初中数学习题精选13

合集下载

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)

初中数学:分式方程习题精选(附参考答案)1.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动,已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵。

求七年级年级平均每小时植树多少棵?设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x2.若关于x 的方程2x =m2x+1无解,则m 的值为( ) A .0 B .4或6 C .6D .0或43.解分式方程2x −1x+1=0去分母时,方程两边同乘的最简公分母是_____________. 4.分式方程3−x x−4+14−x=1的解是________.5.甲、乙两人做某种机器零件,甲每小时比乙每小时多做10个,甲做160个所用时间与乙做140个所用时间相等,甲、乙两人每小时分别做多少个?设甲每小时做x 个,则可列分式方程为__________. 6.(1)解方程:xx+1=2x 2−1(2)解方程:1x−1+1=32x−27.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动。

甲、乙两班在一次体验挖土豆的活动中,甲班挖1 500千克土豆与乙班挖1 200千克土豆所用的时间相同。

已知甲班平均每小时比乙班多挖100千克土豆,问:乙班平均每小时挖多少千克土豆?8.已知点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程x+1x−a =2的解是( ) A .x =5 B .x =1 C .x =3D .不能确定9.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个。

设原计划每天生产x 个,根据题意可列分式方程为( ) A .20x+10x+4=15 B .20x−10x+4=15 C .20x+10x−4=15 D .20x−10x−4=1510.照相机成像应用了一个重要原理,用公式1f =1u +1v (v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离。

初中数学浙教版七年级上册第2章 有理数的运算2.2 有理数的减法-章节测试习题(13)

初中数学浙教版七年级上册第2章 有理数的运算2.2 有理数的减法-章节测试习题(13)

章节测试题1.【答题】﹣2﹣1的结果是()A. ﹣1B. ﹣3C. 1D. 3【答案】B【分析】本题考查有理数的减法.【解答】根据有理数的减法法则可得:原式=-2+(-1)=-3,选B.2.【答题】计算2﹣3的结果是()A. ﹣5B. ﹣1C. 1D. 5【答案】B【分析】本题考查有理数的减法.【解答】2﹣3=2+(﹣3)=﹣1.选B.3.【答题】桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是()A. ﹣8℃B. 6℃C. 7℃D. 8℃【答案】D【分析】本题考查有理数的减法.【解答】7﹣(﹣1)=7+1=8℃.选D.4.【答题】五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2015年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是()A. 纽约时间2015年6月16日晚上22时B. 多伦多时间2015年6月15日晚上21时C. 伦敦时间2015年6月16日凌晨1时D. 汉城时间2015年6月16日上午8时【答案】C【分析】本题考查了数轴,解题时要把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.【解答】选项A,由数轴可知,纽约时间比北京早:8+5=13个小时,可得当北京时间2015年6月16日9时,纽约时间是2015年6月15日20时,选项A错误;选项B,由数轴可知,多伦多时间比北京早:8+4=12个小时,可得当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,选项B错误;选项C,由数轴可知,伦敦时间比北京早:8-0=8个小时,可得当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,选项C正确;选项D,由数轴可知,汉城时间比北京晚:9-8=1个小时,可得当北京时间2015年6月16日9时,汉城时间是2015年6月16日10时,选项D错误;选C.5.【答题】与﹣3的差为0的数是()A. 3B. ﹣3C.D.【答案】B【分析】本题考查有理数的减法.【解答】根据题意可得,0+(-3)=-3,∴与﹣3的差为0的数是-3,选B.6.【答题】计算:0﹣7=______.【答案】﹣7【分析】本题考查有理数的减法.【解答】根据有理数的减法法则即可得0﹣7=0+(﹣7)=﹣7.7.【答题】计算:3﹣(﹣1)=______.【答案】4【分析】本题考查有理数的减法.【解答】根据有理数的减法法则可得:原式=3+1=4.8.【答题】计算:=______.【答案】﹣1【分析】本题考查有理数的减法.【解答】3﹣4=3+(﹣4)=﹣1.故答案为﹣1.9.【答题】计算:2000﹣2015=______.【答案】-15【分析】本题考查有理数的减法.【解答】2000﹣2015=﹣15.故答案为﹣15.10.【答题】|﹣7﹣3|=______.【答案】10【分析】本题考查绝对值,有理数的减法.【解答】原式=.11.【答题】(-2)-(-5)=(-2)+(______);0-(-4)=0+(______);(-6)-3=(-6)+(______);1-(+37)=1+(______).【答案】+5 +4 -3 -37【分析】本题考查了有理数的减法法则,解题时利用有理数的减法法则变形,关键是用减去一个数等于加上这个数的相反数变形.【解答】根据有理数的减法法则,减去一个数等于加上这个数的相反数,直接变形即可得到(-2)-(-5)=(-2)+(+5);0-(-4)=0+(+4);(-6)-3=(-6)+(-3);1-(+37)=1+(-37).故答案为:+5,+4,-3,-37.12.【答题】a、b、c在数轴上的位置如图所示:则a-b______0;b-c______0;-b-c______0;a-(-b)______0(填>,<或=)【答案】>>><【分析】本题考查有理数的减法.【解答】根据数轴可知c<b<0<a,因此根据有理数的加减法则可得a-b>0,b-c>0,-b-c=-(b+c)>0,a-(-b)=a+b<0.故答案为:>;>;>;<.13.【答题】一个数加-0.6和为-0.36,那么这个数是()A. -0.24B. -0.96C. 0.24D. 0.96【答案】C【分析】本题考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.【解答】根据加数+加数=和,可得-0.36-(-0.6)=-0.36+0.6=0.24.选C.14.【答题】下列算式正确的是()A. (-14)-5=-9B. 0-(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【分析】本题考查有理数的减法.【解答】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.选B.15.【答题】较小的数减去较大的数是()A. 零B. 正数C. 负数D. 零或负数【答案】C【分析】本题考查有理数的减法.【解答】根据较小的数减去较大的数,差一定是负数,可知C正确.选C.16.【答题】下列结论中,正确的是()A. 有理数减法中,被减数不一定比减数大B. 减去一个数,等于加上这个数C. 零减去一个数,仍得这个数D. 两个相反数相减得0【答案】A【分析】本题考查的是有理数的减法.解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.【解答】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数相反数,本选项错误;D.两个相反数相加得0,本选项错误;选A.17.【答题】把+3-(+2)-(-4)+(-1)写成省略括号的和的形式是()A. -3-2+4-1B. 3-2+4-1C. 3-2-4-1D. 3+2-4-1【答案】A【分析】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.【解答】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3-(+2)-(-4)+(-1)=+3-2+4-1.选A.18.【答题】哈尔滨市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差是()A. -2℃B. 8℃C. -8℃D. 2℃【答案】B【分析】本题考查有理数的减法.【解答】根据题意,用最高温度减去最低温度即可得到:5-(-3)=5+3=8.选B.19.【题文】计算:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11);(12);(13);(14);(15).【答案】见解答.【分析】根据有理数的减法法则,减去一个数等于加上这个数的相反数,转化为加法,然后根据异号两数相加和同号两数相加,可直接计算即可.【解答】(1)=(-7)+(-2)=-9;(2)=(-8)+(+8)=0;(3)=0+5=5;(4)=(-9)+(-4)=-13;(5)=5+3=8;(6)=(-3)+(-2)=-5;(7)=(-20)+(+12)=-8;(8);(9);(10)=;(11);(12);(13)=-4+9=5;(14);(15).20.【题文】用有理数的减法解答下列各题:(1)某地白天最高气温是20℃,夜间最低气温是-15℃,夜间比白天最多低多少℃?(2)甲、乙、丙三地海拔高度分别是50米、-10米、-26米,那么最高的地方比最低的地方高多少米?【答案】(1)35℃;(2)76米.【分析】本题考查了列代数式求值,解决此类问题的关键是根据题意正确的列出算式,然后利用法则求解.本题是列代数式求值的问题,首先要根据题意列出代数式,然后利用法则求解.【解答】(1)20-(-15)=35(℃);(2)50-(-26)=76(米).。

初中数学冀教版八年级上册第十四章 实数14.4 近似数-章节测试习题(13)

初中数学冀教版八年级上册第十四章 实数14.4 近似数-章节测试习题(13)

