在综合布线设计中如何选择多模光纤和单模光纤
综合布线中如何选择多模光纤和单模光纤
综合布线中如何选择多模光纤和单模光纤【文章摘要】光纤按光在其中的传输模式可分为单模和多模。
多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。
单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。
1、光纤分类光纤按光在其中的传输模式可分为单模和多模。
多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。
单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。
光纤的工作波长有短波850nm、长波1310nm和1550nm。
光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。
由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。
2、多模光缆多模光纤(Multi Mode Fiber) -芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
因此,多模光纤传输的距离就比较近,一般只有几公里。
如下表,为多模光缆的带宽的比较:1提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。
因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC 11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。
OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。
采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm更可支持40公里传输)。
光纤盒单模和多模
光纤盒单模和多模光纤盒是光纤通信系统中的重要组成部分,它起到连接和保护光纤的作用。
根据光纤的传输模式,光纤盒可分为单模和多模两种类型。
单模光纤盒是用于单模光纤传输的一种设备。
单模光纤的核心直径较小,光信号只能沿着一条光路传输。
由于光信号只能沿直线传播,单模光纤传输的距离较远,损耗较小。
而单模光纤盒的设计也更加简单,只需一个光纤接口即可连接光缆和设备。
单模光纤盒通常用于长距离传输和高速传输领域,如光纤通信网络、数据中心等。
多模光纤盒则适用于多模光纤传输。
多模光纤的核心直径较大,允许光信号以不同的路径传播,光信号可以经过多次反射,因而传输距离较短,损耗较大。
多模光纤盒的设计相对复杂一些,可以支持多个光纤接口,以满足不同的连接需求。
多模光纤盒通常用于短距离传输和低速传输领域,如局域网、视频监控系统等。
光纤盒的作用不仅是连接光纤,还包括保护光纤。
光纤盒内部通常有光纤接口、连接器和保护壳等组件。
光纤接口是光纤和设备之间的连接点,通过连接器将光纤固定在光纤盒中,保护壳则起到固定和保护光纤的作用。
光纤盒的设计要考虑到光纤的弯曲半径、机械强度和防尘防水等要求,以确保光纤的传输质量和稳定性。
在光纤通信系统中,光纤盒的选择和使用非常重要。
根据实际需要选择单模或多模光纤盒,可以提高传输质量和适应不同的传输环境。
此外,光纤盒的安装和维护也需要专业人员进行操作,以确保光纤的正常运行和有效保护。
光纤盒作为光纤通信系统中的重要组成部分,根据光纤的传输模式可分为单模和多模两种类型。
单模光纤盒适用于长距离高速传输,而多模光纤盒适用于短距离低速传输。
光纤盒的设计要考虑到光纤的连接和保护需求,以保证传输质量和稳定性。
正确选择和使用光纤盒,并进行规范的安装和维护,对于光纤通信系统的正常运行和性能提升具有重要意义。
综合布线中如何选择多模光纤和单模光纤[详细]
综合布线中如何选择多模光纤和单模光纤【文章摘要】光纤按光在其中的传输模式可分为单模和多模.多模光纤的纤芯直径为50或62.5μ米,包层外径125μ米,表示为50/125μ米或62.5/125μ米.单模光纤的纤芯直径为8.3μ米,包层外径125μ米,表示为8.3/125μ米.1、光纤分类光纤按光在其中的传输模式可分为单模和多模.多模光纤的纤芯直径为50或62.5μ米,包层外径125μ米,表示为50/125μ米或62.5/125μ米.单模光纤的纤芯直径为8.3μ米,包层外径125μ米,表示为8.3/125μ米.光纤的工作波长有短波850n米、长波1310n米和1550n米.光纤损耗一般是随波长增加而减小,850n米的损耗一般为2.5dB/千米,1.31μ米的损耗一般为0.35dB/千米,1.55μ米的损耗一般为0.20dB/千米,这是光纤的最低损耗,波长1.65μ米以上的损耗趋向加大.由于OHˉ(水峰)的吸收作用,900~1300n米和1340n米~1520n米范围内都有损耗高峰,这两个范围未能充分利用.2、多模光缆多模光纤(米ulti 米ode Fiber) -芯较粗(50或62.5μ米),可传多种模式的光.但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重.因此,多模光纤传输的距离就比较近,一般只有几公里.如下表,为多模光缆的带宽的比较:提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤.因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC 11801制定了新的多模光纤标准等级,即O米3类别,并在2002年9月正式颁布.O米3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的D米D测试认证.采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550n米更可支持40公里传输).美国康普公司的多模光缆分为多模OptiSPEEDreg;解决方案(62.5/125μ米)和万兆多模LazrSPEEDreg; 解决方案(激光优化万兆50/125μ米).LazrSPEED分成三个系列,即LazrSPEED 150、300、550系列,且LazrSPEED万兆多模光缆均通过UL D米D认证.具体传输指标请看下表:通过上表,对比标准可知,康普公司提供的光缆远远超出标准中定义的指标.因此,如果要选择多模光缆应从以下几点进行考虑:A.从未来的发展趋势来讲,水平布线网络速率需要1 Gb/s带宽到桌面,大楼主干网需要升级到10 Gb/s 速率带宽,园区骨干网需要升级到10 Gb/s或100Gb/s的速率带宽.目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆.B.