锌精矿焙烧课计
锌精矿焙烧课计
锌精矿焙烧课计
锌精矿焙烧是冶金学中的一项重要过程,它主要用于将硫化锌矿中的硫化物还原成氧化物,并将其转化为可溶性的氧化锌,以便于后续的提取和加工。
锌精矿焙烧的课程主要包括矿石的加热、气氛的控制、反应的转化和产物的分离等多个方面。
其中,矿石加热是整个焙烧过程中最关键的环节之一。
通常情况下,焙烧温度在
800℃~1000℃之间。
在这个温度范围内,硫化物会被氧化,
然后还原成氧化物,以便于后续的提取和加工。
另一个非常重要的方面是气氛的控制。
由于硫化锌矿中含有较高的二氧化硫,所以焙烧过程中的氧气流量和氧化还原反应的平衡状态是非常重要的。
如果氧气流量过大,将会导致焙烧过程中产生大量的二氧化硫,影响产品的质量和产品的生产效率。
因此,在课程中需要引导学生学习如何控制气氛,以确保焙烧过程中氧化还原反应的均衡。
在反应转化方面,学生需要了解不同的氧化还原反应过程,并掌握锌精矿在可控的环境中的氧化还原反应情况。
同时,学生还需要了解不同的矿石组分、矿物和混杂物物理化学性质,并根据这些性质制定出适应性的生产方案。
最后,产物的分离和提取也是锌精矿焙烧的一个重要部分。
在这个步骤中,学生需要学习如何从氧化锌中提取出纯净的金属锌,以及如何研究和分析产物的品质和性质。
总之,锌精矿焙烧是一门非常精密和复杂的学科,需要学生具备深厚的专业知识和技能。
通过深入学习,学生将能够掌握锌精矿焙烧的艺术和技巧,并在后续的工作中取得更好的成果。
锌精矿沸腾焙烧技术介绍
锌精矿沸腾焙烧技术介绍
1.1工艺概述
1.1.1内蒙古巴彦淖尔紫金有色金属有限公司109㎡焙烧炉为酸化沸腾焙烧炉,处理的原料为浮选锌精矿。
其原理为:硫化锌精矿在氧化气氛中进行自热反应,使其发生物理、化学变化,改变其成分以适应下一步冶金过程的要求。
1.1.2酸化焙烧的主要任务
1.1.
2.1通过酸化焙烧,使锌精矿中的ZnS绝大部分转变为可溶于稀硫酸的ZnO,又为补偿冶金过程中硫酸的机械、化学损失,要求焙烧矿中有适量的可溶于水的硫酸锌。
1.1.
2.2最大限度地脱除铅、镉、汞等杂质,并使之进入烟气系统中,与烟气有效地分离,回收有价金属。
1.1.
2.3为制酸系统提供一定浓度的二氧化硫烟气。
1.1.
2.4充分有效地回收焙烧过程中的余热并加以利用。
1.1.3焙烧目的
在焙烧时,尽可能将锌精矿中的硫化物氧化成氧化物并产生少量硫酸盐,同时尽可能减少铁酸锌、硅酸锌的生成,以满足浸出对焙烧矿成分和粒度的要求及补偿系统中一部分硫酸根离子的损失。
同时得到较高浓度的二氧化硫烟气以便于生产硫酸。
1.1.4基本原理
锌精矿沸腾焙烧就是利用具有一定气流速度的空气自下而上通过炉内矿层,使固体颗粒被吹动,相互分离而成悬浮状态,达到固体颗粒(锌精矿)与气体氧化剂(空气)的充分接触,以利于化学反应进行。
还原焙烧车间课程设计
还原焙烧车间课程设计一、教学目标本课程旨在让学生了解和掌握焙烧车间的相关知识,包括焙烧的基本原理、工艺流程和操作技能。
通过学习,学生能够:1.掌握焙烧的基本概念和原理,了解其在工业生产中的应用。
2.了解焙烧车间的工艺流程,包括原料准备、物料输送、焙烧过程和产品冷却等。
3.学会操作焙烧设备,掌握相关的安全技术和环保知识。
在技能目标方面,学生应能够:1.运用所学的焙烧原理和工艺知识,分析和解决实际生产中的问题。
2.熟练操作焙烧设备,具备一定的实践操作能力。
在情感态度价值观目标方面,学生应能够:1.认识到焙烧技术在现代工业中的重要性,增强对所学专业的认同感。
2.培养学生的团队合作精神,提高沟通协调能力。
二、教学内容本课程的教学内容主要包括以下几个部分:1.焙烧基本原理:介绍焙烧的定义、分类和基本原理,让学生了解焙烧技术的基本概念。
2.焙烧车间工艺流程:详细讲解原料准备、物料输送、焙烧过程和产品冷却等各个环节,使学生掌握整个工艺流程。
3.焙烧设备及操作:介绍常见的焙烧设备及其结构原理,教授操作方法和安全技术。
4.环保与安全:讲解焙烧过程中的环保问题和安全注意事项,提高学生的环保意识和安全意识。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:教师讲解焙烧的基本原理、工艺流程和操作技能,引导学生掌握关键知识点。
2.案例分析法:通过分析实际案例,让学生了解焙烧技术在生产中的应用和解决实际问题的能力。
3.实验法:学生进行实地考察和实验操作,增强学生的实践能力。
四、教学资源为了支持教学内容的传授和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的焙烧技术教材,为学生提供系统的理论知识。
2.参考书:提供相关的参考书籍,丰富学生的知识储备。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,帮助学生形象地理解焙烧技术。
4.实验设备:准备完善的实验设备,让学生能够进行实地操作和练习。
锌冶炼焙烧工艺
原料工序锌精矿来源较广,成分复杂不均,目前进入我分厂原料的精矿有新疆、河北、东矿、万城、天津(澳大利亚、秘鲁),除此之外平均每天约有()吨锌浮渣进入7#仓。
为了使焙烧能有一个相对稳定的工艺条件,必须对精矿进行合理配料使精矿成分稳定在焙烧操作允许范围之内,并且不发生大的波动,因为这个是关系到整个焙烧制酸系统稳定的先决条件。
除了对精矿进行合理配料之外,还需对精矿进行预处理,控制精矿的粒度及水分,配料釆用仓室配料,根据成分进行配料计算,确定配料比例。
配料设备采用配料圆盘和电子皮带秤(已经取消),控制混合精矿的流量大小,精矿含水量目前分厂要求控制在9%-10%o二、焙烧工序我分厂焙烧工段焙烧炉炉床面积109平米,该炉为鲁奇式,有一锥型扩大段,采用无前室加料系统,设有物料排出口及直通式风帽,炉子抛料口设有紧急闸门,如发生路况异常,关闭闸门,保护抛料机原料送来的精矿先进入炉前仓,由仓下调速胶带给料机,定量给料机,通过留管进入抛料机送入焙烧炉内,产出的配砂经过2台流态化冷却器和高效圆筒冷却•焙砂至150度左右,通过刮板机送入球磨机磨细,然后与烟尘一并送入俩台汽化平喷射泵送至浸出车间。
沸腾炉产出的烟气经余热锅炉回收烟气余热后,经俩段漩涡收尘器、电收尘收尘后由高温风机送制酸系统。
1.焙烧的目的将精矿中的ZnS尽量氧化成ZnO,同时让铅、镉、神等杂质氧化变成易挥发的氧化物从精矿分离。
使精矿中的S氧化成SO2,产出足够浓度的SO2烟气送制酸。
2.精矿焙烧要求尽可能的完全氧化金属硫化物,使精矿中的杂质氧化后变为挥发物挥发出去。
同时尽可能的少得到铁酸锌,由于该物质不溶于稀硫酸,不利于浸出工艺进行。
3.焙烧原理该流态化焙烧为固体流态化焙烧,气体通过料层速度不同,按焙烧强度可分为、固定料层、膨胀料层、流态化料层。
流态化焙烧利用气体自下而上以一定速度通过料层,使固体颗粒被吹动,颗粒相互分离呈悬浮态,这样可使精矿颗粒与空气充分接触,有利于化学反应。
锌精矿焙烧参数
0.075~0 0.006 1
