新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)
北师大版七年级下册数学第三章三角形单元测试(附答案)
北师大版七年级下册数学第三章三角形单元测试(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.如图,在△ABC中,△ADE的周长为8,DH为AB的中垂线,EF垂直平分AC,则BC的长为()A、4B、6C、8D、162.下列几组数不能作为直角三角形三边长的是().A.8、15、17 B.7、24、25C.30、40、50 D.32、60、803.下列条件中,不能判定△ABC≌△A′B′C′的是()A.∠A=∠A′,∠C=∠C′,AC=A′C′B.∠A=∠A′, BC=B′C′,AB=A′B′C.∠A=∠A′=80O,∠B=60O,∠C=40O,AB=A′B′D.∠C=∠C′=90O, BC=B′C′,AB=A′B′4.到三角形各顶点距离相等的点是三角形三条()A、中线的交点B、角平分线的交点C、高线的交点D、三边垂直平分线的交点5.到△ABC的三个顶点距离相等的点是 ( )A.三条中线的交点B.三条角平分线的交点C.三条高线的交点D.三条边的垂直平分线的交点6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20o B.120o C.20o或120o D.36o7.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.43cm C.6cm D.8cm8.下列说法正确的是( )A 、全等三角形是指周长和面积都一样的三角形;B 、全等三角形的周长和面积都一样 ;C 、全等三角形是指形状相同的两个三角形;D 、全等三角形的边都相等9.高为3,底边长为8的等腰三角形腰长为 ( ).(A )3 (B )4 (C )5 (D )610.如图,△ABC 中,∠ACB=90°,BA 的垂直平分线交CB 边于D ,若AB=10,AC=5,则图中等于60°的角的个数为( )A 、2B 、3C 、4D 、5二、填空题11.如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC,∠CED=35°,则∠EAB =12.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是 .13.三角形三条中位线围成的三角形的周长为19,则原三角形的周长为 。
新北师大版七年级数学下册第三章三角形单元测试卷5套及答案42274
第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.10 9.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( ) A .锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形; D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( ) A .小于直角; B .等于直角; C .大于直角; D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm .7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______.8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线;(2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1 时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .8.已知△ABC 的周长为48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求△ABC 各边的长.9.已知三角形三边的长分别为:5、10、a -2,求a 的取值范围.10.已知等腰三角形中,AB =AC ,一腰上的中线BD 把这个三角形的周长分成15cm 和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC 中,AB =AC ,D 在AC 的延长线上. 求证:BD -BC <AD -AB .12.如图,△ABC 中,D 是AB 上一点. 求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ), ∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC 的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形. 6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去.11.AD-AB=AC+CD-AB=CD,∵ BD-BC<CD,∴ BD-BC<AD-AB.12.(1)AC+AD>CD,BC+BD>CD,两式相加:AB+BC+CA>2CD.(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.14.94°; 35.120°; 36.10°;17.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.18.略.第三章三角形单元测试卷(三)班级姓名学号得分一、选择题(每小题3分,共30分)1.有下列长度的三条线段,能组成三角形的是()A 2,3,4B 1,4,2C 1,2,3D 6,2,32.在下列各组图形中,是全等的图形是()3. 下列条件中,能判断两个直角三角形全等的是()A、一个锐角对应相等B、两个锐角对应相等C、一条边对应相等D、两条边对应相等4.已知:如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于O点,∠1=∠2.图中全等的三角形共有()A.4对B..3对 C 2对D.1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是()A.6 B.7 C.8 D.97.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等8.在下列四组条件中,能判定△ABC≌△A/B/C/的是()A.AB=A/B/,BC= B/C/,∠A=∠A/B.∠A=∠A/,∠C=∠C/,AC= B/C/C.∠A=∠B/,∠B=∠C/,AB= B/C/D.AB=A/B/,BC= B/C/,△ABC的周长等于△A/B/C/的周长9.下列图中,与左图中的图案完全一致的是()10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其②①③5题CDABEF6题A B C DA B C D E 图4图2 图 3 图4 AC BO 中判断正确的有( )A.1个B.2个C.3个D.4个二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。
北师大版数学七下第三章《三角形》单元测试卷及答案(5套)
北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( ) A .锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形; D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( ) A .小于直角; B .等于直角; C .大于直角; D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°; (2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm .7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______.8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC 中,AB =AC ,D 在AC 的延长线上. 求证:BD -BC <AD -AB .12.如图,△ABC 中,D 是AB 上一点. 求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________. 14.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,∠A =46°,∠D =50°.求∠ACB 的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm .3.212cm =∆ABC S,∴21AB ·BC =12,AB =4,∴ BC =6, ∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形. 6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a=2k,b=3k,c=4k,∵三角形周长为36,∴ 2k+3k+4k=36,k=4,∴ a=8cm,b=12cm,c=16cm.8.设三角形中最大边为a,最小边为c,由已知,a-c=14,b+c=25,a+b+c=48,∴ a=23cm,b=16cm,c=9cm.9.10-5<a-2<10+5,∴ 7<a<17.10.设AB=AC=2x,则AD=CD=x,(1)当AB+AD=15,BC+CD=6时,2x+x=15,∴ x=5,2x=10,∴ BC=6-5=1cm;(2)当AB+AD=6,BC+CD=15时,2x+x=6,∴ x=2,2x=4,∴ BC=13cm;经检验,第二种情况不符合三角形的条件,故舍去.11.AD-AB=AC+CD-AB=CD,∵ BD-BC<CD,∴ BD-BC<AD-AB.12.(1)AC+AD>CD,BC+BD>CD,两式相加:AB+BC+CA>2CD.(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.14.94°; 35.120°; 36.10°;17.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.18.略.北师大版七年级数学下册第三章 三角形 单元测试卷(二)班级 姓名 学号 得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( )A .10B .12C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( )[ A .0 B .1 C .2 D .34.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB ,垂足是D ,则图中与∠A 相等的角是 ( )A.∠ 1 B .∠ 2 C .∠ B D .