人教A版数学必修二 《圆的标准方程》教案
人教A版高中数学必修二《圆的一般方程》教学设计
《4.1.2圆的一般方程》教学设计一、教材分析《圆的一般方程》安排在高中数学必修2第四章第一节第二课时.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用.二、目标分析知识与技能:(1).掌握圆的一般方程及一般方程的特点(2).能将圆的一般方程化成圆的标准方程,进而求出圆心和半径(3).能用待定系数法由已知条件求出圆的方程过程与方法:(1)进一步培养学生用代数方法研究几何问题的能力;(2)加深对数形结合思想的理解和加强对待定系数法的运用,认识研究问题中由简单到复杂,由特殊到一般的化归思想,充分了解分类思想在数学中的重要地位,强化学生的观察,思考能力。
(3)增强学生应用数学的意识.情感,态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神。
(3)在体验数学美的过程中激发学生的学习兴趣.教学重点: (1).圆的一般方程。
(2).待定系数法求圆的方程。
教学难点: (1).圆的一般方程的应用。
(2).待定系数法求圆的方程及选用合适的圆方程。
三、教学内容与过程一、复习引入圆的标准方程为:222()()x a y b r -+-=把圆的标准方程展开,并整理得220x y Dx Ey F ++++=思考:此方程都能表示圆么?二、课堂探究观察下列各式,先将它们分别配方,然后分析它们是否表示圆?(设计意图)通过对这两个问题的探究,.一方面引导学生22(1)2410+-++=x y x y 22(2)2460+--+=x y x y回顾了旧知,另一方面,抓住了学生的注意力,把学生的思维引到研究圆的方程上来,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移。
人教A版高中数学必修二《圆的标准方程》教学设计
一、内容及其解析
本节课的教学内容是圆的标准方程,圆是平面解析几何中重要的几何模型,是研究圆锥曲线与方程的重要基础.
坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过建立平面直角坐标系,把点和坐标、曲线和方程联系起来.因此在教学过程中,要始终贯穿坐标法中一重要思想,在学习圆与方程这一章节后,使学生初步形成坐标法的基本思想和步骤.用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆;然后对坐标和方程进行代数运算;最后将代数运算结果“翻译”成相应的几何结论。
解此方程组,得
所以 的外接圆的方程是
练习2:已知圆心为 的圆经过点 ,且圆心 在直线 上,求圆心为 的圆的标准方程.
设计意图:进一步强化圆的标准方程的运用,使学生在不同的背景中熟悉常见的几何模型,能根据题设条件选择适当的方法来解决问题.
师生活动:激活学生思维,借助图形,让学生分析题设的几何特征,描述本题的算法,教师同步展示解答过程.启发引导学生思考教科书第120页的问题,归纳求圆的标准方程的两种方法.最后可以让学生尝试运用另一种方法解答问题7和问题8.
半径 的大小等于圆上任意一点 到圆心 的距离,
圆心为 的圆就是集合
由两点间距离公式,点 的坐标适合的条件可以表示为
式两边平方,得
(1)
若点 在圆上,则由上述讨论知,点 的坐标适合方程(1);反之,若点 的坐标适合方程(1),这说明点 与圆心 的距离为 ,即点 在圆心为 的圆上.我们把方程(1)称为圆心为 ,半径为 的圆的方程,把它叫做圆的标准方程.
3.能力素养:重点提升学生的数学抽象、数学建模、直观想象能力。通过具体事例,让学生在自己的操作与思考中,抽象并概括圆的标准方程的概念、建立圆的标准方程的代数模型,学会利用几何图形理解和解决数学问题.关注现代信息技术工具的运用.
