最新部编版人教《初中数学七年级上册全册教学设计及教学反思》精品优秀实用完整打印版整册每课教案
部编版七年级数学上册教案(全册)

部编版七年级数学上册教案(全册)教案概述本教案是针对部编版七年级数学上册所编写,旨在帮助教师有效教授数学知识和培养学生的数学能力。
教案涵盖了全册的内容,提供了详细的教学方案和活动安排。
教学目标- 理解并掌握七年级数学上册的知识点和技能要求- 培养学生的数学思维能力和解决问题的能力- 提高学生的数学研究兴趣和乐趣教学内容全册教案包括以下几个主题:1. 数的性质和运算2. 一次函数与一次方程3. 几何图形与尺规作图4. 数据统计与概率5. 平面和空间的初步认识教学方法- 合作研究法:通过小组合作和讨论,激发学生的思维和创造力- 情景教学法:通过情境设置,使学生能够将数学知识运用到实际生活中- 探究式研究法:鼓励学生主动探索和发现数学规律,培养独立思考和解决问题的能力教学活动为了更好地帮助学生理解和掌握数学知识,教案提供了多种教学活动,包括:1. 观察和实验活动:通过观察和实验让学生亲自探索数学规律2. 游戏和竞赛活动:通过游戏和竞赛激发学生的研究兴趣和积极性3. 小组合作活动:通过小组合作解决问题,培养学生的团队合作能力教学评价为了及时了解学生的研究情况,教案提供了相应的教学评价方法,包括:1. 课堂表现评价:评价学生在课堂上的表现,如参与度、回答问题的准确性等2. 作业和考试评价:通过作业和考试检查学生对知识的理解和掌握程度3. 项目评价:评价学生在小组活动和实际项目中的表现和成果教案中的教学方案和活动安排将根据具体的教学情况进行调整和适应,旨在激发学生的学习兴趣和提高他们的数学能力。
教师可根据自己的判断和实际需求,对教案进行灵活运用。
人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。
在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。
对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。
学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。
2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。
本章重点内容是有理数的概念,性质和运算。
本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。
本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。
本章难点在于理解合并同类项和去括号的法则。
3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。
本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。
本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
4、第4章几何图形初步:本章主要学习线段和角有关的性质。
本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。
本章的难点在于线段和角的有关计算。
二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。
体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
最新-七年级数学上册教案(优秀8篇)

七年级数学上册教案(优秀8篇)作为一位无私奉献的人民教师,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。
我们应该怎么写教案呢?本页是爱岗敬业的小编惊云为大伙儿收集的七年级数学上册教案(优秀8篇)。
知识与技能篇一能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量课时划分篇二1、1 正数和负数2课时1、2 有理数5课时1、3 有理数的加减法4课时1、4 有理数的乘除法5课时1、5 有理数的乘方4课时第一章有理数2课时1、1正数和负数七年级数学上册教案篇三一、教学目标知识与技能1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
过程与方法通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
情感态度与价值观初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
二、重点难点重点列单项式表示数量关系,单项式及其系数、次数的意义。
难点列单项式表示数量关系。
三、学情分析本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。
要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
四、教学过程设计问题设计师生活动设计意图[活动1]举世瞩目的青藏铁路于20xx年7月1日建成通车,实现了几代中国人梦寐以求的愿望。
青藏铁路是世界上海拔最高、线路最长的高原铁路。
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段。