∠ 1、∠ 2和∠ B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC =∠B C .∠APC <∠B D .不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤< D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC中,AB=6,AC=10,那么BC边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形.4.一个等腰三角形两边的长分别是15cm和7cm则它的周长是__________.5.在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________.7.在△ABC中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB 边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D 应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△AB C内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32<4<<<BC; 3.锐角(等腰锐角);周长1620,4.cm100;25;7.︒37;5.10;6.︒65和︒8.GAC,,,,;9.︒∆,,∆BFCFACBEFGC∆AD∆CF120;65;10.︒11.︒<x.180; 12.126<三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD虽然是线段,但不符合三角形角平分线定义,这里射线AD是BAC∠的平分线3.假设此零件合格,连接BD,则︒143∠37180CBDCDB;可知+=︒-∠=︒()︒∠4020+CBD∠9030CDB.这与上面的结果不一致,从而知这︒=+=︒-︒个零件不合格.4.∵ AD是BC边上的中线,∴ D为BC的中点,BDCD=.∵ADC∆的周长-ABD∆的周长=5cm∴cm-.=AC5AB又∵cm+,=ABAC11∴cm=.AC85.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74, ∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A , ∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA ,∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( ) A 2,3,4 B 1,4,2 C 1,2,3 D 6,2,32. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( ) A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去 6.右图中三角形的个数是( )A.6 B .7 C.8 D .9 7.如果两个三角形全等,那么下列结论不正确的是( )A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等 8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△② ① ③ 5题 C D A BEF 6题C图3图4A /B/C /的周长)10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其 中判断正确的有( )A.1个B.2个C.3个D.4个二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。
最新北师大版七年级下册三角形全等的证明单元测试试题以及答案(共5套题)
七年级下册三角形全等的证明单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、如图,△AEM ≌△AFN ,下列结论中,其中错误的是( )。
A 、CF=BEB 、∠CMD=∠ANFC 、AM=AFD 、∠ANC=∠AMB2、如图,DF=21EF ,BC=2BD ,下列说法:①BF ∥EC ;②1:1 ADC ABD S S △△:;③△BDF ≌△DCE ;④△ABD ≌△ACD ;⑤∠BAD=∠CAD ,其中正确结论有( )个。
A 、1B、2C、3D、43、如图,下图是由三个全等三角形组成,则图中∠1+∠2+∠3的和是()。
A、90°B、180°C、270°D、360°4、下列条件中,能证明△ABC≌△DMN的是()。
A、AB=DM,BC=MN,∠A=∠DB、∠A=∠D,∠C=∠N,AC=MNC、AB=DM,BC=MN,△ABC的周长=△DMN的周长D、∠A=∠D,∠B=∠M,∠C=∠N5、下列各组线段中,能够成三角形的是()。
A、5厘米、6厘米、11厘米B、4厘米、6厘米、12厘米C、3厘米、15厘米、10厘米D、3厘米、3厘米、3厘米6、下列结论错误的是()。
A、全等三角形对应边上的高相等B、全等三角形对应边上的角平风险和中线相等C、两个直角三角形中,如果有一个边和一个锐角对应相等,则两个直角三角形全等D、两个直角三角形中,如果两个锐角对应相等,则两个直角三角形全等7、下列说法中:①如果三角形的三个内角比是1:2:6,这个三角形是直角三角形;②如果三角形的三条高线交于三角形的一个顶点处,这个三角形是钝角三角形或直角三角形;③如果三角形的一个内角等于另外两个内角的差,这个三角形是直角三角形;④三角形的三条高线、角平分线和中线一定都是线段;⑤等边三角形的三条高线、角平分线和中线一定分别相等。
其中错误的有()个。
A、1B、2C、3D、48、在△ABC中,CD、BE是AB、AC边上的高,∠A=70°,则∠BPC 等于()。
新北师大版七年级数学下册第三章三角形单元测试卷及复习资料
北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.10 9.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A .0°<α<90°;B .60°<α<180°;C .60°<α<90°;D .60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( ) A .锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形; D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( ) A .小于直角; B .等于直角; C .大于直角; D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________, ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________.4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm .7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______.8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.2.△ABC的周长为16cm,AB=AC,BC边上的中线AD把△ABC分成周长相等的两个三角形.若BD=3cm,求AB的长.3.如图,AB∥CD,BC⊥AB,若AB=4cm,2=S,求△ABD中AB边上的高.12cm∆ABC4.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC中,∠BAC=90°,如下图所示.作BC边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD中AB边上的高DD,这时图中便出现五个不1同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm ,三边之比为a ∶b ∶c =2∶3∶4,求a 、b 、c .8.已知△ABC 的周长为48cm ,最大边与最小边之差为14cm ,另一边与最小边之和为25cm ,求△ABC 各边的长.9.已知三角形三边的长分别为:5、10、a -2,求a 的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm 和6cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=2同理∠GNM =21∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,∠A =46°,∠D =50°.求∠ACB 的度数.15.已知,如图△ABC 中,三条高AD 、BE 、CF 相交于点O .若∠BAC =60°, 求∠BOC 的度数.16.已知,如图△ABC 中,∠B =65°,∠C =45°,AD 是BC 边上的高,AE 是∠BAC 的平分线.求∠DAE 的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.单元测试卷(一)参考答案:一、1.A; 2.D; 3.A; 4.C;5.B; 6.C; 7.B; 8.D;9.C(提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C; 11.D; 12.D;13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm . 4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1-时,图中共有2×k +1,即2k +1个直角三角形. 6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB .12.(1)AC+AD>CD,BC+BD>CD,两式相加:AB+BC+CA>2CD.(2)AD+CD>AC,BD+CD>BC,两式相加:AB+2CD>AC+BC.13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直.14.94°; 35.120°; 36.10°;17.∠EBC<∠DCE,而∠DCE=∠ACE,∴∠EBC<∠ACE.18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级 姓名 学号 得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .34.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥A B ,垂足是D ,则图中与∠A 相等的角是 ( )A.∠ 1 B .∠ 2 C .∠ B D .