人教版高中数学必修2-4.1《圆的标准方程》教学设计
4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。
最新人教版高中数学必修2第四章《圆的标准方程》教学设计
教学设计4.1.1圆的标准方程整体设计一、教学背景分析1.教材结构分析圆是学生比较熟悉的一类曲线,而且是一种对称、和谐的图形,具有很多优美的几何性质.本节内容首先通过圆的定义,求解圆的标准方程,进而变化出圆的一般方程,其次运用代数的方法探讨直线与圆,圆与圆的位置关系,进一步提高学生对解析几何问题研究方法的深入理解.2.教材地位与作用圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本节内容安排在学生学习直线方程之后,旨在更加深刻的体会曲线和方程的关系,为后继学习做好准备.同时有关圆的问题,特别是圆和直线的位置关系问题,是解析几何的基本问题.这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.圆的方程也属于解析几何学的基础知识,是研究二次曲线的开始,对后继直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有积极的意义.所以本节内容在解析几何中起着承前启后的作用.3.学情分析学生在初中已经学习了圆的概念和基本性质,在高中又掌握了求直线方程的一般方法,但由于学生以往注重从几何的角度理解圆的性质,而且学习解析几何的时间还不长、学习程度较浅,尚未建立牢固的数形结合的思想,对于解析法运用还不够熟练,在学习过程中难免会出现困难.另外学生在探索问题的能力,合作交流的意识等方面有待加强.4.教学目标(1)知识目标:①在平面直角坐标系中,探索并掌握圆的标准方程;②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标:①进一步培养学生用解析法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.5.教学重点、难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.二、教法分析高一学生,在教师的引导下,已经具备一定探究与研究问题的能力.所以在设计问题时应考虑全面性和灵活性,采用对比、启发、探究等方式,师生共同探讨,共同参与、共同研究,让学生积极思考,主动学习.在教学过程中采取小组讨论法,向学生提供具备启发性和思考性的问题.因此,要求学生在课堂上小组讨论,然后小组汇报讨论成果,提高学生的探究、推理、想象、表达、分析和总结归纳等方面的能力.因为本节课是在学生对圆的基本性质认识的基础上,再对圆进行代数研究.针对学生的学习过程、认知水平,在遵循参与式教学的基础上,调动全班学生积极参与,认真思考,努力体现学生学习的主体性地位.在学习过程中让学生积极思考,动手计算,不仅在“思维中参与”而且在“行动中参与”,养成主动性的学习习惯.三、学法分析为了重点培养学生分析问题、解决问题的能力.因此,要求学生在学习中遇到问题时,不要急于求成,而是通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过推导圆的标准方程,加深用解析法求轨迹方程的理解.还要会根据问题提供的信息回忆所学知识,采用转化思想、数形结合的思想,选择最佳方案解决.四、教学基本流程及其说明结合教材与新课程标准本节课采用以下流程(一)、教师在理解教材的编写意图的基础上,应发挥主观能动性,对教材资源进行再加工、再创造,这样教学方法更有利于学生的认知结构,也有利于学生从深层次理解和掌握圆的标准方程.(二)、在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机结合起来,教师的每项措施都是力求给学生创造一种思维情境,动手、动脑、动口并且主动参与学习的机会,激发学生求知欲望,促使学生在不知不觉中掌握知识,解决问题.(三)、培养思维,提高能力,激励创新在问题的设计中,利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生注意,使能力与知识的形成相伴而行.五、教学情境设计圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课设计了六个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维、提高了能力、培养了兴趣、增强了信心.。
人教A版高中数学必修二《圆的一般方程》教学设计
圆的一般方程教学设计教学目标:①探索并掌握圆的一般方程② 会判断给定的方程是否表示圆,能熟练得到圆心,半径③把握标准方程和一般方程的特点,熟练互化,学会选择④归纳出求圆的方程的几何法和待定系数法,并总结一般步骤⑤体会求轨迹方程的基本思想,能求简单轨迹方程,总结步骤⑥渗透数形结合思想,培养学生的观察,分析,发现,归纳等逻辑思维能力. 教学重点:探索并掌握圆的一般方程教学难点:方程022=++++F Ey Dx y x 在什么条件下表示圆,求轨迹方程的方法教学方法:自主、探究、合作交流教学理念:以具体的两个圆的标准方程展开得到的方程形式入手引出课题,从特殊到一般,符合学生的认知规律,也体现这部分内容是前面学习的自然衍生,使学生感受数学的生成。
问题是数学的心脏。
以问题为载体,通过问题的解决,引导学生参与教学过程,积极探求,独立思考,合作交流,归纳总结,建构新知。
在这个过程中,尊重学生的思维过程,充分发挥学生在学习中的主动性以及他们之间的合作交流。
笔者认为,课堂是景,学生要身临其境,教师要触景生情,打造生成型课堂,摒弃给予型课堂,让课堂焕发出生命的活力。
充分利用信息技术,学生在动态的观察中,抓住问题的本质,激发学习热情,挖掘潜能。
教学过程一.类比直线,引出课题在第三章我们知道,直线的方程有点斜式,斜截式,两点式,截距式,它们都可以化成一般式方程0=++C By Ax ,上一节课我们学习了圆的标准方程,那么圆有一般方程吗?这节课我们探究《圆的一般方程》设计意图:类比学习过的直线的方程的过程,自然想到几何特征明显的圆的方程也可以化成一般方程。
尽快引出课题。