列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?提问:字母表示数有什么意义?学生独立思考,尝试解决解答:1002=200千米1003=300千米100t=100t千米我们用含字母t的式子100t表示路程。
(完整)人教版七年级数学上册全册教案

(完整)人教版七年级数学上册全册教案第一章有理数1.1正数和负数教学目标: 1、了解正数与负数是从实际需要中产生的。
2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。
3、会用正、负数表示实际问题中具有相反意义的量。
重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。
教学过程:正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。
结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。
为了用数表示具有相反意义的量,我们把其中一种意义的量。
如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。
正的用小学学过的数(0除外)表示,负的用小学学过的数(0除外)在前面加上“-”(读作负)号来表示。
根据需要,有时在正数前面也加上“+”(读作正)号。
注意:①数0既不是正数,也不是负数。
0不仅仅表示没有,也可以表示一个确定的量,如温度计中的0℃不是没有表示没有温度,它通常表示水结成冰时的温度。
②正数、负数的“+”“-”的符号是表示量的性质相反,这种符号叫做性质符号。
三、巩固知识1、课本P3 练习1,2,3,42、课本P4例四、总结①什么是具有相反意义的量?②什么是正数,什么是负数?③引入负数后,0的意义是什么?五、布置作业课本P5习题1.1第1、2题。
1.2.1有理数教学目标: 1、正确理解有理数的概念及分类,能够准确区分正整数、0、负整数、正分数、负分数。
2、掌握有理数的分类方法,会对有理数进行分类,体验分类是数学上常用的处理问题的方法。
重点:正确理解有理数的概念重点:有理数的分类教学过程:一、知识回顾,导入新课什么是正数,什么是负数?问题1:学习了负数之后,我们对数的认识范围扩大了,你能写出三个不同类型的数吗?(请三位同学上黑板上写出,其他同学在自己的练习本上写出,如果有出现不同类型的数,同学们可上黑板补充。
)问题2:观察黑板上的这么数,并给它们分类。
人教版初中七年级上册数学全册教学设计(完整版)

人教版初中七年级上册数学全册教学设计(完整版)一. 教材分析人教版初中七年级上册数学教材主要内容包括:第一章有理数;第二章整式的加减;第三章几何图形初步;第四章数据的收集、整理与分析。
本册教材主要让学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了小学阶段的数学知识,具备一定的逻辑思维能力和运算能力。
但部分学生对数学学科的学习兴趣不高,学习主动性不足。
因此,在教学过程中,需要关注学生的学习兴趣,激发学生的学习积极性。
三. 教学目标1.知识与技能:使学生掌握有理数、整式的加减以及几何图形的知识,培养学生解决实际问题的能力。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:培养学生对数学学科的兴趣,提高学生的自信心。
四. 教学重难点1.教学重点:有理数、整式的加减以及几何图形的知识。
2.教学难点:有理数的混合运算、整式的加减运算以及几何图形的性质。
五. 教学方法1.情境教学法:通过生活实例引入知识,使学生感受到数学与生活的紧密联系。
2.启发式教学法:引导学生主动思考问题,培养学生的逻辑思维能力。
3.合作学习法:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教师准备:熟练掌握教材内容,了解学生的学习情况。
2.学生准备:预习教材内容,了解本节课的学习目标。
3.教学资源:多媒体课件、黑板、粉笔等。
七. 教学过程1.导入(5分钟)利用生活实例引入本节课的知识,激发学生的学习兴趣。
例如,讲解温度、身高等概念,引出有理数的概念。
2.呈现(15分钟)讲解有理数的定义、性质以及运算规则。
通过示例演示有理数的加减乘除运算,让学生跟随老师一起动手操作,巩固知识点。
3.操练(15分钟)布置练习题,让学生独立完成。
题目难度可分为基础、提高、挑战三个层次,以满足不同学生的学习需求。
教师巡回指导,帮助学生解决问题。
最新部编版人教《初中数学七年级上册全册同步训练习题及答案》精品完美优秀实用打印版整册每课测试题

部编版人教初中数学七年级上册全册同步训练习题及答案前言:该同步训练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的同步训练习题助力考生查漏补缺,在原有基础上更进一步。
