以改变S&Dlmini的设定内容。
地下水位
电缆
传感器+ 数据装置
数据传送
带有通信功能的数 据收集传输装置
GSM (GPRS) Internet
井
下水道 垃圾处理
场所
土壌・地下水 污染 化工工厂
发电所
地层埋藏
模拟信号
数字信号
脉冲信号
传感器
用户访问 (软件)
带有通信功能的数 据收集传输装置
数据收集传输
GSM (GPRS)
Internet
水位传感器
传感器和数据收集装置一体型 袖珍便携(ф22*158mm) 电力消费很低,不需要交换电
• 试点时间
2013-8~2014-7
项目概况
• 监测内容
pH、DO、EC、Turbidity、 Temperature和水位
• 监测设备
多参数水质计(Model-4676) 一体式水位计(Model-3030)
现场安装
水位计
蓄电池
水质计
现场维护
2013-9-18 2013-11-15
监测试点运行图
地下水自动监测预警系统
地下水质现状
全国655个城市中,超过60%的城市有地下 水饮用水源。地下水过度开采容易造成地 面沉降,植被改变,地质灾害,海水倒灌。
由于工业废水的肆意排放,导致80%以上 的地表水、地下水被污染。
地表水水质自动监测系统简介
地表水水质自动监测系统简介随着水质自动监测技术的不断改进,地表水水质自动监测系统在我国地表水监测中得到了广泛的应用,并取得了较大的进展。
地表水水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统,可统计、处理监测数据;打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。
收集并可长期存储指定的监测数据及各种运行资料、环境资料以备检索。
系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动回复功能;远程故障诊断,便于理性维修和应急故障处理等功能。
实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。
1、地表水水质自动监测系统的选址:地表水水质自动监测系统所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。
2、地表水水质自动监测系统建设需考虑:必须保证电力供应、通讯畅通、自来水供应。
●站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。
●周围环境的交通便利。
●站点建设费用较大,在选址是考虑长期使用性。
3、地表水水质自动监测系统基本功能:●仪器基本参数和监测数据的贮存、断电保护和自动恢复●时间设置功能、设定监测频次。
●自动清洗。
●自动校对、手动校对。
●监测数据的输出。
●仪器和系统故障的自动报警。
●环境安全。
4、地表水水质自动监测系统监测因子:常见自动监测系统监测项目综合指标监测项目监测方法单项污染物浓监测项目监测方法水温热敏电阻或铂金电阻法氟离子氟离子电极法浊度表面光散射法氯离子氯离子电极法PH值玻璃电极法度氰离子氰离子电极法电导率电导电极法氨氮氨离子电极法化学需氧量湿化学法或流动池紫外线吸收光度法铬湿化学法或自动比色法总有机碳气相色谱法或非色散红外线吸收法酚湿化学自动比色法或紫外线吸收光度法德润环保地表水水质自动监测系统监测项目综合指标监测项目详细内容全光谱仪表COD、BOD、TOC、硝氮、亚硝氮、TSS、溴化物、氯化物、硫化物(pH>8.3)、氯胺、酚营养盐正磷酸盐、总磷、总氮、氨氮、硝氮、亚硝氮水质六参数pH值、电导率、温度、溶解氧、浊度、氨氮气象六参数气温、风向、风速、雨量、气压、相对湿度应急参数水中石油类(监控水上事故导致的燃油泄漏或石油企业的排污泄漏)生物类蓝藻、叶绿素、红藻有机物CDOM(有色可溶解性有机物)、苯系物(苯、氯苯等等)其他硫化物(pH<8.3);色度、物质光度;辐照度、辐亮度;离水辐亮度、后向反射及其他表观参数5、水站分类:5.1 固定式地表水水质在线自动监测系统固定式地表水水质自动在线监测系统系统概述德润环保固定式地表水水质在线自动监测系统主要用于自动监测各级行政区域交界、目标管理水域及其他重要水域断面的水质污染状况,及时掌握主要流域重点断面水体的水质污染状况,预警、预报重大或流域性水质污染事故,解决跨行政区域的水体污染事故纠纷,监督总量控制制度落实情况。
水质自动监测系统方案
水质自动监测系统方案水质是人类生活中必不可少的资源,而水质的安全与否关系到人民群众的健康和生活质量。
为了保障水质的安全和监测水质的情况,我们需要建立一个水质自动监测系统。
一、系统架构1.传感器网络:将传感器布设在水源地、供水管道及水处理设备等关键位置,用于实时采集水质数据。
2.数据传输网络:建立无线数据传输网络,将传感器采集到的数据传输至数据服务器。
3.数据服务器:用于存储、处理、管理和分析水质数据,实现数据的长期保存和快速检索。
4.数据展示平台:将水质数据以直观、易懂的方式呈现给相关部门和用户,用于监测和评估水质状况。
5.告警系统:当水质数据异常时,系统能够自动发出告警并发送给相关部门,及时采取措施。
二、传感器选择1.温度传感器:监测水温变化,用于评估水体热稳定性。
2.PH传感器:检测水体的酸碱度,用于评估水体的酸碱平衡情况。
3.溶解氧传感器:监测水中的溶解氧含量,用于衡量水体中的氧气水平。
4.高浊度传感器:监测水体中颗粒物的浓度,用于评估水的清洁程度。
5.电导率传感器:测量水体的导电性,用于评估水体中的溶质含量。
三、数据传输和处理1.采用物联网技术,将传感器采集到的水质数据传输至数据服务器。
2.数据服务器进行数据的存储、处理和管理,利用大数据分析技术实时监测水质状况和预测水质变化趋势。
3.利用数据挖掘技术,分析水质数据,找出水质异常的规律,并与历史数据进行比较,预测水质走势。