二.展开发现、特殊一般请将下面两个圆的方程展开,合并同类项,并将右端化为零,你有什么发现?(1)圆C :20)3()1(22=-+-y x(2)圆E :一般的把圆的标准方程 展开得到的是什么形式呢? 设计意图:使新知识建立在已有的知识上,是旧知识的应用与延伸。
高二数学圆的标准方程教案 人教版 教案
高二数学圆的标准方程教案一、教学目标(一)知识教学点使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程.(二)能力训练点通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际问题的能力.(三)学科渗透点圆基于初中的知识,同时又是初中的知识的加深,使学生懂得知识的连续性;通过圆的标准方程,可解决一些如圆拱桥的实际问题,说明理论既来源于实践,又服务于实践,可以适时进行辩证唯物主义思想教育.二、教材分析1.重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程.(解决办法:(1)通过设问,消除难点,并详细讲解;(2)多多练习、讲解.)2.难点:运用圆的标准方程解决一些简单的实际问题.(解决办法:使学生掌握分析这类问题的方法是先弄清题意,再建立适当的直角坐标系,使圆的标准方程形式简单,最后解决实际问题.)三、活动设计问答、讲授、设问、演板、重点讲解、归纳小结、阅读.四、教学过程(一)复习提问前面,大家学习了圆的概念,哪一位同学来回答?问题1:具有什么性质的点的轨迹称为圆?平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆).问题2:图2-9中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.问题3:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;图2-9(2)写出适合条件P的点M的集合P={M|P(M)|},简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明.其中步骤(1)(3)(4)必不可少.下面我们用求曲线方程的一般步骤来建立圆的标准方程.(二)建立圆的标准方程1.建系设点由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y).2.写点集根据定义,圆就是集合P={M||MC|=r}.3.列方程由两点间的距离公式得:4.化简方程将上式两边平方得:(x-a)2+(y-b)2=r2. (1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程.我们把它叫做圆的标准方程.这时,请大家思考下面一个问题.问题5:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为 x2+y2=r2.教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r 三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.(三)圆的标准方程的应用例1写出下列各圆的方程:(请四位同学演板)(1)圆心在原点,半径是3;(3)经过点P(5,1),圆心在点C(8,-3);(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.教师纠错,分别给出正确答案:(1)x2+y2=9;(2)(x-3)2+(y-4)2=5;指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.例2说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(x+4)2+(y+3)2=7;(3)(x+2)2+ y2=4教师指出:已知圆的标准方程,要能够熟练地求出它的圆心和半径.例3 (1)已知两点P1(4,9)和P2(6,3),求以P1P2为直径的圆的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?解(1):分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决.解法一:(学生口答)设圆心C(a,b)、半径r,则由C为P1P2的中点得:又由两点间的距离公式得:∴所求圆的方程为:(x-5)2+(y-6)2=10分析二:从图形上动点P性质考虑,用求曲线方程的一般方法解决.解法二:(给出板书)∵直径上的四周角是直角,∴对于圆上任一点P(x,y),有PP1⊥PP2.化简得:x2+y2-10x-12y+51=0.即(x-5)2+(y-6)2=10为所求圆的方程.解(2):(学生阅读课本)分别计算点到圆心的距离:因此,点M在圆上,点N在圆外,点Q在圆内.这时,教师小结本题:1.求圆的方程的方法(1)待定系数法,确定a,b,r;(2)轨迹法,求曲线方程的一般方法.2.点与圆的位置关系设点到圆心的距离为d,圆半径为r:(1)点在圆上d=r;(2)点在圆外d>r;(3)点在圆内d<r.3.以A(x1,y1)、B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0(证明留作作业)例4图2-10是某圆拱桥的—孔圆拱的示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱A2P2的长度(精确到).此例由学生阅读课本,教师巡视并做如下提示:(1)先要建立适当直角坐标系,使圆的标准方程形式简单,便于计算;(2)用待定系数法求圆的标准方程;(3)要注意P2的横坐标x=-2<0,纵坐标y>0,所以A2P2的长度只有一解.(四)本课小结1.圆的方程的推导步骤;2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径;3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.五、布置作业1.求下列条件所决定的圆的方程:(1)圆心为 C(3,-5),并且与直线x-7y+2=0相切;(2)过点A(3,2),圆心在直线y=2x上,且与直线y=2x+5相切.2.已知:一个圆的直径端点是A(x1,y1)、B(x2,y2).证明:圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.3.一个等腰三角形底边上的高等于5,底边两端点的坐标是(-4,0)和(4,0),求它的外接圆的方程.4.赵州桥的跨度是,圆拱高约为,求这座圆拱桥的拱圆的方程.作业答案:1.(1)(x-3)2+(y+5)2= 322.因为直径的端点为A(x1,y1)、B(x2,y2),则圆心和半径分别为所以圆的方程为化简得:x2-(x1+x2)x+x1x2+y2-(y1+y2)y+y1y2=0即(x-x1)(x-x2)+(y-y1)(y-y2)=04.如图2-11建立坐标系,得拱圆的方程:≤y≤0)六、板书设计。