∠ 1、∠ 2和∠ B 7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D、C、F、E,则_______是△ABC中BC边上的高,_________是△ABC中AB边上的高,_________是△ABC中AC边上的高,CF是△ABC的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC的两个外角的平分线相交于点D,如果∠A=50°,那么∠D =_____.10.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC=_____.11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形. 2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BC AC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D , ∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74,∴ C B C ∠<∠<∠4.又∵ ︒=∠+∠+∠180C B A , ∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料. 理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA ,∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3ACD3. 下列条件中,能判断两个直角三角形全等的是( ) A 、一个锐角对应相等 B 、两个锐角对应相等 C 、一条边对应相等 D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B. 带②去 C. 带③去 D. 带①和②去 6.右图中三角形的个数是( )A .6 B .7 C .8 D .9 7.如果两个三角形全等,那么下列结论不正确的是( )A .这两个三角形的对应边相等B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等 8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其 中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)
, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。
【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)
【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列用木棒拼成的图形,符合三角形的概念的是( )2.如图,若△ABC≌△ADE,则下列结论中一定成立的是( ) A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED(第2题) (第4题) (第5题)3.【教材P87习题T3变式】【2022·南通】用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为( )A.1 cm B.2 cm C.3 cm D.4 cm4.【2021·毕节】将一副三角尺按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70° B.75° C.80° D.85°5.【2022·吉林第二实验中学模拟】如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是( ) A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AC与BD相交于点O,OA=OB,OC=OD,AD=BC,则图中全等三角形有( )A.1对B.2对C.3对D.4对(第6题) (第7题) (第8题)7.【2021·陕西】如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )A.60° B.70° C.75° D.85°8.【教材P111复习题T6改编】如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为( )A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一..一个△ABC的是( )A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6 10.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是___________________________________________.(第11题) (第12题) (第14题) (第15题)12.【开放题】【2022·宁夏】如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是____________(只写一个).13.【教材P86随堂练习T2变式】已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为____________.14.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD与△BDC 的周长的差是2 cm,则AB=__________.15.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.16.如图,已知边长为1的正方形ABCD中,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.(第16题) (第17题) (第18题)17.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12 (AB+AD),若∠D=115°,则∠B=________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.【2022·益阳】如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.试说明:△CED≌△ABC.20.【2022·牡丹江四中模拟】如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.21.【2021·黄石】如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)试说明:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.22.【教材P110复习题T4改编】如图,在△ABC中,AC=BC,D是边AB上一点,AE⊥CD于点E,BF⊥CD交CD的延长线于点F,若CE=BF,AE=EF+BF.(1)试说明:∠ACE=∠CBF;(2)判断直线AC与BC的位置关系,并说明理由.。
2023-2024学年七年级下册数学第3章三角形单元测试卷及答案北师大版
2023-2024学年七年级下册数学第3章三角形单元测试卷及答案北师大版一、选择题1.以下列各组长度的线段为边,能构成三角形的是( ).A.6 cm,8 cm,15 cm B.7 cm,5 cm,12 cmC.4 cm,6 cm,5 cm D.8 cm,4 cm,3 cm2.如图,△AOB≌△COD,A和C,B和D是对应顶点,若BO=6,AO=3,AB=5,则CD 的长为( ).A.10 B.8C.5 D.不能确定3.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是( ).A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC4.要使五边形木架不变形,则至少要钉上( )根木条.A.1 B.2 C.3 D.45.下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有( ).A.4个B.3个C.2个D.1个6.如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是( ).A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形7.图中全等的三角形是( ).A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ8.如图,△ABC中,∠ACB=90°,把△ABC沿AC翻折180°,使点B落在B′的位置,则关于线段AC的性质中,正确的说法是( ).A.是边BB′上的中线B.是边BB′上的高C.是∠BAB′的平分线D.以上三种性质都有二、填空题9.在△ABC中,若∠A∶∠B∶∠C=1∶3∶5,这个三角形为__________三角形.(按角的分类)10.一木工师傅有两根长分别为5 cm,8 cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有长分别为3 cm,10 cm,20 cm的三根木条,他可以选择长为__________cm 的木条.11.如图,如果AD=BC,∠1=∠2,那么△ABC≌△CDA,根据是__________.12.如图,已知∠ABC=∠DCB,现要说明△ABC≌△DCB,则还要补加一个条件是______.13.如图,△ABC中,AB=AC,AD是∠BAC的平分线,则∠ABD__________∠ACD(填“>”“<”或“=”).14.如图,长方形ABCD中(AD>AB),M为CD上一点,若沿着AM折叠,点N恰落在BC 上,则∠ANB+∠MNC=__________度.三、解答题15.如图,在△ABC中,∠BAC是钝角,完成下列画图,并用适当的符号在图中表示AC边上的高.16.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠AEC的度数.17.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.18.请你找一张长方形的纸片,按以下步骤进行动手操作:步骤一:在CD上取一点P,将角D和角C向上翻折,这样将形成折痕PM和PN,如图①所示;步骤二:翻折后,使点D,C落在原长方形所在的平面内,即点D′和C′,细心调整折痕PN,PM的位置,使PD′,PC′重合,如图②,设折角∠MPD′=∠α,∠NPC′=∠β.(1)猜想∠MPN的度数;(2)若重复上面的操作过程,并改变∠α的大小,猜想:随着∠α的大小变化,∠MPN 的度数怎样变化?参考答案1.C 点拨:此题考查了三角形的三边关系.A.6+8<15,不能组成三角形;B.7+5=12,不能组成三角形;C.4+5>6,能够组成三角形;D.4+3<8,不能组成三角形.2.C 点拨:因为△AOB≌△COD,A和C,B和D是对应顶点,所以AB=CD.