实际问题与一元一次方程练习题
人教版七年级上册数学3 4实际问题与一元一次方程(电费水费问题)同步练习(含简单答案)
①若在非节假日,应付票款___________元;
②若在节假日,应付票款___________元.
(2)阳光旅行社于今年5月1日(节假日)组织 团,5月10日(非节假日)组织 团到该景区旅游,两次共付门票款1840元,已知 、 两个团游客共计50人,问 、 两个团各有游客多少人?
(1)若某用户4月份用水20立方米,交水费46元,求 的值;
(2)若该用户7月份交水费71元,请问其7月份用水多少立方米?
18.西安某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票,超过10人的团队,其中10人仍按原价售票,超过10人部分的游客打8折购票.
19.某市城市居民用电收费方式有以下两种:
甲、普通电价:全天0.53元/度;
乙、峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.
(1)小明家估计七月份总用电量为200度,其中峰时电量为50度,则小明家应选择哪种方式付电费比较合算?
(2)小明家八月份总用电量仍为200度,用峰谷电价付费方式比用普通电价付费方式省了14元,求八月份的峰时电量为多少度?
人教版七年级上册数学3.4实际问题与一元一次方程(电费水费问题)同步练习
一、单选题
1.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费 元;超过5吨,超过部分每吨加收3元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于 的方程正确的是()
A. B.
C. D.
2.某城市按以下规定收取每月的煤气费,用气不超过60立方米,按每立方0.8元收;如果超过60立方米,超过部分按每立方米1.2元收,已知小明家某月共缴纳煤气费72元,那么他家这个月共用()立方米的煤气?
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案一、选择题1.某电冰箱的进价为1530元,按商品标价的九折出售时,利润率为15%,若设该电冰箱的标价为x元,则可列方程为()A.90%x−1530=15%×1530B.90%x−1530=(1+15%)xC.1530×90%=15%x D.x−1530×90%=15%x2.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.参与种树的有()人.A.8 B.7 C.6 D.53.某车间24名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个,现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:3配套,为求x列出的方程是()A.3×4(24﹣x)=6x B.4x=3×6(24﹣x)C.3×6x=4(24﹣x)D.3×4x=6(24﹣x)4.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队进行了14场比赛,共得19分,若其中只负5场,那么这个队胜了()A.3场B.4场C.5场D.6场5.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A.54−x=20%×108 B.54−x=20%×(108+x)C.54+x=20%×162 D.108−x=20%(54+x)7.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二、填空题9.一项工程甲单独做要20 h,乙单独做要12 h.现在先由甲单独做5 h,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x h,则所列的方程为10.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为°.11.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份,经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变,这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是12.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,所有工人全部参与生产,则生产螺钉的工人有人.13.某超市推出如下优惠方案:⑴一次性购物不超过100元不享受优惠;⑵一次性购物超过100元但不超过300元一律9折;⑶一次性购物超过300元一律8折。
人教版七年级数学上册 3-4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)【含答案】
人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入33⨯的方格内,使得处于同一横行、同一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母m 所表示的数是( )A .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队,如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =13(72﹣x ) B .13(96﹣x )=72﹣x C .13(96+x )=72﹣x D .13×96+x =72﹣x 7.课外兴趣小组的女生人数占全组人数的13,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x 人,则下列方程正确的是( )A .1132x x =B .11+632x x =C .11+632x x =D .11(6)23x += 8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .()4x 12x 8-=+ B .()4x 12x 8+=- C .x x 8142++= D .x x 8142--= 9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是( )A .8x+3=7x -4B .8x -3=7x+4C .8(x -3)=7(x+4)D .17x+4=18x -3 二、填空题11.已知m ,n 都是质数,若关于x 的方程597mx n +=的解是3,则4m n -=__________..12.小明分发一堆水果分给好朋友,第1个朋友取走一半加1个,第2个朋友取走剩下的一半加1个,第3个朋友再取走剩下的一半加1个,……,直到第7个朋友再取走剩下的一半加1个时,恰好给小明留下了1个水果,则这堆水果一共有_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )=37n n '+=315537852=3737+; (1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中90100m <<,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题: (1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离; (4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位) (2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =2-或-7或3或8.22.(1)0.5;(2)850.5x +;(3)余下的数学课本高出地面的距离为() 980.5a -cm ;(4)23或2723.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。
解一元一次方程的实际问题50道练习题
解一元一次方程的实际问题50道练习题
以下是一些解一元一次方程实际问题的练题,希望能够帮助你
巩固对该知识点的理解。
1. 一个小酒店每晚每间客房的租金是100元,如果住满10晚,可以享受折扣,每晚租金减少10元,请问住满10晚的总费用是多
少元?
2. 小明去超市购买苹果,每斤苹果的价格是5元。
小明购买了
2斤苹果,总共花费了多少元?
3. 甲乙两个人一起工作,他们每小时一共可以产生70件产品。
如果甲每小时可以生产30件产品,乙每小时可以生产多少件产品?
4. 一辆汽车的每小时油耗是10升,如果行驶了200公里,需
要多少升油?
5. 小华打工每小时可以获得8元报酬。
他工作了5小时,总共
获得了多少报酬?
6. 一个三角形的底边长是10厘米,高是5厘米,计算其面积。
7. 甲乙两人一起修筑一段铁路,他们共用了20天完成。
如果
甲一人独立工作需要30天,乙一人独立工作需要多少天?
8. 一个矩形花坛的长是10米,宽是5米,计算其周长。
9. 一个长方体的长、宽和高之比是2:3:4,它的体积是48立方
厘米,求其长、宽和高的值。
10. 甲乙两个人一起旅行,他们每小时的速度之和是45公里。
如果甲的速度是20公里每小时,乙的速度是多少公里每小时?
...... (依此类推)
希望以上练习题能够帮助你熟练掌握解一元一次方程的实际应用。
练习题的答案可以通过代入方程中进行计算得出。
人教版七年级数学上册《实际问题与一元一次方程(销售问题)》练习题-附带有答案
人教版七年级数学上册《实际问题与一元一次方程(销售问题)》练习题-附带有答案学校: 班级: 姓名: 考号:一、单选题1.一商店在某一时间以同样的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,则卖这两件衣服总的盈亏情况是( )A .盈利B .亏损C .不盈不亏D .不确定2.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为( )A .230元B .250元C .270元D .300元3.一件夹克衫先按成本提高50%标价,再以8折出售,结果获利28元.若这件夹克衫的成本为x 元,根据题意,可得到的方程是( ) A .()150%80%28x x +=-B .()150%80%28x x +=+C .()150%80%28x x +=-D .()150%80%28x x +=+4.商店元旦促销,某款衣服打9折销售,每件比标价少45元,仍获利55元,下列说法:①衣服标价为每件450元;①衣服促销单价为405元;①衣服的进价为每件350元;①不打折时商店的利润为每件100元,正确的共有( )A .4个B .3个C .2个D .1个5.某种商品的进价为100元,由于该商品积压,商店准备按标价的8折销售,可保证利润20元,则标价为( )A .116元B .145元C .150元D .160元6.两件商品都卖84元,其中一件盈利40%,另一件亏损20%,则两件商品卖出后( )A .亏本3元B .盈利3元C .盈利6.8元D .不赢不亏7.郑州市某服装电商2022年12月份打折促销卖出了336件羽绒服,比11月份多卖出20%,设该服装电商11月份卖出x 件羽绒服,根据题意,下列方程正确的是( )A .20%336x =B .(120%)336x -=C .120%336x +=D .(120%)336x +=8.一件商品,按标价八折销售盈利20元,按标价六折销售亏损10元,求标价多少元?小明同学在解此题的时候,设标价为x 元,列出如下方程:0.8200.610x x -=+.小明同学列此方程的依据是( ) A .商品的利润不变B .商品的售价不变C .商品的成本不变D .商品的销售量不变二、填空题 9.某超市的某品牌水杯原价为每个x 元,国庆节期间搞促销活动,第一次降价每个减5元,售卖一天后销量不佳,第二天在第一天降价基础上每个打“八折”出售,打折后的水杯每个售价是60元.根据以上信息,水杯原价为每个 元.10.某家具的标价是132元,若以8折售出,仍可获利10%,则该家具的进价是11.