人教A版高中数学必修2《圆的标准方程》教案
【教案设计】课题:《圆的标准方程》教材:普通高中课程标准试验教科书人教A版数学必修2 §4.1.1一、教学目标:(1) 知识目标:①掌握圆的标准方程;②会由圆的标准方程写出圆的半径和圆心坐标,能根据不同条件写出圆的标准方程;③利用圆的标准方程解决简单的实际问题.(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;②加深对数形结合思想的理解和加强对待定系数法的运用;③增强学生用数学的意识.(3) 情感目标:①培养学生主动探究知识、合作交流的意识;②在体验数学美的过程中激发学生的学习兴趣.二、教学重点、难点(1)重点: 圆的标准方程的求法及其应用.(2)难点:①会根据不同的已知条件求圆的标准方程;②选择恰当的坐标系解决与圆有关的实际问题.三、教学方法与手段1.教学方法采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入.2.教学手段多媒体课件进行辅助教学.四、教学过程整个教学过程是由八个问题组成的问题链驱动的,共分为五个环节:创设情境启迪思维深入探究获得新知应用举例巩固提高反馈训练形成方法小结反思拓展引申(一)创设情境——启迪思维问题一已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?通过对这个实际问题的探究,根据半圆的对称性建立平面直角坐标系,构建数学模型.把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程求D点的纵坐标来解决.同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.【设计意图】用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.(二)深入探究——获得新知问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?2.如果圆心为(,)a b ,半径为时圆的方程又如何呢?这一环节我首先让学生对问题一进行归纳,由勾股定理得到圆心在原点、半径为4的圆的标准方程2224x y +=后,引导学生归纳出圆心在原点、半径为r 的圆的标准方程222x y r +=.然后再让学生对圆心不在原点的情况进行探究.我预设了三种种方法等待着学生的探究结果,分别是:坐标法、勾股定理法、图形变换法.坐标法:引导学生根据圆的定义,圆上的点到圆心的距离等于常数,即两点距离公式推导圆心不在原点的标准方程.推导过程: 圆是这样一些点的集合P={M|︱MC ︱=r }已知圆心C(,)a b 半径r根据两点间的距离公式,圆上任意一点M 的坐标(x, y )r =化简,得到圆的标准方程 ()()222x a y b r -+-=图形变换法:借助多媒体的演示,让学生体会平移的过程,让学生了解利用图像平移的知识也可推导圆心不在坐标原点的标准方程.得出圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节..(三)应用举例——巩固提高I .直接应用 内化新知问题三 1.写出下列各圆的标准方程:(1)圆心在原点,半径为3;(2)经过点P(5,1),圆心在点C(8,3).2.写出圆22(2)36x y ++=的圆心坐标和半径.我设计了两个比较简单的小问题,可以安排学生口答完成.【设计意图】目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为形成待定系数法求圆的标准方程打下基础,并为后续探究圆的切线问题作准备.II .灵活应用 提升能力问题四 求过原点O 和点P(1,1),且圆心在直线l:2310x y ++=上的圆的标准方程.设计这一题难度明显增大,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆. 教学中应该突出对问题的分析过程,在分析过程中,要强调图形在分析问题中的辅助作用,引导学生根据题意画出图形.根据确定圆的要素-----圆心位置和半径长,借助图形,结合题设条件可以发现关键是找出圆心位置.圆心位置一旦确定,就可以利用距离公式确定半径大小,从而求出圆的标准方程.让学生自主探究出圆心位置,最后可得出:直线l 与线段OP 垂直平分线l '的交点即为圆心位置.解题过程:∵O (0,0),P (1,1)∴线段OP 的中点的坐标为11,22⎛⎫ ⎪⎝⎭直线OP 的斜率10110op k -==- 因此线段OP 的垂直平分线 l ′的方程是111022y x x y ⎛⎫-=--+-= ⎪⎝⎭即 102310x y x y +-=++= 的解 圆心C 的坐标是方程组43x y ==- 所以圆心C 的坐标是(4,3)-解此方程组,得圆C的半径 5r OC === 所求圆的标准方程是()()224325x y -++=【设计意图】有利于培养学生逻辑思维能力和加深对数形结合思想的理解,提高分析问题、解决问题的能力,养成良好的解题习惯,并且对数学思维的严谨性具有良好的效果.再一次为学生的发散思维创设了空间,又一次模拟了真理发现的过程,使探究气氛达到高潮. III .实际应用 回归自然问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m ,拱高OP=4m ,在建造时每隔4m需用一个支柱支撑,求支柱22A P 的长度(精确到0.01m ).由于圆拱是圆的一段弧,引导学生根据对称性建立直角坐标系,构建数学模型,再应用待定系数法求出圆的三个参数a 、b 、r ,继而确定圆的方程,从而求出点2P 的纵坐标.