0.125~ 0.11~ 0.11 0.105 0.3057 0.0308
0.105~ 0.09~ 0.09 0.075 0.0022 0.0017
0.075~0 0.006 1
(4)含水量: 入炉混合锌精矿含水8%。
物料参数
和化学成分 SiO2 2.4 SiO2 4.1 SiO2 3.4 SiO2 4.1 SiO2 4.1 CaO 1.2 CaO 1.2 CaO 1.2 CaO 1.2 CaO 1.2 MgO 0.33 MgO 0.94 MgO 0.9 MgO 0.81 MgO 0.9 其它 3.8 其它 3.37 其它 3.11 其它 3.16 其它 3.16 100 合计 100 合计 100 合计 100 合计 100 100 100 100 200 合 计 100
0.125~ 0.11~ 0.11 0.105 0.3057 0.0305
0.105~ 0.09~ 0.09 0.075 0.0022 0.0017
0.075~0 0.006 1
0.125~ 0.11~ 0.11 0.105 0.3057 0.0315
0.105~ 0.09~ 0.09 0.075 0.0025 0.002
筛 分 析 1~0.83 聂鑫才 /mm Xi 0.0292
0.83~ 0.42 0.063
0.42~ 0.25 0.0693
0.25~ 0.18 0.1986
0.18~ 0.15 0.2081
0.15~ 0.125 0.0854
(3)密度: a.颗粒密度: b.堆积密度: γ 密度=4100kg/m3 γ 堆积=1900kg/m3
锌精矿焙烧相关物料参数
(1)入炉混合锌精矿(干)和化学成分 成分 黄龙 % 黄宁 成分 % 成分 % 成分 % 成分 % 49.18 Zn 45.82 Zn 46.22 Zn 47.16 Zn 46.82 1.1 Pb 1.53 Pb 1.13 Pb 1.53 Pb 1.44 0.5 Cu 0.51 Cu 0.51 Cu 0.51 Cu 0.51 0.19 Cd 0.33 Cd 0.33 Cd 0.33 Cd 0.33 11.32 Fe 11.12 Fe 12.12 Fe 11.12 Fe 11.02 29.98 S 31.08 S 31.08 S 30.08 S 30.52 Zn Pb Cu Cd Fe S
锌精矿沸腾焙烧设计
第一章设计概述1.1 设计依据根据冶金工程专业《年处理5.6万吨锌精矿的沸腾焙烧车间设计》(涂弢编)下达课程设计指导书任务。
1.2 设计原则和指导思想对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为:1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计;2、设计中对主要工艺流程进行多方案比较,以确定最佳方案;3、设计中充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。
所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则;4、要按照国家有关劳动安全工业卫生及消防标准及行业设计规定进行设计;5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术;6、设计中应充分考虑节约能源、节约用地,实行资源的综合利用,改善劳动条件以及保护生态环境1.3 设计任务一、锌冶炼沸腾焙烧炉设计。
二、锌精矿沸腾焙烧工艺流程设计。
三、沸腾焙烧炉物料平衡和热平衡初算。
四、设备的选型与计算。
五、环保与安全。
第二章沸腾焙烧专题概述2.1 沸腾焙烧炉的应用和发展沸腾焙烧炉是流态化技术的热工设备,具有气—固间热质交换速度快、沸腾层内温度均匀、产品质量好;沸腾层与冷却器壁间的传热系数大、生产率高、操作简单、便于实现生产连续化和自动化等一系列优点,而广泛应用于锌精矿的氧化焙烧。
锌精矿和铜金矿的氧化焙烧和硫酸化焙烧,含钴硫铁精矿的硫酸化焙烧,锡精矿的氧化焙烧,高钛渣的氯化焙烧,汞矿石焙烧,以及氧化铜离析过程中的矿石加热等都已经使用沸腾炉,此外铅精矿、铅锑精矿的氧化焙烧,含镍、钴红土矿的加热和还原过程也利用沸腾炉成功的进行了工业性试验或小规模生产。
在国外,沸腾炉还用于辉钼矿、富镍冰铜的氧化焙烧。
沸腾炉的缺点是烟尘率高、热利用率低。
目前,沸腾炉正向大型化、富氧鼓风、扩大炉膛空间、制粒焙烧、余热利用和自控控制话方面发展。
2.2 沸腾炉炉型概述1.床型:沸腾床有柱形床和锥形床两种。
硫化锌精矿的焙烧课件
未展望
分析硫化锌精矿焙烧设备与技术 的发展趋势,如设备大型化、智 能化、绿色化等,为未来的研究
和应用提供参考。
04
焙烧过程中的环境保护与 可持续发展
焙烧过程的环保问题
大气污染
焙烧过程中产生的废气可 能含有二氧化硫、氮氧化 物等有害气体,对大气环 境造成污染。
水体污染
焙烧废水中可能含有重金 属离子、有机物等污染物, 未经妥善处理直接排放将 影响水环境质量。
设备构造
详细介绍设备的构造,包 括进料系统、燃烧系统、 排气系统等。
设备工作原理
解释设备的工作原理,以 及如何在焙烧过程中实现 硫化锌精矿的转化。
焙烧设备的操作与维护
设备操作
阐述设备的启动、运行、停车 等操作步骤,以及操作过程中
需要注意的事项。
设备维护
介绍设备的日常维护内容,包括设 备清洁、润滑、紧固等,以及定期 维护项目,如更换磨损件、检修燃 烧系统等。
• 停留时间:物料在焙烧炉内的停留时间也是影响焙烧效果的关键因素之一。过短的停留时间可能导致反应不充 分,而过长的停留时间则可能导致氧化锌的进一步分解或过度氧化。因此,需要根据物料性质和反应条件,合 理控制物料在焙烧炉内的停留时间。
03
焙烧设备与技术
焙烧设备介绍
01
02
03
设备类型
常用的硫化锌精矿焙烧设 备包括回转窑、沸腾炉、 固定床炉等。
加强与国际先进企业和研究机构的合作与 交流,引进先进技术和管理经验,促进我 国硫化锌精矿焙烧工艺的持续发展。
感谢您的观看
THANKS
原理
焙烧过程中的氧化反应是一个放热反应,其反应速率受温度、气氛、物料粒度等因素的影响。在适宜 的温度和气氛条件下,硫化锌可以与氧气发生反应,生成氧化锌和二氧化硫。同时,二氧化硫可以通 过进一步的氧化反应,生成三氧化硫,再与水反应生成硫酸,实现硫资源的回收利用。
锌精矿沸腾焙烧设计
锌精矿沸腾焙烧设计锌精矿沸腾焙烧设计是一种用于处理锌精矿的工艺方法。
这种方法采用了高温下氧化锌精矿,在一定的气氛中沸腾焙烧,从而将锌精矿中的锌元素转化为氧化锌。
这个方法在锌冶炼中具有很重要的作用,因为它能够提高锌精矿的有效利用率,促进锌矿的资源循环利用。
本文将介绍锌精矿沸腾焙烧设计的原理、优点和应用。
一、锌精矿沸腾焙烧设计原理锌精矿沸腾焙烧设计主要是利用锌矿石中的锌与氧化剂发生化学反应,将锌矿石中的锌元素氧化为氧化锌,从而达到提炼锌的目的。
整个过程分为两个阶段:第一阶段:预热阶段。