章节测试题1.【答题】请将用四舍五入精确到,则______.【答案】0.62【分析】本题考查近似数.【解答】把按四舍五入精确到0.01得0.62,即0.618≈0.62.故答案为0.62.2.【答题】小明的身高约为1.60米,这个近似数是()A. 精确到B. 精确到C. 精确到十分位D. 精确到百位【答案】A【分析】本题考查近似数,近似数的末尾数字在哪一位,这个近似数就精确到什么位.根据近似数的精确度求解.【解答】小明的身高约为1.60米,这个近似数精确到了百分位或0.01.3.【答题】用四舍五入法,把精确到百分位,取得的近似数是()A. B. C. D.【答案】D【分析】本题考查近似数,解答本题的关键是明确近似数的定义.根据题目中的数据可以写出把7.9463精确到百分位的近似数,本题得以解决.【解答】精确到百分位,选D.4.【答题】12.004≈______.(精确到百分位)【答案】12.00【分析】本题考查了近似数,经过四舍五入得到的数为近似数;近似数与精确数的接近程度,可以用精确度表示.把千分位上的数字4进行四舍五入即可.【解答】12.004≈12.00(精确到百分位),故答案为12.00.5.【答题】近似数209.05万是由四舍五入得到的,其精确到()A. 万位B. 百位C. 个位D. 百分位【答案】B【分析】本题考查近似数.【解答】∵近似数209.05万精确到5所表示的数位,且209.05万=2090500,∴209.05万精确到百位.选B.6.【答题】近似数3.5的准确值a的取值范围是()A. B.C. D.【答案】C【分析】本题考查近似数.【解答】近似数3.5的准确值a的取值范围是.选C.7.【答题】将=2.23606797…精确到千分位是()A. 2.2B. 2.24C. 2.236D. 2.237【答案】C【分析】本题考查近似数.【解答】精确到千分位是2.236,选C.8.【答题】下列说法正确的是()A. 近似数4.60与4.6的精确度相同B. 近似数5千万与近似数5000万的精确度相同C. 近似数4.31万精确到0.01D. 1.45×104精确到百位【答案】D【分析】本题考查近似数.【解答】A选项中,∵近似数4.60是精确到百分位的,近似数4.6是精确到十分位的,∴A中说法错误;B选项中,∵近似数5千万是精确到千万位的,近似数5000万是精确到万位的,∴B 中说法错误;C选项中,∵近似数4.31万精确到百位的,∴C中说法错误;D选项中,∵近似数1.45×104是精确到百位的,∴D中说法正确.选D.9.【答题】某校女生的平均身高约为1.6米,则该校全体女生的平均身高的范围是()A. 大于1.55米且小于1.65米B. 不小于1.55米且小于1.65米C. 大于1.55米且不大于1.65米D. 不小于1.55米且不大于1.65米【答案】B【分析】本题考查近似数.【解答】∵女生的平均身高约为1.6米是一个近似值,∴身高的取值范围是不小于1.55米且小于1.65米,选B.10.【答题】用四舍五入法按要求对3.1415926分别取近似值,其中错误的是()A. 3.1(精确到0.1)B. 3.141(精确到千分位)C. 3.14(精确到百分位)D. 3.1416(精确到0.0001)【答案】B【分析】本题考查近似数.【解答】A.3.1(精确到0.1),正确;B.3.142(精确到千分位),故本选项错误;C.3.14(精确到百分位),正确;D.3.1416(精确到0.0001),正确.选B.11.【答题】用四舍五入法按要求对1.06042取近似值,其中错误的是()A. 1.1(精确到0.1)B. 1.06(精确到0.01)C. 1.061(精确到千分位)D. 1.0604(精确到万分位)【答案】C【分析】本题考查了近似数,根据要求结合近似数的定义正确求解是解题的关键.【解答】1.06042≈1.1(精确到0.1),故A选项正确,不符合题意;1.06042≈1.06(精确到0.01),故B选项正确,不符合题意;1.06042≈1.060(精确到千分位),故C选项错误,符合题意;1.06042≈1.0604(精确到万分位),故D选项正确,不符合题意,选C.12.【答题】按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是()A. 1022.01(精确到0.01)B. 1.0×103(保留2个有效数字)C. 1020(精确到十位)D. 1022.010(精确到千分位)【答案】C【分析】本题考查近似数.【解答】A.1022.0099(精确到0.01)≈1022.01,正确;B.1022.0099(保留2个有效数字)≈1.0×103,正确;C.1022.0099(精确到十位)≈1022,故错误;D.1022.0099(精确到千分位)≈1022.010,正确.选C.13.【答题】用四舍五入按要求对分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.06(精确到千分位)C. 0.06(精确到百分位)D. 0.0602(精确到0.0001)【答案】B【分析】本题考查近似数.【解答】A.0.06019≈0.1(精确到0.1),∴A选项的说法正确;B.0.06019≈0.060(精确到千分位),∴B选项的说法错误;C.0.06019≈0.06(精确到百分),∴C选项的说法正确;D.0.06019≈0.0602(精确到0.0001),∴D选项的说法正确.选B.14.【答题】小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A. 48B. 48.0C. 47D. 47.9【答案】B【分析】本题考查近似数.【解答】47.95精确到0.1的近似值为48.0.选B.15.【答题】3.14159精确到千分位为()A. 3.1B. 3.14C. 3.142D. 3.141【答案】C【分析】本题考查近似数.【解答】3.14159精确到千分位为3.142.选C.16.【答题】用四含五入法对0.03049取近似值,精确到0.001的结果是()A. 0.0305B. 0.04C. 0.030D. 0.031 【答案】C【分析】本题考查近似数.【解答】0.03049取近似值,精确到0.001的结果是0.030.选C.17.【答题】近似数304.25精确到()A. 十分位B. 百分位C. 十位D. 百位【答案】B【分析】本题考查近似数.【解答】近似数304.25精确到百分位;选B.18.【答题】按括号内的要求用四舍五入法取近似数,下列正确的是()A. 0.0234≈0.0(精确到0.1)B. 2.604≈2.60(精确到十分位)C. 403.53≈403(精确到个位)D. 0.0136≈0.014(精确到0.0001)【答案】A【分析】本题考查近似数.【解答】A.0.0234≈0.0(精确到0.1),选项A正确;B.2.604≈2.6(精确到十分位),选项B错误;C.403.53≈404(精确到个位),选项C错误;D.0.0136≈0.014(精确到0.001),选项D错误.选A.19.【答题】小亮用天平称得一个鸡蛋的质量为50.47g,用四舍五入法将50.47精确到0.1的近似值为()A. 50B. 50.0C. 50.4D. 50.5【答案】D【分析】本题考查近似数.【解答】50.47≈50.5(精确到0.1),选D.20.【答题】用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.0502(精确到0.0001)【答案】C【分析】本题考查近似数.【解答】A.0.05019≈0.1(精确到0.1),∴此选项正确;B.0.05019≈0.05(精确到百分位),∴此选项正确;C.0.05019≈0.050(精确到千分位),∴此选项错误;D.0.05019≈0.0502(精确到0.0001),∴此选项正确;故选C.。

初中生数学测试题及答案

初中生数学测试题及答案

初中生数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 计算下列算式的结果:2x + 3 = 11A. x = 4B. x = 5C. x = 6D. x = 7答案:B4. 下列哪个图形是轴对称图形?A. 圆B. 正方形C. 长方形D. 所有选项答案:D5. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 1D. -1答案:B7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C8. 计算下列算式的值:(3x - 2) / (x + 1) = 4A. x = 1B. x = 2C. x = 3D. x = 4答案:B9. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. 3/1D. 1/9答案:A10. 一个数的平方根是4,那么这个数是:A. 16B. 4C. -4D. 以上都不对答案:A二、填空题(每题3分,共30分)1. 一个数的立方等于它本身,这个数可以是______。

答案:0, 1, -12. 如果一个角的补角是120°,那么这个角是______。

答案:60°3. 一个数的绝对值是8,这个数可以是______。

答案:8或-84. 一个数的平方根是3,这个数是______。

答案:95. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是______。

答案:大于1且小于7的任何数6. 一个数的倒数是2,这个数是______。

答案:1/27. 一个数的平方是16,这个数可以是______。

答案:4或-48. 一个数的立方是27,这个数是______。

初中数学冀教版七年级上册第五章 一元一次方程5.3 解一元一次方程-章节测试习题(13)

初中数学冀教版七年级上册第五章 一元一次方程5.3 解一元一次方程-章节测试习题(13)

章节测试题1.【答题】已知多项式9a+20与4a-10的差等于5,则a的值为______.【答案】-5【分析】根据题意列出方程,解一元一次方程即可.【解答】解:9a+20-(4a-10)=5,去括号得:9a+20-4a+10=5,合并同类项得:5a+30=5,移项得:5a=5-30,合并同类项得:5a=-25,化系数为1得:a=-5.故答案为:-5.2.【答题】当______时,代数式与的值互为相反数.【答案】-2【分析】根据题意列出方程,解一元一次方程即可.【解答】因为与的值互为相反数,所以 + =0,去分母得:12+x+x-8=0,移项得:2x=-4,即x=-2,故答案是:-2.3.【答题】方程的解是______.【答案】5【分析】解一元一次方程即可.【解答】,去分母得,x-3=2,移项、合并同类项得,x=5.故答案是:5.4.【答题】当______时,代数式与的值相等. 【答案】【分析】根据题意列出方程,解一元一次方程即可.【解答】根据题意得:3(x-1)=-2(x+1),去括号得:3x-3=-2x-2,移项得:3x+2x=-2+3合并同类项得:5x=1系数为1得:x=,故答案是:.5.【答题】若与互为相反数,则a=______.【答案】【分析】根据题意列出方程+=0,直接解出a的值,即可解题.【解答】解:根据相反数和为0得:+=0,去分母得:a+3+2a﹣7=0,合并同类项得:3a﹣4=0,化系数为1得:a﹣=0,故答案为.6.【答题】当a取整数______时,方程有正整数解.【答案】0【分析】先用含a的代数式表示x,根据方程的解是正整数,即可求出结果。