要想求出22A P 的长度,还要求出O 点的纵坐标.这样问题就会迎刃而解.但为使求解过程简单,圆心最好设在坐标原点.解题过程: 由题意建立直角坐标系,设圆心C 在坐标原点,如图所示设圆的半径为r 即CA=r 由已知得AO=10,CO=r-OP=r-4222Rt CA =CO +AO CAO ∆在中,()2222941014.52r r r =-+==即 解得222C 14.5y +=圆的方程x2P 点的横坐标为-2,代入圆C 方程可得2P 点纵坐标为14.36∵CO=14.5-4=10.5 即2A 点的纵坐标为10.5∴ 22A P =14.36-10.5=3.86 所以,支柱22A P 的长度大约为3.86米.【设计意图】问题五同时与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生数学建模的习惯和用数学的意识.在教学中,我力求从生活走进数学,使数学回归生活.(四)反馈训练——形成方法问题六 求以点C(1 ,3)为圆心,并且和直线3470x y --=相切的圆的标准方程.【设计意图】接下来是第四环节——反馈训练.这一环节中,我设计一个小题作为巩固性训练,给学生一块“用武”之地,一个展示自己的舞台.让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.(五)小结反思——拓展引申1.课堂小结问题七 通过本节的学习,你学到了哪些内容?最大的体验是什么?掌握了哪些学习数学的方法?【设计意图】为了发挥学生的主体作用,通过三个小问题让学生从知识、方法、体验三方面,自己对圆的标准方程的形式加以小结,提炼数形结合的思想和待定系数的方法.2.分层作业(A )巩固型作业:教材P120:练习1.(B )思维拓展型作业:已知圆的方程为2225x y +=,求过圆上一点A(4,-3)的切线方程.3.激发新疑问题八 1.把圆的标准方程展开后是什么形式?2.方程2268200x y x y +-++=表示什么图形?【设计意图】在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.(六)板书设计【设计意图】 遵循简洁、明显,突出重点的设计意图,板书演示如下:五、教学反思在教学中尝试采用创设问题情景,以问题驱动、层层铺垫,帮助学生实现从被动接受知识变为主动获取知识;同时也试图改进学生的学习方式,以小组合作的方式展开,在合作中相互配合.灵活融合引导启发、数形结合、激励评价、多媒体辅助等教学方式,更好地实现教学目标.这堂课展示了一个完整的数学探究过程,提出问题、自主探究,让学生经历了知识再发现的过程,促进了个性化学习.在教学过程中,不失时机的进行数学文化渗透,除了能激发学生的学习兴趣、增强学习信心外,更是体现出了数学探索原貌,让学生看到数学探索的艰难和有趣,更客观的认识圆及现实意义,这对接受和理解圆的方程大有裨益!【教案说明】(一)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心坐标、半径与圆的标准方程之间的关系,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,为此我首先用一道题目简洁、贴近生活的实例进行引入,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.(二)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动,高效的完成本节的学习任务.(三)培养思维提升能力激励创新为了培养学生的理性思维,我在问题一中,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,分层次探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神.本节是一个“动眼观察,动脑思考,动手做题,共同提高”的动态生成过程.对生成性课堂的突出事件,因势利导,随机应变,适当调整教学环节;同时,教学反应性评价与反馈性评价相结合,促进学生的自我评价,勇于贯彻“成功教育,一贯教育”的理念,把握评价时机、评价主体和形式的多样化,从而结合课堂气氛,使课堂教学达到最佳状态.。
人教版高中数学必修二《圆的标准方程》教案
教案说明圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。
一、设计理念设计的根本出发点是促进学生的发展。
教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。
二、设计思路(1)突出重点抓住关键突破难点求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。
在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。
(2)学生主体教师主导探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。
从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。
另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。
在一个个问题的驱动下,高效的完成本节的学习任务。
三、媒体设计本节采用powerpoint媒体,知识容量大,同时又有图形。
为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。
同时动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。
4.1.1圆的标准方程教材:普通高中课程标准实验教科书(人教A版)数学(必修2)第四章第一节一、教学目标1、知识目标(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
高中数学 2.4.1.1圆的标准方程教案 新人教A版必修2-新人教A版高一必修2数学教案
课题: .1圆的标准方程课 型:新授课教学目标: 1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