某商场元旦开展促销活动.规定:购物不超过200元不优惠;超过200元,而不超过500元的全部九折优惠;超过500元的,其中的500元按九折优惠,超过500元部分按八折优惠.某人两次购物分别付了134元和466元,若将两次购物合为一次购物,一共能节省 元.12.某校学生在辅导员老师的带领下,观看全国足球锦标赛,由于天气炎热辅导员安排生活委员为每位同学买一瓶矿泉水,生活委员发现如果买2.5元一瓶则少带10元钱,如果买2元一瓶,则多出7.5元钱,若设生活委员带去x 元,则列出关于x 方程为 .13.陈老师做市场调研发现,某商场按标价销售某种工艺品时,每件可获利40元,按标价的八五折销售该工艺品12件与将标价降低25元销售该工艺品8件所获利润相等.该工艺品每件的进价是 元. 14.商店进了一批商品,提高进价的30%后标价,又以8折卖出,结果仍获利200元,这种商品的进价为 元.15.“六一”期间某游乐场门票八五折优惠,某校“六一”期间购买了40张这个游乐场门票供学生去游玩,比原价节省了240元,每张门票的原价是 元.16.王老师用180元买了两种笔,共35支.钢笔每支8元钱,圆珠笔每支3元钱,原来他买了 支钢笔, 支圆珠笔.三、解答题的2倍,请问A 款净水器运来多少台?18.为了节能减排,赵玉家购买了某种品牌的节能灯,已知1只B 型节能灯比1只A 型节能灯贵3元,赵玉购买了3只A型节能灯和4只B型节能灯,一共花了54元,1只A型节能灯和1只B型节能灯的售价分别是多少元?19.小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一类服装.为了缓解资金压力,小张决定将这类服装打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装的标价和进价各是多少元?(2)该服装改款后,小张又以同样的进价进货500件,若标价不变,按标价销售了300件后,剩下的进行大甩卖,为了尽快减少库存,又要保证盈利2万元,请你告诉小张最低能打几折?20.某商场用2730元购进甲、乙两种商品共60件,这两种商品的进价、标价如表所示:价格\类型甲乙进价(元/件)3565标价(元/件)50100(1)这两种商品各购进多少件?(2)若甲种商品按标价的9折出售,乙种商品按标价的8.5折出售,且在运输过程中有2件甲种、1件乙种商品不慎损坏,不能进行销售,请问这批商品全部售出后,该商场共获利多少元?参考答案1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】C6.【答案】B7.【答案】D。
人教版七年级数学上 册 3.4 实际问题与一元一次方程(含答案)
3.4 实际问题与一元一次方程1.王刚是某校的篮球明星,在一场篮球比赛中,他一人得21分,如果他投进的2分球比3分球多3个,那么他一共投进的2分球有( ) A.2个 B.3个 C.6个 D.7个2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x)=800xB .1000(13-x)=800xC .1000(26-x)=2×800xD .1000(26-x)=800x 3.用铁皮做罐头盒,每张铁皮可制作15个盒身或42个盒底,一个盒身与两个盒底配成一套罐头盒.现有108张铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x 张铁皮做盒身,根据题意可列方程( )A .2×15(108-x)=42xB .15x =2×42(108-x)C .15(108-x)=2×42x D.2×15x=42(108-x)4.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦 为 只,树为 棵. 5.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( ) A .10天 B .20天 C .30天 D .25天6.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程( ) A .60-x =20%(120+x) B .60+x =20%×120 C .180-x =20%(60+x) D .60-x =20%×1207.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场.8.整理一批数据,由一人做需80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的34,应该怎样安排参与整理数据的具体人数?9. 打扫本班清洁区域卫生,1个人打扫需要30 min 完成,生活委员计划由一部分人先打扫5 min ,然后增加2人与他们一起打扫3 min 完成打扫任务.假设同学们打扫清洁区域卫生的效率相同,那么生活委员应先安排多少人打扫?10.现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元.已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款.某单位办公室需购茶瓶4只,茶杯若干只(不少于4只).(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买,为什么?(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?11.某工厂现有15 m3木料,准备制作圆桌或方桌(用部分木料制作桌面,其余木料制作桌腿).(1)已知一张圆桌由一个桌面和一条桌腿组成,如果1 m3木料可制作40个桌面或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米.(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.①如果1 m3木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3 m3木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?12.某公司新建办公楼需要装修,若由甲工程队单独完成需要18周,由乙工程队单独完成需要12周.现在招标的结果是由甲工程队先做3周,再由甲、乙两队合做,共需装修费40000元.若按两队完成的工作量支付装修费,该如何分配?13.某市为节约用水,制定了如下标准:每月用水量不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A.20元 B.24元 C.30元 D.36元14.北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如图所示.比如6口以下的家庭年天然气用量在第二档时,其中350立方米按2.28元/米3收费,超过350立方米的部分按2.5元/米3收费.小冬一家有5口人,他想帮父母计算一下实行阶梯价格收费后,家里天然气费的支出情况.(1)如果他家2017年全年使用300立方米天然气,需要交天然气费________元;如果他家2017年全年使用500立方米天然气,需要交天然气费________元.(2)如果他家2017年需要交1563元天然气费,那么他家2017年用了多少立方米天然气?15.某牛奶加工厂现有鲜奶8吨,若直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力如下:制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批鲜奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?答案1. C2. C3.D4. 20 55. D6.A7. 解设球队赢了x场,则输了(16-x)场.由题意,得2x+(16-x)×1=28,解得x=12,答:球队赢了12场,输了4场.8.解:设开始安排x人做.依题意,得2×180x+8×180(x+5)=34.解得x=2.答:应该先安排2人做2小时后,再增加5人做8小时.9.解:设生活委员应先安排x人打扫.根据题意,得130x×5+130×3(x+2)=1,解得x=3.答:生活委员应先安排3人打扫.10. 解(1)当购买40只茶杯时,则甲商店需付:4×20+5(40-4)=260(元). 则乙商店需付:(4×20+5×40)×92%=257.6(元).因此应去乙商店买.(2)设购买茶杯x 只,由题意列方程,得4×20+(x -4)×5=(4×20+5x)×92%, 即5x+60=73.6+4.6x, 解得x=34.所以当购买茶杯34只时,两种优惠方法的效果是一样的.11. 解:(1)设用x m 3木料制作桌面,则用(15-x)m 3木料制作桌腿恰好配套. 由题意,得40x =20(15-x).解得x =5.答:制作桌面的木料为5 m 3.(2)①设用a m 3木料制作桌面,则用(15-a)m 3木料制作桌腿恰好配套.由题意,得4×50a=300(15-a).解得a =9.所以制作桌腿的木料为15-9=6(m 3).答:用9 m 3木料制作桌面,用6 m 3木料制作桌腿恰好配套.②设用y m 3木料制作桌面,则用(15-y) m 3木料制作桌腿能制作尽可能多的桌子.由题意,得4×20×y 3=320×15-y3.解得y =12.所以制作桌腿的木料为15-12=3(m 3).答:用12 m 3木料制作桌面,用3 m 3木料制作桌腿能制作尽可能多的桌子. 12.解:设甲工程队先做3周后还需x 周完成.由题意,得118(x +3)+112x =1,解得x =6.即甲工程队做了9周,乙工程队做了6周,甲工程队的工作量为118×9=12,乙工程队的工作量为112×6=12. 因为两队完成的工作量相同,所以装修费40000元应平分,两队各得20000元.13.C14. 解:(1)如果他家2017年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);如果他家2017年全年使用500立方米天然气,那么需要交天然气费 2.28×350+2.5×(500-350)=798+375=1173(元). 故答案为684,1173.(2)设小冬家2017年用了x 立方米天然气.因为1563>1173,所以小冬家2017年所用天然气超过了500立方米. 根据题意,得2.28×350+2.5×(500-350)+3.9(x -500)=1563, 解得x =600.答:小冬家2017年用了600立方米天然气.15.解:选择方案二获利最多.理由:方案一:最多生产4吨奶片,其余的鲜奶直接销售,其利润为4×2000+(8-4)×500=10000(元);方案二:设x 天生产奶片,(4-x)天生产酸奶.根据题意,得x +3(4-x)=8,解得x =2,则4-x =2,所以2天生产酸奶加工的鲜奶是2×3=6(吨),则方案二的利润为2×2000+6×1200=4000+7200=11200(元). 因为11200>10000,所以选择方案二获利较多。
人教版 七年级数学上册 3.4 实际问题与一元一次方程 同步练习(含答案)