四、数据展示和告警1.设计数据展示平台,将水质数据以图表、报表等形式直观显示,方便用户了解水质状况。
2.设计告警系统,当水质超出正常范围时,系统能够自动发出告警通知,并将告警信息发送给相关部门。
3.告警信息包括水质异常类型、发生时间、位置等详细信息,方便相关部门及时采取措施。
五、系统优势1.实时监测:系统能够实时采集、传输和处理水质数据,及时发现水质问题。
2.高效精准:采用先进的传感器和数据处理技术,能够对水质进行精确评估和分析。
地下水动态监测、地下水动态监测系统
定期检测地下水水质,评估地下水污染状况及变化趋势。
详细描述
通过采集地下水样本,利用化学分析、光谱分析等手段,对地下水中的溶解氧、 浊度、总硬度、氨氮等指标进行检测,评估地下水的水质状况及变化趋势,为 地下水资源的保护和治理提供依据。
地下水流速与流向监测
总结词
测定地下水流速与流向,了解地下水流动规律。
数据分析应采用统计学、水文学等相关学科的方法和技术,对地下水动态 变化进行深入分析。
数据处理与分析技术应具备可视化功能,能够将处理后的数据以图表、报 表等形式呈现,便于理解和应用。
04
地下水动态监测系统的 应用与案例分析
城市地下水动态监测
城市地下水动态监测是保障城市供水 安全的重要手段,通过对地下水位、 水质等指标的实时监测,及时发现和 解决地下水污染、过度开采等问题。
工业区地下水动态监测
工业区地下水动态监测是保障工业生产安全的重要手段,通过对地下水位、水质等指标的实时监测, 预防和解决地下水污染、地面沉降等问题。
案例分析:上海市某工业区通过建立地下水动态监测系统,及时发现和处理了工业废水渗漏问题,避 免了地下水资源的进一步污染。
地下水污染治理中的地下水动态监测
重要性
地下水动态监测对于了解地下水资源 的状况、评估其质量和数量、预测其 未来变化趋势以及制定合理的管理措 施等方面都具有重要意义。
地下水动态监测的目的与任务
目的
地下水动态监测的主要目的是了解和掌握地下水的动态变化情况,为地下水资源的管理和保护提供科学依据。
任务
地下水动态监测的任务包括长期、连续地观测和记录地下水的各项指标,分析其变化规律和影响因素,评估其质 量和数量,预测其未来变化趋势等。
数据共享与智能化管理
hj820-2017标准说明
《HJ 820-2017 水质在线自动监测(监控)系统技术要求与测试方法》是中华人民共和国生态环境部颁布的一项环境保护行业标准,旨在规范水质在线自动监测(监控)系统的技术要求和测试方法。
该标准是对原有《HJ/T 220-2005》标准的修订,于2017年11月发布,并于2018年1月1日起实施。
以下是根据您的要求,对HJ 820-2017标准的说明,具体内容分为标准背景、适用范围、技术要求、测试方法、操作规程、数据管理和维护保养等部分。
标准背景随着中国工业化和城镇化的快速发展,水污染问题日益严重,水环境保护工作面临巨大挑战。
为了加强对水环境的保护和管理,提高水质监测的实时性和准确性,需要建立并完善水质在线自动监测系统。
HJ 820-2017标准正是在这样的背景下制定出台的,以确保水质在线自动监测系统能够有效运行,及时准确地提供水质监测数据。
适用范围HJ 820-2017标准适用于各种类型的水质在线自动监测(监控)系统,包括地表水、地下水、饮用水源水、工业废水和城市污水处理厂的出水等不同水体的在线监测。
该标准主要针对系统构成、监测项目、仪器设备、数据采集与传输、系统维护等方面提出了明确要求。
技术要求系统构成水质在线自动监测系统应包含采样装置、在线监测仪器、数据采集与传输装置、供电系统和防护设施等组成部分,并确保系统稳定可靠运行。
监测项目根据不同的监测目的和对象,系统需设置相应的监测项目,如pH、溶解氧、化学需氧量(COD)、氨氮、总磷、总氮等常规指标,以及重金属、有机污染物等特定指标。
仪器设备在线监测仪器应满足相应的精度、稳定性和抗干扰性要求,能够适应恶劣的现场环境条件,并具备故障自诊断功能。
数据采集与传输数据采集系统应能够实时采集监测数据,并通过稳定的通信网络将数据传输到监控中心。
数据传输过程中应确保数据的完整性和安全性。
测试方法HJ 820-2017标准对水质在线自动监测系统的测试方法也做了详细规定,包括系统的校准、检查、稳定性测试、干扰测试等内容,确保系统投入使用前后均能满足技术要求。
地表水环境质量自动监测方案
技术方案地表水环境质量自动监测系统目录1 项目概述 (3)1.1项目背景介绍................................................................................................................................. 错误!未定义书签。
1.2项目建设能力................................................................................................................................. 错误!未定义书签。
1.3项目建设优势................................................................................................................................. 错误!未定义书签。