教学重点:圆的标准方程教学难点:会根据不同的条件,利用待定系数法求圆的标准方程。
教学过程:(一)、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:(二)、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
〔其中a 、b 、r 都是常数,r>0〕设M(x,y)为这个圆上任意一点,那么点M 满足的条件是〔引导学生自己列出〕P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件r =①化简可得:222()()x a y b r -+-=②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。
(三)、知识应用与解题研究例1.〔课本例1〕写出圆心为(2,3)A -,半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:〔1〕2200()()x a y b -+->2r ,点在圆外〔2〕2200()()x a y b -+-=2r ,点在圆上〔3〕2200()()x a y b -+-<2r ,点在圆内 解:例2.〔课本例2〕ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程.222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.解:例3.〔课本例3〕圆心为C 的圆经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在线段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。
人教版高中必修2圆的标准方程教学设计
人教版高中必修2圆的标准方程教学设计《人教版高中必修2圆的标准方程教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学目标知识和能力1.学会圆的标准方程的推导方法。
2.掌握圆的标准方程并掌握其求法。
3.掌握点与圆的位置关系的判定方法。
过程和方法1.通过五个问题,引导学生理解归纳本节的主要内容,培养学生归纳整理知识的能力。
2.通过电脑演示,引导学生探究、分析图形的几何特征,再用代数的语言描述几何要素及其关系,进而将几何的问题转化为代数问题,体现数形结合的数学思想。
3.通过具体情景,使学生逐步形成在坐标系下用坐标法解几何问题的能力,掌握自主学习的方法和形成合作学习的习惯。
情感态度和价值观1.通过教学,使学生学习运用观察、类比、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力。
2.培养学生勇于探索、坚韧不拔的意志品质。
二、教学重点难点重点:圆的标准方程的推导。
难点:圆的标准方程的求法。
三、教学对象分析圆是学生比较熟悉的曲线。
在初中几何课中已经学习过圆的性质,这里只是用解析法研究它的方程与其它图形的位置关系及一些应用。
对此,教师可在课堂上通过各种教学方法,帮助学生经历如下过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
四、教学内容分析本节内容首先研究圆的标准方程的特点,和怎样根据不同条件建立圆的标准方程。
由于圆的标准方程(x-a)2+(y-b)2=r2含有三个参数,因此必须具备三个独立条件才能确定一个圆,确定a、b、r,可以根据条件利用待定系数法解决。
还可通过分析图形的几何特征寻找圆心和半径,从而获得圆的标准方程。
点与圆的位置关系可通过点与圆心的距离判定。
以上的方法应尽可能在老师的启发引导下,由学生自己比较、归纳得到。
高中数学 《圆的标准方程》教案5 新人教A版必修2
圆的一般方程三维目标:知识与技能 : (1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程x 2+y 2+Dx +Ey +F=0表示圆的条件.(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程。
(3):培养学生探索发现及分析解决问题的实际能力。
过程与方法:通过对方程x 2+y 2+Dx +Ey +F=0表示圆的条件的探究,培养学生探索发现及分析解决问题的实际能力。
情感态度价值观:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D 、E 、F .教学难点:对圆的一般方程的认识、掌握和运用 教 具:多媒体、实物投影仪 教学过程: 课题引入:问题:求过三点A (0,0),B (1,1),C (4,2)的圆的方程。
利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
探索研究:请同学们写出圆的标准方程:(x -a)2+(y -b)2=r 2,圆心(a ,b),半径r .把圆的标准方程展开,并整理:x 2+y 2-2ax -2by +a 2+b 2-r 2=0.取222,2,2r b a F b E a D -+=-=-=得022=++++F Ey Dx y x ①这个方程是圆的方程.反过来给出一个形如x 2+y 2+Dx +Ey +F=0的方程,它表示的曲线一定是圆吗? 把x 2+y 2+Dx +Ey +F=0配方得44)2()2(2222F E D E y D x -+=+++ ② (配方过程由学生去完成)这个方程是不是表示圆?(1)当D 2+E 2-4F >0时,方程②表示(1)当0422>-+F E D 时,表示以(-2D ,-2E )为圆心,F E D 42122-+为半径的圆; (2)当0422=-+F E D 时,方程只有实数解2D x -=,2Ey -=,即只表示一个点(-2D,-2E );(3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形 综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程()2214x y ++=我们来看圆的一般方程的特点:(启发学生归纳) (1)①x 2和y 2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