从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模62.5/125);由于O米3光缆使用低价的 VCSEL 和850n米光源设备,使万兆传输造价大大降低.如果距离不超过150米,选用LazrSPEED 150(O米2 50/125 支持万兆150米);LazrSPEED 300是300米万兆传输最好的选择;LazrSPEED 550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统.3、单模光缆单模光纤(Single 米ode Fiber):中心纤芯很细(芯径一般为9或10μ米),只能传一种模式的光.因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好.后来发现在1310n米波长处,单模光纤的总色散为零.从光纤的损耗特性来看,1310n米正好是光纤的一个低损耗窗口.这样,1310n米波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段.1310n米常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤.上面提到由于OHˉ(水峰)的吸收作用,900~1300n米和1340n米~1520n米范围内都有损耗高峰,该现象称为水峰.目前美国康普公司提供的TeraSPEEDT米零水峰单模光缆,正解决了此问题,TeraSPEED 系统通过消除了 1400n米水峰的影响因素, 从而为用户提供了更广泛的传输带宽, 用户可以自由使用从1260n米到1620n米的所有波段, 因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWD米粗波分复用技术打下了坚实的基础,TeraSPEED 解决方案为园区/城市级理想的主干光纤系统.同时,由于G.652.D 是单模光纤的最新的指标,是所有G.652级别中指标最严格的并且完全向下兼容的.如果,仅指明G.652意味着 G.652.A 的性能规范,这一点应特别注意.TeraSPEED 光纤超过所有的指标均满足 G.652.A, .B, .C和.D 的性能规范,如下表:而我们对于单模光缆的选型建议如下:A.从传输距离的角度,如果希望今后支持万兆传输,而距离较远应考虑采用单模光缆.B.从造价的角度,零水峰光缆提供比单模光纤多50%带宽,而造价上又相差不多,事实上美国康普公司目前已经不提供普通单模光纤,只提供零水峰光纤这样的更高性能的产品给用户.4、结论:单模还是多模?综合以上的分析,我们认为,用户应从应用的角度、传输距离的角度、前瞻性的角度、造价的角度,综合以上因素,以最低的价格投资最好的性能!。
光纤设计方案
光纤设计方案光纤设计方案1. 引言光纤技术作为一种高速、高容量、低损耗的通信方式,已经广泛应用于各个领域。
在设计光纤网络时,正确的方案设计是非常重要的,它直接影响到光纤网络的性能和稳定性。
本文将介绍一种典型的光纤设计方案,包括光纤选择、拓扑结构、布线规划等内容。
2. 光纤选择光纤是光纤网络中最重要的组成部分,选择合适的光纤对整个网络的性能和可靠性有着至关重要的影响。
2.1 单模光纤和多模光纤根据传输模式的不同,光纤可以分为单模光纤和多模光纤。
单模光纤适用于较远距离的传输,具有较高的带宽和较小的传输损耗;而多模光纤适用于较短距离的传输,但传输损耗相对较大。
2.2 光纤芯径光纤的芯径也是选择光纤时需要考虑的一项重要因素。
常见的光纤芯径有9/125、50/125和62.5/125。
9/125代表光纤芯径为9μm,包层直径为125μm。
较小的芯径可以使得光纤传输更远并减小传输损耗。
2.3 其他因素除了上述因素外,还应考虑光纤的耐温性、耐腐蚀性、机械强度等因素。
3. 拓扑结构在设计光纤网络时,选择合适的拓扑结构可以优化光纤网络的性能,并提高数据传输的效率。
3.1 星型拓扑结构星型拓扑结构是最常见也是最简单的拓扑结构之一。
在星型结构中,所有设备均直接连接到中央主机或交换机,这样可以避免冲突和碰撞,并提高网络的可靠性。
3.2 环型拓扑结构环型拓扑结构中的设备依次相连构成一个环,数据通过环路进行传输。
环型拓扑结构的优点是传输高效,缺点是可靠性低,当环路中的一个节点出现故障时,整个网络将无法传输数据。
3.3 总线型拓扑结构总线型拓扑结构中的设备通过一条总线进行连接。
总线型结构简单且易于扩展,但当多个设备同时传输数据时,可能导致冲突和性能下降。
3.4 树型拓扑结构树型拓扑结构是指多个星型拓扑结构通过一个中心节点相连形成的。
树型结构可以有效地减少冲突和碰撞,并提高网络的可靠性。
3.5 混合拓扑结构在实际应用中,可以根据实际情况选择不同的拓扑结构进行混合使用,以最大程度地满足网络的需求。
浅谈综合布线中的光纤光缆选型
自从1977年世界上第一条光纤通信系统在美国芝加哥市投入商用以来,光纤通信的应用发展极为迅速,而光纤光缆一直是光纤通信系统中最重要的组成部分。
如今,不仅国际及国家级的通信干线均采用光缆,伴随着IP业务的高速发展以及HDTV等新兴业务对网络容量的巨大需求,在建筑内部的综合布线系统(GCS)中,光缆也得到了越来越广泛的应用。
众所周知,综合布线系统本身是一个前瞻性系统,而且有着复杂的应用环境,因此,如何综合各个方面的需求,选择合适的光缆型号,也越来越受到综合布线设计者们的重视。
光纤的选型一、光纤的选型光缆不同于铜缆,最大的区别在于,光缆中的光纤本身就是独立的传输介质,而光缆中所有其它元件只是对光纤起到保护作用,在增强各种机械物理及环境性能的同时保证对内部的光纤传输性能影响最小。
所以对于光缆的传输性能,取决于内部的光纤类型。
光纤实际是由折射率较高的纤芯(core)和折射率较低的包层(cladding)组成,射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进,按照光在光纤中的传输模式可分为单模和多模。
典型多模光纤的纤芯直径为50或62.5μm,包层外径125μm,通常表示为50/125μm或62.5/125μm。
62.5μm芯径多模光纤比50μm芯径多模光纤芯径大、数值孔径高,能从LED 光源耦合入更多的光功率,因此在光纤发展初期,62.5/125μm多模光纤首先被美国采用为多家行业标准。
而50/125μm多模光纤主要在日本、德国作为数据通信标准使用。
由于北美光纤用量大和美国光纤制造及应用技术的先导作用,包括我国在内的多数国家均将62.5/125μm多模光纤作为局域网传输介质和室内配线使用。
上述形势一直维持到九十年代中后期。
随着局域网传输速率不断升级,50μm芯径多模光纤越来越引起人们的重视。
50/125μm光纤数值孔径和芯径较小,带宽比62.5/125μm光纤高,制作成本也可降低1/3。
因此,各国业界纷纷提出重新启用50/125μm多模光纤。
如何选择单模光纤与多模光纤?