2 地表水水质在线监测系统建设方案 (3)2.1标准规范 (3)2.2水质自动监测系统总体结构设计 (4)2.1.1水质自动监测站系统工艺设计 (6)2.1.2水质自动监测站系统布局设计 (6)2.3站房建设方案 (7)2.3.1站房选址条件 (7)2.3.2站房建设方式 (7)2.4采水系统方案 (9)2.4.1采水方式 (10)2.4.2采水工艺设计 (12)2.4.3采水工艺功能 (13)2.4.4输水单元设计 (13)2.5配水系统方案 (13)2.5.1配水系统设计思路 (14)2.5.2配水单元 (14)2.6预处理设计方案 (16)2.6.1沉砂预处理装置 (16)2.6.2过滤预处理装置 (17)2.7控制单元 (17)2.7.1 控制系统设计 (17)2.7.2 系统管理软件 (18)2.8数据处理单元 (19)2.8.1数据传输方式 (20)2.8.2数据采集/控制 (20)2.8.3数据传输终端 (21)2.9辅助系统方案 (22)2.10视频监控系统方案 (22)2.10.1视频监控点位布置需求 (22)2.10.2系统组成 (23)3仪表分析单元 (24)3.1水质四参数分析仪器单元 (24)3.1.1WS1501型COD CR水质在线自动分析仪 ................................................................................... 错误!未定义书签。
水质自动监测系统介绍
水质自动监测系统介绍水质自动监测系统(Water Quality Monitoring System)是一种利用现代科技手段进行水质参数监测和分析的系统。
它采用传感器及仪器设备,能够实时获取水样的各项指标,并通过数据传输手段将数据传送至数据中心或处理终端进行处理和分析,从而实现对水质状况的准确掌控和监管。
水质自动监测系统的组成主要包括采样装置、传感器、数据采集模块、数据传输模块、数据处理模块以及监测终端。
采样装置能够自动采集水质样品,并通过传感器将水样的指标信息转化为电信号。
数据采集模块将传感器采集到的数据进行数字化处理,并通过数据传输模块将数据传送至数据中心。
数据处理模块对采集到的数据进行处理和分析,生成相应的水质监测报告,并向监测终端提供实时的水质状况。
水质自动监测系统可以监测和分析的水质参数非常丰富,包括溶解氧(DO)、浊度、温度、pH值、电导率、化学需氧量(COD)、氨氮、总磷、总氮等指标。
通过对这些指标的监测,可以实现对水体中溶解氧、水温、酸碱度、浑浊度等基本指标的实时监测,以及对水体污染物含量和水质污染的评估。
水质自动监测系统的应用非常广泛,包括自来水厂、水处理厂、河流、湖泊、地下水、海水以及各种水域等。
特别是对于水源地的保护和监管,水质自动监测系统发挥着重要作用。
通过监测系统,可以实时了解水体的污染程度和水质状况,及时发现水质异常,采取相应的措施进行调整和处理,从而保障水源地水质的安全和可靠,保护公众的健康。
水质自动监测系统的优势在于操作简便、监测准确、实时性强等特点。
传统手工监测需要人工采样、实验室分析等繁琐的程序,不仅费时费力,而且存在误差。
而自动监测系统则能够实现全程自动化操作,减轻了人工负担,提高了监测效率和准确性。
值得一提的是,随着科技的不断发展和进步,水质自动监测系统的功能不断增强和完善。
除了实时监测水质指标外,还能够进行数据存储、远程监控和故障报警等功能,提供更加全面和便捷的水质管理手段。
水质在线监测系统技术要求
水质在线监测系统技术要求水质在线监测系统是一种利用传感器、网络通信和数据处理等技术手段进行水质参数实时监测和数据传输的系统。
它可以对水质进行及时、准确的监测和评估,为水质管理和保护提供科学依据。
下面是水质在线监测系统的技术要求。
1.准确性:水质在线监测系统应具备高准确性的特点,能够精确测量主要水质参数,如PH值、溶解氧、浊度、电导率、温度等。
传感器的精度要求高,可以达到国家标准或行业标准。
2.实时性:水质在线监测系统应能够及时反映水质变化情况,实时监测水质参数的变化并将数据实时传输至监测中心。
监测系统的响应速度应快,可实现秒级或毫秒级的数据更新频率。
3.传感器稳定性:水质在线监测系统的传感器应具有较好的稳定性和长期可靠性,能够在不同的环境条件下保持准确的测量能力。
传感器的工作寿命应长,能够保证系统的稳定运行。
4.自动化:水质在线监测系统应具有一定的自动化程度,能够自动检测、自动采样、自动校准和自动报警等。
系统应具备灵活的配置选项,可以根据实际需要自动选择测量参数和采样频率。
5.数据存储和分析:水质在线监测系统应具备可靠的数据存储和分析功能,能够对采集到的数据进行存储、处理和分析。
系统应支持大容量的数据存储,能够长期保存水质数据供后续调查分析和管理决策使用。
6.数据传输和共享:水质在线监测系统应能够实现数据的远程传输和共享,将实时监测数据传送给相关部门和管理人员。
系统应支持各种通信网络,如以太网、无线网络等,能够实现远程数据采集和远程控制。
7.人机交互界面:水质在线监测系统应具备友好的人机交互界面,便于用户进行操作和管理。
系统应提供直观、易懂的界面和图形化显示方式,使用户能够直观地了解水质参数的变化和趋势。
8.报警和预警功能:水质在线监测系统应具备报警和预警功能,可以根据设定的阈值和标准进行实时报警和预警,提醒用户采取相应的措施进行应对和处理。
9.兼容性和可扩展性:水质在线监测系统应具有良好的兼容性和可扩展性,能够与其他设备和系统进行联动和集成。
水质自动在线监测系统
水质自动在线监测系统[引言]随着人口的不断增加和工业化的发展,水资源的保护和管理变得越来越重要。
水质的监测对于保障人类的生活和环境的可持续发展至关重要。
为了提高水质监测的效率和准确性,水质自动在线监测系统应运而生。
本文将介绍水质自动在线监测系统的原理、应用和优势。
[1. 水质自动在线监测系统的原理]水质自动在线监测系统是一种利用先进的传感器和仪器设备,对水体中的各种物理、化学和生物指标进行实时监测的技术。
它通过采集水样,实时分析水质数据,并将结果传输到数据中心进行处理和分析。
在水质自动在线监测系统中,关键的组成部分包括传感器、数据采集器、数据传输系统和数据处理软件。
传感器是水质自动在线监测系统的核心。