通过锌精矿沸腾焙烧设备将锌矿石烘烤,使其中的水分和有机物挥发,使锌矿石的体积缩小。
这个阶段的最大温度不超过500℃,其作用是为了提高第二阶段焙烧的效果。
第二阶段:氧化焙烧阶段。
在预热阶段过后,锌精矿经过氧化剂处理后,在锌精矿沸腾焙烧设备内产生剧烈氧化反应,产生大量的气体,使锌矿石成为氧化锌。
整个过程需要保证氧化剂的充分供应并保持合适的温度、气氛和氧化剂加入速度。
二、锌精矿沸腾焙烧设计的优点1、高效:锌精矿沸腾焙烧设计可以快速将锌矿石中的锌元素转化为氧化锌,提高锌资源的利用效率。
2、环保:锌精矿沸腾焙烧设计可以有效地控制污染物排放,减少环境污染。
3、节能:锌精矿沸腾焙烧设计可以大量节约能源,提高工作效率,减少使用成本。
4、灵活性强:锌精矿沸腾焙烧设计可以根据锌矿石的类型、特性和工艺要求进行调节,使其更加适应不同的锌精矿处理工艺。
5、成本低:锌精矿沸腾焙烧设计的设备和工艺比较简单,成本相对较低,可以减少项目的投资。
三、锌精矿沸腾焙烧设计的应用锌精矿沸腾焙烧设计已经成为锌冶炼行业中最常用的处理方法之一。
它广泛用于下列领域:1、锌冶炼:锌精矿沸腾焙烧设计是锌冶炼最重要的处理方法之一,可以提高锌资源利用率,降低生产成本。
2、反渗透:锌精矿沸腾焙烧设计还可以应用于反渗透过程中,用于除去锌元素污染物,提高水质。
3、环保:锌精矿沸腾焙烧设计可以用于处理废水、废气等工业污染物,控制工业污染,保护环境。
锌精矿焙烧
设计任务书电锌厂焙烧车间工艺设计及计算一.原始数据二.技术条件选择1.沸腾层高度2.空气过剩系数3.沸腾层温度4.炉顶温度5.炉顶负压6.直线速度7.出炉烟气量三.技术经济指标1.焙烧矿产出率(包括烟尘和焙砂)2.烟尘含锌量3.焙砂含锌量4.焙烧料含锌量5.脱硫率6.焙烧锌直收率7.出炉烟气含尘量8.出炉烟气SO2量9.烟尘含S S量10.焙砂含S S量11.烟尘含S so42-量12.焙砂含S so42-量四.冶金计算(1)选取计算的有关主要指标(各种成分进入烟气的比例)(2)锌精矿的物相组成计算(3)烟气产出率及其化学成分和五项组成计算(4)焙砂产出率及其化学成分和五项组成计算(5)焙烧需要的空气量及产出烟尘量与组成计算(6)沸腾炉焙烧物料平衡计算(7)热平衡计算五.参考书目1.铜铅锌设计参考资料铜铅锌冶炼设计参考资料编写组19782.有色冶金工厂设计基础陈枫19893.重金属冶金学赵天从编1987 第二版4.锌冶金学冶金工业出版社5.冶金原理冶金工业出版社6.锌冶金彭荣秋中南大学出版社7.湿法炼锌学梅光贵等中南大学出版社绪论锌精矿来源较广,成分复杂,为了使焙烧有一个相对稳定的工艺条件,必须对锌精矿进行配料以使精矿成分控制在焙烧操作允许的范围内,这关系到整个锌冶金过程中的稳定性。
本次设计的主要内容是锌精矿的沸腾焙烧,沸腾焙烧是现代焙烧昨业的新技术,也是强化焙烧的一种新方法。
其实质是:使空气自下而上地吹过固体料层,吹风速度达到使固体粒子相互分离,并做不停地复杂运动,运动的粒子处于悬浮状态,其外状如同水的沸腾翻动不已。
由于粒子可以较长时间处于悬浮状态,就构成了氧化各个矿粒最有利的条件,故使焙烧大大强化。
沸腾焙烧的基本原理是利用流态化技术,使参与反应或热、质传递的气体和固体充分接触,实现它们之间最快的传质,传热和动量传递速度,获得最大设备的生产能力。
在此次设计中,我们充分运用了现有的专业知识,加上自己大量查阅资料。
锌精矿沸腾焙烧技术
二、简答题1、干燥原理利用浓硫酸具有强吸水性而干燥烟气。
吸收原理当含有SO3的烟气现浓硫酸接触时,SO3选择性地溶解在浓硫酸中,该过程的化学反应式为转化原理二氧化硫烟气。
SO3+H2O H2SO4+Q转化原理二氧化硫烟气在钒催化剂触媒的作用下氧化为二氧化硫,化学反应式为SO2+1/2O2 SO3+Q2、从氟和氯对电解过程分别对阴极,阳极产生化学腐蚀和对电解生产环境的影响方面叙述,以及不经过焙烧ZnO堆比重小,不利于浸出等方面说明。
3、我厂是低温氧化(硫酸化)焙烧。
基本的区别是:a、焙烧温度,前者1050℃~1100℃,后者850℃~900℃;B、过剩空气系数,前者5%~10%,后者25%~30%。
4、焦粉在室内起的作用是:a、还原剂b、提供生产过程中所需的热量。
C、疏松物料。
第二问根据答案给分。
5、可从鼓风量、加料,锌精矿的水份和粒度等方面看其是回答正确给分。
1、当空气被鼓进沸腾炉内固定物料层时,物料的状态随着气流速度变化而变化。
随着气流速度的上升物料颗粒由静止开始蠕动并开始相互分离,体积开始膨胀。
当气流速度达到或超过临界速度值时,物料粒子作紊乱运动。
只要气流速度不超过极限值,物料粒子就在一定高度范围内翻动,象液体沸腾一样,称为流态化床,即形成沸腾层。
2、在1100℃~1300℃的高温下,浸出渣中的铅、锌、铟、锗等有价金属(主要是MeO状态部分呈MeS状态)被CO还原为金属而挥发进入烟气,在烟气中被氧化成氧化物,随烟气离开挥发窑,被收集在收尘器内,主要化学反应式:C+O2=CO2 CO2+C=COMeO+CO=Me+CO2Me+1/2O2=MeO3、二氧化硅在焙烧过程中与锌和铅等金属分别生成相应的硅酸盐,特别是硅酸盐,由于其熔点低,很容易使炉料粘结,影响沸腾炉的正常生产。
另外硅酸盐在浸出过程中呈胶体状态,造成浸出、澄清、过滤困难,严重时引起净液工序不能正常接收中性上渣液,而新液产量供不上,使大量溶液集中在浸出工序,使整个生产系统生产平衡和体积平衡状态打乱。
含铁锌精矿焙烧方程式
含铁锌精矿焙烧方程式
根据湿法炼锌的工艺原理,湿法炼锌熔烧硫化锌精矿的目的主要是使锌精矿中的ZnS绝大部分转变为Zn0,少量则为ZnSO4,同时尽可能完全地除去砷、销等杂质。
具体说来其要求有五点:
(1)在湿法炼锌中,出于硫化锌在一般条件下不能直接用稀硫酸进行浸出,所以熔烧时,要尽可能完全地使ZnS转型,使其绝大部分氧化成为可溶于稀硫酸的ZnO。
不过为了补偿冶金过程中H2SO。
的机械损失和化学损失,仍要求熔烧矿中有适量的可溶于水的ZnSO4.生产实践证明,一般浸出流程,只要使熔烧矿中含有2.5~4%的ZnSO。
形态的硫就可以补偿冶金过程中H2SOs的损失,并不希望过多,否则会导致治金过程中硫酸根的过剩,影响正常生产的进行和增加原材料的消耗。
(2)使砷,锦氧化成挥发性的氧化物除去,同时除去部分铅,以减轻浸出、净化工序工作量。
(3)使炉气中的SO2浓度尽可能地高,以利制造硫酸。
(4)熔烧得到细小粒子状的熔烧矿,以利下一步浸出,即不希望有烧结现象发生。
(5)在熔烧时应尽可能地少产生铁酸锌和硅酸锌。
因为铁酸锌不溶于稀硫酸,而导致锌的浸出率降低:硅酸锌虽然能溶于稀硫酸,但溶解后会产生胶体状的二氧化硅,影响浸出矿浆的澄清与过滤。
处理块状硫化矿的熔烧最早是采用堆式熔烧,后改为竖炉焙烧。
随着原矿品位的降低和浮选的迅速发展,炼锌厂处理的原料,都是粉末状的锌精矿,这就迫使采用符合精矿熔的特点的熔烧炉。
锌沸腾焙烧炉工艺操作规程
锌沸腾焙烧炉工艺操作规程(部分)3 工艺流程6#沸腾炉锌精矿焙烧工艺流程(见图1)。