人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习一、选择题1. 小明所在城市的“阶梯水价”收费办法如下:每户每月用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元.小明家今年5月份用水9吨,共交水费44元,根据题意列出关于x的方程,正确的是()A.5x+4(x+2)=44B.5x+4(x-2)=44C.9(x+2)=44D.9(x+2)-4×2=442. 学校组织知识竞赛,共设20道选择题,各题分值相同.下表记录了3名参赛学生的得分情况,若参赛学生小亮只答对了16道选择题,则小亮的得分是()A.80分B.76分C.75分D.70分3. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是()A.350元B.400元C.450元D.500元4. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km,都需付5元车费),超过3 km,每增加1 km,加收1.2元(不足1 km的按1 km收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是()A.8 km B.9 kmC.6 km D.10 km5. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米6. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -377. 小明前年用一笔钱买了一个某银行的两年期的理财产品,该理财产品的年回报率为4.5%,银行告知小明今年他将得到利息288元,则小明前年买理财产品的钱数为( ) A .6400元 B .3200元 C .2560元D .1600元8. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人9. 为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可打8折.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款() A.140元B.150元C.160元D.200元10. 《算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少.”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字.已知《孟子》一书共有34685个字,设他第一天读x个字,则下面所列方程正确的是()A.x+2x+4x=34685 B.x+2x+3x=34685C.x+2x+2x=34685 D.x+12x+14x=34685二、填空题11. 某商场一件商品按标价的九折销售仍获利20%,已知商品的标价为28元,则商品的进价是元.12. 甲、乙两列火车分别从相距660千米的A,B两地同时出发,相向而行,2小时后相遇,其中甲车的速度是乙车速度的1.2倍,则甲车的速度是________千米/时.13. 一只蜘蛛有8条腿,一只蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,那么蜘蛛有________只.14. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.15. 一项工作,甲单独做4天完成,乙单独做8天完成.现甲先做1天,然后和乙共同完成余下的工作,则甲一共做了________天.16. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A地区的物资比发往B地区的物资的1.5倍少1000件,则发往A地区的生活物资为________件.三、解答题17. 某企业为严重缺水的甲、乙两所学校捐赠矿泉水共2000件.已知捐给甲校的矿泉水件数比捐给乙校的矿泉水件数的2倍少400件.求该企业捐给甲、乙两所学校各多少件矿泉水.18. 一块金与银的合金重250克,放在水中减轻了16克,已知金在水中质量减轻119,银在水中质量减轻110.求这块合金中含金、银各多少克.19. 某班进行期中考试后,班长安排小明购买奖品准备奖励成绩优异的学生.如图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本;(2)请你解释:小明为什么不可能找回68元?20. 如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.21. 为庆祝六一儿童节,某市中小学统一组织文艺会演.甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套以上(含91套)每套服装的价格60元50元40元如果两所学校分别单独购买服装,那么一共应付5000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装可以节省多少钱?(2)甲、乙两所学校各有多少名学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法、绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装的方案.人教版七年级数学上册 3.4 实际问题与一元一次方程同步练习-答案一、选择题1. 【答案】A[解析] 由题意可得5x+(9-5)(x+2)=44,即5x+4(x+2)=44.故选A.2. 【答案】B[解析] 根据表格数据,A学生答对20道题得100分,可知答对一题得100÷20=5(分).设答错或不答一道题得x分,由B学生答对18道题,答错2道题得88分,可得18×5+2x=88,解得x=-1,故答错或不答一题扣1分.小亮答对16道题,则有16×5+(-1)×(20-16)=76(分).故选B.3. 【答案】B[解析] 本题相等关系是:利润率=20%,根据相等关系建立方程可得解.设这批服装每件的标价为x 元,得0.6x -200200=20%,解得x =400,故选B.4. 【答案】A[解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.5. 【答案】A[解析] 根据题意和图形可以列出相应的方程,从而可以解答本题.由题意可得5x +2×4=a ,解得x =a -85.故选A.6. 【答案】B7. 【答案】B[解析] 设小明前年买理财产品的钱数是x 元.由题意得4.5%x×2=288,解得x =3200.即小明前年买理财产品的钱数为3200元.8. 【答案】A[解析] 设大和尚有x 人,则小和尚有(100-x)人,根据相等关系:大和尚吃的馒头个数+小和尚吃的馒头个数=100,可列方程为:3x +100-x3=100.解方程可得x =25.所以大和尚25人,小和尚75人.故选A.9. 【答案】B[解析] 此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解. 设小慧同学不买卡直接购书需付款x 元, 则有20+0.8x =x -10, 解得x =150,即小慧同学不买卡直接购书需付款150元.故选B.10. 【答案】A二、填空题11. 【答案】21 [解析]设该商品的进价为x 元,根据题意得:28×0.9-x=20%x ,解得x=21.12. 【答案】180 [解析] 根据相等关系:甲车的路程+乙车的路程=总路程列方程.设乙车的速度为x 千米/时,则甲车的速度为1.2x 千米/时.根据题意,得2·1.2x +2x =660,解方程,得x =150.150×1.2=180(千米/时).13. 【答案】6[解析] 设蜘蛛有x 只,则蜻蜓有2x 只,由题意,得8x +2x·6=120,解得x =6.14. 【答案】3500[解析] 设原计划学生捐赠图书x 册,则教师捐赠图书(5000-x)册.依题意得15%x +(5000-x)×20%=5825-5000,解得x =3500.15. 【答案】3[解析] 设乙做了x 天,则甲做了(x +1)天,根据题意,得x +14+x8=1, 解得x =2,x +1=3. 故甲一共做了3天.16. 【答案】3200[解析] 设发往A 地区的生活物资为x 件,则发往B 地区的物资为(6000-x)件.依题意可列方程x =1.5×(6000-x)-1000,解得x =3200.三、解答题17. 【答案】解:设该企业捐给乙校x 件矿泉水,则捐给甲校(2x -400)件矿泉水. 根据题意,得x +(2x -400)=2000. 解得x =800, 所以2000-x =1200.答:该企业捐给甲校1200件矿泉水,捐给乙校800件矿泉水.18. 【答案】解:设这块合金中含金x 克,则含银(250-x)克.根据题意,得119x +110(250-x)=16. 解得x =190.250-x =250-190=60.答:这块合金中含金190克,含银60克.19. 【答案】解:(1)设买了x 本单价为5元/本的笔记本,则买了(40-x)本单价为8元/本的笔记本,依题意,得5x +8(40-x)=300-68+13. 解得x =25.40-x =15.答:单价为5元/本和8元/本的笔记本分别买了25本和15本.(2)解法一:由(1)知应找回的钱款为300-5×25-8×15=55(元)≠68元,故不可能找回68元.解法二:设买了m 本单价为5元/本的笔记本,则买了(40-m)本单价为8元/本的笔记本.依题意,得5m +8(40-m)=300-68.解得m =883.因为m 是正整数,所以m =883不合题意,应舍去,故不可能找回68元.20. 【答案】解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒. (2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6; ②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18. 答:当A ,B 两点运动6秒或18秒时相距6个单位长度. (3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43.当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72.答:此时点B 表示的数为-72.21. 【答案】[解析] 首先要认真阅读题目弄清题意,运用方程求出甲、乙两校参加演出的学生数,然后根据数据进行单独购买、联合购买的计算,尤其是两校联合购买比实际人数多购买9套,但实际花费较小这一情形容易被忽视掉.解:(1)由题意,得5000-92×40=1320(元),所以两校联合起来购买服装比各自购买服装可以节省1320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.由题意知甲校的学生多于45人且少于90人,乙校的学生少于45人.依题意列方程,得50x+60(92-x)=5000,解得x=52,92-x=92-52=40.所以甲、乙两所学校分别有52名,40名学生准备参加演出.(3)由于甲校有10人不能参加演出,则甲校有42人参加演出.若两校各自购买服装,则需要(42+40)×60=4920(元).若两校联合购买服装,则需要50×(42+40)=4100(元).这样两校联合购买服装比各自购买可以节省4920-4100=820(元).但如果两校联合购买91套服装,只需40×91=3640(元),此时又比联合购买可节省4100-3640=460(元).因此,最省钱的购买服装的方案是两校联合购买91套服装.。
实际问题与一元一次方程(工程问题)训练