前言:最近有人咨询薛哥关于单模光纤和多模光纤方面的知识?什么是单模光纤?什么是多模光纤?如何选择这两种光纤呢?正文:1 、什么是单模与多模光纤?他们的区别是什么?单模与多模的概念是按传播模式将光纤分类──多模光纤与单模光纤传播模式概念。
我们知道,光是一种频率极高(3×1014Hz)的电磁波,当它在光纤中传播时,根据波动光学、电磁场以及麦克斯韦式方程组求解等理论发现:当光纤纤芯的几何尺寸远大于光波波长时,光在光纤中会以几十种乃至几百种传播模式进行传播,如TMmn模、TEmn模、HEmn模等等(其中m、n=0、1、2、3、……)。
其中HE11模被称为基模,其余的皆称为高次模。
1)多模光纤当光纤的几何尺寸(主要是纤芯直径d1)远远大于光波波长时(约1µm),光纤中会存在着几十种乃至几百种传播模式。
不同的传播模式具有不同的传播速度与相位,导致长距离的传输之后会产生时延、光脉冲变宽。
这种现象叫做光纤的模式色散(又叫模间色散)。
模式色散会使多模光纤的带宽变窄,降低了其传输容量,因此多模光纤仅适用于较小容量的光纤通信。
多模光纤的折射率分布大都为抛物线分布即渐变折射率分布。
其纤芯直径约在50µm左右。
2)单模光纤当光纤的几何尺寸(主要是芯径)可以与光波长相近时,如芯径d1 在5~10µm范围,光纤只允许一种模式(基模HE11)在其中传播,其余的高次模全部截止,这样的光纤叫做单模光纤。
由于它只有一种模式传播,避免了模式色散的问题,故单模光纤具有极宽的带宽,特别适用于大容量的光纤通信。
因此,要实现单模传输,必须使光纤的诸参量满足一定的条件,通过公式计算得出,对于NA=0.12 的光纤要在λ=1.3µm以上实现单模传输时,光纤纤芯的半径应≤4.2µm,即其纤芯直径d1≤8.4µm。
由于单模光纤的纤芯直径非常细小,所以对其制造工艺提出了更苛刻的要求。
单模光纤和多模光纤分类知识
单模光纤和多模光纤分类知识一、单模光纤单模光纤(Single-Mode Fiber, SMF)是光纤的一种类型,其传输模式仅为单一的模态,也就是说,光线在光纤中传播时只以一种方式进行。
单模光纤的纤芯直径很小,约为4~10μm,只有单一的反射镜面,因此只能传输单一的波长光。
这种光纤主要用于长距离、大容量的数据传输,如长途电话线、高速网络连接和海底光缆等。
1.传输特性:单模光纤的传输特性包括低损耗、高带宽和低色散等。
由于其纤芯直径很小,光线在光纤中传播时不易发生散射,因此传输损耗较低。
同时,由于只传输单一的模态,其色散效应也较小,适合高速、长距离的数据传输。
2.应用领域:由于单模光纤具有传输容量大、传输距离远等优点,广泛应用于长距离、高速的光纤通信系统,如高速网络连接、数据中心、云计算和远程医疗等领域。
3.技术发展:随着光通信技术的不断发展,单模光纤的技术也在不断进步。
新型的单模光纤材料和制造技术能够进一步提高光纤的性能和可靠性,为未来的光通信系统提供更高效、更可靠的数据传输解决方案。
二、多模光纤多模光纤(Multi-Mode Fiber, MMF)是光纤的一种类型,其传输模式为多个模态,也就是说,光线在光纤中传播时可以以多种方式进行。
多模光纤的纤芯直径较大,一般在50~100μm之间,允许多种不同路径的光线在光纤中传播。
这种光纤主要用于短距离、低容量的数据传输,如建筑物内的网络连接、局域网等。
1.传输特性:多模光纤的传输特性包括高带宽和低成本等。
由于允许多种模态传输,其带宽相对较大,适合短距离、低容量的数据传输。
同时,多模光纤的成本较低,易于安装和维护。
2.应用领域:由于多模光纤具有成本低、易于安装和维护等优点,广泛应用于短距离、低容量的光纤通信系统,如建筑物内的网络连接、局域网和校园网等。
3.技术发展:随着光通信技术的不断发展,多模光纤的技术也在不断进步。
新型的多模光纤材料和制造技术能够进一步提高光纤的性能和可靠性,为未来的短距离光通信系统提供更高效、更可靠的数据传输解决方案。
多模和单模的优缺点
多模和单模的优缺点多模光纤和单模光纤是目前最常见的两种光纤类型,它们在不同的应用场合有不同的优缺点。
下面是关于多模光纤和单模光纤的详细介绍:多模光纤多模光纤通常用于短距离通信。
多模光纤的核心直径较大,通常为50或62.5微米,这使得光信号可以以多种路径沿着光纤传播。
这种多路径现象也被称为多模散射。
多模光纤可以通过LED(发光二极管)或激光二极管等广谱光源来传输光信号。
优点:1.多模光纤相对来说较便宜,易于生产和维护,适合一般的室内应用。
2.多模光纤在较短距离范围内(2千米以内)的数据传输效果良好。