44.1 焙烧目的:在焙烧时尽可能将锌精矿中的硫化物氧化生成氧化物及生产少量硫酸盐,并尽量减少铁酸锌、硅酸锌的生成,以满足浸出对焙烧矿成分和粒度的要求及补充系统中一部分硫酸根离子的损失。
同时得到较高浓度的二氧化硫烟气以便于生产硫酸。
4.2 锌精矿沸腾焙烧原理:锌精矿沸腾焙烧就是利用具有一定气流速度的空气自下而上通过炉内矿层,使固体颗粒被吹动,相互分离而呈悬浮状态,达到固体颗粒(锌精矿)与气体氧化剂(空气)的充分接触,以利化学反应进行。
其主要化学反应如式(1)~式(6):2ZnS+3O2 ====2ZnO+2SO2 (1)ZnS+2O2====ZnSO4 (2)3ZnSO4+ZnS====4ZnO+4SO2 (3)2SO2+O2 2SO3 (4)ZnO+SO3 ZnSO4 (5)XZnO+YFe2O3XZnO.YFe2O3 (6)5 原材料质量要求5.1 入炉混合锌精矿:应符合Q/ZYJ06.05.01.01—2005《混合锌精矿》的规定。
5.1.1 化学成分(%):Zn≥47 S:28~32,Fe≤12,SiO2≤5,Pb≤1.8,Ge≤0.006,A s≤0.45 ,Sb≤0.07,Co≤0.015 Ni≤0.004。
5.1.2 水分:6%~8%。
5.1.3 粒度小于14mm,无铁钉、螺帽等杂物。
5.2 工业煤气(%):应符合Q/ZYJ15.02.01—2003《工业煤气》的规定。
要求煤气压力在3000Pa以上,煤气流量不小于6500m3/h。
6 工艺操作条件6.1 沸腾焙烧6.1.1 鼓风量:14000 Nm3/h~30000Nm3/h6.1.2 鼓风机出口压力:12kPa~16kPa6.1.3 沸腾层温度:840℃~920℃6.1.4 炉气出口负压:0~30Pa6.2 余热锅炉6.2.1 出口烟气温度:340℃~390℃6.2.2 出口烟气压力:-100Pa~-200Pa6.2.3 汽包工作压力:4.01MPa±0.3MPa6.2.4 过热器出口蒸汽温度:380℃~450℃6.2.5 给水温度:100℃~105℃6.3 旋涡收尘器6.3.1 入口烟气温度:330℃~380℃6.3.2 出口烟气温度:320℃±10℃6.3.3 入、出口烟气压差:800Pa~1200Pa6.4 电收尘6.4.1 入口烟气温度:280℃~340℃6.4.2 出口烟气温度:≥235℃6.4.3 出口烟气压力:-2450Pa~-2700Pa6.5 排风机6.5.1 入口烟气温度:210℃~300℃6.5.2 入口烟气压力:-2650Pa~-2900 Pa6.5.3 出口烟气温度:≥210℃7 岗位操作法7.1 司炉岗位7.1.1 开炉操作7.1.1.1 开炉前做好设备、安全和环保方面的检查工作:应对所有设备进行一次全面细致的检查,确认各设备、仪表完全具备开炉条件;要对烟气系统各阀门、人孔门,煤气和供水、排水排汽系统进行检查,确认其符合安全环保要求。
沸腾焙烧炉设计相关计算
沸腾焙烧炉设计目录第一章设计概述 (1)1.1设计依据 (1)1.2设计原则和指导思想 (1)1.3课程设计任务 (1)第二章工艺流程的选择与论证 (1)2.1原料组成及特点 (1)2.2沸腾焙烧工艺及主要设备的选择 (1)第三章物料衡算及热平衡计算 (3)3.1锌精矿流态化焙烧物料平衡计算 (3)3.1.1锌精矿硫态化焙烧冶金计算 (3)3.1.2烟尘产出率及其化学和物相组成计算 (4)3.1.3焙砂产出率及其化学与物相组成计算 (6)3.1.4焙烧要求的空气量及产出烟气量与组成的计算 (7)3.2热平衡计算 (10)3.2.1热收入 (10)3.2.2热支出 (13)第四章沸腾焙烧炉的选型计算 (15)4.1床面积 (15)4.2前室面积 (15)4.3炉膛面积和直径 (13)4.4炉膛高度 (16)4.5气体分布板及风帽 (16)4.5.1气体分布板孔眼率 (16)4.5.2风帽 (16)4.6沸腾冷却层面积 (16)4.7水套中循环水的消耗量 (14)4.8风箱容积 (15)4.9加料管面积 (15)4.10溢流排料口 (15)4.11排烟口面积 (15)参考文献 (15)第一章设计概述1.1设计依据根据《冶金工程专业课程设计指导书》。
1.2设计原则和指导思想对设计的总要求是技术先进;工艺上可行;经济上合理,所以,设计应遵循的原则和指导思想为:1、遵守国家法律、法规,执行行业设计有关标准、规范和规定,严格把关,精心设计;2、设计中对主要工艺流程进行多方案比较,以确定最佳方案;3、设计中应充分采用各项国内外成熟技术,因某种原因暂时不上的新技术要预留充分的可能性。
所采用的新工艺、新设备、新材料必须遵循经过工业性试验或通过技术鉴定的原则;4、要按照国家有关劳动安全工业卫生及消防的标准及行业设计规定进行设计;5、在学习、总结国内外有关厂家的生产经验的基础上,移动试用可行的先进技术;6、设计中应充分考虑节约能源、节约用地,实行自愿的综合利用,改善劳动条件以及保护生态环境。
3.2 硫化锌精矿的焙烧 1.5
Zn-Fe-S-O系氧势 温度平衡图 系氧势-温度平衡图 系氧势 (PSO2=0.1 atm) )
1143K
当PSO2=0.1 atm , PO2=10132.5~20265 Pa 时, , 当 T < 1180K (907℃)时,ZnO、 ℃ 、 ZnO·Fe2O3 —> ZnO·2ZnSO4、Fe2O3
3、影响锌精矿焙烧反应速度的因素 、 影响焙烧反应速度的因素主要有:温度、氧气浓度、 影响焙烧反应速度的因素主要有:温度、氧气浓度、气流 主要有 速度、精矿粒度、精矿品位等。 速度、精矿粒度、精矿品位等。
锌冶金学
Zinc Metallurgy
对于硫化锌矿氧化焙烧而言, 对于硫化锌矿氧化焙烧而言,决定反应速度的环 节是气膜中氧的扩散和界面反应。 节是气膜中氧的扩散和界面反应。(P138 表3-2) 在830℃以下时,界面反应的阻力占主要地位; ℃以下时,界面反应的阻力占主要地位; 880℃以上时,气膜传质的阻力占绝对优势。 在880℃以上时,气膜传质的阻力占绝对优势。 颗粒粒度的减小有利于界面反应, 颗粒粒度的减小有利于界面反应,也有利于扩散 过程,但不能过小,否则增加烟尘率。 过程,但不能过小,否则增加烟尘率。
(4)硫化铁 硫化铁 锌精矿中主要的硫化铁矿有黄铁矿( 锌精矿中 主要的硫化铁矿有黄铁矿(FeS2 ) 、 磁硫 主要的硫化铁矿有黄铁矿 铁矿(Fe 和复杂硫化铁矿, 铁矿 nSn+1)和复杂硫化铁矿, 如铁闪锌矿 和复杂硫化铁矿 如铁闪锌矿(nZnS·mFeS)、 、 黄铜矿(FeCuS2),砷硫铁矿 黄铜矿 ,砷硫铁矿(FeAsS)等。 等 焙烧结果是得到Fe 由于FeO在焙烧条 焙烧结果是得到 2O3 与 Fe3O4 。 由于 在焙烧条 件下继续被氧化以及硫酸铁很容易分解, 件下继续被氧化以及硫酸铁很容易分解 , 故可以认为焙 烧产物中没有或极少有 存在。 烧产物中没有或极少有FeO与FeSO4存在。 没有或极少有 与
硫化锌精矿的沸腾焙烧工序.