(最新精品同步训练习题)第一章有理数1.1 正数和负数5分钟训练(预习类训练,可用于课前)1.下面说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6 ℃记作-6 ℃,那么+8 ℃的意义就是零上8 ℃D.若将高1米设为标准0,高1.20米记作+0.20,那么-0.05所表示的高是0.95米思路解析:弄清具有相反意义的量的含义,如东与西,升与降,高与低等语意答案:D2.填空:(1)如果零上5 ℃记为+5 ℃,那么-9 ℃表示的意义是___________;(2)高出海平面129米记为+129米,那么-45米表示的是__________;(3)某仓库运出货物40千克记为-40千克,那么运进21千克货物应记为___________;(4)如果下降5米记为-5米,那么上升4米应记为__________;(5)某钢厂增产14吨钢记为+14吨,那么减产3吨应记为____________.思路解析:(1)零上5 ℃规定为+5 ℃,即“+”号表示“零上”,那么与它相反意义的量“零下”就规定为“-”.本题里的各小题中的“零上、上升、高出、运进、增产”等表示的量均为正数,与它们意义相反的量则都用负数表示.(4)本小题的“-”号表示“下降”,因此,“上升”应记为“+”,也就是说,具有相反意义的两个量,把其中的一个规定为正时,那么另一个即为负.答案:(1)零下9 ℃ (2)低于海平面45米 (3)+21千克 (4)+4米 (5)-3吨10分钟训练(强化类训练,可用于课中)1.如果水库的水位高于正常水位2 m时,记作+2 m,那么低于正常水位3 m时,应记作…()A.+3 mB.-3 mC.+13m D.-13m思路解析:注意规定“正、负”的相对性.对于具有相反意义的量,如节约用水为正,那么浪费用水为负;反过来,节约用水为负,那么浪费用水为正.答案:B2.在下列横线上填上适当的词,使前后构成具有相反意义的量.(1)收入5 000元,_______2 000元;(2)向南走5千米,向_______走3千米;(3)_______2万元,盈利212万元;(4)_______9.5吨,运出12吨.思路解析:本例题考查具有相反意义的量,这些相反意义的量与现实生活紧密相连,必须掌握常见的表示具有相反意义的名词术语.答案:(1)支出(2)北(3)亏损(4)运进3.高于海平面50 m记作_______,低于海平面30 m记作_______,海平面的高度记作___ _____.思路解析:通常情况下,我们把海平面的高度看作0 m,高于海平面记作“+”,低于海平面记作“-”.答案:+50 m -30 m 0 m4.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4 000千米,记作____ _____;(2)球赛时,如果胜2局记作+2,那么-2表示_________;(3)若-4万元表示亏损4万元,那么盈余3万元记作________;(4)+150米表示高出海平面150米,低于海平面200米应记作_________.思路解析:注意“+”“-”号使用的相对性,如向东记作“+”,则向西记作“-”,反之亦然.答案:(1)-4 000千米 (2)输2局 (3)+3万元 (4)-200米5.在-1.2,23,-0.10,π,0,-(-1),3中,非负数共有_________个.思路解析:非负数就是大于或等于零的数.答案:5快乐时光寄信有一天,父亲让8岁的儿子去寄一封信,儿子已经拿着信跑了,父亲才想起信封上没写地址和收信人的名字.儿子回来后,父亲问他:“你把信丢进邮筒了吗?”“当然.”“你没看见信封上没有写地址和收信人的名字吗?”“我当然看见信封上什么也没写.”“那你为什么不拿回来呢?”“我还以为您不写地址和收信人,是为了不想让我知道您把信寄给谁呢!”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)0是自然数,也是偶数;()(2)0可以看成是正数,也可以看成是负数;()(3)海拔-155米表示比海平面低155米;()(4)如果盈利1 000元,记作+1 000元,那么亏损200元就可记作-200元;()(5)如果向南走记为正,那么-10米表示向北走-10米;()(6)温度0 ℃就是没有温度.()思路解析:根据具有相反意义的含义来判断.答案:(1)√(2)×(3)√(4)√(5)×(6)×2.今年我省元月份某一天的天气预报中,延安市最低气温为-6 ℃,西安市最低气温为2℃.这一天延安市的气温比西安市的气温低()A.8 ℃B.-8 ℃C.6 ℃D.2 ℃思路解析:在这里考查对正、负数的理解一个比0 ℃要低6 ℃,而另一个比0 ℃要高出2 ℃,故这一天延安市的气温比西安市的气温低8 ℃.答案:A3.用正数和负数表示下列具有相反意义的量.(1)温度上升5 ℃和温度下降7 ℃;(2)向东6米和向西10米;(3)球赛时,如果胜一场得1分,败一场扣1分;(4)海平面以上200米和海平面以下30米.思路解析:习惯规定上升、向东、得分、高出等记作正.答案:(1)+5 ℃和-7 ℃(2)+6米和-10米(3)+1和-1 (4)+200米和-30米4.填空:(1)如果零上3 ℃记作+3 ℃,那么-7 ℃表示的意义是____________;(2)某钢厂增产150吨钢记作+150吨,那么减产30吨记作____________;(3)如果前进5千米记作+5千米,那么后退16千米记作_____________;(4)支出100元记作-100元,那么+1 000元表示的意义是_____________.思路解析:利用相反意义的量来解决实际问题.答案:(1)零下7 ℃(2)-30吨(3)-16千米(4)收入1 000元5.把下列各数填在相应的集合内:15,-6,+2,-0.9,12,0,0.23,-113,14.正数集合{____________…};负数集合{____________…};正分数集合{____________…};负分数集合{____________…}思路解析:此题主要考查你对数的分类能力.正数包括正整数和正分数;负数包括负整数和负分数;正分数包括正分数本身外,还有正的小数;同样,负的小数也属于负分数;另外,填整数集合时,不要漏掉“0”.填集合时通常最后要加省略号.答案:正数集合{15,+2,12,0.23,14,…};负数集合{-6,-0.9,-113,…};正分数集合{12,0.23,14,…};负分数集合{-0.9,-113,…}6.