它们可以测量和监测水体中的诸多指标,如温度、pH值、浊度、溶解氧、电导率等。
传感器可以根据需要单独使用,也可以组合在一起形成多参数传感器,以提高测量的准确性和全面性。
数据采集器是用于接收传感器采集到的数据并进行处理的设备。
它能够将数据按照预定的时间间隔或事件触发的方式上传到数据中心。
同时,数据采集器还可以进行数据的存储和转换,以便后续的分析和处理。
数据传输系统是水质自动在线监测系统中必不可少的组成部分。
它可以利用有线或无线方式将数据从传感器和数据采集器传输到数据中心。
有线传输方式通常使用电缆或光纤进行数据传输,传输速度较快且稳定性较高。
无线传输方式则采用无线网络进行数据传输,具有便携性和灵活性优势。
数据处理软件是水质自动在线监测系统中用于分析和处理监测数据的重要工具。
它可以将传感器采集到的数据进行图表显示,进行趋势分析和报警触发。
数据处理软件还能够实现数据的存储、备份和导出,以及与其他系统的集成。
[2. 水质自动在线监测系统的应用]水质自动在线监测系统广泛应用于各个领域,包括饮用水源地保护、环境监测、水处理厂运行管理等。
以下是水质自动在线监测系统的一些典型应用案例。
2.1 饮用水源地保护:水质自动在线监测系统可以在饮用水源地进行实时监测,及时发现和预警可能的污染源。
水质在线监测系统设计
水质在线监测系统设计一、引言随着工业化和城市化的发展,水资源的污染问题日益凸显。
为了及时监控和预测水质状况,并采取相应的措施保护水资源,水质在线监测系统应运而生。
本文将对水质在线监测系统的设计进行详细介绍。
二、系统组成1.传感器:传感器是水质在线监测系统的核心组成部分,通过检测水中的温度、pH值、浊度、溶解氧等指标来评估水质状况。
传感器应选择具有高精度、高灵敏度、耐腐蚀性能好的型号,并保证其可靠性和稳定性。
2.数据采集器:数据采集器用于收集传感器采集到的数据,并将其转化为数字信号进行存储和处理。
数据采集器应具备高采样率、大容量存储、数据传输稳定等特点,以确保数据的真实性和完整性。
3.通信模块:通信模块用于将采集到的数据传输给数据处理单元。
通信模块可选择有线或无线方式进行数据传输,根据具体需求考虑网络通信、短信通知等功能。
4.数据处理单元:数据处理单元是对采集到的水质数据进行分析和处理的重要环节。
通过算法模型和规则引擎,对数据进行实时监测、预测和分析,提供水质状况的评估和预警。
三、系统设计考虑因素在水质在线监测系统的设计过程中,需要考虑以下因素:1.传感器的选择和布置:解决不同监测点的水质指标多样、环境条件复杂的问题。
需要合理选择传感器型号,并合理布置传感器以覆盖监测区域。
2.数据传输的稳定性和安全性:确保监测数据的及时传输,采用可靠的通信模块,并采用加密算法保障数据传输的安全性。
3.数据处理的实时性和精确性:采用高效的算法模型和规则引擎,及时分析水质数据,提供准确的水质状况评估和预警。
四、系统实施方案具体实施水质在线监测系统时,应按照以下步骤进行:1.系统需求分析:明确监测目标、监测指标、监测区域等需求,并制定详细的功能需求和性能需求。
2.设计传感器布置方案:根据监测区域的特点和需求,确定传感器的数量、型号和布置位置。
3.选择合适的数据采集器和通信模块:根据传感器输出信号的特点和数据传输要求,选择合适的数据采集器和通信模块。
地下水水质在线监测方案
地下水水质在线监测方案目录一、方案说明 (3)1.可监测参数 (3)2.系统简介 (3)3.系统组成 (3)二、初步建设方案 (4)1.实施流程图 (4)2.土建施工 (4)3.实景图 (6)三、对关键设备要求的说明 (8)四、主要设备技术性能的详细描述 (8)1.在线原位多参数水质监测仪 (8)1.1.传感器图片(Aqua TROLL 500) (9)1.2.技术参数(Aqua TROLL 500) (9)2.数据传输装置技术参数 (11)2.1.设备图片 (11)2.2.技术参数 (11)3.太阳能电池板技术参数 (13)4.蓄电池技术参数 (13)五、户外箱及立杆技术参数 (13)六、远程数据平台 (14)七、方案预算 (16)一、方案说明1.可监测参数基础参数:水位、水温、大气压无机参数:pH、氧化还原电位(ORP)、电导率、盐度、总溶解固体(TDS)、密度、溶解氧、浊度、氨氮、硝酸盐、氯离子有机参数:COD、BOD、TOC、DOC、CDOM/fDOM(水中油)2.系统简介地下水水质在线监测系统,对现场上述20个参数进行实时监测。
考虑到监测井位置为野外,获取电源极为不便,选用太阳能供电方式,因此需建设太阳能充电和供电装置,保证所有设备能够正常运行。
为避免连续阴雨天气的影响,必须保证太阳能不工作条件下,蓄电池应能长时间保证设备正常运转。
根据野外地区手机通讯信号较差的实际情况,远程数据传输装置应具备GPRS和北斗卫星通讯的能力,同时应具有气压测量和大容量数据存储功能。
因多参数水质监测仪需长期部署于地下水监测井中,因此需选用IP68防水等级的设备,可长期浸泡于水中且传感器接口需采用防水构造设计,可湿插拔替换,避免进水损坏仪器。
设备长期部署在水下,会有泥沙沉积或污物附着,因此需要设备构造紧凑,检测单元集中而便于清洁维护,配上电动清洁毛刷可大大延长设备部署时长。
为了便于现场校准,采用蓝牙连接和RS485连接同时具备的功能,配合手机APP在现场电缆无需物理断开的条件下就能实现设备的校准维护。
水质自动在线监测站项目_设备安装方案
水质自动在线监测站项目_设备安装方案一、设备安装位置的选择设备安装位置的选择是影响监测数据准确性的重要因素。
一般来说,水质自动在线监测站设备应安装在以下位置:1.根据监测需求,在重要水源地、河流、湖泊等水体的进水口或出水口处进行安装,以监测水体的污染程度和水质净化效果。
2.在城市供水管网的关键节点位置安装,以监测城市供水水质的变化和运行状况。
3.在水处理厂的出水口处进行安装,以确保供水符合相关水质标准。