因为AB=5,所以CD=5.3.C 点拨:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS,ASA,SAS,SSS,而“SSA”无法证明三角形全等.4.B5.B 点拨:错误的说法有①②④,共3个.6.C 点拨:通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.7.D 点拨:A选项中条件不满足“SAS”,不能判定两三角形全等;B选项中条件对应边不相等,不能判定两三角形全等;C选项中条件不满足“SAS”,不能判定两三角形全等;D选项中条件满足“SAS”,能判定两三角形全等.8.D 点拨:本题考查的是图形的翻折变换及全等三角形的性质,熟知图形翻折变换的性质是解答此题的关键.9.钝角点拨:因为∠A∶∠B∶∠C=1∶3∶5,∠A+∠B+∠C=180°,所以∠A=20°,∠B=60°,∠C=100°.因为∠C>90°,所以这个三角形是钝角三角形.10.10 点拨:已知三角形的两边长分别是5 cm和8 cm,则第三边长一定大于3 cm 且小于13 cm.故他可以选择其中长为10 cm的木条.11.SAS 点拨:因为AD=BC,∠1=∠2,AC=CA,所以△ABC≌△CDA(SAS).12.∠A=∠D或AB=CD或∠ACB=∠DBC13.=点拨:因为△ABC中,AB=AC,AD是∠BAC的平分线,所以∠BAD=∠CAD.又因为AD=AD,所以△ABD≌△ACD(SAS).所以∠ABD=∠ACD.14.90 点拨:根据折叠的性质,有∠ANM=∠ADM=90°,故∠ANB+∠MNC=180°-∠ANM=90°.15.解:如图,BE即为AC边上的高.16.解:因为AD⊥BC,∠B=60°,∠BAC=80°,所以∠BAD=30°,∠DAC=50°,∠C=40°.因为AE平分∠DAC,所以∠DAE=∠EAC=25°,所以∠AEC=180°-∠C-∠EAC=180°-25°-40°=115°.17.解:因为AB=AC,BD=CE,所以AD=AE.又因为∠A=∠A,所以△ABE≌△ACD(SAS).18.解:(1)因为∠α=∠MPD,∠β=∠NPC,又因为∠α+∠β+∠MPD+∠NPC=180°,所以∠α+∠β=90°,即∠MPN=90°.(2)∠MPN的度数不变,仍为90°.一、选择题(每小题3分,共30分)1. 下列命题中真命题的个数为( )⑴形状相同的两个三角形是全等三角形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.A.3B.2C.1D.02. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE4. 已知两个直角三角形全等,其中一个直角三角形的面积为3,斜边为4,则另一个直角三角形斜边上的高为( )A. B. C. D.65. 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )A. B.C. D.6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠ 2第3题图第2题图第6题图C .△ABC ≌△CED D .∠1=∠28.如图所示,两条笔直的公路、相交于点O ,村庄C 的村民在公路的旁边建三个加工厂 A 、B 、D ,已知AB=BC=CD=DA=5 km ,村庄C 到公路的距离为4 km ,则村庄C 到公路的距离 是( )A.3 kmB.4 kmC.5 kmD.6 km9.如图所示,在△ABC 中,AB=AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌ △BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11. 若一个三角形的三个内角之比为4∶3∶2,则这个三角形的最大内角为 . 12. 如图所示,在△ABC 中,AB=AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F .则下面结论中①DA 平分∠EDF ;②AE=AF ,DE=DF ;③AD 上的点到B 、C 两点的距离相等;④图中共有3对全等三角形,正确的有: .第9题图第8题图第7题图 第10题图 第13题图第12题图13. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14. 如图所示,在△ABC 中,∠ABC = ∠ACB ,∠ A = 40°,P 是△ABC 内一点,且∠1 = ∠2.则∠BPC=________.15.如图所示,AB=AC ,AD=AE ,∠BAC=∠DAE ,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC 中,∠C=90°,AD 平分∠CAB ,BC=8 cm ,BD=5 cm ,那么D 点到直线AB 的距离是 cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,则△ABC 的面积是 .18. 如图所示,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC= 15 cm ,则△DEB 的周长为 cm . 三、解答题(共46分)19.(6分) 如图所示,四边形ABCD 的对角线AC 、BD 相交于点O ,△ABC ≌△BAD . 求证:(1)OA=OB ;(2)AB ∥CD .20. (8分)如图所示,△ABC ≌△ADE ,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB 和∠DGB 的度数.21. (6分)如图所示,P 是∠BAC 内的一点,PE ⊥AB ,PF ⊥AC ,垂足分别为点E ,F ,AE=AF . 求证:(1)PE=PF ;2)点P 在∠BAC 的平分线上.22. (8分)认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题. 探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,通过分析发现第16题图 第17题图 第21题图第18题图 第20题图 第15题图第19题图21P CBA 第14题图∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=.探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A 有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A 有怎样的关系?(只写结论,不需证明)结论:.第22题图23. (6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.(1)当汽车运动到点D时,刚好BD=CD,连接线段AD,AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?第23题图(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段呢?在△ABC中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段在△ABC中有几条?24. (6分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图①),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图②),找出图中与BE 相等的线段,并证明.第24题图25. (6分)已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).参考答案1. C 解析:(1)形状相同但大小不一样的两个三角形也不是全等三角形,所以(1)是假命题;(2)全等三角形中互相重合的边叫做对应边,互相重合的角叫做对应角,如果两个三角形是任意三角形,就不一定有对应角或对应边了,所以(2)是假命题;(3)是真命题,故选C.2. B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴ AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:设面积为3的直角三角形斜边上的高为h,则×4h=3,∴ h=.∵两个直角三角形全等,∴另一个直角三角形斜边上的高也为.故选C.5. C 解析:∵42+92=97<122,∴三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.点评:本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形内部,当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部,当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.6. B 解析:∵ BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵ CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.7. D 解析:∵ AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED中,∴△ABC≌△CED,故B、C选项正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确.∵ AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.8. B 解析:如图所示,连接AC,作CF ⊥,CE ⊥.∵ AB=BC=CD=DA=5 km,∴△ABC≌△ADC,∴∠CAE=∠CAF,∴ CE=CF=4 km.故选B.9. D 解析:∵ AB=AC,∴∠ABC=∠ACB.∵ BD平分∠ABC,CE平分∠ACB,第8题答图∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE (ASA);由①可得CE=BD, BE=CD,∴③△BDA≌△CEA (SAS);又∠EOB=∠DOC,所以④△BOE≌△COD (AAS).故选D.10. C 解析:A.∵∥,∴∠=∠.∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等;B.∵=,∠=∠,∴△≌△,故本选项可以证出全等;C.由∠=∠证不出△≌△,故本选项不可以证出全等;D.∵∠=∠,∠=∠,,∴△≌△,故本选项可以证出全等.故选C.11.80°解析:这个三角形的最大内角为180°×=80°.12. ①②③④解析:∵在△ABC中,AB=AC,AD是△ABC的角平分线,已知DE⊥AB,DF ⊥AC,可证△ADE≌△ADF(AAS).