桌上放着8只茶杯,全部杯口朝上,每次翻转其中4个,只要翻转两次,就可以把它们全都翻成杯口朝下.如果将问题中的8只茶杯改为6只,每次仍然翻转其中的4只,能否经过若干次翻转把它们全部翻成杯口朝下?请你动手试验一下.提示:用+1表示杯口朝上,-1表示杯口朝下,请填出翻转次数及过程:初始状态 +1,+1,+1,+1,+1,+1.第一次翻转-1,-1,-1,-1,______,__________________ ______________________________________________ ______________________________________……答案:答案不唯一6只茶杯:翻转三次可以全部翻成杯口朝下.第一次翻转为-1,-1,-1,-1,+1,+1;第二次翻转为-1,+1,+1,+1,-1,+1;第三次翻转为-1,-1,-1,-1,-1,-1.1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)0千米表示原地未动2.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,_ _______,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{__________ _…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.问答题(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14••51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括______ __和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B4.在下列适当的空格里打上“√”号.有理数整数分数正整数负分数自然数2-3.14-5 8思路解析:根据数的分类来判别.答案:有理数整数分数正整数负分数自然数2 √√√√-3.14 √√√0 √√√-58√√√5.把下列各数分别填在相应的大括号里1.8,-42,+0.01,-512,0,-3.1415926,1112,1整数集合{_________________…};分数集合{_________________…};正数集合{_________________…};负数集合{_________________…};自然数集合{___________________…};。
新人教版七年级数学上教案及教学反思正数和负数优秀教案

新人教版七年级数学上教案及教学反思——正数和负数优秀教案一、教学目标1.知识与技能:(1)理解正数和负数的概念。
(2)能够正确表示正数和负数。
2.过程与方法:(1)通过实例引入正数和负数的概念。
(2)运用正数和负数进行数学运算。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生对正数和负数的敏感度。
二、教学重难点1.重点:(1)正数和负数的概念。
(2)正数和负数的表示方法。
2.难点:(1)正数和负数在实际生活中的应用。
(2)正数和负数的运算规律。
三、教学过程1.导入(1)讲解正数和负数的概念。
(2)引导学生关注正数和负数在实际生活中的应用。
2.新课内容(1)讲解正数和负数的表示方法。
(2)通过实例让学生理解正数和负数的含义。
(3)引导学生运用正数和负数进行数学运算。
3.练习与巩固(1)设计一些关于正数和负数的练习题。
(2)让学生分组讨论,互相检查答案。
(2)引导学生思考正数和负数在生活中的作用。
四、教学反思1.本节课通过实例引入正数和负数的概念,让学生在实际生活中感受数学的运用。
2.在讲解正数和负数的表示方法时,注意引导学生理解其含义。
3.通过练习题巩固所学内容,让学生熟练掌握正数和负数的运算规律。
5.不足之处:(1)课堂讲解时,可能存在部分学生听不懂的情况,需要加强个别辅导。
(2)练习题设计不够丰富,需要增加更多有趣的题目。
(3)在课堂互动环节,要更加关注学生的参与度,让每个学生都有机会发言。
五、教学建议1.在讲解正数和负数时,尽量使用生动形象的例子,让学生更容易理解。
2.加强课堂互动,让学生积极参与讨论,提高学生的学习兴趣。
3.设计更多有趣的练习题,让学生在轻松的氛围中学习。
4.关注学生的个体差异,对学习有困难的学生进行个别辅导。
5.定期进行教学反思,不断改进教学方法,提高教学质量。
作为一名教师,我们要关注学生的需求,用心教学,让学生在愉快的氛围中学习数学,掌握正数和负数的知识,为今后的学习打下坚实的基础。
人教版七年级上册数学教案【3篇】

人教版七年级上册数学教案【优秀3篇】七年级上册初中数学教案篇一一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。
本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。
在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新精品
最新部编版人教初中七年级数学上册
优
秀
教
学
设
计
(全册完整版含教学反思)
前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)
第一章有理数
1.1正数和负数(2课时)
第1课时正数和负数的概念
了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.