【解答】解:﹣=先去分母,得x﹣4﹣2(ax﹣1)=2,去括号,得x﹣4﹣2ax+2=2,移项、合并同类项,得(1﹣2a)x=4,因为这个方程的解是正整数,即x=,是正整数,所以1﹣2a等于4的正约数,即1﹣2a=1,2,4,当1﹣2a=1时,a=0;当1﹣2a=2时,a=﹣(舍去);当1﹣2a=4时,a=﹣(舍去).故a=0.故答案为:0.7.【答题】下列各题中正确的是()A. 由7x=4x﹣3移项得7x﹣4x=3B. 由去分母得2(2x﹣1)=1+3(x﹣3)C. 由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D. 由2x+1=x+7移项,合并同类项得x=6【答案】D【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】选项A,7x=4x﹣3移项得7x﹣4x=﹣3,选项A错误;选项B,由去分母得2(2x﹣1)=6+3(x﹣3),选项B错误;选项C,由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,选项C错误;选项D,2x+1=x+7,2x﹣x=7﹣1,x=6,选项D正确;选D.8.【答题】关于x的方程2(x﹣a)=5的解是3,则a的值为()A. 2B.C. ﹣2D. ﹣【答案】B【分析】先将方程的解代入方程得到关于字母系数的方程,再解方程即可.【解答】根据题意将x=3代入得:2(3﹣a)=5,解得:a=.选B.9.【答题】下列方程中变形正确的是()A. 方程3x-2=2x-1移项,得3x-2x=-1-2B. 方程去分母,得5(x-1)-2x=1C. 方程3-x=2-5(x-1)去括号,得3-x=2-5x-1D. 方程系数化为1,得x=-1【答案】B【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】A. 方程3x-2=2x-1移项,得3x-2x=-1+2,故A错误;B. 方程去分母,得5(x-1)-2x=1,故B正确;C. 方程3-x=2-5(x-1)去括号,得3-x=2-5x+5,故C错误;D. 方程系数化为1,得x=-,选B.10.【答题】小马虎在计算16-x时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是()A. 15B. 13C. 7D. -1【答案】A【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解:根据题意得:解得:x=3,则原式选A.11.【答题】解方程-2(x-5)+3(x-1)=0时,去括号正确的是()A. -2x-10+3x-3=0B. -2x+10+3x-1=0C. -2x+10+3x-3=0D. -2x+5+3x-3=0【答案】C【分析】本题考查了解一元一次方程,去括号是解题关键,括号前是负数去括号都变号,括号前是正数去括号不变号.【解答】解:将方程去括号,得选C.12.【答题】如果2x-3与-互为倒数,那么x的值为()A. x=B. x=C. x=0D. x=1【答案】C【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解:解得:选C.13.【答题】方程去分母得()A. 2﹣2(2x﹣4)=﹣(x﹣7)B. 12﹣2(2x﹣4)=﹣x﹣7C. 12﹣2(2x﹣4)=﹣(x﹣7)D. 以上答案均不对【答案】C【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】解方程:去分母得:.选C.14.【答题】设P=2y-2,Q=2y+3,且3P-Q=1,则y的值是()A. 0.4B. 2.5C. -0.4D. -2.5【答案】B【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】∵P=2y-2,Q=2y+3,且3P-Q=1,∴3(2y-2)-(2y+3)=1,化简、整理得:4y-9=1,解得:y=2.5.选B.15.【答题】将方程去分母,下面变形正确的是()A.B.C.D.【答案】C【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】∵,∴3x-(x-1)=6.故选C.方法总结:两边都乘以各分母的最小公倍数去分母时,一是不要漏乘没有分母的项,二是去掉分母后要把分子加括号.16.【答题】若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是()A. B. C. D.【答案】C【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解:∵[-π]=-4,∴3[-π]-2x=5变为:-12-2x=5,解得:x=.选C.17.【答题】下列去括号中正确的是()A. 3x﹣(2x﹣1)=4,得3x﹣2x﹣1=4B. ﹣4(x+1)+3=x,得﹣4x+4+3=xC. 2x+7(x﹣1)=﹣9x+5,得2x﹣7x﹣7=﹣9x+5D. 3﹣[2x﹣4(x+1)]=2,得3﹣2x+4x+4=2【答案】D【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】A、3x﹣(2x﹣1)=4,得3x﹣2x+1=4,错误; B、﹣4(x+1)+3=x,得﹣4x﹣4+3=x,错误;C、2x+7(x﹣1)=﹣9x+5,得2x+7x﹣7=﹣9x+5,错误;D、3﹣[2x﹣4(x+1)]=2,得3﹣2x+4x+4=2,正确,选D.18.【答题】在解方程时,两边同时乘以6,去分母后,正确的是()A. 2x+1-(5x+1)=2B. 4x+1-5x+1=12C. 4x+2-5x-1=12D. 2(2x+1)-(5x+1)=2【答案】C【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】解:方程,两边同时乘以6得:2(2x+1)-(5x+1)=12,即:4x+2-5x-1=12.选C.19.【答题】解方程1-时,去分母后可以得到()A. 1-x-3=3xB. 6-2x-6=3xC. 6-x+3=3xD. 1-x+3=3x【答案】B【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】方程两边都乘以6得6-2x-6=3x,选B.20.【答题】方程=x,处被墨水盖住了,已知方程的解x=2,那么处的数字是()A. 2B. 3C. 4D. 6【答案】C【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】设△=a,把x=2代入原方程可得:,解得:.即△=4.选C.。

初中数学练题

初中数学练题

初中数学练题
在初中阶段,数学是一个非常重要的学科,需要通过不断的练习来提高自己的解题能力。

以下是一些初中数学练题,希望能帮助同学们巩固所学的知识:
1. 计算下列各题:
a) 23.5 + 17.8
b) 45.6 - 18.3
c) 12.4 × 3.5
d) 36.9 ÷ 6.3
2. 解方程:2x + 5 = 15
3. 一个三角形的底边长为6cm,高为4cm,求其面积。

4. 如果一个长方形的长为8cm,宽为4cm,求其周长和面积。

5. 已知一组数据:2, 4, 6, 8, 10,求其平均数。

6. 一枚硬币投掷10次,求出现正面的次数和反面的次数。

7. 一个正方形的边长为5cm,求其对角线的长度。

8. 一个三角形的三个内角分别为60°,80°,40°,判断其是什么三角形。

9. 一个长方体的长为3cm,宽为4cm,高为5cm,求其体积。

10. 一个长为12cm,宽为6cm,高为8cm的长方体,求其表面积。

以上是一些常见的初中数学练题,希望同学们能够认真思考,按照正确的方法进行解题,提高自己的数学能力。

数学是一门需要不断练习的学科,只有通过实际
操作,才能更好地掌握知识,提高解题能力。

希望同学们能够勤加练习,取得优异的成绩!。

初中数学青岛版七年级上册第2章 有理数2.2数轴-章节测试习题(13)

初中数学青岛版七年级上册第2章 有理数2.2数轴-章节测试习题(13)