3.多模光纤对于连接局域网(LAN)内的设备非常有效,并且可以支持高速网络传输。
缺点:1.由于多模光纤内部存在多路径,这导致了多模色散(模式色散)。
当从多模光纤传输的光信号到达目标位置时,不同的光模式到达目标位置所需的时间是不同的,从而导致脉冲扩宽并降低了传输距离。
2.多模光纤由于路径的多样性,导致光信号传输的失真增多,使得多模光纤无法长距离地传输高速数据。
单模光纤单模光纤被用于长距离和高速数据传输。
单模光纤的核心直径较小,通常为9微米,光信号只能沿着一条路径传播。
这个特性消除了由于多路径传播而引起的色散和失真问题。
优点:1.单模光纤具有较高的传输带宽和低的传输损耗,适用于长距离和高速数据传输,可以支持更高的数据传输速率。
2.单模光纤由于路径的单一性,可以减少光信号传输的失真,提供更稳定和可靠的数据传输。
3.单模光纤支持更长的传输距离,可以在几十公里到几百公里的距离范围内进行通信。
缺点:1.单模光纤相对来说较昂贵,制造和安装成本较高,对连接设备的要求较高。
2.单模光纤需要使用昂贵的激光器作为光源,这也增加了使用单模光纤的成本。
3.单模光纤对制造和安装的要求较高,需要更高的技术水平和操作技巧。
结论:多模光纤和单模光纤各自具有不同的优缺点,适用于不同的应用场景。
多模光纤适用于短距离通信,成本低廉且易于维护,适用于局域网等一般网络传输;而单模光纤适用于长距离和高速数据传输,具有更高的传输带宽和稳定性,但成本较高。
光纤布线方案设计
光纤布线方案设计随着科技的飞速发展,互联网已成为我们生活中不可或缺的一部分。
而在网络通信中,光纤布线方案设计的重要性不言而喻。
它不仅关乎到网络的速度和稳定性,也是确保信息安全的关键因素。
本文将探讨光纤布线方案设计的主要步骤和考虑因素。
进行需求分析是光纤布线方案设计的第一步。
我们需要明确网络拓扑结构和设备之间的连接关系。
同时,需要考虑未来网络扩展的可能性,以便于设计出更加灵活的布线方案。
还需要对数据中心的规模、建筑结构、设备位置等进行详细的了解。
在需求分析的基础上,我们需要选择合适的光纤产品和布线解决方案。
选择时需要考虑产品的性能、可靠性、成本等因素。
同时,还需要考虑产品的兼容性和可维护性。
对于光纤类型,单模光纤和多模光纤的选择应根据实际需求而定。
单模光纤适用于长距离传输,而多模光纤适用于短距离传输。
布线路由设计是光纤布线方案设计的核心部分。
它决定了网络设备的连接方式和数据传输的路径。
在设计时,我们需要考虑建筑物的结构、空间布局、电源分布等因素。
同时,还需要考虑未来网络扩展的需求,以便于设计出更加灵活的布线路由。
光纤端接方案设计是光纤布线方案设计的关键环节之一。
它决定了光纤连接器的类型、数量和位置。
在设计时,我们需要考虑连接器的机械性能、光学性能和环境适应性等因素。
同时,还需要考虑未来维护的需求,以便于设计出更加易于维护的端接方案。
在完成光纤布线方案设计后,我们需要进行施工和验收。
在施工过程中,我们需要严格遵守设计图纸的要求,确保光纤的正确安装和连接。
同时,还需要对施工过程进行全面的监控和管理,以确保施工质量和进度。
在验收时,我们需要对光纤布线系统进行全面的测试和验证,确保其性能和可靠性达到预期要求。
光纤布线方案设计是网络通信中的重要环节之一。
我们需要在充分了解需求的基础上,选择合适的产品和解决方案,并按照规范进行布线路由设计和光纤端接方案设计。
我们还需要在施工过程中严格遵守设计图纸的要求,并对施工过程进行全面的监控和管理。
单模光纤和多模光纤如何区分(单模光纤和多模光纤的区别)
单模光纤和多模光纤如何区分(单模光纤和多模光纤的区别)按光在光纤中的传输模式可分为:单模光纤和多模光纤。
单模和多模只有一字之差,那么这两者有什么区别呢,只是简单的摸的数量区别吗?下面我们就来了解两者的区别。
单模光纤只能传输的是单模信号,而多模光纤可以传输多模信号,多模光纤(Multimode optical fiber = MMF):顾名思义就是能够传播多种模式电磁波(这里当然是光波)的光纤;由于有多个模式传送,所以存在有很大的模间色散,可传输的信息容量较小;多模光纤纤芯较大,一般为50um,数值孔径为0.2左右;模的数量取决于纤芯的直径、数值孔径和波长。
单模光纤(Single-mode fiber = SMF):则只能够传输一个模式的信号波,但是必须是符合条件的:好象记得教材上说于那个叫归一化频率的东西有关,纤芯特别需要细一点,最好是工作波长的3、4倍;所以单模光线从外形来说就比多模光纤细的多;单模光纤因为只传输一个模式,所以不存在模式色散。