重点
正、负数的意义.
难点
1.负数的意义.
2.具有相反意义的量.
一、新课导入
活动1:创设情境,导入新课
教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.
二、推进新课
活动2:体验负数的引入的必要性
教师出示温度计:
安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.
教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.
活动3:分组活动,感受正负数的意义
各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.
1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.
2.各小组互相监督,派一名同学汇报完成的情况.
活动4:深入理解正负数的意义,提高分析解决问题的能力
师投影展示问题,讲解课本例题.
例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.
2.某年,下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家这一年商品进出口总额的增长率.
学生讨论后解决.
活动5:练习与小结
练习:教材第3页练习.
小结:这堂课我们学习了哪些知识?你能说一说吗?
活动6:作业
习题1.1第4,5,6,8题
本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.
第2课时正数、负数以及0的意义
进一步理解正、负数及0的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量.
重点
进一步理解正、负数及0表示的量的意义.
难点
理解负数及0表示的量的意义.
一、创设情境,复习引入
师:在会计的账目本上我们会看到这样一些数据,如+1800元,—6932元,你知道它们是什么意思吗?你能再举出一些这样的例子吗?
思考:“0”为什么既不是正数也不是负数呢?
学生思考讨论,借助举例说明.
二、推进新课
活动1:尝试解释正负数的含义
教师出示问题
1.学生举例说明正、负数在实际中的应用.
2.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔为0).通常用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔.珠穆朗玛峰的海拔为8844.43米,它表示什么含义?吐鲁番盆地的海拔为-155米,它表示什么含义?
3.记录账目时,通常用正数表示收入款额,负数表示支出款额.
活动2:感受数0的含义.
师:在前面的几个问题中出现的那些新数,我们把前面带有“-”的数叫做负数.并且为与负数相区别,我们把以前学过的0以外的数,例如3,2,0.5等,叫做正数,根据需要,有
时在正数前面也加“+”,例如+2,+3,+0.5,+1
3
就是2,3,0.5,
1
3
.一个数前面的
“+”“-”叫做它的符号.
教师说明数0的意义.0既不是正数,也不是负数,0是正数与负数的分界.0℃是一个确定的温度,海拔0表示海平面的平均高度.0的意义已不仅是表示“没有”.
三、迁移应用,巩固提高
例:举出几对具有相反意义的量,并分别用正、负数表示.
提示:相反意义的量有“上升”与“下降”,“前”与“后”,“高于”与“低于”,“得到”与“失去”,“收入”与“支出”等.
这是一道开放性练习题,意在考查正负数与相反意义量的表示能力.
四、练习与小结
练习:教材第4页练习题.
小结:谈谈你对正数、负数和0的认识.
五、作业
教材习题1.1第1,2,3,7题
“数0既不是正数,也不是负数。
在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。
了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.
1.2有理数
1.2.1有理数
1.理解有理数的意义.
2.能把给出的有理数按要求分类.
3.了解0在有理数分类中的作用.
重点
会把所给的各数填入它所属于的集合里.
难点
掌握有理数的两种分类.
一、创设情境,导入新课
师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.
学生讨论.
二、合作交流,解读探究
师:你能列举出一些你已经学过的各类型的数吗?
学生列举:3,5.7,-7,-9,-10,0,13,25,-356
,-7.4,5.2,… 师:你能说说这些数的特点吗?
学生回答,并相互补充.
教师指出,我们把所有的这些数统称为有理数.
你能对以上各种类型的数作出分类吗?
有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0
负整数分数⎩⎨⎧正分数负分数
说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?
以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.
有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数
零负有理数⎩⎨⎧负整数负分数
说明:让学生感受分类的方法和原则,统一标准,不重不漏.
三、应用迁移,巩固提高
例1:把下列各数填入相应的集合内:
3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.
正数集合 负数集合
整数集合 分数集合
例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?
有理数⎩⎨⎧正有理数⎩⎨⎧正整数正分数
负有理数⎩⎨⎧负整数负分数 有理数⎩⎪⎨⎪⎧正数
整数
分数负数零 四、练习与小结
练习:教材练习题.
小结:谈一谈今天你的收获.
五、作业
习题1.2第1题
本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
1.2.2 数轴
1.了解数轴的概念,知道数轴的三要素,会画数轴.
2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.。