章节测试题1.【答题】已知a,b两数在数轴上的位置如图所示,则下列结果错误的是()A. a>0B. a>1C. b<﹣1D. a>b【答案】B【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.【解答】A.∵a在原点的右边,∴a>0,故错误;B.∵a在1的左边,∴a<1,故正确;C.∵b在﹣1的左边,∴b<﹣1,故错误;D.∵b在a的左边,∴a>b,故错误,选B.2.【答题】如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>c>0>aB. a>b>c>0C. a>c>b>0D. b>0>a>c 【答案】D【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.解题的关键是要熟记,数轴上右边的数总比左边的大.【解答】根据数轴上点的位置可知:b>0>a>c.选D.3.【答题】数轴上点A表示﹣1,则与A距离3个单位长度的点B表示______.【答案】﹣4或2【分析】本题考查数轴上两点间的距离.【解答】数轴上点A表示﹣1,则与A距离3个单位长度的点B表示的数有两个,一个在位于原点左侧为-4,一个位于原点的右侧为2.4.【答题】在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是______.【答案】-3【分析】本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.【解答】设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,∴,点A表示的数是﹣3.故答案为:﹣3.5.【答题】数轴上点A表示的数是﹣5,若将点A向右平移3个单位到点B,则点B表示的数是______.【答案】-2【分析】本题考查数轴上的动点问题.【解答】∵A为数轴上表示﹣5的点,将点A沿数轴向右平移3个单位到点B,∴﹣5+3=﹣2,即点B所表示的数是﹣2,故答案为:﹣2.6.【答题】在数轴上到表示﹣2的点的距离为4的点所表示的数是______.【答案】﹣6或2【分析】本题考查数轴上两点间的距离,解题的关键是分两种情况进行讨论.【解答】该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2,故答案为:﹣6或2.7.【答题】点A在数轴上距原点5个单位长度,且位于原点左侧,若将A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是______.【答案】-2【分析】本题考查数轴上的动点问题.【解答】∵点A在数轴上距原点5个单位长度,且位于原点左侧,∴点A表示的数为−5,移动后点A所表示的数是:−5+4−1=−2.故答案为:−2.8.【题文】画数轴,在数轴上表示下列各数,并用“<”号把它们连接起来.﹣3、+2、﹣1.5、0、1【答案】﹣3<﹣1.5<0<1<+2.【分析】本题考查有理数的大小比较.【解答】首先在数轴上表示各数,然后再根据在数轴上右边的点表示的数大于左边的点表示的数,用“<”号把它们连接起来即可.如图所示:﹣3<﹣1.5<0<1<+2.9.【题文】小明从家出发(记为原点O)向东走3m,他把数轴上+3的位置记为点A,他又向东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到达点C,点C表示什么数?请你画出数轴,并在数轴上标出点A,点B的位置,这时如果小明要回家,则小明应如何走?【答案】点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2m.【分析】根据题意可以求得点B和点C的坐标,从而可以知道小明要回家应如何走,从而可以解答本题.【解答】∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A,∴他又东走了5m,记为点B,点B表示的数是3+5=8,∴接着他又向西走了10m到点C,点C表示表示的数是8+(﹣10)=﹣2,∴当小明到点C时,要回家,小明应向东走2m即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2m.数轴如下所示:10.【答题】下列关于数轴的说法正确的是()A. 数轴是一条规定了原点、正方向和单位长度的直线B. 数轴的正方向一定向右C. 数轴上的点只能表示整数D. 数轴上的原点表示有理数的起点【答案】A【分析】熟记“数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴”是解答本题的关键.根据数轴的定义进行分析判断即可.【解答】A选项中,∵“数轴是一条规定了原点、正方向和单位长度的直线”符合数轴的定义,∴A中说法正确;B选项中,∵“数轴的正方向是根据需要规定的,其正方向不一定向右”,∴B中说法错误;C选项中,∵“数轴上的点既可以表示整数,也可以表示小数”,∴C中说法错误;D选项中,∵“数轴上的原点表示数0,但数0并不是有理数的起点”,∴D中说法错误.选A.11.【答题】下列数轴的画法中,正确的是()A. B. C. D.【答案】D【分析】熟知“数轴的定义和画法”是解答本题的关键.根据数轴的定义和画法进行分析判断即可.【解答】A选项中的数轴缺少“正方向”,∴A中画法错误;B选项中的数轴,表示“1”和“-1”的点的位置标反了,∴B中画法错误;C选项中的数轴,单位长度不统一,∴C中画法错误;D选项中的数轴,符合数轴的定义和画法的要求,∴D中画法正确.选D.12.【答题】如图所示,数轴上四点M,N,P,Q中,表示负整数的点是()A. 点MB. 点NC. 点PD. 点Q【答案】A【分析】知道“在数轴上原点表示的数是0,原点右边的点距离原点多少个单位长度,表示的数就是正多少,原点左边的点距离原点多少个单位长度表示的数就是负多少”是解答本题的关键.根据“用数轴上的点表示有理数的方法”进行分析判断即可.【解答】A选项中,∵点M表示的数是-2,∴可以选A;B选项中,∵点N表示的数是-0.5,∴不能选B;C选项中,∵点P表示的数是0,∴不能选C;D选项中,∵点Q表示的数是1,∴不能选Q.选A.13.【答题】有下列一组数:1,4,0,,-3,这些数在数轴上对应的点中,不在原点右边的点有()A. 2个B. 3个C. 4个D. 5个【答案】B【分析】熟知“在数轴上原点表示的是0,原点右边的点表示正数,原点左边的点表示的是负数”是解答本题的关键.根据“用数轴上的点表示有理数的方法”进行分析判断即可.【解答】∵“数轴上原点表示的数是0,原点右边的点表示的是正数,原点左边的点表示的负数”,∴在数轴上不在原点右边的点表示的是非正数,∵在1,4,0,,-3,这5个数中,不是正数的有0,,-3,共计3个,∴在数轴上与1,4,0,,-3,这些数对应的点中,不在原点右边的有3个.选B.14.【答题】点A是数轴上表示-2的点,当点A沿数轴移动4个单位长度到点B时,点B表示的有理数是()A. -4B. -6C. 2或-4D. 2或-6【答案】D【分析】本题的解题要点有以下两点:(1)由题意知道存在点A向右移动和向左移动两种情况;(2)将表示数a的点向右(或向左)移动b个单位长度所得的新的点表示的数是a±b.分点A向右移动4个单位长度和向左移动4个单位长度进行分析解答即可.【解答】∵点A在数轴上表示的数是-2,∴(1)当点A向右移动4个单位长度得到点B时,点B表示的数是2;(2)当点A向左移动4个单位长度得到点B时,点B表示的数是-6.即点B表示的数是2或-6.选D.15.【答题】有理数a,b,c在数轴上的位置如图所示,则下列说法正确的是()A. a,b,c都为正数B. b,c为正数,a为负数C. a,b,c都为负数D. b,c为负数,a为正数【答案】D【分析】知道“在数轴上,原点右边的点表示正数,原点左边的点表示负数,原点表示0”是解答本题的关键.根据表示数a、b、c的点在数轴与原点的相对位置关系分析解答即可.【解答】由图可知,在数轴上表示数c、b的点在原点的左侧,表示数a的点在原点的右侧,且数轴的正方向为向右,∴数b、c为负数,数a为正数.选D.16.【答题】在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“合”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是()A. 合B. 格C. 优D. 秀【答案】C【分析】“读懂题意,画出如图所示的图形,找到数轴上的正整数与正方形四个顶点上的数重合的规律:当数轴上的正整数除以4,余数为0、1、2、3时,这个正整数分别与“合”、“格”、“优”、“秀”重合”是解答本题的关键.由题意,画出图形如下图所示,然后结合图形与题意进行分析判断即可.【解答】如下图所示,由题意可知,当正方形无滑动向右滚动一次时,“合”与0重合,滚动第二次时,“格”与1重合,滚动第三次时,“优”与2重合,滚动第四次时,“秀”与3重合,滚动第五次时,“合”与4重合,……,由此可知,从“合”与0重合开始,正方形四个顶点上的字与数轴上的正整数的重合情况,是按四个数一组循环出现的,∵2018÷4=504……2,∴正方形连续滚动后,与数轴上的2018重合的字是“优”.选C.17.【答题】如图,将一刻度尺贴放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的-3和x,那么x的值为()A. 8B. 7C. 6D. 5【答案】D【分析】“读懂题意,结合图形分析出表示数x的点在原点右侧5个单位长度处”是解答本题的关键.根据图形结合数轴的单位长度为1cm和已知条件进行分析解答即可.【解答】∵数轴的单位长度为1cm,∴表示-3的点到原点的距离为3cm,又∵表示-3的点到表示x的点的距离为8cm,且表示x的点在原点的右侧,∴表示x的点在原点右侧5cm处,∴x=5.选D.18.【答题】如图,点A表示的数是______.【答案】-2【分析】根据图中的信息可知,数轴上一小格表示个单位长度,由此可确定出原点的位置,进而可确定点A所对应的数是多少.【解答】由图中信息可知,,数轴上一小格表示个单位长度,由此可确定出数轴是原点的位置如下图所示,∴点A表示的数是-2.故答案为:-2.19.【答题】如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有______个.【答案】7【分析】熟知“在数轴上:-5到0之间(不包括-5和0)有哪些整数和0到4之间(不包括0和4)有哪些整数”是解答本题的关键.根据图中的信息可知,墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),由此即可得到被墨迹盖住的整数,从而得到答案.【解答】根据图中信息可知:墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),∵在-5到0之间(不包括-5和0)的整数有:-4、-3、-2、-1;在0到4之间(不包括0和4)的整数有:1、2、3,∴被墨迹盖住的整数共有7个.故答案为:7.20.【答题】如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字______重合.【答案】3【分析】“读懂题意,并由此得到数轴上与圆周上2重合的数是4n-1(n为正整数),与圆周上1重合的数是4n(n为正整数),与圆周上0重合的数是4n+1(n为正整数),与圆周上3重合的数是4n+2(n为正整数)”是解答本题的关键.由题意可知,在圆的旋转过程中,圆周上的四个数字与数轴上的数字的重合情况是旋转一周循环一次,由图可知,数轴上与圆周上2重合的数是4n-1(n为正整数),与圆周上1重合的数是4n,与圆周上0重合的数是4n+1,与圆周上3重合的数是4n+2,由此即可求得与数轴上2018重合的数字是几了.【解答】∵,∴2018=4n+2,∴与数轴上2018重合的数字是3.故答案为:3.。

初中数学练习题及答案

初中数学练习题及答案

初中数学练习题及答案1. 代数基础问题:如果一个数的平方等于该数本身,这个数是什么?答案:这个数是0或1。

2. 方程求解问题:解方程 \( x + 5 = 10 \)。

答案:将5从等式的两边减去,得到 \( x = 5 \)。

3. 因式分解问题:将 \( 2x^2 - 6x \) 因式分解。

答案:提取公因数 \( 2x \),得到 \( 2x(x - 3) \)。

4. 几何问题问题:如果一个直角三角形的两条直角边分别为3和4,求斜边的长度。

答案:根据勾股定理,斜边长度 \( c = \sqrt{3^2 + 4^2} = 5 \)。

5. 比例问题问题:如果 \( \frac{a}{b} = \frac{c}{d} \),且 \( b = 4 \),\( c = 6 \),求 \( a \) 和 \( d \)。

答案:根据比例的性质,\( a = \frac{6}{4} \times b =\frac{3}{2} \times 4 = 6 \),\( d = \frac{b}{c} \times d =\frac{4}{6} \times 6 = 4 \)。