故有∠EDA=∠FDA,AE=AF,DE=DF,①②正确;AD是△ABC的角平分线,在AD上可任意设一点M,可证△BDM≌△CDM,∴ BM=CM,∴ AD 上的点到B、C两点距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①第13题答图②③④.13. 135°解析:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE.又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.14. 110°解析:因为∠A=40°,∠ABC = ∠ACB,所以∠ABC = ∠ACB=(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB=70°,所以∠2+∠PCB=70°,所以∠BPC=180°-70°=110°.15. 55°解析:在△ABD与△ACE中,∵∠1+∠CAD=∠CAE +∠CAD,∴∠1=∠CAE.又∵ AB=AC,AD=AE,∴△ABD ≌△ACE(SAS).∴∠2=∠ABD.∵∠3=∠1+∠ABD=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.16. 3 解析:由∠C=90°,AD平分∠CAB,作DE⊥AB于E,所以D点到直线AB的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8 cm,BD=5 cm,所以DE=DC=3 cm.所以D点到直线AB的距离是3 cm.17. 31.5 解析:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵ OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴ OD=OE=OF.∴=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.第16题答图第17题答图18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB的周长=AB+BE=AC+BE=EC+BE=15(cm).19. 分析:(1)要证OA=OB,由等角对等边需证∠CAB=∠DBA,由已知△ABC≌△BAD即可证.(2)要证AB∥CD,根据平行线的性质需证∠CAB=∠ACD,由已知和(1)可证∠OCD=∠ODC,又因为∠AOB=∠COD,所以可证∠CAB=∠ACD,即AB∥CD获证.证明:(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴ OA=OB.(2)∵△ABC≌△BAD,∴ AC=BD.又∵ OA=OB,∴ AC-OA=BD-OB,即:OC=OD,∴∠OCD=∠ODC.∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴ AB∥CD.20. 分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB-∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.21. 证明:(1)连接AP,因为AE=AF,AP=AP,PE⊥AB,PF⊥AC,所以Rt△APE≌Rt△APF,所以PE=PF.(2)因为Rt△APE≌Rt△APF,所以∠FAP=∠EAP,所以点P在∠BAC的平分线上.22. 分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠O的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.23. 分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△ADC的面积相等.(2)AE是△ABC中∠BAC的角平分线,三角形中角平分线有三条.(3)AF是△ABC中BC边上的高线,高线有时在三角形外部,三角形中有三条高线.24. 解:⑴因为直线BF垂直于CE于点F,所以∠CFB=90°,所以∠ECB+∠CBF=90°.又因为∠ACE +∠ECB=90°,所以∠ACE =∠CBF .因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.又因为点D 是AB 的中点,所以∠DCB=45°.因为∠ACE =∠CBF ,∠DCB=∠A ,AC=BC ,所以△CAE ≌△BCG ,所以AE=CG.(2)BE=CM,证明:∵ ∠ACB=90°,∴ ∠ACH +∠BCF=90°.∵ CH ⊥AM ,即∠CHA=90°,∴ ∠ACH +∠CAH=90°,∴∠BCF=∠CAH.∵ CD 为等腰直角三角形斜边上的中线,∴ CD=AD.∴ ∠ACD=45°.△CAM 与△BCE 中,BC=CA ,∠BCF=∠CAH,∠CBE=∠ACM,∴ △CAM ≌△BCE,∴ BE=CM.25. 已知:线段a 和∠α如图(1)所示.求作Rt △ABC 使α∠=∠︒=∠=A C a BC ,90,.作法:(1)作∠α的余角∠β.(2)作∠MBN =∠β.(3)在射线BM 上截取BC =a .(4)过点C 作CA ⊥BM ,交BN 于点A ,如图(2).∴ △ABC 就是所求的直角三角形.(1) (2)第25题答图一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm 和7cm ,则它的周长是 _________ cm .2.若∠A=∠B=2∠C ,则△ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直角”)3.如图,△ABC ≌△DEF ,△ABC 的周长为25cm ,AB=6cm ,CA=8cm ,则DE= _________ ,DF= _________ ,EF= _________ .4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接_________ ,从而可证_________ 和_________ 全等.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=_________ .6.如图,CA⊥BE,且△ABC≌△ADE,则BC与DE的关系是_________ .7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是_________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________ ,根据是_________ .9.如图,△ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB= _________ .10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5= _________ .二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5 B.3,7,10 C.3,5,9 D.4,5,7 12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.A B=AC B.B D=CD C.∠B=∠C D.∠BDA=∠CDA13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交BC,AB,BC于点C,D,E,则下列说法中不正确的是()A.A C是△ABC和△ABE的高B.D E,DC都是△BCD的高C.D E是△DBE和△ABE的高D.A D,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.16.根据下列已知条件,能唯一画出△ABC的是()A.A B=3,BC=4,AC=8 B.A B=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=617.下列各组条件中,能判定△ABC≌△DEF的是()A.A B=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.A B=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F18.如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.24.如图,△ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(1)证明△ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整.)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17 cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.2.若∠A=∠B=2∠C,则△ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.3.如图,△ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE= 6cm ,DF= 8cm ,EF= 11cm .考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC ,从而可证△ABC 和△ADC 全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为AC,△ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.6.如图,CA⊥BE,且△ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC ⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16 .考点:正方形的性质;全等三角形的判定与性质.分析:由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S△AEB=S△AFD,那么它们都加上四边形ABCF 的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.解答:解:∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=16.故答案为:16.点评:本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌△ABC ,根据是HL .考点:全等三角形的判定.分析:根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED和△ABC全等.