人教版七年级上册数学3.4实际问题与一元一次方程(工程问题)训练一、单选题1.整理一批图书,如果由一个人单独做要50小时完成.现先安排x人做4小时,随后增加7人与他们一起做了2小时,恰好完成整理工作.假设这些人的工作效率相同,根据题意,列方程正确的是()A.42(7)+15050x+=B.2(7)+15050x x+=C.42(7)+15050x x+=D.47+15050x x+=2.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额完成5个,问:规定时间是多少?设规定时间为x小时,则可列方程为()A.38x﹣15=42x+5B.38x+15=42x﹣5C.42x+38x=15+5D.42x﹣38x=15﹣53.修一条排水渠,甲队独做需10天,乙队独做需15天,现由两队合修,中途乙队被调走,余下的任务由甲队单独做,又修了5天后完成.在这个过程中,甲、乙两队合修了()A.2天B.3天C.4天D.5天4.某礼品制造工厂接受一批玩具的订货任务,按计划天数生产,如果每天生产20 个玩具,则比订货任务少100 个;如果每天生产23 个玩具,则可以超过订货任务20 个,请求出这批玩具的订货任务是多少个,原计划几天完成任务.A.40,800B.40,900C.50,800D.50,9005.小玲和小明值日打扫教室卫生,小玲单独打扫雪20min完成,小明单独打扫雪16min 完成.因小明要将数学作业本交到老师办公室推迟一会儿,故先由小玲单独打扫4min,余下的再由两人一起完成,则两人一起打扫完教师卫生需要多长时间?设两人一起打扫完教室卫生需要x min,则根据题意可列方程()A.120(x+4)+116x=1B.120x+116(x+4)=1C.120(x﹣4)+116x=1D.120x+116(x﹣4)=16.整理一批图书,由一个人做要40小时完成,现在计划先由x人做4小时后,再增加2人和他们一起8小时,共完成这项工作的34,假设每个人的工作效率相同,则列方程正确的是()试卷第1页,共3页试卷第2页,共3页A .()82414040x x ++= B .()824340404x x ++= C .()82414040x x -+= D .()824340404x x -+=7.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放两个水龙头,灌满水池需( ) A .65小时B .56小时C .2小时D .3小时8.某工程甲独做8天完成,乙独做12天完成,现由乙先做3天,甲再参加合做.设完成此工程一 共用了x 天,则下列方程正确的是( ) A .3128x x++=1 B .3128x x -+=1 C .128x x +=1 D .33128x x +-+=1二、填空题9.一项工作甲单独做需要8天完成,乙单独做需要12天完成,两个人合做2天后,甲有事离去,剩下的由乙单独做,乙还需要____________天才能完成.10.某项工作甲单独做4天完成,乙单独做6天完成,若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x 天,乙工作的天数为_____,由此可列出方程_________.(写过程)11.一项工程甲单独做要20小时,乙单独做要12小时.现在先由甲单独做5小时,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x 小时,则所列的方程为_____________________.12.某工程甲单独完成需4天,乙单独完成需8天,现甲先工作1天,乙再加入合作,问甲、乙再合作几天才能完成这项工程.设甲、乙再合作x 天才能完成这项工程,则可..列一元一次方程.......__________. 13.一项工程,甲单独做10天完成,乙单独做15天完成.若两人合做x 天完成,则可得关于x 的方程为_____.14.某工程甲单独做要8天完成,乙单独做要6天完成,那么两人合作需要多少天才能完成?设两人合作x 天完成,由题意,可得方程________.15.一项工程,甲单独做需10小时完成,乙单独做需12小时完成;现在两人合作3小时后,由乙独做,若设乙队再用x 小时完成,则可列方程________ .16.某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____.三、解答题17.整理一批图书,由一个人做要40h完成,现计划由一部分人先做4h,然后增加2人与他们一起做8h,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?18.一项工程由甲工程队单独完成需要12天,由乙工程队单独完成需要16天,甲工程队单独施工5天后,为加快工程进度,又抽调乙工程队加入该工程施工,问还需多少天可以完成该工程?19.现有一工程打算让甲、乙两个工程队完成,甲队单独完成这项工程需要60天,乙队单独完成这项工程需90天;若由甲队先做10天,剩下的工程由甲、乙两队合作完成.(1)甲、乙两队合作多少天?(2)甲队施工一天需付工程款4万元,乙队施工一天需付工程款2.5万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?20.甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?试卷第3页,共3页答案第4页,共1页参考答案:1.C 2.B 3.B 4.B 5.A 6.B 7.A 8.B 9.710. x ﹣1, x+=1.11.512012x x -+= 12.13.11()11015x +=14.11186x ⎛⎫+= ⎪⎝⎭15.111+3+1101212x ()⨯= 16.30x +2520-x =1 17.应安排2人先做4h . 18.还需要4天可以完成该工程19.(1)30;(2)由甲乙两队全程合作完成该工程省钱. 20.(1)8天;(2)5天.。
人教版数学七年级上学期:实际问题与一元一次方程 练习
3.4 探实际问题与一元一次方程(一)快乐晋级1.一只签字笔进价0.8元,售价1元,销售这种笔的利润是______%.2.某工厂6月份的产值是200万元,7月份的产值比6月份减价了10%,该厂7月份的产值是________万元.3.某种商品的价格为a元,降价10%后又降价10%,销售一下子上升了,商场决定再提价20%,提价后这种商品的价格为( )A.a元B.1.08a元C.0.96a元D.0.972a元4.一城市现有42万人口,预计一年后城镇人口增加0.8%,农村人口增加1.1%, 这样全市人口将增加1%,求这个城市的现有城镇人口数和农村人口数.5.一年期定期储蓄年利率为2.25%,所得利息交纳20%的利息税,已知某储户的一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?拓广探索6.某城市2003年工农业总产值为126亿元,比2002年降低了10%,由于加大了改革力度,预计2004年的工农业总产值将比2003年增加10%,如果预计准确,2004年的工农业总产值能达到2002年的水平吗?7.据《新华月报》消息,巴西医生马廷恩经过10年研究后得出结论:卷入腐败行为的人容易得癌症和心血管病.如果将犯有贪污、受贿罪的580名官员与600 名廉洁官员进行比较,可发现:后者的健康人数比前者的健康人数多272人,两者患病( 包含致死)者共444人,试问:犯有贪污、受贿罪的官员的健康人数占580 名官员的百分之几?3.4 实际问题与一元一次方程(二)快乐晋级1.做完电学实验,某同学记录下电压V(伏特)与电流I(安培)之间的对应关系:I(安培) … 2 4 6 8 10 …V(伏特) …15 12 9 6 3 …如果电流I=5安培,那么电压V=( )伏特.A.10B.10.5C.11D.11.52.2004年中国足球甲级联赛规定每队胜一场得3分、平一场得1分、负一场得0分.武汉黄鹤楼队前14场保持不败,共得34分,该队共平了( )场A.3B.4C.5D.63.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: 1170 33D P+-=.(1)当单价为4元时,市场需求量是多少?(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?4.某商店积压了100件某种商品,为使这批货物尽快脱手, 该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第1次降价30%,第2 次又降价30%,第3次再降价30%,3次降价处理销售结果如下表:降价次数一二三销售件数10 40 一抢而光问:(1)第3次降价后的价格占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部倍完,哪一种方案更盈利?5.某商店对超过15000元的物品提供分期付款服务,顾客可以先付3000元, 以后每月付1500元,阮叔叔想用分期付款的形式购买价值19000元的电脑, 他需用多长时间才能付清全部贷款?拓广探索6.一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■( 此处因印刷原因看不清楚).文文做对了16道,但只得了74分,这是为什么?答案1.B2.B3.(1)5千件;(2)需求量减少了3千件4.(1)设原价为a元,2.5a( 1-30%)3/a=85.75%;(2)按原价的销售额=100a元;按新方案的销售额=10×2.5a(1- 30%)+40×2.5a(1-30%)2+50×2.5a(1-30%)3=109.375a元,所以按新方案销售更盈利.5.设阮叔叔需用x月的时间,3000+1500x=1900,x=2103,需用11个月的时间.6.设一题不做或做错得x分,16×5+(20-16)x=74,x=-4,所以一题不做或做错扣4分.答案1.252.1803.D4.设现有城镇人口为x万人,x(1+0.8%)+(42-x)(1+1.1%)=42(1+1%),x=14,42-x=28.5.设该储户存入x元,2.25%x(1-20%)=450,x=250006.设2002年工农业总产值为x亿元,x(1-10%)=126,x=140;126(1+10%)=138.6,不能达到2002年的水平7.设犯有贪污和受贿罪的官员的健康人数为x人,(580-x)+[600-(x+272)]=444,x=232,232÷580=46.4%3.4实际问题与一元一次方程(2)同步精练◆阶段性内容回顾1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.若干应用问题等量关系的规律(1)和、差、倍、分问题增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc3.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.4.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.5.行程问题基本量之间的关系路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.6.工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=17.储蓄问题(1)利润=每个期数内的利息本金×100%(2)利息=本金×利率×期数.◆阶段性巩固训练:列方程解应用题1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?答案:阶段性巩固练习1.解:设甲、乙一起做还需x小时才能完成工作.根据题意,得16×12+(16+14)x=1解这个方程,得x=11 5115=2小时12分 答:甲、乙一起做还需2小时12分才能完成工作. 2.解:设x 年后,兄的年龄是弟的年龄的2倍,则x 年后兄的年龄是15+x ,弟的年龄是9+x . 由题意,得2×(9+x )=15+x 18+2x=15+x ,2x-x=15-18 ∴x=-3答:3年前兄的年龄是弟的年龄的2倍.(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)3.解:设圆柱形水桶的高为x 毫米,依题意,得π ·(2002)2x=300×300×80 x ≈229.3答:圆柱形水桶的高约为229.3毫米.4.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x分. 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x - 解方程x+50=2x-50 得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米. 5.解:设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x 克和5x 克. 根据题意,得2x+3x+5x=50 解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克. 6.解:设这一天有x 名工人加工甲种零件,则这天加工甲种零件有5x 个,乙种零件有4(16-x )个. 根据题意,得16×5x+24×4(16-x )=1440 解得x=6答:这一天有6名工人加工甲种零件. 7.解:(1)由题意,得0.4a+(84-a )×0.40×70%=30.72 解得a=60(2)设九月份共用电x 千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.一元一次方程应用中的“定长”与“定量”在一元一次方程的应用中,经常遇到“定长”与“定量”问题。