6.1硫化锌精矿的沸腾焙烧工序(甲24m2沸腾炉操作规程)6.1.1备料部分:(1)备料的基本任务:①保证入沸腾炉的精矿主成份和杂质含量均匀、稳定,对不同的精矿进行合理搭配。
②确保入沸腾炉的精矿含水量为6-8%。
③保证入沸腾炉的精矿粒度小于10毫米,并不含机械夹杂,干燥后精矿要进行破碎和筛分。
(2)备料工艺流程:①工艺流程简述:入精矿库后的精矿利用桥式抓斗起重机抓入湿式圆盘给料机,通过皮带运输机运至回转干燥窑干燥,干燥后精矿通过锤式破碎机破碎,再利用斗式提升机提至振动筛过筛,筛上物返回破碎机破碎,筛下物入沸腾炉焙烧。
②工艺流程图(见图6.1-1)(3)设备名称、规格、性能(见表6.1-1)(4)主要技术操作条件及技术指标:①锌精矿质量标准:(应符合YS/T320-2007三级以上标准)②入沸腾炉锌精矿质量标准:③干燥窑进料量:<10吨/小时。
④干燥窑温度窑头600-650℃,窑尾150-200℃。
干燥精矿煤气消耗105Nm3/吨精矿锌精矿排空废气(送沸腾炉)图6.1-1 24m2沸腾炉备料工艺流程图表6.1-1 备料部分设备名称规格(5)主要岗位操作法:①抓斗桥式起重机岗位:A 严格按抓斗桥式起重机使用、维护规程和安全规程操作。
B抓斗桥式起重机运行时,大车、小车、抓斗不能同时运行,最多只能两者同时运行。
C 交接班和班中应经常检查钢丝绳和制动器、滑轮、行程开关、各润滑点,发现异常情况及时处理。
D 及时将入库的精矿抓到指定的地点堆存备用。
E 按规定要求配料,以保证入炉精矿成份稳定均匀。
F 圆盘料仓最多只能贮放两抓斗精矿。
②圆盘给料岗位:A 根据干燥岗位要求调整圆盘转速和圆盘出料口闸门,保证给料稳定、正常。
B 保证圆盘出料口不堵塞不断料。
③1#皮带岗位:A 严格按皮带运输机的使用、维护规程和安全规程操作。
B 保证1#皮带下料口畅通,发现堵塞及时清理。
C 皮带运输过程中,经常巡回检查,发现皮带跑偏、撕裂、托轮不转、电磁铁不起作用等异常现象及时处理。
锌精矿焙烧课计
1、设计任务设计一个年产10000吨电锌厂焙烧车间〔初步设计〕1.1、原始数据电锌年产量:10000吨锌精矿的化学成分〔%〕1.2、技术条件选择沸腾层高度:1.5m左右空气过剩系数:1.25沸腾层温度:850~900C炉顶温度:820~870炉顶负压:-10~30Pa直线速度:0.5~0.6m/s出炉烟气量、温度:9001.3、技术经济指标年处理锌精矿:1.3万吨/年年工作日:300天沸腾炉炉床面积:28m2沸腾炉炉床能力:5.2t/(m2d)焙烧矿产出率〔包括烟尘和焙砂〕:88%〔占锌精矿的〕烟尘含锌量:54.89%焙砂含锌量:56.91%焙烧料含锌量:48%脱硫率:93.6%焙烧锌直收率:52%冶炼总回收率:95%出炉烟尘含量:35%〔占焙烧矿的〕量:9365%〔体积百分数〕出炉烟气SO2烟尘含Ss量:1.73%焙砂含Ss量:0.4%2-量:2.14%烟尘含Sso42-量:1.10%焙砂含Sso42、原始资料2.1、锌矿的分布及品位截至2002年,全世界查明锌储量为20000万吨,储量根底为45000万吨,现有储量和储量根底的静态保证年限为23年和51年。
锌储量和储量根底占锌资源量的10.52%和3.68%。
中国锌的储量和储量根底均居世界首位,已成为世界最大的铅锌资源国家。
根据统计资料,在我国铅锌储量中铅锌平均品位只有 4.66%,而根据目前铅锌价格水平和本钱水平,只有铅锌(1:2.5)合计地质品位在7%~8%以上的地质储量才是能经济利用的储量,目前我国能经济利用的铅锌合计储量只有4513.86万吨,仅占总储量的 42.6%。
锌在自然界多以硫化物的状态存在,主要矿物是闪锌矿〔ZnS〕,但这种硫化矿的形成过程中有FeS固溶体,成为铁闪锌矿〔nZnSmFeS〕.含铁高的闪锌矿会使提取冶炼过程复杂化。
流化床的地表部位还常有一部打分被氧化的氧化矿,如菱锌矿〔ZnCO3〕、硅锌矿〔Zn2SiO4〕、导极矿〔H2Zn2SiO5〕等。
【doc】锌精矿沸腾焙烧烟气两转两吸工艺制酸的生产实践
锌精矿沸腾焙烧烟气两转两吸工艺制酸的生产实践工程设计与研究ENGINE~RINGDEsINGANDRESEARCH总第74辣199H瞰2居}锌精碳沸腾焙烧烟气两转两吸工艺制酸的生产实践朱秉彦【提要)柳州锌品厂硫酸车间3I系统由我院首执设计.并于l98睥l2月建成投产.是国内冶炼烟气较早采用的两转两吸制酸系统t本文根据三年来的生产宴践?简要介绍了谤系翁的设计和生产情疆.并对存在问琏进行论证和分析.一,前言柳州锌品厂硫酸车阃,原有两套锌精矿氧化沸腾焙烧烟气制酸系统(称l'系统,2'系统),均为水洗净化一转一吸生产工艺,转化率为94-_95两■排放尾气的soi浓度高达3000--4000ppm,为了解决环境污染.新建了硫酸3'系统代替1系统.3'系统采用丁两转两吸制馥工艺,逮是国内冶炼烟气制馥较早采用的先进制酸工艺,l985年由我院设计,1987年12月建成投产,至今已运行三年多,生产正常,并达到了预期的效果.二,设计简况1.没计条件设计规模:8o吨/天(浓度为100呖硫酸):进转化系统烟气量:l10l8米./时(标祝):进转化系统烟气成分(千基):sO7啊,O2l0.26嘶,N2.74%2.工艺旅疆殛技术参赦选用文一一泡一一文水洗净化两转两设接触法生产硫酸.其中:转化流程选用(3+1):换热方式选用II——Ⅳ,I.净化率97嘶,总转化率99—呻9.5嘶.总吸收率99.95呖.各段转化率及进口温度的选定值予表1. 囊1鲁段转化率疑■蠢◆t,\转化段数技术参数,\—段段E般四段进口温赛()43O46030400出口温崖()$6S4964241499--99.5转化率(集计,)698,lC:捷转化率驰.86】平街转化率()B1.9931978~99魅操分配率()30【203O5.转化藏程转化流程见图1圈1转化流程圈4.主要特点工艺设计有如下特点;f1)转化流翟和换热方式成熟,具有升总第r4期辞精.沸吩焙烧烟气两转两吸工艺制袋的生产实践7..__--__l_-_-…Ll一^一~一一一一H____'_____-__-__l--l_l__u_Iu一"—l-H___lI__...●●__.●一温快,热平衡好转化率高的优点.腐蚀.为了减少sO:浓度波动的影响,确保(2)触媒采用一,四层多,二,三层少的分配形式,有_和J予提高总转化率.设备设计有如下特点:(1)转化器的立桂采用耐高温低铬铸铁,进口设分布板:三,四层隔板设膨胀结构(2)换热器下部采用新结构,使换热器内的列管不受气流直接冲刷和腐蚀,可延长列管的寿命.一(3)干燥塔和一蹶塔出口均设金属丝网除沫器,减少酸沫对换热器的腐蚀..(4)采用了导热系数较低的硅酸疆纤维板外加蛭石的新型保温捌料,减少了系统的热损失.三,生产实践该厂硫酸3系统从试生产至今,大致可分三个阶段:1987年12Yl至1988年3月为试生产阶段,1988年4月至1990年4B为正常生产阶段,1990年5—3月为节电攻关阶段.试生产期间,由于炉况不稳定,烟气中的SOt浓度波动很大,转化一段虽已反应,但二,三段温度上升缓慢,加上副线偏小,致使=,三段转化率过低,而四段反应大,进出口湿度差达60—1O0℃,所以,总转化率仅在95~96呖之间,并不茕维持白热平衡后来增加了9,l0副线,情况大有改变,各段温度均能达设计值,1988年1月出现了白热平衡.转化率最高达99.15呖,生产逐渐转入正常.投产三年多来,烟气中的SOz浓度一直波动在4—9呖之间,加上开停车频繁(据统计每月在l0—15次之间),净化指标特别是水分达不到要求(含量为0.3—0.8克/米.)