6. 函数图像问题:如果函数 \( y = 2x + 3 \),当 \( x = 1 \) 时,求\( y \) 的值。

答案:将 \( x = 1 \) 代入函数,得到 \( y = 2 \times 1 + 3= 5 \)。

7. 统计问题问题:一组数据为 2, 4, 6, 8, 10,求这组数据的平均数和中位数。

答案:平均数是所有数值的总和除以数值的数量,即\( \frac{2+4+6+8+10}{5} = 6 \)。

中位数是数据排序后位于中间的数,即6。

8. 应用题问题:一个班级有30名学生,其中15名学生喜欢数学,12名学生喜欢英语,5名学生既喜欢数学又喜欢英语。

求只喜欢数学的学生人数。

答案:根据容斥原理,只喜欢数学的学生人数为 \( 15 - 5 = 10 \)。

初中生数学习题大全及答案

初中生数学习题大全及答案

初中生数学习题大全及答案初中生数学习题大全及答案数学是一门既有趣又具有挑战性的学科,对于初中生来说,掌握好数学知识和解题技巧是非常重要的。

为了帮助初中生更好地学习数学,提高解题能力,本文将为大家分享一些常见的数学习题及其答案。

一、整数与有理数1. 将-3/4与2/3比较大小。

解答:首先,我们需要将两个分数化为相同的分母。

-3/4乘以3/3得到-9/12,2/3乘以4/4得到8/12。

显然,-9/12小于8/12,所以-3/4小于2/3。

2. 计算-5 + (-3) + 2 + (-1)。

解答:将所有的负数相加,再将所有的正数相加。

-5 + (-3) + 2 + (-1) = -9 + 1 = -8。

二、代数式与方程式1. 计算3x - 2y,其中x = 4,y = 5。

解答:将x和y的值代入代数式中,得到3x - 2y = 3(4) - 2(5) = 12 - 10 = 2。

2. 解方程2x + 5 = 13。

解答:首先,将方程中的常数项移到等号的另一边,得到2x = 13 - 5 = 8。

然后,将方程两边同时除以系数2,得到x = 8/2 = 4。

三、几何1. 计算矩形的面积和周长,已知长为5cm,宽为3cm。

解答:矩形的面积等于长乘以宽,所以面积= 5cm * 3cm = 15cm²。

矩形的周长等于长的两倍加宽的两倍,所以周长 = 2 * 5cm + 2 * 3cm = 10cm + 6cm =16cm。

2. 判断一个三角形是否为直角三角形,已知三边长分别为3cm,4cm,5cm。

解答:根据勾股定理,如果一个三角形的边长满足a² + b² = c²,那么这个三角形就是直角三角形。

将三边长代入公式,3² + 4² = 9 + 16 = 25,而5² = 25,所以这个三角形是直角三角形。

四、概率与统计1. 从一副标准扑克牌中随机抽取一张牌,求抽到红心的概率。

初中数学:一元一次方程习题精选(附参考答案)

初中数学:一元一次方程习题精选(附参考答案)

初中数学:一元一次方程习题精选(附参考答案)1.下列式子中,是一元一次方程的是( )A .x +4>2B .x+1xC .x -3=y +5D .y +2=722.已知(m -3)x |m -2|+6=0是关于x 的一元一次方程,则m 的值为( )A .1B .2C .3D .1或33.(2022·海南)若代数式x +1的值为6,则x 等于( )A .5B .-5C .7D .-74.根据等式的性质,下列变形正确的是( )A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-55.方程3x =2x +7的解是( )A .x =4B .x =-4C .x =7D .x =-7 6.下列解方程的步骤中正确的是( )A .由x -5=7,可得x =7-5B .由8-2(3x +1)=x ,可得8-6x -2=xC .由16x =-1,可得x =-16D .由x−12=x 4-3,可得2(x -1)=x -3 7.如果单项式-xy b +1与12x a +2y 3是同类项,那么关于x 的方程ax +b =0的解为( )A .x =1B .x =-1C .x =2D .x =-28.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目,其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?设木长x尺,则可列方程为()(x+4.5)=x-1A.12B.1(x+4.5)=x+12(x+1)=x-4.5C.12(x-1)=x+4.5D.129.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g.设蛋白质、脂肪的含量分别为x g,y g,可列出方程为()A.5x+y=302y=30B.x+52C.3x+y=302D.x+3y=30210.古代中国的数学著作《九章算术》中有一题,其大意是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两),今有干丝12斤,问:原有生丝多少?”则原有生丝为______斤.11.《孙子算经》中有个问题:若三人共车,余两车空;若两人共车,剩九人步.问:人与车各几何?设有x辆车,则根据题意可列出方程为()A.3(x+2)=2x-9B.3(x+2)=2x+9C.3(x-2)=2x-9D.3(x-2)=2x+912.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是() A.x=0B.x=3C.x=2D.x=-313.小丽同学在做作业时,不小心将方程2(x-3)-■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A .4B .3C .2D .1参考答案1.下列式子中,是一元一次方程的是( D )A .x +4>2B .x+1xC .x -3=y +5D .y +2=722.已知(m -3)x |m -2|+6=0是关于x 的一元一次方程,则m 的值为(A )A .1B .2C .3D .1或33.若代数式x +1的值为6,则x 等于( A )A .5B .-5C .7D .-7解析:∵代数式x +1的值为6,∴x +1=6,解得x =5.故选A.4.根据等式的性质,下列变形正确的是( B )A .由-13x =23y ,得x =2yB .由3x =2x +2,得x =2C .由2x -3=3x ,得x =3D .由3x -5=7,得3x =7-55.方程3x =2x +7的解是( C )A .x =4B .x =-4C .x =7D .x =-7解析:3x =2x +7,移项,得3x -2x =7,合并同类项,得x =7.故选C.6.下列解方程的步骤中正确的是( B )A .由x -5=7,可得x =7-5B .由8-2(3x +1)=x ,可得8-6x -2=xC .由16x =-1,可得x =-16D .由x−12=x 4-3,可得2(x -1)=x -37.如果单项式-xy b +1与12x a +2y 3是同类项,那么关于x 的方程ax +b =0的解为( C )A .x =1B .x =-1C .x =2D .x =-28.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目,其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问:木长多少尺?设木长x 尺,则可列方程为( A )A .12(x +4.5)=x -1B .12(x +4.5)=x +1C .12(x +1)=x -4.5D .12(x -1)=x +4.59.一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30 g .设蛋白质、脂肪的含量分别为x g ,y g ,可列出方程为( A )A .52x +y =30B .x +52y =30C .32x +y =30D .x +32y =30 解析:设蛋白质、脂肪的含量分别为x g ,y g ,则碳水化合物的含量为(1.5x )g. 由题意,得x +1.5x +y =30,即52x +y =30.故选A.10. 古代中国的数学著作《九章算术》中有一题,其大意是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两),今有干丝12斤,问:原有生丝多少?”则原有生丝为967斤.解析:设原有生丝x 斤.依题意,得3030−31216=x 12 解得x =967.故答案为967.11.《孙子算经》中有个问题:若三人共车,余两车空;若两人共车,剩九人步.问:人与车各几何?设有x 辆车,则根据题意可列出方程为( )A .3(x +2)=2x -9B .3(x +2)=2x +9C .3(x -2)=2x -9D .3(x -2)=2x +912.若关于x 的方程mx m -2-m +3=0是一元一次方程,则这个方程的解是( A )A .x =0B .x =3C .x =2D .x =-3 13.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是( C )A .4B .3C .2D .1。

初中数学平方根习题精选含答案

初中数学平方根习题精选含答案

初中数学平方根习题精选含答案13.1平方根习题精选班级:姓名:学号1.正数a的平方根是( )A. B.± C.?D.±a2.下列五个命题:①只有正数才有平方根;②?2是4的平方根;③5的平方根是;④±都是3的平方根;⑤(?2)2的平方根是?2;其中正确的命题是( )A.①②③ B.③④⑤ C.③④ D.②④3.若= 2.291,= 7.246,那么= ( )A.22.91 B. 72.46 C.229.1 D.724.64.一个自然数的算术平方根是a,则下一个自然数的算术平方根是( )A.a+1 B.a2+1 C.+1 D.5.下列命题中,正确的个数有( )①1的平方根是1 ;②1是1的算术平方根;③(?1)2的平方根是?1;④0的算术平方根是它本身A.1个 B.2个 C.3个 D.4个6.若= 2.449,= 7.746,= 244.9,= 0.7746,则x、y的值分别为( )A.x = 60000,y = 0.6 B.x = 600,y = 0.6C.x = 6000,y = 0.06 D.x = 60000,y = 0.06二、填空题1.①若m的平方根是±3,则m =______;②若5x+4的平方根是±1,则x =______2.要做一个面积为π米2的圆形桌面,那么它的半径应该是______3.在下列各数中,?2,(?3)2,?32,,?(?1),有平方根的数的个数为:______4.在?和之间的整数是____________5.若的算术平方根是3,则a =________三、求解题1.求下列各式中x的值①x2 = 361;②81x2?49 = 0;③49(x2+1) = 50;④(3x?1)2 = (?5)22.小刚同学的房间地板面积为16米2,恰好由64块正方形的地板砖铺成,求每块地板砖的边长是多少?第十二章:数的开方 (一)1、如果一个数的等于a ,那么这个数叫做a 的平方根,正数的平方根有个,它们的关系是,0的平方根是,负数。

初一数学13章试题及答案

初一数学13章试题及答案

初一数学13章试题及答案初一数学第13章试题及答案试题一:有理数的加减法1. 计算下列各数的和:(1) -3 + 2(2) 5 + (-4)(3) -7 + 8 + (-6)2. 判断下列说法是否正确,并说明理由:(1) 两个负数相加,结果一定是负数。

(2) 一个正数加一个负数,结果一定是正数。

试题二:有理数的乘除法1. 计算下列各数的积:(1) (-2) × 3(2) 4 × (-5) × 62. 计算下列各数的商:(1) 12 ÷ (-3)(2) (-24) ÷ 6试题三:有理数的混合运算1. 计算下列各数的值:(1) (-3) × 4 - 2 × 5(2) 8 ÷ (-2) + 32. 解决实际问题:某商店原有库存商品价值为-2000元(表示亏损),又购进一批商品价值为3000元,求商店现在的总价值。