实际问题与一元一次方程练习题
实际问题与一元一次方程练习题专题一:一元一次方程分配、调配、配套问题一、【配套问题】1、某车间22名工人生产螺母和螺钉,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?2、某工厂104名工人分别生产甲、乙两种产品,已知每个工人可生产甲种产品8个或乙种产品12个,3个甲种产品与2个乙种产品配成一套,问应分配多少工人生产甲种产品,多少工人生产乙种产品才能使生产的产品配套?3、一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?4、生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?5、XXX要生产某种学生服一批,已知每3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?16、某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装土壤18袋或每2人每小时可抬土壤14袋,如何放置大好人力,才能使装泥和抬泥密切配合,而正好清场洁净。
调配问题】2、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙队汽车数比甲队汽车数的2倍还多1辆,应从甲队调多少辆到乙车队?3、甲堆栈有煤200吨,乙堆栈有煤80吨,假如甲堆栈天天运出15吨,乙堆栈天天运进25吨,问多少天后两堆栈存煤相等?4、甲、乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
3.4实际问题与一元一次方程习题
工程问题一、某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,那么正好按期完工.问该工程的工期是几天?二、某班组天天需生产50个零件才能在规定的时刻内完成一批零件任务,事实上该班组天天比打算多生产了6个零件,结果比规定的时刻提早3天并逾额生产120个零件,则该班组要完成的零件任务为多少个?3、有一批零件加工任务甲独做40小时完成,已独做30小时完成,甲做了几小时还有任务,剩下的由乙单独完成,乙比甲多做2小时,求甲做了几小时。
4、水池有一注水管,单开5小时能够住满水池;还有一处水管,单开18小时能够把满池水放完.假设两管齐开,求注满水池所用的时刻。
五、9人14天完成了一件工作的53,且每一个人的工作效率相同,假设剩下的工作要在4天内完成,那么需要增加多少人?销售问题1、某超市为“开业三周年”举行了店庆活动,对A 、B 两种商品实行打折销售.已知购买5件A 商品和1件B 商品只需84元;购买6件A 商品和3件B 商品需用108元.求A 、B 两种商品的单价。
2、一件衣服先按本钱提高50%标价,再以8折(标价的80%)出售,结果获利28元.求这件衣服的本钱。
3、下表为衣饰与原价对账表.某日衣饰店举行大拍卖,外衣按原价打六折出售,衬衫和裤子按原价打八折出售,衣饰共卖出200件,共得24000元.求外衣、衬衫和裤子各卖出多少件。
4、某个体户进了40套服装,以高出进价40元的售价卖出了30套,后因换季,剩下的10套服装以原售价的六折售出,结果40套服装共收款4320元,问每套服装的进价是多少元?这位个体户是赚了仍是赔了?赚了或赔了多少元?5、两件商品都卖84元,其中一件亏损20%,另一件盈利40%,那么这两件商品卖出后是盈利仍是赔本?盈利或赔本多少元?竞赛积分问题一、学校举行排球赛,积分榜部份情形如下.(1)分析积分榜,平一场比负一场多得______分.(2)假设胜一场得3分,七(6)班也竞赛了6场,胜场是平场的一半且共积14分,那么七(6)班胜几场?二、一份试卷共有25道题,每道题都给出了4个答案,每道题选对得4分,不选或选错扣1分,甲同窗说他得了71分,乙同窗说他得了62分,丙同窗说他得了96分,你以为哪个同窗说的对?请说明理由.配套问题1、现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底正好配成一个完整的盒子,需要多少张铁皮做盒身,多少铁皮做盒底才能使加工出的盒身与盒底配套?2、某车间有27个工人,生产甲乙两种零件.每3个甲零件与2个乙零件配成一套,已知每一个工人天天能加工甲零件12个或乙零件16个,为使天天生产的两种零件配套,应如何分派工人的生产任务?3、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉,现有面粉4500kg,制作2种月饼应各用多少面粉,才能生产最多的月饼.4、某车间有27个工人,生产甲乙两种零件.每3个甲零件与2个乙零件配成一套,已知每一个工人天天能加工甲零件12个或乙零件16个,为使天天生产的两种零件配套,应如何分派工人的生产任务?5、.某军队派出一支有25人组织的小分队参加防汛抗洪斗争,假设每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使泥和抬泥紧密配合,而正好清场干净.分段收费问题1、某通信公司推出两种电话付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费0.10元.两种方式不足1分钟均按1分钟计算.(1)若是一个月通话x分钟,那么用甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)若是求一个月通话多少分钟时两种方式的费用相同,能够列出一个如何的方程?它是一元一次方程吗?二、某商场国庆节弄促销活动,购物不超过200元不给优惠,超过200元不足500元的优惠10%,超过500元的,其中500元按9折优惠,超过的部份按8折优惠,某人两次购物别离用了124元、466元.(1)假设这人于某次购物时付款198元,那么这次购物的物品实际价值是多少元?(2)这人两次购物其物品实际价值共是多少元?(3)在这次活动中他节省了多少钱?(4)假设这人将两次购物的钱合起来,一次购物时更节省仍是亏损?节省或亏损多少钱?请说明理由.3、某市供电公司分时电价执行分为平、谷两个时段,平段为8:00-22:00,谷段为22:00-第二天8:00,10小时;平段用电价钱在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份有效平段用电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元。
实际问题与一元一次方程练习题及答案
实际问题与一元一次方程练习题及答案1.某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?2.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套,现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?3.某车间有工人85人,平均每人每天可以加工大齿轮8个或小齿轮10个,又知1个大齿轮和三个小齿轮配为一套,问应如何安排劳力使生产的产品刚好成套?4.某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?5.一张方桌与四张椅子配成一套,如果5个工人每天能制11张椅子,每4个工人每天能制22张方桌,现有工人66人,应怎样合理分配生产椅子和桌子的工人才能使每天生产的方桌和椅子及时配套出厂?6.生产某种产品需经过两道工序,进行第一道工序时,每人每天可完成90件;进行第二道工序时,每人每天可完成120件。
今有14名工人分别参加这两道工序工作,问应如何安排人员,才能使每天生产的产品数量最多?7.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?8.某部队派出一支有25人组织的小分队参加防汛抗洪斗争,若每人每小时可装泥土18袋或每2人每小时可抬泥土14袋,如何安排好人力,才能使装泥和抬泥密切配合,而正好清场干净?9.某纺织厂有纺织工人300名,为增产创收,该纺织厂又增设了制衣车间,准备将这300名纺织工人合理分配到纺织车间和制衣车间。
现在知道工人每人每天平均能织布30米或制4件成衣,每件成衣用布1.5米,若使生产出的布匹刚好制成成衣,问应有多少人去生产成衣?10.有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷,同样时间内5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面。
七年级数学上册实际问题与一元一次方程练习题
七年级数学上册实际问题与一元一次方程练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.如图是一个数值转换机,如果输出的结果为﹣9,那么输入的数x 是_____.2.某数的3倍加上4等于10,设某数为x ,那么可列出方程为_____________.3.一个两位数的个位数字与十位数字之和为11,若这个两位数加上63,则所得新的两位数恰好成为个位数字与十位数字对调后组成的两位数,那么原来的两位数是_________.4.一个数与2的差的一半等于这个数的三分之一与1的和,则这个数是_______.5.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,已知文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,为了计算该网站文创笔记本与珐琅书签销量的和,某同学列出了一元一次方程(2700)5900x x -+=.请你在横线上写出该同学设的未知数x 代表的是什么__________. 6.我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有_______两.(注:明代时1斤=16两)二、单选题7.疫情期间,小明去药店买口罩和消毒液(每包口罩单价相同,每瓶消毒液价格相同).若购买20包口罩和15瓶消毒液,则身上的钱还少25元,若购买19包口罩和13瓶消毒液,则他身上的钱会剩下15元,若小明购买16只口罩和7瓶消毒液,则( )A .他身上的钱会剩下135元B .他身上的钱会不足135元C .他身上的钱会剩下105元D .他身上的钱会不足105元8.干墨鱼用水浸泡后,重量可增加210%,某加工单位准备为某饭店提供湿墨鱼160kg ,问需要多少干墨鱼做原料?用x 表示所需干墨鱼的kg 数,则下列方程正确的是( ).A .2.116x =B .21160x x +=.C .21160x =⨯.D .1602.1x x += 9.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )A .2B .3C .4D .510.如图,现有3×3的方格,每个小方格内均有数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,记三个数字之和为P ,则P 的值是( )A .12B .15C .18D .2111.等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数为( )A .30°B .40°C .50°D .60°12.初一(1)班有学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的14多2人.则同时参加这两个小组的人数是( )A .16B .12C .10D .8三、解答题13.有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2,求这个两位数. 14.小强(递上10元钱):爷爷,我买一枝钢笔和一个笔记本.售货员(爷爷):今天是“六一”儿童节,钢笔九折优惠,笔记本按标价卖给你,但如果你钢笔和笔记本都买,钱可不够了.小军:小强,钢笔的标价是笔记本的3倍.我借给你1.1元钱,就可以买这两样东西了.请你根据上述对话内容,算出钢笔和笔记本的标价.15.对于结论:当0a b +=时.330a b +=也成立.若将a 看成3a 的立方根,b 看成3b 的立方根.