二、设备安装方式的选择1.固定安装:将监测设备安装在固定位置,通过固定的水质采集管道获取水样。
这种方式适用于大型供水管网和水处理厂等需要长期监测的场所。
2.移动安装:将监测设备安装在移动平台上,通过移动平台的定期巡检或按需安装,获取水质样本。
这种方式适用于小型河流、水库等临时性监测场所。
三、设备组成与连接方式1.设备组成:水质自动在线监测站一般由多个监测仪器组成,包括水质传感器、浊度计、pH计、溶解氧仪、电导率计等。
这些仪器应按照实际监测需求进行选配。
2.连接方式:监测设备与中心监测系统之间的连接方式可以通过有线或无线网络来实现。
有线网络连接方式需要布设传输线路,通常采用网络通信线路进行连接。
无线网络连接方式则可以采用无线传感器节点与无线中继设备进行无线通信。
四、设备安装细节1.选择合适的支架:根据监测设备的尺寸和重量,选择合适的支架进行设备的固定安装。
2.保护设备防水防尘:考虑到监测设备需要长期暴露在室外环境中,应选择具有良好防水和防尘性能的设备,并选用防水、防尘保护措施进行加固。
3.考虑供电问题:监测设备需要稳定的供电,可以通过太阳能板、蓄电池等方式提供电源,确保设备正常运行。
4.安全防护:根据现场情况设置防护措施,如围栏、警示标志等,确保设备的安全运行,并避免损坏和被盗等事件的发生。
通过以上设备安装方案的实施,能够确保水质自动在线监测站项目的顺利进行,并提供准确、可靠的水质监测数据,为保障水质安全和水环境保护提供有力支持。
水情自动测报系统
水情自动测报系统概述水情自动测报系统是一种用于实时监测、记录和报告水资源状况的技术系统。
它通过传感器和数据处理软件,可以定期采集水流、水位、水质等数据,并将数据传输到中央控制中心进行分析和处理。
这样,水资源管理部门就能及时了解水情状况,采取相应的措施,以保障水资源的合理利用和管理。
功能特点水情自动测报系统具有以下功能特点:实时监测系统采用传感器网络实时监测水流、水位、水质等数据,可以随时掌握水资源的变化情况。
监测数据可以通过互联网传输到中央控制中心,实现远程监控和管理。
数据记录与分析系统具备数据记录和分析功能。
它可以将采集到的数据存储到数据库中,并利用数据处理软件进行分析和统计。
通过对历史数据的分析,可以了解水资源的变化趋势,为决策提供科学依据。
报警与预警系统可以设置报警与预警功能,当某项水情数据超出设定的阈值范围时,系统会发送报警信息给相关人员,及时采取措施,防止水资源的浪费和损失。
数据可视化系统通过数据可视化的方式,将监测数据以图表、曲线等形式呈现,使人们能直观地了解水资源的状况。
可以通过Web界面或移动应用程序进行数据访问和查看。
系统组成水情自动测报系统主要由以下组成部分构成:传感器系统使用各类传感器来采集水情数据,包括水流传感器、水位传感器、水质传感器等。
这些传感器可以根据需求安装在河流、水库、水管等不同位置,实现全面的数据采集。
数据传输系统采用无线数据传输技术,将传感器采集的数据传输到中央控制中心。
传输方式包括无线网络、蓝牙、GPRS等,选择适合的传输方式可以实现远距离、高效率的数据传输。
数据处理与存储中央控制中心负责数据的处理和存储工作。
它可以采用数据库来存储大量的监测数据,并利用数据处理软件进行分析和统计。
数据处理的目的是提取有效信息,为决策提供参考。
报警与预警系统系统应具备报警与预警功能,当监测数据异常时,会触发报警机制。
报警信息可以通过短信、邮件等方式发送给相关人员,及时采取措施。
水质在线监测系统设计方案
水质在线监测系统设计方案一、背景介绍水质是人类生存和生活中至关重要的资源,而水质污染现象也日益严重。
为了及时监测和控制水质的变化情况,保障水质安全,设计一套水质在线监测系统是非常必要和重要的。
二、系统目标1.实时监测水质参数,包括水温、pH值、溶解氧、浊度、电导率等指标。
2.自动报警功能,当水质指标超出设定阈值时能及时提醒相关人员。
3.数据可远程传输到监控中心,实现远程监控和实时数据分析。
4.实现数据可视化,通过图表、曲线等方式直观地展示水质参数变化情况。
三、系统组成1.传感器:采用多种传感器对水质相关参数进行测量,如水温传感器、pH值传感器、溶解氧传感器、浊度传感器、电导率传感器等。
2.控制单元:负责控制传感器的采集和数据传输,可以集成多个传感器的数据。
3.数据处理模块:对传感器采集到的数据进行处理和分析,包括数据校正和异常值处理等。
4.报警模块:当水质指标超出阈值范围时,触发报警,并通过声音、光照等方式提醒相关人员。
5.通信模块:负责将传感器采集到的数据传输到监控中心,可以选择无线方式或有线方式。
6.监控中心:接收和处理来自水质在线监测系统的数据,进行实时监控和数据分析,并提供数据可视化接口。
四、系统设计和实现步骤1.传感器的选择和安装:根据实际需求选择适当的水质传感器,并安装在水体中,保证传感器与水体的充分接触。
2.控制单元的设计和搭建:设计控制单元,包括传感器的数据采集和传输功能。
3.数据处理模块的设计:对采集到的数据进行校正和异常值处理,并实现实时数据分析功能。
4.报警模块的设计和实现:设定水质阈值,在数据超出阈值时触发报警,并选择合适的报警方式进行提醒。
5.通信模块的选择和配置:根据实际情况选择无线或有线通信方式,配置通信模块与监控中心的连接。
6.监控中心的设计和实现:搭建监控中心,接收和处理来自水质在线监测系统的数据,实现数据可视化和远程监控功能。
五、系统优势1.实时性强:水质在线监测系统可以实时监测水质指标的变化情况,及时发现和处理异常情况。
水质环境自动监测站方案
水质环境自动监测站方案水质环境自动监测站方案。
水质环境自动监测站是专为观测及采集地表水、地下水、水源水、饮用水、污水排放口、海洋江河、溪流、水源地、湿地、水产养殖等各种领域水体的水质而设计的一款在线式水质连续监测记录设备。