解答:解:∵BA∥CD,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°,∵在Rt△CED和Rt△ABC中,,∴△CED≌△ABC(HL).故答案为:△ABC,HL.点评:本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.9.如图,△ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB= 10 .考点:等腰三角形的性质.分析:根据三角形中线的定义可得AD=CD,然后求出△ABD与△BDC的周长的差=AB﹣BC,再代入数据进行计算即可得解.解答:解:∵BD是AC边上的中线,∴AD=CD,∴△ABD与△BDC的周长的差=(AB+AD+BD)﹣(BC+CD+BD)=AB﹣BC,∵△ABD与△BDC的周长的差是2,BC=8,∴AB﹣8=2,∴AB=10.故答案为:10.点评:本题考查了等腰三角形腰上的中线的定义,求出△ABD与△BDC的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,则其面积S5= 195.考点:三角形的面积.专题:压轴题;操作型.分析:根据高的比等于面积比推理出△A1B1C的面积是△A1BC面积的2倍,则△A1B1B的面积是△A1BC面积的3倍…,以此类推,得出△A2B2C2的面积.解答:解:连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,因而若过点B,A1作△ABC与△AA1C的AC边上的高,则高线的比是1:3,因而面积的比是1:3,则△A1BC的面积是△ABC的面积的2倍,设△ABC的面积是a,则△A1BC的面积是2a,同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,则△A1B1B的面积是6a,同理△B1C1C和△A1C1A的面积都是6a,△A1B1C1的面积是19a,即△A1B1C1的面积是△ABC的面积的19倍,同理△A2B2C2的面积是△A1B1C1的面积的19倍,即△A1B1C1的面积是19,△A2B2C2的面积192,依此类推,△A5B5C5的面积是S5=195=2476099.点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5 B.3,7,10 C.3,5,9 D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.A B=AC B.B D=CD C.∠B=∠C D.∠BDA=∠CDA考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本。
{更新}2020最新北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )A.三角形内部B.三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是 ( )A.4、5、6 B.6、8、15C.5、7、12 D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A.0°<α<90°B.60°<α<90°C.60°<α<180°D.60°≤α<90°4.下列判断正确的是 ( )A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6 B.6<x<12C.0<x<12 D.x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三角形 ( ) A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7.三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A.三条中线交点B.三条角平分线交点C.三条高线交点D.三条高线所在直线交点8.已知等腰三角形的一个角为75°,则其顶角为 ( )A.30°B.75°C.105°D.30°或75°9.如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ( )A.一处B.二处C.三处D.四处10.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是 ( ) A.锐角三角形B.直角三角形C.钝角三角形D.根本无法确定二、填空题1.如果△ABC中,两边a=7cm,b=3cm,则c的取值范围是_________;第三边为奇数的所有可能值为_________;周长为偶数的所有可能值为_________.2.四条线段的长分别是5cm,6cm,8cm,13cm,以其中任意三条线段为边可以构成______个三角形.3.过△ABC的顶点C作边AB的垂线将∠ACB分为20°和40°的两个角,那么∠A,∠B中较大的角的度数是____________.4.在Rt△ABC中,锐角∠A的平分线与锐角∠B的平分线相交于点D,则∠ADB=______.5.如图5—125,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.6.三角形的一边上有一点,它到三个顶点的距离相等,则这个三角形是_______三角形.7.△ABC中,AB=5,BC=3,则中线BD的取值范围是_________.8.如图5—126,△ABC中,∠C=90°,CD⊥AB,CM平分AB,CE平分∠DCM,则∠ACE的度数是______.9.已知:如图5—127,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为______.10.每一个多边形都可以按图5—128的方法割成若干个三角形.而每一个三角形的三个内角的和是180°.按图5—127的方法,十二边形的内角和是__________度.三、解答题1,已知:如图5—129,△ABC的∠B、∠C的平分线相交于点D,过D作MN∥BC交AB、AC分别于点M、N,求证:BM+CN=MN2.已知:如图5—130,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD =1:2,那么CE是AB边上的中线对吗?说明理由.3.已知:如图5—131,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.4.已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).5.已知:如图5—132,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ ∥AB .6.已知:如图5—133,AB =DE ,CD =FA ,∠A =∠D ,∠AFC =∠DCF ,则BC =EF .你能说出它们相等的理由吗?【参考答案】一、1.A 2.A 3.D 4.D 5.B 6.A 7.B 8.D 9.A 10.D . 二、1.cm c cm 104<<,5cm 、7cm 、9cm ,16cm 或18cm ; 2.2; 3.70° 4.︒135 5.AB =DE (或∠B =∠E 或∠C =∠F ); 6.直角; 7.41<<BD ; 8.︒45; 9.14cm 10.1800.三、1.证明:∵ BD 、CF 平分∠ABC 、∠ACB . ∴ ∠1=∠2,∠3=∠4. ∵ MN ∥BC ,∴ ∠6=∠2,∠3=∠5. ∴ ∠1=∠6,∠4=∠5. ∴ BM =DM ,CN =DN . ∴ BM +CN =DM +DN . 即 BM +CN =MN .2.解:CE 是AB 边上的中线.理由:∵ ∠ACB =90°,∠ACD:∠BCD =1:2, ∴ ∠ACD =30°,∠BCD =60°. ∵ CE 平分∠BCD , ∴ ∠DCE =∠BCE =30°.∵ CD ⊥AB ,∠ACD =30°,∠BCD =60°, ∴ ∠A =60,∠B =30∴ ∠A =∠ACD +∠DCE =∠ACE ,∠B =∠BCE . ∴ AE =EC ,BE =EC . ∴ AE =BE .所以CE 为AB 边上的中线. 3.证明:延长BD 交AC 于M 点,延长CE 交BD 的延长线于点N . 在△ABM 中,BM AM AB >+, 在△CNM 中,NC MC NM >+,∴ NC BM MC NM AM AB +>+++. ∵ NM BN BM AC MC AM +==+,, ∴ NC NM BN NM AC AB ++>++.∴ NC BN AC AB +>+. ① 在△BNC 中,EC NE DN BD NC BN +++=+ ② 在△DNE 中,DE NE DN >+ ③ 由②、③得:EC DE BD NC BN ++>+ ④ 由①、④得:EC DE BD NC BN AC AB ++>+>+4.已知:线段a 和∠α如下图(1).求作Rt △ABC 使α∠=∠︒=∠=A C a BC ,90,. 作法:(1)作∠α的余角∠β. (2)作∠MBN =∠β. (3)在射线BM 上截取BC =a .(4)过点C 作CA ⊥BM ,交BN 于点A ,如图(2). ∴ △ABC 就是所求的直角三角形.5.证明:∵ △ACM 和△BCN 都是正三角形, ∴ ∠ACM =∠BCN =60°,AC =CM ,BC =CN . ∵ 点C 在线段AB 上,∴ ∠ACM =∠BCN =∠MCN =60°. ∴ ∠ACM +∠MCN =∠BCN +∠MCN =120°. 即 ∠NCA =∠BCM =120°.在△ACN 和△MCB 中⎪⎩⎪⎨⎧=∠=∠=,,,CB CN BCM ACN CM AC ∴ △ACN ≌△MCB (SAS ). ∴ ∠ANC =∠MBC . 在△PCN 和△QCB 中⎪⎩⎪⎨⎧=∠=∠∠=∠,,,CB CN BCN MCN MBC ANC ∴ △PCN ≌△QCB (AAS ). ∴ PC =QC . ∵ ∠PCQ =60°∴ △PCQ 是等边三角形. ∴ ∠PQC =60° ∴ ∠PQC =∠QCB . ∴ PQ ∥AB .6.解:连结CE 、BF ,如图. 在△ABF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=,,,CD FA D A DE AB ∴ △ABF ≌△DEC (SAS ). ∴ ∠3=∠4,BF =EC . ∵ ∠AFC =∠DCF ,∴ ∠AFC -∠3=∠DCF -∠4. 即 ∠1=∠2. 在△BCF 和△EFC 中⎪⎩⎪⎨⎧=∠=∠=,,21,CF FC EC BF ∴ △BCF ≌△EFC (SAS ). ∴ BC =EF .。
最新北师大版七年级下册三角形各章节测试试题+单元测试试题以及答案
最新北师⼤版七年级下册三⾓形各章节测试试题+单元测试试题以及答案
最新七年级下册三⾓形各章节测试试题
1、三边关系:三⾓形任意两边之和⼤于第三边,任意两边之差⼩于第三边。
⽤字母可表⽰为a+b>c,a+c>b,b+c>a;a-b
2、判断三条线段a,b,c能否组成三⾓形⽅法:当两条较短线段之和⼤于最长线段时,则可以组成三⾓形。
3、确定第三边(未知边)的取值范围时,它的取值范围为⼤于两边的差⽽⼩于两边的和,即a b c a b
-<<+.