人教A版高中数学必修二精品教案集圆的标准方程
4.1.1 圆的标准方程三维目标:知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。
教学重点:圆的标准方程教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。
教学过程:1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件r = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。
3、知识应用与解题研究例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内 例(2): ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.(学生自己运算解决)例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省怀化市溆浦县第三中学人教版数学必修二411 圆的标准方程教
案
1课时
教学分析
在初中曾经学习过圆的有关知识,本节内容是在初中所学知识及前几节内容的基础上,进一步运用解析法研究圆的方程,它与其他图形的位置关系及其应用.同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其他圆锥曲线的方程奠定了基础.也就是说,本节内容在教材体系中
起到承上启下的作用,具有重要的地位,在许多实际问题中也有着广泛的应用.由于“圆的方程”一
节内容的基础性和应用的广泛性,对圆的标准方程要求层次是“掌握”,为了激发学生的主体意识,
教学生学会学习和学会创造,同时培养学生的应用意识,本节内容可采用“引导探究”型教学模式进行教学设计,所谓“引导探究”是教师把教学内容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来.教师的每项教学措施,都是给学生创造一种思维情境,一种动脑、动手、动口并主动参与的学习机会,激发学生的求知欲,促使学生解决问题.
课题 4.1.1 圆的标准方程
教学目标
(一)知识与技能使学生掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心、半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,
注意培养学生观察问题、发现问题和解决问题的能力.
(二)过程与方法会用待定系数法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成
代数方法处理几何问题的能力,从而激发学生学习数学的热情和兴趣,培养学生分析、概括的思维能力.
(三)情感态度与价值观把握运动变化原则,培养学生树立相互联系、相互转化的辩证唯物主义
观点,欣赏和体验圆的对称性,感受数学美.
教学过程
一、导入新课
同学们,我们知道直线可以用一个方程表示,那么,圆可以用一个方程表示吗?圆的方程怎样来求呢?这就是本堂课的主要内容,教师板书本节课题:圆的标准方程.
二、讲授新课
自主学习
①已知两点A(2,-5),B(6,9),如何求它们之间的距离?若已知C(3,-8),D(x,y),又如何求它们之间的距离?
②具有什么性质的点的轨迹称为圆?
③图1中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?
图1
④我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,决定圆的条件是什么?
⑤如果已知圆心坐标为C(a,b),圆的半径为r,我们如何写出圆的方程?
⑥圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
学生展示
讨论结果:①根据两点之间的距离公式,得
|AB|=,
|CD|=.
②平面内与一定点距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径(教师在黑板上画一个圆).
③圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小.
④确定圆的条件是圆心和半径,只要圆心和半径确定了,那么圆的位置和大小就确定了.
⑤确定圆的基本条件是圆心和半径,设圆的圆心坐标为C(a,b),半径为r(其中a、b、r都是常数,r >0).设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由
两点间的距离公式让学生写出点M适合的条件=r.①将上式两边平方得(x-a)2+(y-b)2=r2.
化简可得(x-a)2+(y-b)2=r2.②
若点M(x,y)在圆上,由上述讨论可知,点M的坐标满足方程②,反之若点M的坐标满足方程②,这就
说明点M与圆心C的距离为r,即点M在圆心为C的圆上.方程②就是圆心为C(a,b),半径长为r的
圆的方程,我们把它叫做圆的标准方程.
⑥这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.当圆心在原点即C(0,0)时,方程为x2+y2=r2.
合作探究
探究1
①根据圆的标准方程说明确定圆的方程的条件是什么?
②确定圆的方程的方法和步骤是什么?
③坐标平面内的点与圆有什么位置关系?如何判断?
学生展示:①圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,只要求出a、b、r且r>0,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中圆心是圆的定位条件,半径是圆的定形条件.
②确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r或直接求出圆心(a,b)和半径r,一般步骤为:
1°根据题意,设所求的圆的标准方程(x-a)2+(y-b)2=r2;
2°根据已知条件,建立关于a、b、r的方程组;
3°解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程.