试题答案:试题一答案:1. (1) -3 + 2 = -1(2) 5 + (-4) = 1(3) -7 + 8 + (-6) = -52. (1) 错误。

例如,-1 + (-2) = -3,结果是负数,但两个负数相加不一定总是负数。

(2) 错误。

例如,5 + (-6) = -1,结果是负数。

试题二答案:1. (1) (-2) × 3 = -6(2) 4 × (-5) × 6 = -1202. (1) 12 ÷ (-3) = -4(2) (-24) ÷ 6 = -4试题三答案:1. (1) (-3) × 4 - 2 × 5 = -12 - 10 = -22(2) 8 ÷ (-2) + 3 = -4 + 3 = -12. 商店现在的总价值为:-2000 + 3000 = 1000元。

结束语:本试题旨在帮助学生巩固初一数学第13章有理数的加减乘除运算以及混合运算的知识点,通过实际问题的解决,提高学生运用数学知识解决实际问题的能力。

12篇初一数学练习题

12篇初一数学练习题

练习题 1一、选择题1. 下列各数中,是负数的是()A. -(-5)B. |-5|C. (-5)²D. -52. 若 a 与 -3 互为相反数,则 a 的值是()A. 3B. -3C. 1/3D. -1/3二、填空题1. 比较大小:-3____ -5(填“>”“<”或“=”)2. 绝对值小于 4 的所有整数的和为____。

三、计算1. 计算:(-2) + 3 - 52. 计算:(-4) × 5 ÷ (-5)四、解答题1. 已知有理数 a,b 在数轴上的位置如图所示,化简:|a - b| - |b|。

2. 某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负。

某天自 A 地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5。

问收工时距 A 地多远?练习题 2一、选择题1. 下列式子中,是单项式的是()A. x + yB. -3x²C. x² + 1D. 1/x2. 下列计算正确的是()A. 3a + 2b = 5abB. 5y² - 3y² = 2C. 7a + a = 7a²D. 3x²y - 2yx² = x²y二、填空题1. 单项式 -2πab²/5 的系数是____,次数是____。

2. 多项式 3x² - 2x - 5 是____次____项式。

三、计算1. 化简:3x² - [7x - (4x - 3) - 2x²]2. 先化简,再求值:5(3a²b - ab²) - (ab² + 3a²b),其中 a = 1/2,b = -1。

四、解答题1. 已知 A = 2x² + 3xy - 2x - 1,B = -x² + xy - 1,且 3A + 6B 的值与 x 无关,求 y 的值。

人教版初中数学七年级第一章 有理数1.5 有理数的乘方习题(13)

人教版初中数学七年级第一章 有理数1.5 有理数的乘方习题(13)

1.5.3近似数能力提升1.据统计,2015年某省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.这是一个近似数C.这是一个准确数D.用科学记数法表示为2.80×1062.近似数4.73和()最接近.A.4.69B.4.699C.4.728D.4.7313.下列说法中正确的是()A.近似数5.20与5.2的精确度一样B.近似数2.0×103与2 000的意义完全一样C.3.25与0.325的精确度不同D.0.35万与3.5×103的精确度不同4.用四舍五入法得到的近似数0.270,其准确数a的范围是()A.0.265≤a<0.275B.0.269 5≤a<0.270 5C.0.25≤a<0.28D.0.269 5≤a≤0.270 55.地球与太阳之间的距离约为149 600 000 km,用科学记数法表示(精确到千万位)约为km.6.6.435 8精确到0.01的近似数是,精确到个位的近似数为,精确到0.001为.7.由四舍五入得到的近似数8.7亿,精确到位.8.小丽与小明在讨论问题:小丽:如果你把7 498近似到千位数,你就会得到7 000.小明:不,我有另外一种解答方法,可以得到不同的答案,首先,将7 498近似到百位,得到7 500,接着再把7 500近似到千位,就得到8 000.你怎样评价小丽和小明的说法呢?9.今年某种汽车的销售目标定为772 000辆,与去年相比增长28.7%,对于772 000请按要求分别取这个数的近似数.(1)精确到千位;(2)精确到万位;(3)精确到十万位.10.已知,从地面向月球发射无线电波,无线电波到月球并返回地面用了约2.562 s,已知无线电波每秒传播3×105 km,求地球和月球之间的距离.(结果精确到千位)11.珠穆朗玛峰最近的一次高程测量是在2005年,中国国家测绘局公布的新高程为8 844.43 m,原1975年公布的高程数据8 848.13 m停止使用.(1)新高程数据8 844.43 m是精确值,原高程数据8 848.13 m是近似值,这种理解对吗?(2)两个数据至少要精确到哪一位才能完全相同?★12.有一个5位整数先四舍五入到十位,再把所得的数四舍五入到百位,然后把所得的数四舍五入到千位,最后把所得的数四舍五入到万位,这时的数为2×104,你能写出这个数的最大值与最小值吗?它们的差是多少?创新应用★13.京京说:“我和小红的身高都约为1.7×102 cm,但我比她高9 cm.”你认为有这种可能吗?若有,请用近似数的有关知识说明.★14.观察:1+2=3=22-1,1+2+22=7=23-1,1+2+22+23=15=24-1,….又232约为4.3×109,则1+2+22+23+…+231约为多少?用科学记数法表示为a×10n的形式,并判断它是几位数.(a的值精确到0.1)参考答案能力提升1.C2.D3.C4.B用四舍五入法得到的近似数0.270,其准确数a的范围是0.2695≤a<0.2705.5.1.5×1086.6.4466.4367.千万7在原数8.7亿中是千万位上,所以它精确到千万位.8.解:小丽是正确的,小明是错误的.7498近似到千位数,只要把百位上的数字四舍五入即可.9.解:(1)7.72×105.(2)7.7×105.(3)8×105.10.解:3×105×2.562÷2=3.843×105≈3.84×105(km).答:地球和月球之间的距离约为3.84×105km.11.解:(1)不对,都是近似值.(2)精确到百位,即均为8.8×103m.12.解:最大值是24444,最小值是14445,它们的差是9999.创新应用13.解:有可能.因为两人的身高虽都约为1.7×102cm,但1.7×102cm是精确到十位的近似数,其准确数的范围是大于或等于165cm,小于175cm,若京京的身高为174cm,小红的身高为165cm,则京京比小红高9cm,故有可能.14.解:1+2+22+23+…+231=232-1≈4.3×109-1≈4.3×109,它是十位数.。

初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(13)

初中数学鲁教版(五四制)七年级上册第一章 三角形2 图形的全等-章节测试习题(13)