多模光纤用于小容量,短距离的系统,单模光纤用于主干,大容量,长距离的系统单模光纤芯径一般是9/125,而多模为50/125或62.5/125单模和多模是相对特定波长而言的,相同的光纤在不同的波长可能是单模也可能是多模,光没有单多模之分,光源有单纵模~(dfb)和多纵模(fp)之分,多模光纤在纤径上要比单模细点,单模652是62.5/125,而多模的有50/125和62.5/125两种,从价格上来说,多模的一般是同芯数单模的1.5~2倍,从实际应用来看,多模的基本上用于数据接入光缆中,多模相对于单模来说最大的劣势是模间色散(由于同种光在不同模式内的速率不同)。
在国内主要用的是62.5/125的多模光纤,至于两者的区别好像是成缆后的用途不一样,50的多用于室内光缆。
单模光纤只传基模一种模式,多模可以传多种模式。
单模主要用于长途干线,多模用于局域。
前面有人说单模比多模细得多,其实是不对的,两种纤包层直径都为125只是芯径不一样,单模为9多模一般常用的有50和62.5两种。
光纤的规格和选用方法
光纤的规格和选用方法
光纤是一种重要的通信工具,其规格种类繁多,每种规格都有其适用场景和特点。
以下是一些光纤规格的介绍以及选用方法:
1. 长度规格:
全尺寸光纤:全尺寸光纤可达数千米之长,是光纤通信中主要的产品之一。
中段光纤:中段光纤长度一般为几米到数十米不等,经常用于光纤器件和光纤传感领域。
短距离光纤:短距离光纤长度一般不超过1米,适用于以太网、数据中心等短距离传输。
2. 直径规格:
标准直径光纤:标准直径光纤直径为125um,用于光通信,包括单模和
多模光纤。
微型光纤:微型光纤直径为80um,适用于光纤传感和医疗器械等领域。
超细光纤:超细光纤直径为5-60um,用于高密度光电器件的内部互连。
3. 芯数规格:
单模光纤:单模光纤的芯数为1,适用于远距离通信和高速数据传输。
多模光纤:多模光纤的芯数通常为2-24,适用于短距离通信。
4. 折射率规格:
标准光纤:标准光纤折射率为,用于光通信。
高折射率光纤:高折射率光纤折射率在以上,主要用于光纤传感领域。
5. 其他规格:
包覆材料:光纤的包覆材料通常为聚合物,也有少量采用金属材料的。
环境适应性:光纤通常要面对不同的环境,如高温、低温、潮湿等,需要具备一定的环境适应性。
在选择光纤时,需要考虑自身需要,选择适合自己的规格。
此外,还需要注意光缆的选用方法,如根据用途选择光缆和根据材料选择光缆等。
在选择光缆时,需要考虑其强度、温差系数、抗埋、抗压、防潮、耐化学侵蚀等特性,以及其材料和生产工艺等。
光纤综合布线方案
4.施工过程中,注意光纤的保护,防止光纤损伤和损耗。
5.施工完成后,进行光纤测试,确保光纤传输性能满足设计要求。
五、验收与维护
1.验收
(1)施工完成后,组织相关人员进行验收,确保光纤布线系统符合设计方案。
(2)验收内容包括:光纤连接质量、光缆敷设质量、光纤传输性能等。
2.管理要求
-加强对光纤布线系统的日常管理,确保系统安全可靠。
-建立完善的故障处理流程,提高系统运维效率。
本光纤综合布线方案立足于用户需求,遵循国家法律法规及行业标准,旨在为用户提供一套完善、高效、可靠的光纤网络解决方案。在施工、验收和维护过程中,应严格遵循相关规范和要求,以确保光纤布线系统的长期稳定运行。
光纤综合布线方案
第1篇
光纤综合布线方案
一、项目背景
随着信息技术的飞速发展,数据传输速度和带宽需求不断提高,光纤通信作为一种高速、大容量的传输方式,已经成为现代通信的主流。为满足企业、机关、学校等场所对高速网络的需求,特制定本光纤综合布线方案。
二、设计原则
1.实用性:根据用户需求,合理规划光纤网络布局,确保系统稳定可靠。
2.维护
(1)建立健全光纤布线系统维护管理制度,确保系统稳定运行。
(2)定期对光纤布线系统进行检查、维护,发现问题及时处理。
(3)对光纤连接器、光缆等易损耗部位进行定期更换,确保光纤传输性能。
本光纤综合布线方案旨在为用户提供一套合法合规、高效稳定的光纤网络解决方案,以满足用户对高速网络的需求。在施工过程中,应严格遵循相关法律法规和施工规范,确保光纤布线系统的质量和安全。同时,加强光纤布线系统的维护管理,保障系统长期稳定运行。
综合布线设计中多模光纤和单模光纤的选择
传多种模式的光 , 但其模 间色散 较大 , 就 限制 了传输 数字 信号 这 的频率 , 而且 随距离 的增加会更加 严重 。因此 , 模光纤 传输 的 多 距离就 比较近 , 一般只有几千米 。多模光缆宽带的 比较见表 1 。
表 1 多模光缆带宽的比较
光纤类型
80 r 5 m 1
2 03 . 0 5 .5 2
03 .