由此得出结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子进行验证;+的立方根.(2)互为相反数,且3x-的平方根是它本身,求x y参考答案:1.-21【分析】根据题意列出关于x 的方程,求出方程的解即可得到x 的值.【详解】根据题意得:(x +3)÷2=﹣9,即x +3=﹣18,解得:x =﹣21,故答案为:﹣21.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.3410x +=【分析】首先表示出某数的3倍为3x ,再表示出该数的3倍加4为3x +4,根据题意可得方程.【详解】解:设某数为x ,由题意得:3x +4=10,故答案为:3x +4=10.【点睛】本题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.3.29【分析】设这个两位数的个位数字为x ,则十位数字为11x -,根据题意列方程求解即可.【详解】解:设这个两位数的各位数字为x ,则十位数字为11x -由题意得:10(11)631011x x x x ⨯-++=+-化简得:18162x =解得:9x =,112x -=所以原来的两位数为29故答案为29【点睛】此题考查了一元一次方程的应用,解题的关键是理解题意找到等量关系列出方程.4.12【分析】设这个数为x ,根据题意列出方程求解即可.【详解】解:设这个数为x , 根据题意得:11(2)123x x -⨯=+, 解得:12x =,故答案为:12.【点睛】本题考查了一元一次方程的应用,根据题意列出方程是解本题的关键. 5.珐琅书签的销量【分析】依题意即可得出答案.【详解】解:设珐琅书签的销量为x 件,依题意得:(2700)5900x x -+=故该同学设的未知数x 代表的是:珐琅书签的销量故答案为:珐琅书签的销量【点睛】本题考查了一元一次方程,能够理解题意,设出未知数,列出方程是解题的关键.6.46【分析】题目中分银子的人数和银子的总数不变,有两种分法,根据银子的总数一样建立等式,进行求解.【详解】解:设有x 人一起分银子,根据题意建立等式得,7498x x +=-,解得:6x =,∴银子共有:67446⨯+=(两)故答案是:46.【点睛】本题考查了一元一次方程在生活中的实际应用,解题的关键是:读懂题目意思,根据题目中的条件,建立等量关系.7.A【分析】设每包口罩x 元,每瓶消毒液y 元,根据小明带的总钱数是不变的,可得到:20x +15y -25=19x +13y +15,整理可得到x +2y =40.小明购买16只口罩和7瓶消毒液会消费16x +7y ,再利用20x +15y -25-(16x +7y )即可表示出小明身上剩下的钱数,代入计算即可.【详解】解:设每包口罩x 元,每瓶消毒液y 元,∵小明带的总钱数是不变的,∵20x +15y -25=19x +13y +15,整理得:x +2y =40.小明购买16只口罩和7瓶消毒液会消费:16x +7y ,∵剩余的钱为:20x +15y -25-(16x +7y )=20x +15y -25-16x -7y=4x+8y-25将x+2y=40代入得:4×40-25=135即小明身上的钱会剩下135元.故选:A【点睛】本题考查了字母表示数,代数式求值,整式加减运算,能够准确分析题意,找到不变量是解决本题的关键.8.B【分析】设干墨鱼为xkg,则增加的重量为2.1xkg,再根据题意列出方程即可.【详解】解:设干墨鱼为xkg,增加的重量为2.1xkg,所以x+2.1x=160,故选:B.【点睛】本题考查的是一元一次方程的应用,解答的关键是弄清数量关系,找出等量关系.9.C【详解】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,根据题意得:3x=2(10﹣x),解得:x=4,答:小强胜了4盘.故选C【点睛】本题考查了列一元一次方程解决实际问题,一般步骤是:∵审题,找出已知量和未知量;∵设未知数,并用含未知数的代数式表示其它未知量;∵找等量关系,列方程;∵解方程;∵检验方程的解是否符合题意并写出答案10.D【分析】如图,A=P-10,C=x,求得E=P+x-17,D=P-x-7,由3+D+E=P,列式求解即可.【详解】解:如图,由题意得:A=P-10,设C=x,∵B=P-A-C=P-(P-10)-x=10-x,∵B+7+E=P,∵E=P-B-7=P-(10-x)-7=P+x-17,∵C+7+D=P,∵D=P-C-7=P-x-7,又∵3+D+E=P,∵3+P-x-7+P+x-17=P,整理得:2P-21=P,∵P=21.故选:D.【点睛】本题主要考查了整式的加减,图形的变化规律,学习过程中注意培养自己的观察、分析能力.11.B【分析】这个底角的度数为x,则顶角的度数为(2x+20°),根据三角形的内角和等于180°,即可求解.【详解】解:设这个底角的度数为x,则顶角的度数为(2x+20°),根据题意得:2220180x x++︒=︒,解得:40x=︒,即这个底角的度数为40°.故选:B【点睛】本题主要考查了等腰三角形的性质,三角形的内角和定理,熟练掌握等腰三角形的性质,三角形的内角和定理是解题的关键.12.B【分析】设同时参加这两个小组的人数为x人,根据参加这两个小组的人数与不参加这两个小组的人数之和等于60列方程即可求解,注意不能重复加同时参加这两个小组的人数.【详解】解:设同时参加这两个小组的人数为x人,则这两个小组都不参加的人数为124x⎛⎫+⎪⎝⎭人,由题意得:136(365)2604x x+--++=,解得12x=.故选:B .【点睛】本题考查的知识点是一元一次方程的应用,解题的关键是能根据题意准确列出一元一次方程.13.这个两位数是24.【分析】设十位数字为x ,则个位数字为x+2,根据这个两位数等于其数字之和的4倍列出方程,解方程即可.【详解】设十位数字为x ,则个位数字为x+2,根据题意得10x+x+2=4(x+x+2),解得x=2.答:这个两位数是24.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.14.钢笔标价为9元,笔记本标价为3元【分析】设笔记本的标价为x 元,则钢笔的标价为3x 元,根据花费的总钱数为(10+1.1)元列出方程即可.【详解】解:设笔记本的标价为x 元,则钢笔的标价为3x 元x +0.9⨯3x =10+1.1解得:x =3故钢笔的标价为:3⨯3=9(元)答:钢笔标价为9元,笔记本标价为3元.【点睛】本题考查一元一次方程,设出恰当的未知数,准确抓住等量关系列出方程是解题的关键.15.(1)见解析(2)1【分析】(1)举例338,8a b ==-,根据立方根的性质进行验证即可得;(2)先根据题中给的结论可得7y -与25y -互为相反数,由此建立方程可得y 的值,再根据平方根的性质可得30x -=,由此可得x 的值,然后根据立方根的性质即可得. (1)解:举例:338,8a b ==-,2(2)0+-=,此吋()880+-=,即8与8-互为相反数,所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立.(2)解:∵7y -与25y -互为相反数,∵7250y y -+-=,解得2y =-,∵3x -的平方根是它本身,∵30x -=,解得3x =,∵321x y +=-=,∵x y +的立方根是1.【点睛】本题考查了平方根与立方根、一元一次方程的应用等知识点,熟练掌握平方根与立方根的性质是解题关键.。
实际问题与一元一次方程同步练习题
第三章一元一次方程3.4实际问题与一元一次方程一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知甲数是18,甲数比乙数的13还少1,设乙数为x,则可列方程为A.3(x–1)=18 B.3x–1=18C.13x–1=18 D.13(x+1)=18【答案】C【解析】由题意可得,13x−1=18,故选C.2.一件标价为300元的运动服,按九折销售仍可获利20元,设这件上衣的成本价为x元,根据题意,下面所列的方程.正确的是A.300×0.9–x=20 B.300×9–x=20C.300×0.9=x–20 D.300×9=x–20【答案】A3.某组女生占全组人数的13,再加上5名女生后就占全组人数的一半,设原来全组有x名同学,则可列方程为A.13x+5=12B.13x+5=12xC.13x+5=12(x+5) D.13x=12(x+5)【答案】C【解析】设原来全组有x名同学,则可列方程为:13x+5=12(x+5).故选C.4.实验中学七年级(2)班有学生56人,已知男生人数比女生人数的2倍少11人,求男生和女生各多少人.下面设未知数的方法,合适的是A.设总人数为x人B.设男生比女生多x人C.设男生人数是女生人数的x倍D.设女生人数为x人【答案】D【解析】∵男生人数比女生人数的2倍少11人,∴设女生为x人更为合适,故选D.5.甲商品的进价是1400元,按标价1700元的9折出售;乙商品的进价是400元,按标价520元的8折出售,则A.甲商品获利多B.乙商品获利多C.甲,乙一样多D.无法比较【答案】A【解析】甲商品获利为:1700×90%–1400=130(元),乙商品获利为:520×80%–400=16(元),∴甲商品获利多,故选A.二、填空题:请将答案填在题中横线上.6.一只签字笔进价0.8元,售价1元,销售这种笔的利润的百分比是__________.【答案】25%【解析】设销售这种笔的利润的百分比是x.根据题意,得0.8×(1+x)=1,解得x=25%.故答案为:25%.学#@科网7.七(1)班学生开展义务植树活动,参加者是未参加者的3倍,若班里共有48人,则参加者有__________人,未参加者有__________人.【答案】36,128.某项工作,甲单独做需20h完成,乙单独做需12h完成,现在先由甲单独做4h,剩下的部分由甲、乙合做一段时间后,乙再单独做2h全部完成,则甲、乙合做的时间为__________h.【答案】19 4【解析】设甲、乙合做的时间为x小时,由题意得:1 20(4+x)+112(x+2)=1,解得:x=194,故答案为:194.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.一艘船从甲码头顺流而下到乙码头,用了2小时;逆流返回到甲码头时,用了2.5小时,已知水流速度是3千米/时,求船在静水中的平均速度.【答案】27千米/小时10.一个两位数,十位上的数字比个位上的数字大2,如果个位数字与十位数字交换,比原数小18,求这个两位数.【答案】42【解析】设原两位数的个位数字为x,则十位数字为(x+2),依题意有:10x+(x+2)=10(x+2)+x–18,整理,得11x+2=11x+2,即该等式恒成立,当x=1时,x+2=3,则原来的两位数是32,新两位数是23,32–23=9,不合题意,舍去;当x=2时,x+2=4,则原来的两位数是42,新两位数是24,42–24=18,符合题意;当x=3时,x+2=5,则原来的两位数是52,新两位数是25,52–25=27,不合题意,舍去;同理,当x=4、5、6、7、8、9时,均不合题意.综上所述,该两位数是42.11.希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:“他生命的16是幸福的童年;再活了他生命的1 12,两颊长起了细细的胡须;又度过了一生的17,他结婚了;再过5年,他有了儿子,感到很幸福;可是儿子只活了他全部年龄的一半;儿子死后,他在极度痛苦中度过了4年,与世长辞了.”【答案】丢番图的年龄为84岁人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF 是∠AOE 的平分线,所以∠AOE =2∠EOF =2(90°-α)=180°-2α.所以∠BOE =180°-∠AOE =180°-(180°-2α)=2α.所以∠BOE =2∠COF .(2)∠BOE =2∠COF 仍成立.理由:设∠AOC =β,则∠AOE =90°-β,又因为OF 是∠AOE 的平分线,所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF .25.解:(1)0.5x ;(0.65x -15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