一、方案概述:水质环境自动监测站可无人值守、长期连续在线监测记录,并且整体性能丝毫不会受监测环境的盐碱度、污染程度等各类恶劣环境的影响。
水质环境自动监测站主要是由多参数水质传感器、水流量传感器、水温传感器、水位传感器、雨量传感器、环境温湿度传感器、风向风速传感器、LS-CQ1数据采集器、通讯部件和供电控制系统组成。
通过选配MS5\DS5\DS5X可以对地表或地下水体中的叶绿素、蓝绿藻、PH值、浑浊度、电导率、溶解氧等7至15个水质参数和流量流速进行测量。
二、方案特点:1、实时监测大气温湿度、风速、风向、雨量、气压、水温、水位、水流量、水质等多种环境参数,观测要素的配置方式可以根据项目的实际情况进行灵活调整。
2、微电脑气象数据采集仪采用我司最新一代双核32位ARM处理器同步数据处理技术,保证监测数据稳定、传输可靠、运行高效,支持最快1秒采集数据并同步显示,可根据实时数据自动生成数据最大值、最小值、平均值、标准差及方差满足用户对数据的分析研究使用。
支持先进的无限级联技术,没有采集通道限制最多可连接256路气象传感器,适合科研级多点数据监测及物联网数据分布式采集需要。
标配有大屏幕液晶显示屏,方便现场读取、调用数据。
查看信息众多包括有版本信息、配置信息、存储信息、注册信息、报警信息、运行状态信息、通讯模式及协议信息等等。
内置高精度实时时钟月误差小于5秒。
支持中英文双语显示界面,适合于全球范围内任何国家使用。
可适应超宽范围工作温度,保证在-55~85℃温度范围内均可正常工作。
采用领先的远程设备升级服务,无论设备安置于世界任何角落只要具备无线网络通讯,均可申请远程升级使设备实时保持最佳工作状态。
地下水污染的在线监测与预警系统研究
地下水污染的在线监测与预警系统研究随着工业化和城市化的深入发展,地下水污染成为一个严重的环境问题。
地下水是人类饮水和农业灌溉的重要水源,而地下水污染对人类和生态系统的健康产生了严重影响。
因此,开发一种有效的地下水污染在线监测与预警系统变得至关重要。
本文将探讨地下水污染在线监测与预警系统的研究成果和应用前景。
地下水污染的在线监测主要是通过监测井点位采集水质参数,并实时传输数据至中央监测中心。
传感器是地下水污染在线监测系统的核心部分,负责检测水质参数,如溶解氧、氨氮、总磷等指标。
这些传感器通常采用物联网技术,可以将数据通过无线通信传输到中央监测中心,实现远程监测与控制。
此外,地下水监测网络中还可以设置多个监测站点以提高监测覆盖范围。
为了实现地下水污染的即时预警,地下水监测系统需要与数据分析算法结合,通过实时分析和处理传感器数据来识别潜在的污染源。
数据分析算法通常采用机器学习和人工智能技术,可以根据历史数据建立预测模型,通过监测数据和模型进行比对,及时发现异常情况并发出预警信号。
这样的地下水预警系统不仅可以提供污染源的准确定位,还可以帮助管理部门制定有效的污染防控措施,最大程度地减少损失。
地下水污染在线监测与预警系统的研究已经取得了一系列重要成果。
例如,基于传感器技术的水质分析仪器已经广泛开发和应用,可以准确测量各种水质指标。
同时,数据分析和预测算法的发展也提高了地下水污染预警的准确性和及时性。
政府机构和环保企业已经开始使用这些系统来监测地下水污染,以便及时采取措施应对突发事件,并促进地下水保护工作的开展。
地下水污染的在线监测与预警系统在环境保护领域具有广阔的应用前景。
首先,它可以帮助环保部门实时掌握地下水质量状况,监测污染源动态变化,及时发现和应对污染事件。
其次,它可以为地下水资源管理和保护决策提供科学依据,通过数据分析和预测帮助决策者制定合适的保护措施。
此外,地下水污染在线监测与预警系统还可以为相关企业和工厂提供技术支持,帮助他们加强污染防控工作,避免污染事故发生。
地下水位自动化监测系统方案.
地下水位自动化监测系统方案一、概述地下水资源较地表水资源复杂,因此地下水本身质和量的变化以及引起地下水变化的环境条件和地下水的运移规律不能直接观察,同时,地下水的污染以及地下水超采引起的地面沉降是缓变型的,一旦积累到一定程度,就成为不可逆的破坏。
因此准确开发保护地下水就必须依靠长期的地下水位自动化监测系统方案,及时掌握动态变化情况。
二、系统解决方案2.1系统概述地下水位自动化监测系统依托中国移动公司GPRS网络,工作人员可以在监测中心查看地下水的水位、温度、电导率的数据。
监测中心的监测管理软件能够实现数据的远程采集、远程监测,监测的所有数据进入数据库,生成各种报表和曲线。
2.2系统组成地下水位自动化监测系统由四部分组成:监测中心、通信网络、微功耗测控终端、水位监测记录仪(水位计)。
2.3系统拓扑图2.4监测中心2.4.1中心软件系统概述该软件是地下水监测系统专用软件,采用B/S 结构,由系统管理员负责管理,领导者或其它工作人员经授权后可在自己的计算机上通过局域网访问服务器,可进行权利范围内的操作。
如果需要,该软件可以在INTERNET 公网上发布,被授权者在任何地方的计算机上都可以通过INTERNET 公网访问和操作该系统。
该软件采用模块结构,主要包括两大模块:一个是人机界面、另一个是通讯前置机。
每个模块又由若干小模块组成。
通讯前置机软件主要负责监控中心与现场设备的通信,它具有强大的兼容性,可支持任何厂家生产的GPRS 、CDMA 、MODEM 、RS485等通信产品,支持多种通信方式共存一个系统。
人机界面包括基础数据管理、远程操作、人工录入、数据查询、数据报表、数据分析、地图管理等多项内容,可根据不同客户的不同需求设计组合成个性化的监控与管理系统软件。
忠阳6昶电 电迪快虹2.4.2监测中心配置硬件:中心具备宽带网络(类型:光纤、网线、ADSL等),并绑定固定IP。
—台专用计算机,放在机房,作为固定IP服务器,将服务器操作系统和数据库软件和系统监控软件装在里面,存贮数据,保证其24小时在线。
地下水水质在线自动监测技术方案
地下水水质在线自动监测技术方案