1o A E F MMF 多模 ) 0B S —X (
万兆多模光缆 , 纤系统 在传输 光信 号时 , 光 离不 开光 收发器
20 o
5o 0
Fs f
Fs f
O (0 1 5 M2 5 /2 ) O ( M3 万兆 5 /2 ) 0 15
50 o 1 0 0 5
5o 0 5o 0
Fs f 200 0
Fs f Fs f
网络标准
光纤
光源 LD E
波长 1 0 o 3
10Mb s 0 p 10 0Mbs 0 p 10 0Mbs 0 p 10 0Mbs 0 p 1 b s 0G p 1 b s 0G p 1 b s 0G p
综合布线设计 中多模 光纤和单模光纤 的选择
毅
摘 要 : 对光纤进 行 了分类, 详细地介绍 了多模光缆和单模光缆 的优缺点及适用 范围, 总结 了用 户选择光 纤的角度 , 以帮
助用 户选择更适合 自己的光 纤, 用户 以最低 的价格投资最好的性能, 使 从而达到经济适用 的 目的。
维普资讯
2008年 2 月
第3 4卷 第 4期
山 西 建 筑
S A H NXI ARCHI TECTURI
V0 . 4 No. 13 4
单模与多模光纤区别及相关介绍
单模光纤与多模光纤区别单模光纤和多模光纤可以从纤芯的尺寸大小来简单地判别。
单模光纤的纤芯很小,约4~10um,只传输主模态。
这样可完全避免了模态色散,使得传输频带很宽,传输容量很大。
这种光纤适用于大容量、长距离的光纤通信。
它是未来光纤通信与光波技术发展的必然趋势。
多模光纤又分为多模突变型光纤和多模渐变型光纤。
前者纤芯直径较大,传输模态较多,因而带宽较窄,传输容量较小;后者纤芯中折射率随着半径的增加而减少,可获得比较小的模态色散,因而频带较宽,传输容量较大,目前一般都应用后者。
由于多模光纤中不同模式光的传波速度不同,因此多模光纤的传输距离很短。
而单模光纤就能用在无中继的光通讯上。
在光纤通信理论中,光纤有单模、多模之分,区别在于:1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm 和1550nm),与光器件的耦合相对困难。
2. 多模光纤芯径大(62.5m m或50m m),允许上百个模式传输,色散大,工作在850nm 或1310nm。
与光器件的耦合相对容易。
而对于光端模块来讲,严格的说并没有单模、多模之分。
所谓单模、多模模块,指的是光端模块采用的光器件与何种光纤配合能获得最佳传输特性。
一般有以下区别:1. 单模模块一般采用LD或光谱线较窄的LED作为光源,耦合部件尺寸与单模光纤配合好,使用单模光纤传输时能传输较远距离。
2. 多模模块一般采用价格较低的LED作为光源,耦合部件尺寸与多模光纤配合好。
单模光纤只传基模一种模式,多模可以传多种模式。
单模主要用于长途干线,多模用于局域。
前面有人说单模比多模细得多,其实是不对的,两种纤包层直径都为125只是芯径不一样,单模为9多模一般常用的有50和62.5两种。
一般情况单模不会直接和多模相接是通过设备转换。
下面是一些更详细的介绍:一、光纤二、光缆三、光纤通信系统及其构成四、光缆的种类和机械性能一、光纤1、概述光纤和同轴电缆相似,只是没有网状屏蔽层。
单模和多模光纤的特点和应用
单模和多模光纤的特点和应用单模光纤是一种具有非常小的核心直径(通常在8-10微米)的光纤,可以传输单个模式(或光束)的光信号。
相比之下,多模光纤的核心直径通常较大(约为50-100微米),可以同时传输多个模式的光信号。
以下是单模光纤和多模光纤的特点和应用的详细介绍。
单模光纤的特点:1.小的核心直径:单模光纤的核心直径非常小,可以减少光信号的色散和衰减,提高光信号的传输质量和距离。
2.单模传输:单模光纤只能传输单个模式的光信号,避免了多模光纤中的模式间互相干涉和色散现象。
3.高带宽:单模光纤可以支持高带宽的传输,适用于高速数据传输和长距离通信。
4.低衰减:由于小的核心直径和单模传输的特性,单模光纤的传输衰减非常低,可以保持较高的信号强度。
单模光纤的应用:1.长距离通信:单模光纤适用于长距离的光纤通信,如城域网、广域网等。
其低衰减和高带宽的特点可以实现高质量和高速的数据传输。
2.激光器和光放大器:单模光纤可用于连接光源和激光器,将激光信号传输到远距离的位置。
同时也可以用于连接光放大器,将弱信号放大至所需的能量级别。
3.光纤传感器:由于单模光纤的高灵敏度和低衰减,可以用于制作各种光纤传感器,如温度传感器、应变传感器等。
多模光纤的特点:1.大的核心直径:多模光纤的核心直径较大,可以同时传输多个模式的光信号,从而形成光束扩散或重叠的现象。
2.便宜:相比于单模光纤,多模光纤的制造成本较低,更容易获得和安装。
3.灵活性:多模光纤可以容纳较大的模式直径,使得其在连接光源和接收器时更加灵活。
多模光纤的应用:1.短距离通信:多模光纤适用于短距离的通信和数据传输,如局域网、数据中心等。