章节测试题1.【答题】如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20°B. 30°C. 35°D. 40°【答案】B【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.选B.2.【答题】如图,△ABC≌△ADE,则下列结论错误的是()A. ∠B=∠DB. DE=CBC. ∠BAC=∠DAED. AB=AE【答案】D【分析】依据全等三角形的对应边相等,全等三角形的对应角相等进行判断即可.【解答】解:∵△ABC≌△ADE,∴∠B=∠D,DE=CB,∠BAC=∠DAE,AB=AD.选D.3.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】要根据已知的对应边去找对应角,并运用"全等三角形对应角相等"即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°选D.4.【答题】已知图中的两个三角形全等,则∠α的度数是()A. 72°B. 60°C. 58°D. 50°【答案】D【分析】要根据已知的对应边去找对应角,并运用"全等三角形对应角相等"即可得答案.【解答】解:因为图中的两个三角形全等所以a与a,c与c分别是对应边,那么它们的夹角就是对应角所以∠α=50°选D.5.【答题】已知△ABC≌△DEF,AB=2,AC=4,若△DEF的周长为偶数,则EF 的取值为()A. 3B. 4C. 5D. 3或4或5【答案】B【分析】∵两个全等的三角形对应边相等,∴求EF的长就是求BC的长.【解答】解:4﹣2<BC<4+22<BC<6.若周长为偶数,BC也要取偶数∴为4.∴EF的长也是4.选B.6.【答题】下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合.其中正确的是()A. ①②B. ②③C. ③④D. ①④【答案】D【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【解答】解:①全等三角形的对应边相等,正确;②、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③、全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④、全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.选D.7.【答题】如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A. 2B. 3C. 4D. 5【答案】A【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,选A.8.【答题】已知△ABC≌△DEF,且AB=4,BC=5,AC=6,则DE的长为()A. 4B. 5C. 6D. 不能确定【答案】A【分析】根据全等三角形的对应边相等求解即可.【解答】解:∵△ABC≌△DEF,∴DE=AB=4.选A.9.【答题】如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A. 56°B. 68°C. 74°D. 75°【答案】C【分析】直接利用角平分线的性质结合平行线的性质得出∠B=∠CEB=∠CED,进而得出∠DEA+∠DEC+∠CEB=2∠B+∠DEA求出答案.【解答】解:∵△ABC≌△DEC,∴∠D=∠A=32°,EC=BC,∴∠B=∠CEB=∠CED,∵AB∥CD,∴∠DCA=∠A=∠DEA=32°,∴∠DEA+∠DEC+∠CEB=2∠B+∠DEA=2∠B+32°=180°,解得:∠B=74°.选C.10.【答题】如图,已知:△ABC≌△ADE,BC与DE是对应边,那么∠EAB=()A. ∠EACB. ∠CADC. ∠BACD. ∠DAE【答案】B【分析】根据全等三角形的性质可得∠BAC=∠DAE,再根据等式的性质可得∠EAB=∠CAD.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即∠EAB=∠CAD,选B.11.【答题】已知:如图,△ABC与△DEF是全等三角形,则图中相等的线段的组数是()A. 3B. 4C. 5D. 6【答案】B【分析】△ABC≌△DEF,有三组对应边相等,在线段BF上,利用线段的和差关系可得BE=CF.【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC-EC=EF-EC,即BE=CF,有四组相等线段,选B.12.【答题】如图,已知△ABD≌△DCA,A和D,C和B分别是对应点,如果AB=7cm,AD=6cm,BD=4cm,则DC的长为()A. 6cmB. 7cmC. 4cmD. 不确定【答案】B【分析】要求CD的大小,关键是找准CD的对应边,本题中根据已知条件可知其对应边是AB,然后利用全等的意义得出答案.【解答】解:∵△ABD≌△DCA,A和D,C和B分别是对应点,∴DC=AB=7cm.选B.13.【答题】如图,△ABC≌△CDA,∠BAC=∠DCA,则BC的对应边是()A. CDB. CAC. DAD. AB【答案】C【分析】根据全等三角形中对应角所对的边是对应边,可知BC=DA.【解答】解:∵ABC≌△CDA,∠BAC=∠DCA,∴∠BAC与∠DCA是对应角,∴BC与DA是对应边(对应角对的边是对应边).选C.14.【答题】如图,△ABC≌△BAD,A、C的对应点分别是B、D,若AB=9,BC=12,AC=7,则BD=()A. 7B. 9C. 12D. 无法确定【答案】A【分析】由三角形全等的性质可得到对应线段相等,要根据已知找准对应关系.【解答】解:∵△ABC≌△BAD,A、C的对应点分别是B、D,∴BD=AC,∵AC=7,∴BD=7.选A.15.【答题】如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对【答案】B【分析】由△ABC≌△BAD,A和B,C和D分别是对应顶点,知AD和BC是对应边,全等三角形的对应边相等即可得.【解答】解:∵△ABC≌△BAD,A和B,C和D分别是对应顶点∴AD=BC=5cm.选B.16.【答题】如图所示,△ABC≌△EFD,那么()A. AB=DE,AC=EF,BC=DFB. AB=DF,AC=DE,BC=EFC. AB=EF,AC=DE,BC=DFD. AB=EF,AC=DF,BC=DE【答案】C【分析】根据全等三角形的对应边相等,就可以得到三组相等的线段,即可求解.【解答】解:∵△ABC≌△EFD∴AB=EF,DE=AC,DF=CB∴CF=BD∴C中的三个式子全部正确.选C.△ABC≌△EFD表示的各点顺序的对应位置表示来找寻.17.【答题】如图△ABC≌△BAD,若AB=9,BD=8,AD=7,则BC的长为()A. 9B. 8C. 7D. 6【答案】C【分析】观察图形根据已知找出对应边,运用两三角形全等的性质得对应边相等可求解.【解答】解:∵△ABC≌△BAD,∴BC=AD=7.选C.18.【答题】若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为()A. 5B. 8C. 5或8D. 7【答案】D【分析】根据三角形全等的性质可得DF=AC,再利用已知条件可求得AC的长,可得出答案.【解答】解:∵△ABC的周长为20,AB=5,BC=8,∴AC=7,∵△ABC≌△DEF,∴DF=AC=7,选D.19.【答题】如图,△ABC≌△DBF,∠ABD=30°,则∠CBF的度数为()A. 20°B. 40°C. 10°D. 30°【答案】D【分析】根据全等三角形的性质得出∠ABC=∠DBF,求出∠ABD=∠CBF,代入求出即可.【解答】解:∵△ABC≌△DBF,∴∠ABC=∠DBF,∴∠ABC-∠DBC=∠DBF-∠DBC,∴∠ABD=∠CBF,∵∠ABD=30°,∴∠CBF=30°,选D.20.【答题】如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A. POB. PQC. MOD. MQ【答案】B【分析】利用全等三角形对应边相等可知要想求得MN的长,只需求得其对应边PQ的长,据此可以得到答案.【解答】要想利用△PQO≌△NMO求得MN的长,只需求得线段PQ的长,选B.。

初中数学经典题精选

初中数学经典题精选

数 学 试 题一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,则k 为( )A 、16B 、-16C 、±16D 、±132、若11m n -=3,2322m mn nm mn n+---的值是( ) A 、1.5 B 、35 C 、-2 D 、-753、判断下列真命题有( )①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD ,AB=BC=CD ,∠A=90°,那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A 、②③ B 、①②④ C 、①⑤ D 、②③④4、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC ,E,PF ⊥BD 于F,则PE+PF=( ) A 、5 B 、6013 C 、245 D 、55125、在直角坐标系中,已知两点A (-8,3)、B (-4,5)以及动点C (0,n )、D(m,0),则当四边形ABCD 的周长最小时,比值为 mn( )A 、-23B 、-32C 、-34D 、34二、填空题 6、当x= 时,||3x x -与3x x-互为倒数。

9、已知x 2-3x+1=0,求(x-1x )2=7、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v ,下山的速度为v ′,单程的路程为s .则这个人往返这个村庄的平均速度为 8、将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是9、菱形ABCD 的一条对角线长为6,边AB 的长是方程(X-3)(X-4)=0的解,则菱形ABCD 的周长为 10、△ABC 中,∠A=90°,AB=AC ,BD 是△ABC 的中线,△CDB 内以CD 为边的等腰直角三角形周长是 11. 如图,边长为6的菱形ABCD 中,∠DAB=60°,AE=AB ,F 是AC•上一动点,EF+BF 的最小值为 12、如图,边长为3的正方形ABCD 顺时针旋转30°,得上图,交DE 于D ’,阴影部分面积是11235...315211321④③13、如图,已知四边形ABCD 中,AC 和BD 相交于点O , 且∠AOD =90°,若BC =2AD ,AB =12,CD =9,四边形ABCD 的周长是14、有这样一组数:1,1,2,3,5…,现以这组数据的数作为正方形边长的长度构造如下正方形;再分别从左到右取2个、3个、4个、5个正方形拼成如下矩形记为①、②、③、④.第⑩个矩形周长是15、如图,在直线y=-33x+1与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,第二象限内有一点P (a,12 ),且△ABP 的面积与△ABC 的面积相等,则a=三、解答题16、如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。

初中数学冀教版七年级上册第一章 有理数1.2 数轴-章节测试习题(13)

初中数学冀教版七年级上册第一章 有理数1.2 数轴-章节测试习题(13)