1、下列长度的三条线段能组成三⾓形的是。
A.1,2,3 B.4,5,9
C.20,15,8 D.5,15,8
2、已知等腰三⾓形ABC,腰AB=8,腰BC=5,这个等腰三⾓形的周长是。
3、如果⼀个三⾓形的两边长分别是2和5,则第三边长可能是()。
A、2
B、3
C、5
D、8
4、现有两根⽊棒的长度分别40厘⽶和50厘⽶,若要钉成⼀个直⾓三⾓形框架,那么所需⽊棒的长⼀定为( )
A、10厘⽶
B、40厘⽶
C、90厘⽶
D、100厘⽶
上⼀页下⼀页。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)
级数学下册第3章《三角形》单元测试试卷及答案(5)一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( ) A.三角形内部B.三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是 ( )A.4、5、6 B.6、8、15C.5、7、12 D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A.0°<α<90°B.60°<α<90°C.60°<α<180°D.60°≤α<90°4.下列判断正确的是 ( )A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6 B.6<x<12C.0<x<12 D.x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三角形 ( ) A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7.三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A.三条中线交点B.三条角平分线交点C.三条高线交点D.三条高线所在直线交点8.已知等腰三角形的一个角为75°,则其顶角为 ( )A.30°B.75°C.105°D.30°或75°9.如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ( ) A.一处B.二处C.三处D.四处10.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是( )A.锐角三角形B.直角三角形C.钝角三角形D.根本无法确定。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线 6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线 6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线 6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)(新审)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。
2019-2020北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(5)一、选择题1.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在 ( )A.三角形内部B.三角形的一边上C.三角形外部D.三角形的某个顶点上2.下列长度的各组线段中,能组成三角形的是 ( )A.4、5、6 B.6、8、15C.5、7、12 D.3、9、133.在锐角三角形中,最大角α的取值范围是 ( )A.0°<α<90°B.60°<α<90°C.60°<α<180°D.60°≤α<90°4.下列判断正确的是 ( )A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一条边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等5.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是( )A.x<6 B.6<x<12C.0<x<12 D.x>126.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A.则此三角形 ( ) A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形7.三角形内有一点,它到三边的距离相等,则这点是该三角形的 ( )A.三条中线交点B.三条角平分线交点C.三条高线交点D.三条高线所在直线交点8.已知等腰三角形的一个角为75°,则其顶角为 ( )A.30°B.75°C.105°D.30°或75°9.如图5—124,直线l、l'、l''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ( )A.一处B.二处C.三处D.四处10.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是 ( ) A.锐角三角形B.直角三角形C.钝角三角形D.根本无法确定二、填空题1.如果△ABC中,两边a=7cm,b=3cm,则c的取值范围是_________;第三边为奇数的所有可能值为_________;周长为偶数的所有可能值为_________.2.四条线段的长分别是5cm,6cm,8cm,13cm,以其中任意三条线段为边可以构成______个三角形.3.过△ABC的顶点C作边AB的垂线将∠ACB分为20°和40°的两个角,那么∠A,∠B中较大的角的度数是____________.4.在Rt△ABC中,锐角∠A的平分线与锐角∠B的平分线相交于点D,则∠ADB=______.5.如图5—125,∠A=∠D,AC=DF,那么需要补充一个直接条件________(写出一个即可),才能使△ABC≌△DEF.6.三角形的一边上有一点,它到三个顶点的距离相等,则这个三角形是_______三角形.7.△ABC中,AB=5,BC=3,则中线BD的取值范围是_________.8.如图5—126,△ABC中,∠C=90°,CD⊥AB,CM平分AB,CE平分∠DCM,则∠ACE的度数是______.9.已知:如图5—127,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6cm,AC=8cm,则△ADE的周长为______.10.每一个多边形都可以按图5—128的方法割成若干个三角形.而每一个三角形的三个内角的和是180°.按图5—127的方法,十二边形的内角和是__________度.三、解答题1,已知:如图5—129,△ABC的∠B、∠C的平分线相交于点D,过D作MN∥BC交AB、AC分别于点M、N,求证:BM+CN=MN2.已知:如图5—130,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD =1:2,那么CE是AB边上的中线对吗?说明理由.3.已知:如图5—131,在△ABC中有D、E两点,求证:BD+DE+EC<AB+AC.4.已知一直角边和这条直角边的对角,求作直角三角形(用尺规作图,不写作法,但要保留作图痕迹).5.已知:如图5—132,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:PQ ∥AB .6.已知:如图5—133,AB =DE ,CD =FA ,∠A =∠D ,∠AFC =∠DCF ,则BC =EF .你能说出它们相等的理由吗?【参考答案】一、1.A 2.A 3.D 4.D 5.B 6.A 7.B 8.D 9.A 10.D . 二、1.cm c cm 104<<,5cm 、7cm 、9cm ,16cm 或18cm ; 2.2; 3.70° 4.︒135 5.AB =DE (或∠B =∠E 或∠C =∠F ); 6.直角; 7.41<<BD ; 8.︒45; 9.14cm 10.1800.三、1.证明:∵ BD 、CF 平分∠ABC 、∠ACB . ∴ ∠1=∠2,∠3=∠4. ∵ MN ∥BC ,∴ ∠6=∠2,∠3=∠5. ∴ ∠1=∠6,∠4=∠5. ∴ BM =DM ,CN =DN . ∴ BM +CN =DM +DN . 即 BM +CN =MN .2.解:CE 是AB 边上的中线.理由:∵ ∠ACB =90°,∠ACD:∠BCD =1:2, ∴ ∠ACD =30°,∠BCD =60°. ∵ CE 平分∠BCD , ∴ ∠DCE =∠BCE =30°.