同时,由于制酸生产和冶炼生产不够协调等原因,造成进1和2吸收塔的烟气温度偏低(分别为135一l45"C和115~120℃),致使3,4抉热器常有冷凝酸出现,并对其产生转亿系统躺热平键,枉较长时间内,经常使用一,四段进口宅妒(开l…2缆,每组约50千瓦).应该说,有气量8iso浓度还是比较稳定,由于管理上的原因但电炉仍不能关闭.因此从1990年5月开始,车间为了解决热平衡和冷艇酸的问题,采取了加强系统保温,加大触媒量使用部分低温触媒等措施.争取不使用电炉.这些措施收效很大,据粗略统计5月有3天.6月有8天,T月有22 天,8月有11天.连续不开电炉生产,这充分说明制酸系统可以长期维持自热平衡.同时每吨赣的电耗也下降.见表2.袭2.历年馥电耗===习赓/吨酸1988年(6)月:均1989年平均1990年(1—4)月,均l990年5月1990年6.f亍1990年7t990卓8月i3S.1l2o12S.4…^9964.681,8目前生产的各项指标均达设计值(1)硫酸产量80—90吨/天(浓度为98 硫酸),最高达94吨/天.(2)进转化烟气量l20o0~14000米./时(标况.下同)(3)进转化的烟气含水0,3—_o.4克/米最高达0.8克/米.酸雾0.003克/米.. (4)进转化器的SOz浓度和转化率,见表3.(5)转化器各段温度参数几组比较典型的操作参数见表4. (6)排空尾气SOz浓度平均527~1160 ppm.最佳值为400--500ppm.四,生产中出现的问题分析工程设计与研究总第'艉囊3避转化薯的SOt浓虞和转化事卑茴l2l3jisl9}S07.37.47.27.57.57.37.i7.37.07.17.1/7.2i9明年转化率9598598.898.297.596.596.497.797.096.897.597.2S0i5.6l6.'.886.6B6.257.687.047.0i7.106.856.8|6.7,I9B9年转化卑99.298.598.399.2搴9.2睁24蛾l'8.7孵.97%.钾粥.94 S0j77.16.67.17.07.6.11,,e年转化率98.898.5畹298.798.4蛆.498.S囊4比较奠翌■作●t转亿臣教l二三段时间,\\I八口1出口^口l出口SO,变化范周1989年7月7日旱班平均l436l啪年2月l9丑早班平均l434t99D年月22,日中班平均l420注:不开电炉.S70S5174S545S4411.转化热平衡与控翻热平衡的措施(1)转化热平衡3'系统几年来的生产实践说明,烟气中的S0t浓度稳定在7—7.5嘶时,系统可维持自热平衡,而低于7嘶时则要开一组或几组电炉加热来维持热平衡.这与理论分析有较大的差距,造成这种现象的主要原因是:④系统保温效果差.由于施工质量.加上设计未考虑防雨层,致使保温层开袭较多, 散热较严重:若加强保温,估计最低自热平衡的SOt浓度可降低0.5嘶左右.②炉子及收尘系统的管理不够协调.未能保持气浓和气量的稳定.据了解.开炉前期,炉况较好,气浓较稳定但中,后期,由于氧化锌烟尘牯度大,收尘系统容易堵塞,若不及时清理,就影响炉子的正常生产,气浓和气量得不到保证,气浓和气量均发生被动,这样就使制馥系统无法正常生产.③转化反应后移.本来冶炼烟气的Oz/5l25235i6435{45044346,3447I4894364334104524584384"-'97.2—95.4—9S0l比较大(奉设计为1.466).一次转化率应该比较高,但事实并非如此.主要是由于SOt辛良度有波动,在生产时,有一半时间为7—9.有一半时间为4—7,而进转化的烟气吉水较高,以及烟气中央带少量的有色金属矿尘.影响了触媒的活性.造成各段转化沮度处于不稳定状态.致使反应后移,从而影靖了转化系统的热平衡.如1989年,当s0澈度较低(7嘶)时,一次转化率平均为87.06%(见表5).估计一段转化率约为50—6o嘶,因而一段入El温度很难确保,在这种情况下,一段进口温度必须提到440℃以上.才能使其他各段入El温度达到要求;事实上,在气掀较低和波动情况下,要维持各段的正常温度,若采用转化副线也很堆调节,所以,只好经常开电炉以确保系统的热平衡.?当SOz浓度较高(8.5—9嘶)时,由于气体中含氧量低,会使一段触媒起燃温度相总弟期锌精矿沸腾焙烧烟气两转两吸工艺制酸的莹产实践寰5一九八九卑虞sO藏毫耱靶事誊标一定冈一一数一l1l9I一厂I8jl2_f一二[竺I竺:进转化器5.616.586.886.6S6.257.687.047.0l7.16.8S6.86.77S02()平均排空(PPm)627}11601J10770561卵S52/4.tO007al",排空最佳值400lS005005o04001;00枷5∞钟8蛳5呻一次转化均酊?6783.4182.4786.57.7985I.58919185.S88.098a.6887.06率(%)最佳值jg3.08.89.81g3.5294.7693.5192.9893.6蚰.8490.59I.82帕.2S二次转化皿妁93.5190.9690.392.5993.4594.4591.559091.0386.3190.90,i."睾()最佳值94.他93.82虹.86,94.4495.0795.992.8【'2."%.37.I}总转化串.平均199.2;8.l98-39999-2l99-99.2'I99-l9B?l赔-钾l椰?钾l蚺?9,1()最佳值/99.40I99.4l99.3899-499-5l帅-3795I}99?42:99-黯I99?''l'.'.ItI1l『进转化器最高值/}8.4/8.0f.l8.'l8.98.1l0.0l8.7-9ISO2()相应一次转化率/77.43/9.181.0l87-l91+590.93【86.56l85-06I80-5;3l说明:由于取样有时间差,故平均排空的SO:量有一定误差应增高.一般一段温差只有i00℃左右,反应中的sOI浓度较高,且较稳定,所以,可以也后移,但由于较高的SOt浓度易于调整,维持系统热平衡(见表6).故能维持自热不开电炉.19g0年以来,烟气上述情况说明,由于影响冶炼的因素较毫6190年7—9月转化蕞肇螺伟t鼍f}一次转忧率附注进嗳口l进收()I{s舶543al鸵}51177;128-8.589均不l990年8月18日日平均33534)h5415;3545749442947167l1278.4-49l开电L990年9月7日日平均l433sslss.163}1298.688S.7妒多,致使烟气波动大.尤其是SO=浓度变化会影响总转化率和热平衡.尽管可以通过副线调节,但调节频率也不易调节到摄佳值.(2)控制热平衡的措施为了使转化达到热平衡,经过柳州锌品厂多年的生产实践也摸出一些控制措施.主要归纳如下:①在正常情况下,进转化器的SOt浓度应维持在7叻左右.若加强保温和管理,进转化器的SO浓度可控制在7±0.5嘶左右,才能维持系统的自热平衡.⑦转化各段进口的烟气应控制在较适宜的温度范围内(见表7).@一,四段触媒层各采用50嘶S1o7低温触媒.以降低一,四段起燃温度.④为了增加热稳定性,触媒的充填定额由280升/日吨酸增至300升/日吨酸.④为了减少散热损失,3'热交换器SO.总笫'期丧7转化器各段进口烟气的适宜沮度—一二__lll竺===竺出口至l吸收塔进口的气体管道,l吸收塔出口至4热交换器sO进口的气体管道均采取保温措施可以减少l0—_20℃的温度损失.@整个转化系统应加强保温,以减少散热损失.2.接热面积及副线设计率设计的总换热面积为2699米(33.7米./吨?天按SOz浓度为6%考虑).