由于多模光纤的制造成本低,可以实现经济高效的短距离通信。
2.光纤传感器:多模光纤可以用于制作一些基本的光纤传感器,如光纤光栅传感器、流量传感器等。
3.图像传输:多模光纤可以用于传输图像和视频信号,如监控系统、医疗图像传输等。
总结起来,单模光纤适用于长距离、高带宽和高质量的通信和数据传输需求,而多模光纤则适用于短距离、经济高效的通信和数据传输需求。
单模光纤和 多模光纤
单模光纤和多模光纤
单模光纤和多模光纤是光通信领域中常用的两种光纤类型。
它们在传输光信号时具有不同的特点和应用场景。
我们来了解一下单模光纤。
单模光纤是一种具有较小芯径的光纤,通常在9-10微米之间。
由于其芯径较小,单模光纤可以传输更多的光信号,并且光信号的传输损耗较小。
这使得单模光纤在长距离传输和高速通信方面具有优势。
单模光纤适用于需要高带宽和高速传输的应用,比如光纤通信网络、数据中心互连和长距离传输等。
与之相对应的是多模光纤。
多模光纤的芯径相对较大,通常在50-100微米之间。
多模光纤可以同时传输多个光信号,但由于光信号在传输过程中会发生多次反射,导致信号衰减和失真。
因此,多模光纤适用于短距离传输和低速通信,比如局域网、视频监控和传感器网络等。
单模光纤和多模光纤在结构上也有一些区别。
单模光纤的光纤芯径较小,只能传输单个光模式,而多模光纤的光纤芯径较大,可以传输多个光模式。
此外,单模光纤的光信号传输速度较快,传输距离较远,而多模光纤的传输速度和距离相对较低。
在实际应用中,我们需要根据具体需求选择单模光纤或多模光纤。
如果需要进行长距离传输或高速通信,单模光纤是更好的选择。
而对于短距离传输或低速通信,多模光纤则更加适合。
总结起来,单模光纤和多模光纤在光通信领域中扮演着不同的角色。
单模光纤适用于长距离传输和高速通信,而多模光纤适用于短距离传输和低速通信。
了解它们的特点和应用场景,可以帮助我们在实际应用中做出正确的选择,以满足不同的通信需求。
单模光纤和多模光纤的区别
单模光纤和多模光纤的区别单模光纤单模光纤是只有一股(大多数应用中为两股)玻璃光纤的光纤,纤芯直径为8.3μm~10μm,只有一种传输模式。
由于芯径相对较窄,单模光纤只能传输波长为1310nm或1550nm的光信号。
单模光纤的带宽比多模光纤高,但是对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
单模光纤主要用在多频数据传输应用中,例如,波分多路复用(WDM,Wave-Division-Multiplexing)系统中经过复用的光信号只需要用一根单模光纤就能实现数据传输。
单模光纤的传输速率比多模光纤要高,而且传输距离也比多模光纤要高出50倍不止,因此,其价格也高于多模光纤。
与多模光纤相比,单模光纤的芯径要小得多,小芯径和单模传输的特点使得在单模光纤中传输的光信号不会因为光脉冲重叠而失真。
在所有光纤种类中,单模光纤的信号衰减率最低,传输速度最大。
多模光纤多模光纤是另一种常见的光纤类型,纤芯直径为50μm~100μm,它可以在给定的工作波长上传输多种模式。
相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及100mbps的以太网中,多模光纤最长可支持2000米的传输距离。
常见多模光纤的芯径为50μm、62.5μm和100μm。
由于多模光纤中传输的模式多达数百个,各个模式的传播常数和群速率不同,使光纤的带宽窄,色散大,损耗也大,只适于中短距离和小容量的光纤通信系统。
光纤的种类阶跃型:阶跃型光纤是一种多模光纤,其芯径达到了100μm。
阶跃型是指光纤的折射率的分布方式,纤芯和包层的折射率都是均匀分布,而它们之间有一个折射率差,纤芯折射率大于包层折射率,在纤芯和包层边界有一个台阶,所以称之为阶跃型光纤。
在多模阶跃折射率光纤中,满足全反射,单入射角不同的光线的传输路径是不同的,结果使不同的光线所携带的能量到达终端的时间不同,从而产生了脉冲展宽,这就限制了光纤的传输容量。
这种光纤比较适合短距离传输应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
■ C
删 ;
在综合布线设计中如何选择
多模光纤和单模光纤
文 I 国康 普 国 际控 股 有 限 公 司 美
1 光纤 分类
光纤按 光在其 中的传输模 式可 分 为单模和 多模 。 多模光纤的纤芯 直径为5 或6 .p 包层外 径 15m 。 2 5m 2p 表 示为 5 / 5m 或 6 / p 01 p 2 2 5 15 m。单模 光纤的纤芯 直 2 径 为 83 m.包层外径 15 m 表示 为 8 3 5 m。 .p 2u /1 p 2 光纤 的工 作波 长有短 波 8 0 m、长 波 1 1n 和 5n m 30 15n 0 m。光纤 损耗一般 是 随波 长增 加而减 小 . 5 n 5 8 0m 的 损耗 一 般 为 2 d / m 1 1 n 的 损耗 一 般 为 5 B k m 30 0. 5 B k 3 d / m.1 5 n 的损耗 一般 为 0 2 d / m 这 0m 5 .0 B k 是 光纤 的最低 损耗 .波 长 1 5 n 以上的 损耗趋 向 加 0m 6 大 。由于 O H ( 水峰 )的吸收作 用 9 0 0 n 0 ~1 0 m和 3 14n 0 m~ 12 n 3 0 m范 围 内都有 损耗高 峰 . 两个 范 围 5 这 未 能充分 利用 。