一元一次方程与实际问题练习题
实际问题与一元一次方程练习题一、配套问题1、某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓 12个或螺母18个,要使每天生产的螺栓和螺母按1∶2配套,则应该安排生产螺栓和螺母的工人各多少名?2.某车间有60名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓15个或螺帽10个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓、螺帽刚好配套?(每个螺栓配两个螺帽)3.七年级(1)班43人参加运土劳动,共有30根扁担,要安排多少人抬土,多少人挑土,可使扁担和人数相配不多不少?4.某工地调来72人参加挖土和运土,已知3人挖出的土,1人恰好能全部运走,怎样调配劳动力使挖出的土能及时运走且不窝工?6.某车间共有85名工人,平均每天每人可加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,应安排几名工人加工大齿轮,几名工人加工小齿轮才能使每天的产品刚好配套?二、工程问题1.若9人14天完成了一项工作的35,而剩下的工作要在4天内完成,则需要增加的人数是多少人?2.一项工程,甲队独做10小时完成,乙队独做15小时完成,丙队独做20小时完成,开始时三队合做,中途甲队另有任务,由乙、丙两队合作完成,从开始到工程完成共用了6小时,问:甲队实际做了几小时?3.一件工程,甲、乙、丙队单独做各需10天、12天、15天才能完成,现在计划开工7天完成,乙、丙先合做3天后,乙队因事离去,由甲队代替,在各队工作效率都不变的情况下,能否按计划完成此工程?4.甲、乙两人想共同承包一项工程,甲单独做要30天完成,乙单独做要20天完成,合同规定15天完成,否则每超过一天罚款100元,甲、乙两人商量后签订了该合同。
(1)正常情况下甲、乙是否可以履行该合同?为什么?(2)现在两人合作了该工程的75%,因别处有急事,必须调走一人,调走谁更合适?为什么?三、销售问题1.某文具店出售每册120元和80元的两种纪念册,这两种纪念册原来的利润都是原售价的30%,小芳共有1 080元,欲购买一定数量的某一种纪念册,由于每册120元的纪念册销售的不理想,经理愿以优惠价将这种纪念册卖给小芳,结果文具店获得的利润和卖出相同数量的每册80元的纪念册获利一样多,小芳共购买纪念册多少本?2.某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少?3.某企业生产一种产品,每件成本是400元,销售价为510元,本季度销售300件,•为进一步扩大市场,企业决定在降低销售价的同时降低生产成本,经过市场调研,•预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件成本应降低多少元?4.商场将某种品牌的冰箱先按进价提高50%作为标价,然后打出“八折酬宾,外送100元运装费”的广告,结果每台冰箱仍获利300元,求每台冰箱的进价是多少元.5.一商店以每3盘16元钱的价格购进一批录音带,又从另外一处以每4盘21•元价格购进前一批数据加倍的录音带,如果以每3盘k•元的价格全部出售可得到所投资的20%的收益,求k值.四、积分问题1.阳光中学在举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,一共得22分,已知这支球队只输了2场,那么这支球队胜几场?平几场?2.在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出了4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣1分,如果一个学生在本次竞赛中的得分是60分,那么他做对了多少道题?3.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,共得了17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标?五、计费问题1.某单位急需要用车但无力购买,他们决定租车使用,某个体出租车公司的条件是:每月付1 210元工资,另外每100千米付10元汽油费;另一国营出租车公司的条件是:每100千米付120元.(1)这个单位若每月平均跑1 000千米,则租谁的车划算?(2)这个单位每月平均跑多少千米时,租哪家公司的车都一样?2.用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页数超过20页时,超过部分每页收费0.09元. 在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元. 如何根据复印的页数选择复印的地点使总价格比较便宜?(复印的页数不为零)3.一位开发商来到一个新城市,想租一套房子,A 家房主的条件是:先交2 000元,然后每月租金380元.B家房主的条件是:每月租金580元. (1)这位开发商想在这座城市住半年,则租哪家的房子合算?(2)这位开发商住多长时间时,租哪家的房子都一样?(3)如果这位开发商想住一年,则租哪家的房子合算?4.冬天来临的时候,市场上的热水器开始畅销,王涵家计划买个热水器,销售商都说买自己的商品实惠。
实际问题与一元一次方程测试卷及答案
实际问题与一元一次方程测试卷一、选择题 (共10个小题,每小题3分,共30分)1.已知甲、乙两数之和为5,甲数比乙数大2,求甲、乙两数.设乙数为x ,可列出方程是( )A.x+2+x=5B.x-2+x=5C.5+x=x-2D.x(x+2)=5.2.水流速度为2千米/时,一小船逆流而上,速度为28千米/时, 则该船顺流而下时,速度为( )千米/时.A.30B.32C.24D.283. 天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡. 已知所有硬币的质量都相同,如果设一个硬币的质量为x 克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x+10=6x-5D.2x-10=6x+5.4. 已知A ,B 两地相距30千米.小王从A 地出发,先以5千米/时的速度步行0.5时,然后骑自行车,共花了2.5时后到达B 地,则小王骑自行车的速度为( )A. 13.25千米/时B.7.5千米/时C.11千米/时D.13.75千米/时.5. 某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为( )A .108元B .105元C .106元D .118元6. (2008 台湾)某水果店贩卖西瓜、梨子及苹果,已知一个西瓜的价钱比6个梨子多6元,一个苹果的价钱比2个梨子少2元。
判断下列叙述何者正确?( )(A) 一个西瓜的价钱是一个苹果的3倍(B) 若一个西瓜降价4元,则其价钱是一个苹果的3倍(C)若一个西瓜降价8元,则其价钱是一个苹果的3倍(D) 若一个西瓜降价12元,则其价钱是一个苹果的3倍7.在四川汶川地震中,某地欲将一批救灾物运往火车站,用载重1.5吨的汽车比用载重4吨的大卡车要多运5次才能运完. 若设这批货物共x 吨,可列出方程( )A.1.5x-4x=5B.51.54x x +=C.51.54x x -=D.1.545x x-= 8.在日历上,用一个正方形任意圈出3×3个数,那么这九个数的和可能是( )A.80 B.98 C.108 D.206.9.为了节约用水,某市规定:每户居民每月用水不超过20立方米,按每立方米2元收费,超过20立方米,则超过部分按每立方米4元收费,某户居民五月份交水费72元,则该居民五月份实际用水( )A. 18立方米B. 8立方米C. 28立方米D. 36立方米10.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都一样重,驴子抱怨负担太重,骡子说:“你抱怨啥?如果你给我1袋,那我所负担的就是你的2倍;如果我给你1袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是( )A .5B .6 C.7 D .8二、填空题(共8个小题,每小题3分,共24)11.小龙在日历中发现生日那天的上,下,左,右4个日期之和为48.则小龙的生日是________号.12.一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.13. 在2008年北京奥运会上,某篮球队主力队员,在一次比赛中22投14中得28分,除了3个三分球全中外,他还投中了______个两分球和_______个罚球.14.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .15.在课外活动中,李老师发现同学们的年龄基本是12岁.就问同学:“我今年27岁,几年以后你们的年龄是我年龄的二分之一?”设x 年后同学的年龄是老师年龄的21,可列方程为 .16.若干年前,创维牌25英寸彩电的价格为3000元,现在只卖1600元,设降低了x%,则可列方程为 .17.一个两位数,个位上的数字x 比十位上的数字大2,个位与十位上的数字之和是10,求这个两位数可列方程为 .18.王会计在记帐时发现现金少了153.9元,查账后得知是一笔支出款的小数点被看错了一位,王会计查出这笔看错了的支出款实际是 元.二、解答题(共66分)19.(6分) 小兵今年13岁,约翰的年龄的3倍比小兵的年龄的2倍多10岁,求约翰的年龄.20.(6分)有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?21.(8分)王小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元.”你知道标价是多少元吗?22.(8分)某企业存入银行甲、乙两种不同性质、用途的存款共20万元,甲种存款的年利率为5.4%,乙种存款的年利率为8.28%,该企业一年可获利息收入12240元(包括利息税),问该企业存入银行的甲、乙两种存款各是多少万元?23.(9分)某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg 到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:辣椒和蒜苗各批发了多少kg ?24.(9分)某城市为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10t 部分,按0.45元/t 收费;超过10t 而不超过20t 部分,按0.80元/t 收费;超过20t 部分,按1.5元/t 收费.现已知欢欢家十月份缴水费14元,欢欢家十月份用水多少吨?25.(10分)某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a 千瓦时,则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a .(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元26.(10分)某学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,(涂黑部分表示被墨水覆盖的若干文字).”请你将这道作业题补充完整,并列方程解答.参考答案1.A2.B [点拔]逆水行速=船速-水速,顺水行速=船速+水速.3.A4. D5.A[点拨]设进货价为x 元,根据题意,得(1+10%)x =132×(1-10%).6.D.7.C8.C [点拔]要满足和能被9整除9.C [点拔]设五月用水x 立方米则20*2+4(x-20)=72得x=28.10.A[点拨]不妨设驴子原来驮x 袋货物,根据题意可知骡子驮的袋数可分别表示为[2 ( x -1) -1],(x+1+1).由此可得2 ( x -1) -1= x+1+1.解得x=5.即驴子原来所驮货物的袋数是5.故选A.11.12 [点拔]设生日那天的日期为x ,则4x=48,x=12.12.60 [点拨]设标价为x 元,则x-50=50×20%.13. 