随着科技的发展,在线自动监测技术越来越重要,特别是在环境污染
领域发挥着重要作用。
地下水是一种比较特殊的水质资源,崇尚的环境要
求我们持续监测地下水水质,以保护人类健康。
因此,在线自动监测技术就在这种情况下发挥了重要作用,下面我们
将介绍一种关于地下水水质在线自动监测技术方案。
1.设备选择:
在线自动水质监测设备通常是由压力传感器、温度传感器、电导率传
感器和溶解氧传感器组成的,根据我们的监测目标,可以选取适当的设备,并将其安装在水体中,以实时监测水质。
2.技术应用:
在线自动水质监测技术在水质检测领域有较强的应用价值,可以帮助
我们对水质有相关的监测和分析,同时可以为环境保护提供依据,为我们
提供全面的水质信息。
3.数据处理:
在收集到水质数据之后,我们要进行数据处理,对收集到的数据进行
进一步分析,形成我们所需要的全面数据,以便我们更好地了解水质的实
时情况。
总之,地下水水质在线自动监测技术方案是一项较为重要的技术,它
不仅可以帮助我们更好地了解水质的实时情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水水质在线自动监测系统1.地下水水质在线自动监测系统一技术方案1.系统组成及概述1.1系统结构组成地下水水质自动监测系统由以下两部分构成:监控子站(地下水子站),水质监控中心平台。
1.2监控子站组成及概述1.2.1 地下水水质在线自动监测系统采用投入式、免试剂多参数水质分析仪,仪器通过地下水监测井悬吊于待监测水层中,对地下水体实施现场原位连续自动监测。
采用太阳能供电方式,通过无线通讯技术实现地下水监测系统与中心监控平台之间的数据传输和远程控制。
系统由供电系统,数据采集传输单元、水位水温传感器、水质多参数分析仪、地下水监测信息管理平台等组成。
地下水监测系统示意图地下水监测系统效果图1.2.2地下水水质监测站配置1、标准配置目前国内地下水监测常规因子:水文监测因子:水温、水位;水质监测因子:溶解氧、电导率、浊度、PH监测因子选择原因水位地下水总量控制水温地下水的温度场与压力场和化学场的变化密切相关溶解氧溶解氧对饮用水地下原水的除铁、锰的效果有影响电导率(EC) 地下水的电导率异常与其污染状况密切相关浊度浊度是地下水透明度的衡量指标pH 地下水水化学特征的因子2、可选配置地下水监测可扩展监测因子:水质监测因子:总溶解性固体、氨氮、硝酸盐、氯化物、氟化物、钙、CODmn、盐度、矿化度、水中油等1.3系统特点●太阳能、市电、电池供电多种模式●长期、连续、定点在线监测,全自动无人值守工作●适合于各种水文地质类型含水层水文、水质监测●多通道数据采集传输设备,并有数据记录、处理、报警功能●根据野外环境,具备相应避雷保护、抗干扰功能,提高系统野外适应性●野外环境长期专用传感器,高精度、高稳定性●传感器多层抗生物污染设计:环境安全防垢部件和防垢涂层;独特的双清洗刷装置●标准化接口,模块化设计,安装简易、灵活,可根据需求扩展监测参数●采用光谱分析、电化学分析技术,对水体进行免试剂原位监测,不对环境产生二次污染2.1系统配置表及组成序号名称备注1 监测分析单元2 供电系统3 数据采集传输系统4 监测井外设单元监测井防护装置、安全防护系统等5 数据服务系统服务器、中心站管理软件等系统组成图2.2监测分析单元选型及配置根据《水质自动分析仪技术要求》(HJ/T 96~103-2003)提出的技术和控制系统要求,经过仪器市场调研,按照先进性、实用性的原则以及方便维护的需要,选择主流分析仪,且所有产品都须具有国际ISO9002质量认证资格,并已在我国水质监测系统广泛使用。
1、地下水监测站配置标准配置:水位、水温、PH、电导率、溶解氧、浊度。
可选配置:总溶解性固体、氨氮、硝酸盐、氯化物、氟化物、钙、CODmn、盐度、矿化度、水中油等特征因子。
2、仪器配置标准配置:3、参数配置标准配置:2.3供电系统采用太阳能、市电、电池多种供电模式。
户外无站房情况:由于在野外,考虑到安全防盗情况,系统供电方案采用太阳能供电系统。
户外有站房情况:可以考虑采用太阳能、市电两路互补的供电系统。
蓄电池的规格数量根据系统耗能而定。
太阳能供电系统包括太阳能电池板、铅蓄电池组及太阳能控制器。
●太阳能板,涂覆塑料保护层,耐磨、耐刮、耐碰撞,机械刮擦造成龟裂均不影响太阳能板正常工作;●太阳能板与蓄电池连接采用水密太阳能电池接头。
带有充电控制模块、升压模块和专业防雷模块;●太阳能供电系统能够保障地下水监测系统的电力需求维持系统正常运行。
2.4XHDAS-90型遥测终端机概述该产品为高防护型测控装置,采用高性能锂电池供电,可采集各类仪表、变送器的输出信号并通过GPRS或短消息远程传输数据,适用于不具备供电条件、环境恶劣的监测现场,广泛应用于供水、水利、农业、地质、环保等行业。
产品特点●数据采集、传输一体化设计。
●支持电池、太阳能、市电供电。
●IP67防护等级,防水、防潮、防浸泡。
●支持串口、远程设置工作参数,可现场查看数据。
●支持各家组态软件和用户自行开发软件系统。
产品功能●通信功能:支持GPRS、短消息两种通讯方式;支持与多中心进行数据通信;支持定时唤醒、实时在线两种工作模式。
●采集功能:采集压力、水位变送器的标准信号;采集流量计、脉冲表的流量数据;采集其它现场信号。
●对外供电功能:可对外提供5V、12V直流电源,为变送器供电。
●远程管理功能:支持远程参数设置、程序升级。
●报警功能:监测数据越限,立即上报告警信息。
●存储功能:本机循环存储监测数据,掉电不丢失。
技术参数●硬件配置:6路DI/PI、2路AI、1路串口。
液晶显示、4按键键盘可选。
关于1路串口的补充说明:测控终端接串口设备时,RS232最多可以采集一个串口设备的14个量;RS485可以接多个串口设备,但总共可以采集14个量。
比如每个串口设备均采集流量、压力2个量,那么可以接7个串口设备;如果每个串口设备采集7个量,那么可以接2个串口设备。