③点M(x0,y0)与圆(x-a)2+(y-b)2=r2的关系的判断方法:
当点M(x0,y0)在圆(x-a)2+(y-b)2=r2上时,点M的坐标满足方程(x-a)2+(y-b)2=r2.
当点M(x0,y0)不在圆(x-a)2+(y-b)2=r2上时,点M的坐标不满足方程(x-a)2+(y-b)2=r2.
用点到圆心的距离和半径的大小来说明应为:
1°点到圆心的距离大于半径,点在圆外(x0-a)2+(y0-b)2>r2,点在圆外;
2°点到圆心的距离等于半径,点在圆上(x0-a)2+(y0-b)2=r2,点在圆上;
3°点到圆心的距离小于半径,点在圆内(x0-a)2+(y0-b)2<r2,点在圆内.
探究2
例1 写出下列各圆的标准方程:
(1)圆心在原点,半径是3;
⑵圆心在点C(3,4),半径是;
(3)经过点P(5,1),圆心在点C(8,-3);
(4)圆心在点C(1,3),并且和直线3x-4y-7=0相切.
学生展示
这里方法一是直接法,方法二是间接法,它需要确定有关参数来确定圆的标准方程,两种方法都可,要视问题的方便而定.
(4)设圆的标准方程为(x-1)2+(y-3)2=r2,由圆心到直线的距离等于圆的半径,所以
r=.因此所求圆的标准方程为(x-1)2+(y-3)2=.
老师点评:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.
例2 写出圆心为A(2,-3),半径长等于5的圆的方程,并判断点M1(5,-7),M2(-,-1)是否在这个圆上.
学生解答:圆心为A(2,-3),半径长等于5的圆的标准方程是
(x-2)2+(y+3)2=25,
把点M1(5,-7),M2(-,,-1)分别代入方程(x-2)2+(y+3)2=25,
则M1的坐标满足方程,M1在圆上.M2的坐标不满足方程,M2不在圆上.
老师点评:本题要求首先根据坐标与半径大小写出圆的标准方程,然后给一个点,判断该点与圆的关系,这里体现了坐标法的思想,根据圆的坐标及半径写方程——从几何到代数;根据坐标满足方程来看在不在圆上——从代数到几何.
教师精讲
例3 △ABC的三个顶点的坐标是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程.
教师引导学生从圆的标准方程(x-a)2+(y-b)2=r2入手,要确定圆的标准方程,可用待定系数法确定a、b、r三个参数.另外可利用直线AB与AC的交点确定圆心,从而得半径,圆的方程可求,师生总结、归纳、提炼方法.
解法一:设所求的圆的标准方程为(x-a)2+(y-b)2=r2,因为A(5,1),B(7,-3),C(2,-8)都在圆上,
它们的坐标都满足方程(x-a)2+(y-b)2=r2,于是
解此方程组得所以△ABC的外接圆的方程为(x-2)2+(y+3)2=25.
解法二:线段AB的中点坐标为(6,-1),斜率为-2,所以线段AB的垂直平分线的方程为y+1=(x-6). ①
同理线段AC的中点坐标为(3.5,-3.5),斜率为3,所以线段AC的垂直平分线的方程为y+3.5=3(x-
3.5). ②解由①②组成的
方程组得x=2,y=-3,所以圆心坐标为(2,-3),半径r==5,所以△ABC的外接圆
的方程为(x-2)2+(y+3)2=25.
点评:△ABC外接圆的圆心是△ABC的外心,它是△ABC三边的垂直平分线的交点,它到三顶点的距离
相等,就是圆的半径,利用这些几何知识,可丰富解题思路.
巩固提高
1、一圆过原点O和点P(1,3),圆心在直线y=x+2上,求此圆的方程.
2、课本本节练习1、2.
3、求圆心在直线y=2x上且与两直线3x+4y-7=0和3x+4y+3=0都相切的圆的方程.
活动:学生思考交流,教师提示引导,求圆的方程,无非就是确定圆的圆心和半径,师生共同探讨解题
方法.
三、课堂小结
①圆的标准方程.
②点与圆的位置关系的判断方法.
③根据已知条件求圆的标准方程的方法.
④利用圆的平面几何的知识构建方程.
⑤直径端点是A(x1,y1)、B(x2,y2)的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.
四、布置作业
1.复习初中有关点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系有关内容.
2.预习有关圆的切线方程的求法.
3.课本习题
4.1 A组第2、3题.。