在试生产中发现,转化升温时,二,三段进口的气体温度上升较慢(尤其是二段进口),往往要3—4个班才达到正常同时一段进口温度必须提高到440%]上才能使二,三段达到正常温度;当气浓波动时,二段进I:1温度很容易低于440~C,三段进口温度也低于420 ℃,四段温差就明显增大,开电炉也很难维持各段温度正常.笔者认为,造成上述现象主要原因有二:①冶炼烟气量和SO浓度波动较大:@副线调节较困难(在试生产时,已增加了两条巾400毫米的副线,情况已有好转)近年来的生产实践证明,现有的设计已能够确保转化系统在自热平衡下正常生产.至于I,Ⅱ换热器的面积多大更为合理,需作热平衡测定才能判定.副线的设计应易于调节,以适应sO浓度波动和加速炉气升温,最好以短路为主;冷激副线一般使用较少,但可视SOz浓度确定是否设置.5.系统阻力率设计的系统阻力较大,总阻力约(4--4.2)×l0'帕(不包括烟气收尘的设备阻力),罗茨风机进I:1负压达(2.1—2.25)×l0'帕阻力大的主孪原因是:①进净化工段前的烟气电除尘效果差.烟尘中的钳,锌微粒易堵塞泡沫塔的第一,二层塔板.②2文氏管喉管速度大(80—85米/秒).为了降低系统阻力,应采取如下插施:①加强电除尘器管理,提高收尘效果.②适当增大泡沫塔的第一层塔扳开孔直径.③将2文氏管改为阅冷器加电昧雾器,这样既可以保证系统降温,又可除去部分挥发性的金属烟尘,起净化指标把关作用j 但投资稍高.估计lO年内可以回收投资. 五,对转化流程的看法针对冶炼烟气sO低,波动太,开停车频繁,经常调节副线等特点.笔者从国内几家中,小型锌冶炼厂两转两吸铺酸的实践来看,认为(3+1)转化流程用于冶炼烟气制酸要达到自热平衡是可以的.但要有如下几个条件:1.SO!浓度稳定在6.5—7.5∞2.转化率分配及有关参数的选取要合理,调节副线应灵活.3.保温效果好.4.加强操作管理目前往往比较困难是制酸生产要绝对服从冶炼操作(炉子操作)构要求.这就容易造成烟气量和S0浓度的变化,因而寻求适应SO浓度变化的转化流程显得尤为重要. 笔者认为,处理低浓度SO烟气,用鲁奇式(2+2)转化沆程加文丘里高湿吸收较为理想.此流程的关键是经热浓酸吸收后的一扶转化气,出文丘里时烟气温度仍达120℃,因而进二次转化的烟气温度比常规漉程高约5o ℃,这样可以减少二次转化所需的换热量.与常规流程比较,此流程所需自热平衡的SOt浓度相应可以降低约l~2铀,比较适应于低浓度SO柏冶炼烟气采用.我院曾趣波兰某厂制酸车间考察过,此类流程掌握了一定的资料,并准备开发这一技术,争取早日用于国内的低浓度SO烟气制酸生产.。
还原焙烧车间课程设计
还原焙烧车间课程设计一、课程目标知识目标:1. 学生能理解焙烧车间的基本工作原理和焙烧过程的关键参数。
2. 学生能够掌握焙烧过程中涉及的化学反应,并解释其原理。
3. 学生能够了解焙烧车间的安全生产要求和环境保护措施。
技能目标:1. 学生能够运用焙烧原理,分析实际生产中可能出现的问题,并提出解决策略。
2. 学生能够运用所学知识,对焙烧车间的生产过程进行模拟操作,提高实际操作能力。
3. 学生能够通过团队合作,完成焙烧车间案例分析,提高沟通协调能力。
情感态度价值观目标:1. 学生能够认识到焙烧技术在工业生产中的重要性,激发学习兴趣。
2. 学生能够树立安全生产意识,增强环境保护责任感。
3. 学生通过学习焙烧车间相关知识,培养严谨的科学态度和团队协作精神。
课程性质:本课程为实践性较强的课程,结合理论知识与实际生产,培养学生的实际操作能力。
学生特点:学生处于高年级阶段,具有一定的理论知识基础,对实践操作有较高的兴趣。
教学要求:注重理论知识与实践操作的结合,提高学生的实际操作能力,同时关注学生的情感态度价值观培养。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容本章节教学内容主要包括以下三个方面:1. 焙烧车间工作原理及关键参数- 焙烧过程的基本原理及目的- 焙烧过程中温度、时间、气氛等关键参数的控制- 教材章节:第三章第二节“焙烧过程及其参数控制”2. 焙烧过程中的化学反应及原理- 涉及焙烧过程的化学反应类型及实例- 化学反应原理在焙烧过程中的应用- 教材章节:第四章“焙烧过程中的化学反应”3. 焙烧车间的安全生产与环境保护- 焙烧车间的安全生产措施及注意事项- 焙烧过程中环境保护的方法和技术- 教材章节:第五章“焙烧车间的安全生产与环境保护”教学进度安排:第一课时:焙烧车间工作原理及关键参数第二课时:焙烧过程中的化学反应及原理第三课时:焙烧车间的安全生产与环境保护教学内容组织遵循科学性和系统性原则,注重理论与实践相结合,提高学生对焙烧车间知识的掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设计任务设计一个年产10000吨电锌厂焙烧车间(初步设计)1.1、原始数据电锌年产量:10000吨锌精矿的化学成分(%)1.2、技术条件选择沸腾层高度:1.5m左右空气过剩系数:1.25沸腾层温度:850~900C炉顶温度:820~870炉顶负压:-10~30Pa直线速度:0.5~0.6m/s出炉烟气量、温度:9001.3、技术经济指标年处理锌精矿:1.3万吨/年年工作日:300天沸腾炉炉床面积:28m2沸腾炉炉床能力:5.2t/(m2d)焙烧矿产出率(包括烟尘和焙砂):88%(占锌精矿的)烟尘含锌量:54.89%焙砂含锌量:56.91%焙烧料含锌量:48%脱硫率:93.6%焙烧锌直收率:52%冶炼总回收率:95%出炉烟尘含量:35%(占焙烧矿的)量:9365%(体积百分数)出炉烟气SO2烟尘含Ss量:1.73%焙砂含Ss量:0.4%2-量:2.14%烟尘含Sso42-量:1.10%焙砂含Sso42、原始资料2.1、锌矿的分布及品位截至2002年,全世界查明锌储量为20000万吨,储量基础为45000万吨,现有储量和储量基础的静态保证年限为23年和51年。
锌储量和储量基础占锌资源量的10.52%和3.68%。
中国锌的储量和储量基础均居世界首位,已成为世界最大的铅锌资源国家。
根据统计资料,在我国铅锌储量中铅锌平均品位只有 4.66%,而根据目前铅锌价格水平和成本水平,只有铅锌(1:2.5)合计地质品位在7%~8%以上的地质储量才是能经济利用的储量,目前我国能经济利用的铅锌合计储量只有4513.86万吨,仅占总储量的 42.6%。
锌在自然界多以硫化物的状态存在,主要矿物是闪锌矿(ZnS),但这种硫化矿的形成过程中有FeS固溶体,成为铁闪锌矿(nZnSmFeS).含铁高的闪锌矿会使提取冶炼过程复杂化。
流化床的地表部位还常有一部打分被氧化的氧化矿,如菱锌矿(ZnCO3)、硅锌矿(Zn2SiO4)、导极矿(H2Zn2SiO5)等。
我国铅锌储量较多的省(区)主要是云南、广东、甘肃、四川、广西、内蒙古、湖南和青海等八省(区),其铅锌储量占全国总储量的80.7%。
大中型锌矿187处,探明资源总量7961万吨,储量1950万吨,其中大型锌矿区44处,探明资源总量5352万吨,储量 1553万吨,分别占全国的 58.1%和76.6%。
目前已探明的储量主要集中在云南、广东、内蒙古、江西、湖南和甘肃等六省。
各大区储量见下表:中国铅锌资源各大区分布比例(%)表2.2、精矿的组成成分铅锌矿的开采分露天开采和地下开采两种。
由于金属品位不高,铅锌共生,并含有大量的脉石和其他杂质金属,矿石需先经过选矿。
通过采用浮选法优先选出锌精矿,副产铅精矿和硫精矿。
我国某些大型企业铅锌矿产出的锌精矿成分实例如下表。
硫化锌精矿是生产锌的主要原料,成分一般为:锌45%~46%,铁5%~15%,硫的含量变化不大,为30%~33%。