∵ CD ⊥AB ,∠ACD =30°,∠BCD =60°, ∴ ∠A =60,∠B =30∴ ∠A =∠ACD +∠DCE =∠ACE ,∠B =∠BCE . ∴ AE =EC ,BE =EC . ∴ AE =BE .所以CE 为AB 边上的中线. 3.证明:延长BD 交AC 于M 点,延长CE 交BD 的延长线于点N . 在△ABM 中,BM AM AB >+, 在△CNM 中,NC MC NM >+,∴ NC BM MC NM AM AB +>+++. ∵ NM BN BM AC MC AM +==+,, ∴ NC NM BN NM AC AB ++>++.∴ NC BN AC AB +>+. ① 在△BNC 中,EC NE DN BD NC BN +++=+ ② 在△DNE 中,DE NE DN >+ ③ 由②、③得:EC DE BD NC BN ++>+ ④ 由①、④得:EC DE BD NC BN AC AB ++>+>+ 4.已知:线段a 和∠α如下图(1).求作Rt △ABC 使α∠=∠︒=∠=A C a BC ,90,. 作法:(1)作∠α的余角∠β. (2)作∠MBN =∠β. (3)在射线BM 上截取BC =a .(4)过点C 作CA ⊥BM ,交BN 于点A ,如图(2). ∴ △ABC 就是所求的直角三角形.5.证明:∵ △ACM 和△BCN 都是正三角形, ∴ ∠ACM =∠BCN =60°,AC =CM ,BC =CN . ∵ 点C 在线段AB 上,∴ ∠ACM =∠BCN =∠MCN =60°. ∴ ∠ACM +∠MCN =∠BCN +∠MCN =120°. 即 ∠NCA =∠BCM =120°.在△ACN 和△MCB 中⎪⎩⎪⎨⎧=∠=∠=,,,CB CN BCM ACN CM AC ∴ △ACN ≌△MCB (SAS ). ∴ ∠ANC =∠MBC . 在△PCN 和△QCB 中⎪⎩⎪⎨⎧=∠=∠∠=∠,,,CB CN BCN MCN MBC ANC ∴ △PCN ≌△QCB (AAS ). ∴ PC =QC . ∵ ∠PCQ =60°∴ △PCQ 是等边三角形. ∴ ∠PQC =60° ∴ ∠PQC =∠QCB . ∴ PQ ∥AB .6.解:连结CE 、BF ,如图. 在△ABF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=,,,CD FA D A DE AB ∴ △ABF ≌△DEC (SAS ). ∴ ∠3=∠4,BF =EC . ∵ ∠AFC =∠DCF ,∴ ∠AFC -∠3=∠DCF -∠4. 即 ∠1=∠2. 在△BCF 和△EFC 中⎪⎩⎪⎨⎧=∠=∠=,,21,CF FC EC BF ∴ △BCF ≌△EFC (SAS ). ∴ BC =EF .。
最新北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)
北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(6)一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A .10 B .12 C .14 D.162.在△ABC 中,AB =4a ,BC =14,AC =3a .则a 的取值范围是 ( ) A .a >2 B .2<a <14 C .7<a <14 D .a <14 3.一个三角形的三个内角中,锐角的个数最少为 ( ) A .0 B .1 C .2 D .3 4.下面说法错误的是 ( )A .三角形的三条角平分线交于一点B .三角形的三条中线交于一点C .三角形的三条高交于一点D .三角形的三条高所在的直线交于一点 5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( ) A .中线 B .角平分线 C .高线 D .三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D ,则图中与∠A 相等的角是 ( )A.∠1 B .∠2 C .∠B D .∠1、∠2和∠B7.点P 是△ABC 内任意一点,则∠APC 与∠B 的大小关系是 ( ) A .∠APC>∠B B .∠APC=∠B C .∠APC<∠B D .不能确定 8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( )A .M >0B .M =0C .M <0D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________. 3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________. 5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c≥b≥a>0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A-∠B=30°、∠C=4∠B,则∠C=________.8.如图5—13,在△ABC 中,AD⊥BC,GC⊥BC,CF⊥AB,BE⊥AC,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A=50°,那么∠D=_____.10.如图5—15,△ABC 中,∠A=60°,∠ABC、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC=_____. 11.如图5—16,该五角星中,∠A+∠B+∠C+∠D+∠E=________度.12.等腰三角形的周长为24cm,腰长为xcm,则x的取值范围是________.三、解答题1.如图5—17,点B、C、D、E共线,试问图中A、B、C、D、E五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P是△ABC内任一点,求证:AB+AC>BP+PC.10.如图5—25,豫东有四个村庄A、B、C、D.现在要建造一个水塔P.请回答水塔P应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100; 8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线. 3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm . ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC .又∵ AE 平分∠BAC .∴ ︒=︒⨯=∠=∠21422121BAC BAE . ∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE .6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21. 即CD ⨯⨯=132130. ∴ ()cm CD 1360=. 7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠. 8.∵ A C ∠=∠74, ∴ C A ∠=∠74, ∴C B C ∠<∠<∠74. 又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C . ∴ C B ∠-︒=∠711180, ∵ C C C ∠<∠-︒<∠71118074, ∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数, ∴ ∠C 的度数为7的倍数. ∴ ︒=∠77C ,∴ ︒=∠=∠4474C A . 9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+.①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+.10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ②①+②得DP+A+P+>'+'.+'+'BAPBPCPPPDCP∵点P'是任意的,代表一般性,∴线段AC和BD的交点处P到4个村的距离之和最小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。