章节测试题1.【答题】已知数轴上的点E、F、G、H表示的数分别是、、、,那么其中离原点最近的点是()A.点EB.点FC.点GD.点H【答案】D【分析】根据数轴上两点间距离的定义解答此题即可.【解答】根据数轴上点到原点的距离是其绝对值,可知-0.8的绝对值最小,故其离原点最近.故选:D.2.【答题】如图,四个选项中正确的是A.a<-2B.a>-1C.a>bD.b>2【答案】A【分析】根据数轴上点的位置判断出对应点的正负即可得到结果.【解答】同一数轴中,右边点表示的数总比左边点表示的数大,在-2的左边,正确,故A正确;在-1的左边,,故B错;在的左边,则,故C错;在2的左边,,故D错,答案选A.3.【答题】下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点,其中正确的是()A.①②③④B.②③④C.③④D.④【答案】D【分析】根据数轴的概念判断即可.【解答】①数轴是指规定了原点、正方向和单位长度的直线,故①错;②任何一个有理数都对应了数轴上唯一的一个点,故②错;③无理数和有理数统称为实数,它们都可以在数轴上表示出来,故③错;④对,选D.4.【答题】在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数()A.3B.﹣1C.﹣5D.4【答案】B【分析】根据数轴上两点间距离的定义解答此题即可.【解答】由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3−8+4=−1;故选B.5.【答题】在数轴上表示的点与表示的点的距离是()A. 3个单位长度B. 2个单位长度C. 5个单位长度D. 1个单位长度【答案】D【分析】根据数轴上两点间距离的定义解答此题即可.【解答】在数轴上表示−3的点与表示−2的点的距离是|−3−(−2)|=1.选D.6.【答题】下面给出的四条数轴中画得正确的是()A.B.C.D.【答案】B【分析】根据数轴的三要素判断即可.【解答】A没有原点,故错误;B.正确;C.没有方向,故错误;D.单位长度不统一,故错误.选B.7.【答题】如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.b>c>0>aB.a>0>c>bC.b>a>c>0D.c<0<a<b【答案】A【分析】根据数轴上点的位置判断出对应点的正负即可得到结果.【解答】解:∵数轴上的数,右边的数总比左边的数大,∴b>c>0>a.选A.8.【答题】若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.4【答案】D【分析】本题考查数轴上两点间的距离,解题的关键是要明确两点之间的距离等于表示这两点的数的差的绝对值.【解答】AB=|﹣1﹣3|=4,选D.9.【答题】如图,下列结论正确的是()A. a比b大B. b以a大C. a、b一样大D. a、b的大小无法确定【答案】B【分析】根据数轴上点的位置判断出对应点的正负即可得到结果.【解答】试题分析:根据数轴上的点的大小关系:左边<右边,可知a<0<b. 故选: B.10.【答题】数轴上点A、B之间的距离为5,则它们表示的数可能是()A.-2,3B.3,2C.-2,7D.-3,-2【答案】A【分析】根据数轴上两点间距离的定义解答此题即可.【解答】在数轴上两点之间的距离等于两点所表示的数的差的绝对值.-2和3的距离为5;3和2的距离为1;-2和7的距离为9;-3和-2的距离为1.11.【答题】下列说法正确的是()A. 数轴是一条直线B. 表示–9的点一定在原点的右边C. 数轴上的原点表示0D. –3小于–7【答案】C【分析】本题考查数轴的定义,有理数的大小比较.【解答】A.数轴是一条有原点、正方向、单位长度的直线,故A说法错误;B.表示–9的点在原点的左边,故B说法错误;C.数轴上的原点表示0,故C说法正确;D.–3大于–7,故D说法错误;选C.12.【答题】如图,数轴上点A表示的数是()A. –1B. 0C. 1D. 2【答案】C【分析】本题考查有理数在数轴上的表示.【解答】数轴上点A所表示的数是1.选C.13.【答题】如图,数轴的单位长度为1,如果点A表示的数是–1,那么点B表示的数是()A. 0B. 1C. 2D. 3【答案】D【分析】本题考查有理数在数轴上的表示方法.【解答】∵数轴的单位长度为1,如果点A表示的数是–1,∴点B表示的数是3.选D.14.【答题】在数轴上到原点距离等于2的点所标示的数是()A. ﹣2B. 2C. ±2D. 不能确定【答案】C【分析】本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.【解答】在数轴上到原点距离等于2的点如图所示,点A、B即为所求的点,即在数轴上到原点距离等于2的点所标示的数是﹣2和2.15.【答题】如图,数轴上点A表示的数是()A. –1B. 0C. 1D. 2【答案】C【分析】本题考查了数轴上的点和实数之间的对应关系.【解答】数轴上点A所表示的数是1.选C.16.【答题】如图,数轴的单位长度为1,如果点A表示的数是–1,那么点B表示的数是()A. 0B. 1C. 2D. 3【答案】D【分析】本题考查了实数轴,正确应用数形结合分析是解题关键.【解答】数轴的单位长度为1,如果点A表示的数是–1,那么点B表示的数是3.选D.17.【答题】在数轴上表示–3,0,5.1,的点中,在原点左边的点有()A. 0个B. 1个C. 2个D. 3个【答案】B【分析】本题考查了数轴上的点和实数之间的对应关系.【解答】根据原点左边的点表示负数,即可得出:只有–3在原点左边.选B.18.【答题】如图,在数轴上,小手遮挡住的点表示的数可能是()A. –1.5B. –2.5C. –0.5D. 0.5【答案】C【分析】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.【解答】设小手盖住的点表示的数为x,则–1<x<0,则表示的数可能是–0.5.选C.19.【答题】数轴上+5表示的点位于原点______边距原点______个单位长度,数轴上位于原点左边4个单位长度的点表示______,数轴上距原点6个单位长度并在原点右边的点表示的数是______.【答案】右 5 –4 +6【分析】本题考查的是实数与数轴,数轴上两点间的距离.【解答】数轴上+5表示的点位于原点右边距原点5个单位长度,数轴上位于原点左边4个单位长度的点表示–4,数轴上距原点6个单位长度并在原点右边的点表示的数是+6.故答案为:右,5,–4,+6.20.【题文】(1)在数轴上表示出下列各有理数:–2,–3,0,−4,;(2)指出下图所示的数轴上A、B、C、D、E各点分别表示的有理数.【答案】(1)见解答;(2)A表示–4,B表示–1.5,C表示0.5,D表示3,E表示4.5.【分析】本题考查了数轴上的点和实数之间的对应关系.【解答】(1)如图所示:(2)由题可得,A表示–4,B表示–1.5,C表示0.5,D表示3,E表示4.5.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?
⑵若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?
【答案】解:⑴因为篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,所以,可以依次设它们的单价分别为 , , 元,于是,得 ,解得 .
【解】设灌溉用井打x口,生活用井打y口,由题意得……………………(1分)
………………………………………………………………(4分)
解这个方程组,得 ……………………………………………………(6分)
答:灌溉用井打18口,生活用井打40口.
9.(2011上海,20,10分)解方程组:
【答案】
方程①变形为 ③.
5.(2011四川绵阳9,3)灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.请问这次采购派男女村民各多少人?
A.男村民3人,女村民12人B.男村民5人,女村民10人
C.男村民6人,女村民9人D.男村民7人,女村民8人
A.-1 B.1 C.2 D.3
【答案】A
10.
二、填空题
1.(2011安徽芜湖,13,5分)方程组 的解是.
【答案】
2.(2011浙江省,13,3分)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为元.
【答案】440
3.(2011江西,12,3分)方程组 的解是.
【答案】解法一:设A饮料生产了x瓶,则B饮料生产了(100-x)瓶,依题意得:
2x+3(100-x)=270
解得:x=30 100-x=70
答:A饮料生产了30瓶,B饮料生产了70瓶.
解法二:设A饮料生产了x瓶,B饮料生产了y瓶,依题意得:
解得: .
答:A饮料生产了30瓶,B饮料生产了70瓶.
6.(2011四川宜宾,20,7分)某县为鼓励失地农民自主创业,在2011年对60位自主创业的失地穷民进行了奖励,共计奖励了10万元,奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?
【答案】解:方法一
设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程
1000x+(60-x)(1000+2000)=100000
解得:x=40
所以60-x=60-40=20
答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.
方法二
【解】设李大叔去年甲种蔬菜种植了 亩,乙种蔬菜种植了 亩,则 ,解得 ,答李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.
12.(2011湖南永州,18,6分)解方程组:
【答案】解:①+②×3,得10x=50,解得x=5,把x=5代入②,得2×5+y=13,解得y=3.
于是,得方程组的解为 .
13.(2011湖南永州,22,8分)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8︰3︰2,且其单价和为130元.
6x=12,解得x=2,
将x=2代入x+3y=8,得y=2,
所以方程组的解为
8.(2011山东临沂,21,7分)去年秋季以来,我市某镇遭受百年一遇的特大干旱,为支援该镇抗旱,上级下拨专项抗旱资金80万元用于打井.已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?
2.(2011台湾台北,30)某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元。该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠。若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式?
A B.
C.
D.
【答案】D
3.(2011台湾全区,9)在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太
3.(2012山东省荷泽市,4,3)已知 是二元一次方程组 的解,则2m-n的算术平方根为()
【答案】
4.(2011福建泉州,12,4分)已知x、y满足方程组 则x-y的值为.
【答案】1;
5.(2011山东潍坊,15,3分)方程组 的解是___________________.
【答案】
6.(2011江西南昌,12,3分)方程组 的解是.
【答案】
7.(2011安徽芜湖,13,5分)方程组 的解是.
【答案】解:设自行车路段的长度为x米,长跑路段的长度y米,可得方程组:
解这个方程组,得
答:自行车路段的长度为32千米,长跑路段的长度2千米.
3.(2011山东烟台,20,8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?
方案二,当 时,篮球购买14个,羽毛球拍购买56副,乒乓球拍购买10副.
14.(2011广东中山,12,6分)解方程组: .
【解】把①代入②,得
解得,x=2
把x=2代入①,得y=-1
所以,原方程组的解为 .
15.(2011湖北宜昌,17,7分)解方程组
【答案】解:由x-y=1,①2x+y=2.②由①,得x=y+1,(2分),代入②,得2(y+1)+y=2.(3分)解得y=0.(4分),将y=0代入①,得x=1.(6分)(或者:①+②,得3x=3,(2分)∴x=1.(3分)将x=1代入①,得1-y=1,(4分)∴y=0.(6分))∴原方程组的解是x=1,y=0.(7分)
【答案】B
6.(2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是()
A. B. C. D.
【答案】D
7.(2011广东肇庆,4,3分)方程组 的解是
A. B. C. D.
【答案】D
8.(2011山东东营,4,3分)方程组 的解是
A. B. C. D.
【答案】A
9.(2011山东枣庄,6,3分)已知 是二元一次方程组 的解,则 的值为()
习题精选
一、选择题
1.(2011山东泰安,11,3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()
A. B. C. D.
【答案】B
【答案】解:设这种出租车的起步价是x元,超过3千米后每千米收费y元,根据题得
所以这种出租车的起步价是5元,超过3千米后每千米收费1.5元
5.(2011广东株洲,19,6分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?
2.(2012山东省临沂市,10,3分)关于x的方程组 的解是 ,则|m-n|的值是()
A.5 B.3 C. 2 D. 1
【解析】将 代入方程组 可得,m=2,n=3.∴|m-n|=|2-3|=1.
【答案】选D.
【点评】本题主要考查二元一次方程组的解的意义与解一元一次方程知识,将x、y的值代入原方程,即可求出待定系数的值.
甲:x表示,y表示;
乙:x表示,y表示;
(2)求A、B两工程队分别整治河道多少米?(写出完整的解答过程)
【答案】解:(1)甲: 乙:
甲:x表示A工程队工作的天数,y表示B工程队工作的天数;
乙:x表示A工程队整治的河道长度,y表示B工程队整治的河道长度;
(2)若解甲的方程组
①×8,得:8x+8y=120③
③-②,得:4x=20
∴x=5
把x=5代入①得:y=15,
∴12x=60,8y=120
答ቤተ መጻሕፍቲ ባይዱA、B两工程队分别整治河道60米和120米。
若解乙的方程组
②×12,得:x+1.5y=240③
③-①,得:0.5y=60
∴y=120
把y=120代入①,得,x=60
答:A、B两工程队分别整治河道60米和120米。
把③代入②,得 .
整理,得 .
解这个方程,得 , .
将 代入③,得 .
将 分别代入③,得 .
所以,原方程组的解为
10.(2011湖北黄石,20,8分)解方程: 。
【答案】解:根据题意可得
∴ 或
11.(2011湖南衡阳,22,6分)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
【答案】解:设平路有x米,坡路有y米
解这个方程组,得
所以x+y=700.
所以小华家离学校700米.
4.(2011湖南常德,23,8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?
相关文档
最新文档