可见,锌精矿的主要组分为Zn,Fe和S,三者占总重的90%左右。
硫化锌精矿是生产锌的主要原料,成分一般为:Zn45~60%,Fe5~15%,S30~33%,浮选精矿粒度较细,90%为0.07mm,堆密度1.7~2.0g/cm3。
锌精矿化学成分锌精矿成分实例(%)表硫化锌精矿的粒度细小,95%以上小于40um,堆密度为1.7~2g/cm3.在选用精矿氧化焙烧脱硫设备时,应当充分利用精矿粒度小、表面积大、活性高、硫化物本身也是一种“燃料”的特点,使硫化锌能迅速氧化成氧化锌,又能充分利用精矿的自身的能量。
2.3、锌精矿的物理及化学性质锌精矿一般是由铅锌矿或含锌矿石经破碎、球磨、泡沫浮选等工艺而生产出的达到国家标准的含锌量较高的矿石。
精矿在空气的氧化开始是在颗粒的表面进行的。
当精矿粒度较小时,会有更多的气固接触,单位面积内反应的硫化锌就会增加。
但随着反应的进行,粒子表面形成一层坚硬的氧化锌壳,于是气流中的氧化分子穿过氧化锌层才能到达反应界面,增加了氧气的扩散阻力,从而减慢了硫化锌例子中心部分的氧化程度,所以粒度较小的精矿有利于扩散过程,保证硫化锌氧化得更完全。
矿物物相组成:其物相包括:ZnS、CdS、PbS、CCuFeS2、FeS2、Fe7S8、CaCO3、MgCO3、SiO2其他等。
2.4、锌的用途(1). 钢材的镀锌方面,起防腐作用。
(2). 优良的合金,如做装饰品的铜锌合金(黄铜),Cu-Sn-Zn形成的青铜,作为耐磨合金的Cu-Sn-Pb-Zn合金。
(3). 锌可以制造用于航天仪表上的Ag-Zn电池。
(4). 利用Zn熔点低的特点,还可浇铸精密铸件。
(5). 锌在冶金工业中作为还原剂,化学工业中作为制造颜料用的原材料。
2.5、结构设计的注意点(1)、为便于操作,炉篦深度不宜超过2mm;沿炉篦宽度1-1.5m设一个炉门。
(2)、炉膛高度以易于操作为原则。
(3)、炉膛长宽比宜选用3:1。
(4)、炉膛应成断面放大式,与垂直面成22°。
(5)、炉膛内最边壁的风帽与炉内壁距离为20-30mm。
(6)、筑砌内、外层耐火砖、红砖时砖缝要错开,且之间要有搭接砖。
(7)、外层砖筑砌完后,外圈要用钢架拉起来,以增加其钢性、整体牢固性。
(8)、当用煤量大于180kg/h时,加煤应采用机械加煤、出渣。
(9)、合理、合适的挡火墙高度有利于控制进入烘干机的热气体温度,避免烧坏烘干机筒体前端。
(10)、穿过沸腾炉的喂料管,要外敷耐热混凝土或选用耐高温的耐热不锈钢,并做好之间的密封。
(11)、沸腾炉出气口附近要装设测温热电偶,以利于控制出气烟气温度。
3.、锌沸腾炉焙烧工艺流程3.1、火法炼锌工艺流程火法炼锌工艺流程图火法炼锌的基本原理就是将氧化锌在高温下用碳质还原,并利用锌沸点低的特点,使锌以蒸气挥发,然后冷凝为液体锌。
以竖缺罐炼锌为例,其原则工艺流程如上图。
3.2、湿法炼锌工艺流程湿法炼锌主要有焙烧、浸出(见浸取)、浸出液净化和电积等工序。
锌精矿焙烧后用电解废液进行中性浸出,使大部分氧化锌溶解,得到的矿浆分离出上清液和底流矿浆。
上清液净化后电积产出金属锌,熔铸成锭。
底流矿浆进行酸性浸出以溶解残余的氧化锌,酸性浸出液返回到中性浸出;含锌约20%的酸性浸出渣,须进一步处理,传统方法采用回转窑挥发,回收其中的锌、铅和湿法炼锌工艺流程部分稀散金属焙烧使精矿中的硫化锌转变为可溶于稀硫酸的氧化锌,即酸溶锌。
湿法炼锌是第一次世界大战期间开始应用的。
其本质是用稀硫酸(即废电解液)浸出焙烧矿中的锌,锌进入溶液后再以电解法从溶液中沉积出来。
湿法炼锌可直接得到很纯的锌,不象火法蒸馏炼锌还需精炼。
除此之外,操作所需劳动力较少,劳动条件也较好,只是电能消耗大。
3.3、沸腾炉焙烧工艺流程高温氧化流态化焙烧工艺流程图备料工序送来的混合锌精矿送入炉前仓,再由仓下调速胶带给料机、定量给料机,计量后由分配圆盘分别加到两台抛料机上,将混合精矿抛入焙烧炉内。
焙烧炉产出的焙砂经两台流态化冷却器和高效圆筒冷却机进一步冷却至150℃左右。
冷却后的焙砂经埋刮板运输机送到球磨机室进行球磨,磨细后的焙烧矿与烟尘混合用汽化喷射泵送制液车间浸出制液。
沸腾焙烧炉产出的烟气经余热锅炉回收烟气余热后,经两段旋涡收尘器、电收尘器收尘后由排烟机送制酸系统。
火法炼锌和湿法炼锌的第一步冶金过程就是焙烧。
其中火法炼锌厂的焙烧是纯粹的氧化焙烧,湿法炼锌厂进行的也是氧化焙烧,但焙烧时要保留少量的硫酸盐,以补偿浸出和电解过程中损失的硫酸。
同时希望尽可能少生成铁酸锌。
在实际的锌精矿焙烧过程中,就是通过控制焙烧温度和气相组成来控制焙烧产物中锌的存在形态。
生产中通过控制供风量(空气过剩系数)来调节气相组成。
火法炼锌的焙烧温度一般控制在1273K 以上,有的达到1340~1370K 。
空气过剩系数为1.05~1.10。
湿法炼锌的焙烧温度一般控制在1143~1193K ,有的达到1293K 。
空气过剩系数为1.20~1.30。
3.4、沸腾炉焙烧原理3.4.1、锌精矿焙烧反应一般规律流态化焙烧的理论基础是固体流态化,当气体通过固体料层的速度不同时,可将料层变化分为三种状态:即固定床、膨胀床及流态化床。
锌精矿沸腾焙烧就是利用具有一定气流速度的空气自上而下通过炉内矿层,使固体颗粒被吹动,相互分离而呈悬浮状态,达到固体颗粒(锌精矿)与气体氧化剂(空气)的充分接触,以利化学反应的进行。
主要化学反应为:1300K当焙烧温度一定时,焙烧过程中锌的存在形态取决于p SO2和p O2。
如图中A 点和B 点。
当气相组成不变,改变焙烧温度时,也可改变焙烧产物中锌存在的形态。
如图中红线所示,当温度升高时,ZnO 区域扩2ZnS+3O2=2ZnO+2SO2 (1)ZnS+2O2=ZnSO4 (2)ZnO+SO2+1/2O2=ZnSO4 (3)3ZnSO4+ZnS=4ZnO+4SO2 (4)最新的理论认为硫酸锌的生成实际上要经历一个生成碱式硫酸锌的过程:3ZnS+11/2O2=ZnO·2ZnSO4+SO2 (5)ZnO·2ZnSO4+SO2+1/2O2=2ZnSO4 (6)3.4.2、锌精矿焙烧动力学过程及机理金属硫化物的氧化反应是一个气、固相的多相反应过程,过程很复杂。
反应分成以下几步骤:(1)氧分子经扩散到达硫化物表面;(2)氧分子在硫化物表面被吸收,并分解成为活性氧原子;(3)氧原子向硫化物晶格中扩散,与金属离子和硫阴离子结合生成金属氧化物和吸附态的SO2;(4)SO2分子从固体表面解吸扩散到气相中。
3.4.3、传热原理流态化床的热传递可分为三种形式,即固体与气体间、流态化床内各部分之间、流态化床与管壁之间的热传递。
传热方式主要是对流。
由于流态化床内固体与气体之间接触多,有效传热面积大,故总的传热效率比固定床大。
由于流态化床内固体颗粒快速循环以及气流使床层激烈搅动,因而流态化床内各部分的温度几乎一致,就是在大量放热反应的焙烧过程中,床层内积分的温度仍能保持均匀一致,这对焙烧过程是非常有利的条件。
在生产实践中可以控制床层内温度差在±10K波动。
3.5、硫酸化焙烧当进行硫酸化焙烧时,进行下列反应:ZnSO4 = ZnO + SO3ZnO·2ZnSO4 = 3ZnO + 2SO3SO2 + 1/2O2 = SO3在实际焙烧过程中, pT在1013.25~2026.50Pa范围内,此时与温度关系如图所示。
总压曲线pT与ZnSO4和ZnO·ZnSO4的分解曲线相交于A、B和A`、B`。
当温度低于A、A`点所对应的温度时,ZnSO4稳定存在,当温度高于B、B`点所对应的温度时,ZnO稳定存在,当温度介于两者之间时,ZnO·ZnSO4稳定存在。