8 ,314.80%300100x -=15.12+x =21(27+x ) 16.(1-x%)·3000=160017.x=10-x+2或x+x-2=1018.17.1[点拨]设这笔看错了的支出款实际是x 元,则记账时支出款记成了10x 元.根据题意,得10x -x=153.9.解得,x=17.1.故填17.1.19.设约翰的年龄x 岁,则3x-2×13=10,∴x=12.约翰的年龄是12岁.20.设这种三色冰淇淋中咖啡色配料为2x 克,那么红色和白色配料分别为3x 克和5x 克.根据题意,得2x+3x+5x=50解这个方程,得x=5于是2x=10,3x=15,5x=25答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.21.设标价是x 元,则售价就是80%x 元,根据售价是36元可列方程:80%x=36,两边同除以80%,得x=45.答:这条裤子的标价是45元.22.设甲种存款为x 万元,则乙种存款为(20-x)万元,依题意,得x×5.4%+(20-x)×8.28%=1.224.解得 x =15. 20-x =5.所以甲、乙两种存款各是15万元,5万元.23.设该经营户从蔬菜市场批发了辣椒x kg ,则蒜苗(40)x -kg ,得1.6 1.8(40)70x x +-=解得:10x = 4030x -=答:该经营户批发了10kg 辣椒和30kg 蒜苗.24.因为10×0.45+10×0.80=12.5,而12.5<14,所以欢欢家十月份用水一定超过20t.设欢欢家十月份用水x t.根据题意,得10×0.45+10×0.80+)20(-x ×1.50=14解这个方程,得21=x答:欢欢家十月份用水21t.25.(1)由题意,得0.4a+(84-a )×0.40×70%=30.72解得a=60(2)设九月份共用电x 千瓦时,则0.40×60+(x-60)×0.40×70%=0.36x解得x=90所以0.36×90=32.40(元)答:九月份共用电90千瓦时,应交电费32.40元.26.补充部分,若两车分别从两地同时开出,相向而行,经过几小时相遇?设经过x 小时两车相遇,依题意可得45x+35x=40整理得80x=40,两边同除以80,得x=0.5答:经过半小时两车相遇.一、1.小红一家假期外出旅游5天,已知这5天的日期之和为40. 则他们出发日期是()号A.5B.6C.7D.82.某种药品去年的单价为12元,今年该种药品降价x%,则今年该种药品的单价是()A.12x%B.12-x%C.0.12(1-x)D.12(1-x%)3.一件商品,标价12元,打x折后仍获利2元,则该商品的成本价是()A.(12x-2) 元B.(12x+2) 元C.(65x+2) 元 D.(65x-2) 元.1.B2.D3.A11.根据“x的2倍与5的和比x的12小10”可列方程为______.12.某商场今年月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是万元.14.“红星”商场对商品进行清仓处理,全场商品一律八折,小亮在该商场购买了一双运动鞋,比按原价购买该鞋节省了16元,他购买该鞋实际用元.15.今年哥哥的年龄是弟弟年龄的2倍,而5年前, 弟弟的年龄只有哥哥年龄的13,那么今年哥哥____岁,弟弟______岁.20. 一个三位数的个位数字是7,若把个位数字移到首位,则新数比原数的5倍还多86,求这个三位数.设这个三位数的前两位数为x,则列出的方程应是.11.2x+5=2x-1012.12014.6415.20,1020. 700+x-86=5(10x+7)3.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.3.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.根据题意,得16×5x+24×4(16-x)=1440解得x=6答:这一天有6名工人加工甲种零件.4.探索研究:用一根长60厘米的铁丝围成一个长方形.(1) ①②使长方形的宽是长的32,求这个长方形的长的宽. ②使长方形的宽比长少4厘米.求这个长方形的面积.(2) 比较(1) (2) 所得两长方形面积大小.还能围出面积更大的长方形吗?4.(1) ①设长方形的长为3x ,宽为2x ,根据题意有:(3x +2x )×2=60 解得x =6所以长为18cm 宽为12 cm .②设长方形的宽为x cm ,则长为(x +4)cm .根据题可得2(x +x +4)=60,解得x =13.所以长方形长为17cm 宽为13cm 面积为221cm 2(2)易得①中长方形面积为216cm 2.②中长方长面积为221cm 2,所以②中长方形面积大. 将②中宽比长少4厘米,改为少3厘米,2厘米,1厘米,0厘米后发现长方形面积逐渐增大.因此还能围出面积更大的长方形.7.七年级(1)班为奖励优秀学生,用30元钱买了钢笔和圆珠笔共10支,其中圆珠笔每支2元,钢笔每支4元.若设所买的圆珠笔的支数为x ,可列方程2x+4(10-x )=30,你能根据此方程编一道与上面不同的应用题吗?7.要编写应用题,关键是要抓住等量关系,就可以编写许多不同的应用题.如:•某校七年级(2)班的10名学生为学校绿化捐款,共计30元,其中部分学生每人捐款2元,另一部分学生每人捐款4元,捐款2元的学生是几人?8.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?8.解:设甲、乙一起做还需x 小时才能完成工作.根据题意,得16×12+(16+14)x=1 解这个方程,得x=115115=2小时12分 答:甲、乙一起做还需2小时12分才能完成工作.9.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.9.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x 分. 过完第二铁桥所需的时间为250600x -分. 依题意,可列出方程600x +560=250600x -解方程x+50=2x-50得x=100∴2x-50=2×100-50=150答:第一铁桥长100米,第二铁桥长150米.10.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?10.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000即5x+7(50-x)=3002x=50x=2550-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=900003x+5(50-x)=1800x=3550-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=9000021y+25(50-y)=900,4y=350,不合题意由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C 种电视机15台.(2)若选择(1)中的方案①,可获利150×25+250×15=8750(元)若选择(1)中的方案②,可获利150×35+250×15=9000(元)9000>8750故为了获利最多,选择第二种方案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元一次方程练习题
1、扎西同学有150元零花钱,已经花了30元,预计以后每周花20元,经过多少周扎西同学将花完他的
零花钱?
2、卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100
厘米?
解:设x周后树苗长高到100厘米.
根据题意,得.
解方程,得.
答:周后树苗长高到100厘米.
3、汽车上共有1500千克苹果,卸下600千克,还有30箱,每箱苹果重多少?
4、根据题意,列出方程:
(1)某数的3倍加上5等于它的4倍减3,求某数.设某数为x,根据题意,得:.
(2)某数减去14等于它的1
3
,求某数.设某数为x,根据题意,得,.
(3)用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?设正方形的边长为x厘米,根据题意,得,.
(4)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得,.
(5)用12元钱买了3个笔记本,找回1.2元,每个笔记本多少钱?设每个笔记本x元,根据题意,得,.
(6)某数的5倍比它的2倍多6,求某数.设某数为x,根据题意,得.
(7)某数的3
4
比它的
6
7
少1,求某数.设某数为x,根据题意,得
5、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个
学校购买了多少台计算机?
6、洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ
型洗衣机计划生产多少台?
解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.
根据题意,得.
解方程,得.
答:Ⅰ型洗衣机计划生台.
7、某中学初一年级,一班人数是全年级人数的1
6,二班人数50人,两个班级人数的和是98人.求该校初
一年级的人数.设该校初一年级的人数为x,根据题意,列方程得得.
8、一个长方形的周长为32厘米,宽比长少4厘米,求这个长方形的宽?
9、某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?
10、甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了
多少枝?
(1)请你静下心来,仔仔细细把这道题默读几遍,弄清题目告诉了我们什么,要求的是什么.
(2)如果设甲种铅笔买了x枝,那么乙种铅笔买了枝,买甲种铅笔用了
元,买乙种铅笔用了元.
(3)把这道题完整解一遍:
解:设甲种铅笔买了x枝,则乙种铅笔买了枝.
根据题意,列方程得 .
解方程得 .
乙种铅笔买的枝数= = .
答:甲种铅笔买了 枝,乙种铅笔买了 枝.
11、 根据题意,列出方程:
(1)卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.设卓玛有x 岁,根据题意,列方程得 .
(2)蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?设蜘蛛有x 只,则蜻蜓有 只.根据题意,列方程得 .
(3)某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?设价格为18元的书买了x 本,则价格为10元的书买了 本.根据题意,列方程得 .
12、 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.
这个班有多少学生?
13、 一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?
解:设全家有x 口人.可以用两个式子来表示苹果总数,由此可得方程 .
解方程得 .
共有苹果个数= = .
答:全家有 口人,共有 个苹果.
14、 一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?
这个学生共带了多少钱?
(1)如果设笔记本每本x 元,则这个学生所带的钱数可以用两个式子来表示,由此可列出方程 .
15、 卓玛骑自行车从A 村到B 村,用了0.5小时;扎西走路从A 村到B 村,用了1.5小时.已知卓玛
的速度比扎西的速度每小时快10千米,求扎西走路的速度.
(1)设扎西走路的速度为每小时x 千米,根据题意,在下面的图中填空:
B 村A 村
(2) 解:设扎西走路的速度为每小时x 千米,则卓玛骑自行车的速度为每小时 千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得 .
解方程得 .
答:扎西走路的速度为每小时 千米.
16、 一艘船从甲码头到乙码头顺流行驶,用了2小时;
从乙码头返回甲码头逆流行驶,
用了
2.5小时.
已知水流的速度是每小时3千米,求船在静水中的速度.。