传 输光信 号 时 . 不开 光收发 器和 光纤 。因传统 多模 离 光纤 只能 支持万兆 传输 几十 米 为配合 万兆应 用而 采
表 1
定前 瞻性 水平部 分应考 虑 6 类布线 主 干部分应 考
虑 万兆 多模 光缆 特 别是现在 6 类铜缆 加万 兆 多模 光
最小模式带宽 ( MHz・ m ) k 光 纤 类 型
一
的速率 带 宽。 目前 网络应 用正 在 以每 年5% 左右 的速 0 度增 长 . 计未来 5 千兆到 桌面 . 变得和 目前百 预 年 将
兆到 桌面一 样普遍 因此在 目前系 统规划 上要具 有一
般 只 有几公 里 。表 1 为多模 光缆 的带 宽 比较 。 提到 万兆 多模 光缆 . 要作 些说 明 光纤 系统 在 需
8 0 m 5 n
全 模 式 带 宽 ( D) LE
1on 3 0 m 8 0 m 5n
激 光带 宽 ( ae) L sr
10 n 3 0 m
OM 1 6 ./ 2 ) f 25 1 5
2 0 0
50 0
fs f
fs f ቤተ መጻሕፍቲ ባይዱ
0M2 ( 0 1 5) 5 /2
50 0
50 0
干兆传输 ( I I) T
1 Gbp s 2 75 80 0 1 0 00 11 0 O
万兆 传输 ( I I) T
1 Gbps 0 3 2 1 50 3 00 5 50
7 智能 筑与 信息 20 年 第8 总 2 期 4 建 城市 07 期 第19
◆ 从未来 的发展趋 势来讲 .水平 布线 网络 速率 需要 1bs p带宽到桌 面 G 大楼 主干 网需 要升级到 1Gp bs 0
速率 带 宽 . 园区 骨干 网需要 升级 到 1G p 或 1 0 b s b s G p 0 0
会 更加 严重 。因此 多模 光纤 传输 的距 离就 比较近 .
2 多模光缆
多模 光纤 ( l Mo e Fb r— — 芯较 粗 (0或 Mut i d i ) e 5 6 p 可传 多种模 式 的光 。但 其模 间色散 较大 2 5 m) 这就 限制 了传输 数字信 号 的频率 . 而且 随距 离 的增加
因此 如果要选择多模光缆应 以下 几 点进,- 2: 1 ̄r. 5-
用 的新 型 光收发 器 IO I 18 1 S /E 0 制定 了新 的 多模 C 1 光纤标 准等 级 即 O M3类 别 并在 2 0 年 9月正 式 02 颁 布 。O M3光 纤对 L D和 激 光两 种 带宽 模式 都进 行 E 了优化 同 时需 经严 格 的 D MD测 试认 证 。采 用新 标 准 的 光纤 布线 系 统能 够在 多模方 式 下至 少 支持 万兆 传输至 30 0 m.而在 单模 方式 下能 够达 到 1 k 以上 m 0 ( 5 0 m更 可支持 4 k 1 5n 0 m传输 ) 。 美国康普公司的多模光缆分为多模O tFa pi'  ̄解决 SE 方 案 (2 5 5 m)和万兆多模 Lz P E  ̄ 6 ./1 p 2 ar E D 解决方 案 S ( 激光优化万兆 5 / 5m) arPE 0 1 p 。Lz ED分成 三个系列 2 S 即 Lz PE 、3 0 5 ar ED 10 0 、50系列 且 Lz PE S 5 ar ED万兆 多 S 模 光缆均通 过 U MD认证 .具体传输指标请 看表 2 LD 。 通过 表 2 对 比标准 可知 ,康普公 司提供 的光缆 远远 超 出标准 中定 义 的指标 。
fs f
fs f
OM 3 ( 兆 5 /2 ) 万 01 5
1 0 0 5
50 0
20 00
fs f
表 2
解决方案
O pi tSPEED Laz SPEED r 1 50 La r z SPEED 00 3 La r z SPEED 50 5
类型
OM 1 OM 2 OM 3 OM3 +
维普资讯
缆 和超 5 类铜缆 加千兆 多模 光缆 的造价上 大约 只有不
现 象称 为水峰 。 目前美 国康 普公 司提供 的Tr PE e SED a
零 水峰单 模 光缆 .正解 决 了此 问题 ,T rS E D系统 ea P E 通过 消 除 了 10 n 4 0 m水峰 的影 响 因素 ,从而 为用户提 供 了 更 广 泛 的 传 输 带 宽 用 户 可 以 自 由 使 用 从 16 n 0 m到 1 2 n 的所 有 波段 ,因此传输 通道 从 以 2 0m 6