●通信误码:≤10-6。
●存储容量:4M。
●供电电源:10V~28V DC。
●电池寿命:1~5年(与数据发送频率有关)。
●功耗:休眠电流≤50uA/14.4V;采集电流≤5mA/14.4V;发送平均电流≤10mA/14.4V。
●安装方式:壁挂式。
●外形尺寸:229x179x69mm。
2.地下水监测信息管理中心3.1系统架构地下水监测信息管理系统集监控、报警于一体,支持局域网和广域网,用户可以在任何地方操作和使用的专门,可实现地下水自动监测、无线传输的远程管理及浏览系统。
系统主要包括监测孔信息管理、监测设备信息管理、通信设备的信息管理、用户及权限设置、日志记录、实时监测、数据查询、统计、报警及信息发布、人工置入数据等功能。
系统具有响应召测的功能,可以随时在中心站的要求下,发送测得数据,中心站随时控制现场及时响应。
系统采用GIS图集和传统数据格式相结合的展示方式,将各种设备的分布点显示在图上,每个点都有相应的数据信息,点击分布点就可以显示数据,方便用户的查看、操作。
3.2系统功能3.2.1测井信息管理监测井管理的信息主要包括:统一编号、孔号、检测孔级别、检测孔类型、地理位置、经度、纬度、所属流域分区、所属水文地质分区、所属行政分区、地面标高、孔口标高、孔深、地下水类型、监测层位和建井时间等内容的添加、修改、删除及浏览、查询。
3.2.2数据展示(1)实时数据实时接收并显示现场的监测数据,并对监测参数的超标情况进行判断,发现异常及时报警,显示现场运行模式及故障状态。
还可以结合电子地图对监测点位置进行直观展示。
(2)数据对比可以对接收到的数据进行某一固定参数,按时间段和多个监测点的结果对比,展示的形式是以曲线图的形式进行展示,较为直观。
(3)历史数据和数据报表可以对接收到的数据进行按时间段和参数的结果查询,展示的形式分为表格和曲线两种展示形式。
并且可以将查询的结果以定制的Excel格式的形式进行输出。
3.2.3数据查询、统计查询功能主要是方便用户快速检索监测井的基本信息、监测仪信息、通信设备信息等。
统计:对指定监测井指定时间段内的监测水位值进行统计,包括最大值、最小值和平均值等。
统计功能主要是为了方便用户更全面的掌握井点的接收数据、水位标高和电量等信息,该功能将对井点的水位、水温及仪器电量等信息的平均值进行统计,方便用户了解井点情况。
3.2.4水质数据分析通过对实时或历史的各类监测数据进行加工处理、分析。
在对这些基础数据分析之前,平台会根据数据状态进行数据有效性检验,只有有效的数据才会成为业务分析的基础数据,其他故障数据将为监测设备的运行状态提供参考。
河海及地下水水质评价水质评价功能依据国家《地表水环境质量标准》(GB3838-2002)、《地下水环境质量标准》(GB/T 14848-93 )及《海水水质标准》 (GB 3097-1997),根据应实现的水域功能类别选取相应类别标准进行水体水质单因子评价。
实时查看水质达标情况,并计算超标污染物的超标倍数,经过分析得出河流主要污染物类别及判定地下水水质主要污染物及海洋水环境质量状况等。
3.2.5站点运行监控(1)监测参数监测参数功能可以使用户实时的了解到现场装有哪些传感器设备,都对哪些参数进行监测,通讯仪器的配置信息等。
(2)设备状态①数采仪状态:远程监控到联网数据采集仪器的实时运行状况,及时了解到数采仪设备是否正常联网运行,如数据没有正常接收,可通过此处判断是否是数采仪故障。
②传感器状态:现场所安装的传感器的实时的运行状况是否正常,可以通过这里的参数运行值来实时的判断出来,如:判断仪器是否该清洗,是否在正常运行等情况。
(3)数据自动回补在日常现场仪器使用时,由于现场的情况所限,我们的传输设备只能采用GPRS 无线传输技术,这种技术对现场网络信号要求较高。
由于是野外作业,现场的网络信号无法保证,可能会存在偶尔断网的情况。
在这种情况发生时,会造成现场的数据没有正常上传,这时数据的自动回补功能就非常有必要了,我们可以利用此功能要求现场的设备将数据再次重新上传一遍,从而保证了中心站的数据是完整的,不会因现场的网络状况不好,而引起中心站丢失数据的情况发生。
(4)水站的GPS定位每个水站上都安装有GPS定位设备,可以实时监控到当前浮标所在的位置,中心站软件平台上会结合地图的功能对位置进行展示,及时的确定浮标当前所处的位置,以及是否超出原有的既定范围。
(5)设备远程控制在各监控点、各托管站和环境监测中心实现双向操作、管理远程控制,实现水质监测站数据传输、现场工作状态、安全和参数超标报警等远程控制。
可以对监测站现场的系统、仪器设备,进行远程参数设定和控制。
可实现的操作有:1)仪器清洗周期设定2)仪器数据上传周期设定3)仪器参数重置4)仪器重新启动5)仪器其他个性化参数设定中心站远程向现场的仪器发送指令进行远程操控,可以完成中心站对远端的现场仪器进行远程控制,做到监测者不用到现场也能完成对现场仪器的控制,极大的方便了监测者的日常工作,提高了工作效率。
3.2.6报警功能报警功能是指对收到的传输信息进行预警,预警包括通信设备电量预警、水位异常预警、水温异常预警及通信设备所用SIM卡信号等信息异常时进行报警。
3.2.7移动终端访问平台提供了移动终端访问服务,用户可以通过手机随时访问相关业务数据,及时的了解到监测点设备是否正常,以及当前监测的数据值是否有异常。
3.3系统管理本子系统包括用户及权限管理、系统日志管理和监测点维护,能够增加系统安全和权限控制管理,能够跟踪用户在系统中的关键操作,方便用户扩展和维护监测井。
3.4系统安全用户进入系统时需要进行身份验证,权限不同的用户对平台享有不同的访问权限。
运营方案地下水水质自动监测系统的有效运行和效益发挥有赖于合理的运行方式和与之配套的管理制度。
成立专业的队伍,制定严格的规章制度及其监督执行措施,是该系统正常运行的根本保证。