人教版九年级数学下册27.1 图形的相似 导学案

合集下载

人教版九年级数学下册导学案27.1.1相似图形

人教版九年级数学下册导学案27.1.1相似图形

第二十七章相像27.1 图形的相像第 1 课时相像图形一、新课导入1.课题导入情形:挨次展现每组图片,供学生赏识 .问题:每组图片中的两张图片有何关系?由此导入新课.2.学习目标(1)联合详细实例认知趣像图形,理解相像图形的观点,会判断两个图形能否相像 .(2)知道成比率线段,会求线段的比,知道相像多边形的对应角相等,对应边的比相等 .3.学习重、难点要点:图形相像及相像多边形的性质 .难点:线段成比率的意义.二、分层学习1.自学指导(1)自学内容:教材P24~P25思虑 .(2)自学时间: 5 分钟 .(3)学习方法:联合实质说说自己对相像图形的理解, 并达成自学参照纲要 .(4)自学参照纲要:①形状同样的图形叫做相像图形. 两个图形相像 ,此中一个图形能够看作由另一个图形放大或减小获得. 举例说明(能够是书上的图片) . ②用一个放大镜察看一个图形 , 经过放大镜看到的图形与原图形相像 .( 填“相像”或“不相像”)③全等的两个图形是相像的.( 填“相像”或“不相像”)④假如两个图形相像 ,那么它们的形状同样,而与它们的大小没关.⑤同一个人在平面镜中的像与哈哈镜中的像相像吗?为何?不相像 . 哈哈镜中的像的形状发生了变化.2.自学:学生参照自学指导进行自学 .3.助学(1)师助生:①了然学情:经过实例了然学生对相像图形的理解状况.②差别指导:对分不清相像图形的学生进行指导.(2)生助生:小组内互相沟通、商讨.4.增强(1)相像图形的观点及实例.(2)练习:①如图 1,放大镜里看到的三角尺和本来的三角尺相像吗?答案:相像 .②如图 2,图形 a~f 中,哪些图形是与图形( 1)或( 2)或( 3)相像的?答案:与图形( 1)相像的有 ac; 与图形( 2)相像的有 d; 与图形( 3)相像的有 g.1.自学指导(1)自学内容:教材P26 方框中的内容 .(2)自学时间: 5 分钟 .(3)自学方法:达成自学参照纲要.(4)自学参照纲要:①关于四条线段 a,b, c, d,假如此中两条线段的长度的比与另两条线段的长度的比相等, 即a c( 或ad=bc) ,那么这四条线段叫做成比率线段,简称b d成比率 .②什么是比率尺?③假如线段 a,b,c,d知足a∶ b=c∶d,a=3,b=4,d=8,则c=6.④一张桌面的长 a=1.25 m,宽 b=0.75 m,那么长与宽的比是多少?(a. 假如 a=125 cm, b=75 cm,那么长与宽的比是多少?(5∶3)b. 假如 a=1250 mm,b=750 mm,那么长与宽的比是多少?(5∶ 3)5∶3)⑤在比率尺是 1∶10000000 的地图上,量得甲乙两地的距离是30 cm,求两地的实质距离 .30×10000000=300000000( cm)=3000(km).即两地的实质距离为3000 km.⑥已知a ba cbc k ,求k的值.c b a∵a+b=kc,a+c=kb,b+c=ka,a+b+a+c+b+c=k(a+b+c),即 2( a+b+c)=k(a+b+c), ∴k=2.2.自学:学生参照自学指导进行自学 .3.助学(1)师助生:①了然学情:认识学生如何理解线段成比率.②差别指导:依据学情进行指导.(2)生助生:小组间互相沟通、商讨.4.增强:线段的比与成比率线段及等比式的办理 .三、评论1.学生学习的自我评论:这节课你有什么收获?有哪些不足?2.教师对学生的评论:(1)表现性评论:从学生回答以下问题,讲堂的注意力等方面进行评论.(2)纸笔评论:讲堂评论检测.3.教师的自我评论(教课反省) .本课时作为“图形的相像”的开端课,先经过大批的实例、图片来激发学生的学习兴趣,发动学生去发现、去参加找寻相像图形,给学生供给展现自我的时间和时机 . 学生经过绘图、着手操作等实践活动增强对相像图形的理解,并能娴熟判断图形的相像 .一、基础稳固( 70 分)1.(10 分) 以下说法正确的选项是( D)A.小明上少儿园时的照片和初中毕业时的照片相像B.从商铺新买来的一副三角板的两块三角板是相像的C.全部的课本都是相像的D.国旗的五角星都是相像的2.(10 分) 已知线段 a,b,c,d 知足 ab=cd,把它改写成比率式,错误的选项是( B)A. ac B.a c C.db D.a dd b b d a c c b3.(10分) 以下图形中不必定是相像图形的是( C)A. 两个等边三角形B. 两个正方形C.两个菱形D.两个圆4.(10分) 已知 a,b,c,d 是成比率线段,此中 a=3 cm, b=2 cm,c=6 cm,则 d=4cm.5.(10 分) 如图,放大镜里看到的的角与本来的角的关系是相等.6.(20 分) 察看以下图形,指出哪些是相像图形,用“线”将相像的图形连接起来 .二、综合应用( 20 分)7.(10分) 以下各组中的四条线段成比率的是(C)A.a= 2 ,b=3,c=2,d=3B.a=4,b=6, c=5,d=10C.a=2,b= 5 ,c=23,d=15D.a=2,b=3,c=4,d=18.(10 分) A 、B 两地的实质距离为2500 m,在一张地图上的距离是 5 cm,那么这张地图的比率尺是1∶50000.三、拓展延长( 10 分)9.(10 分) 已知xy z,求x2 y的值 . 234z解: x 2 y x 2 y 123 1 .zz z24。

人教版九年级数学下册27.1图形的相似导学案

人教版九年级数学下册27.1图形的相似导学案

第二十七章相像27.1图形的相像学习目标:1. 从生活中形状同样的图形的实例中认识图形的相像, 理解相像图形观点.认识成比率线段的观点,会确立线段的比.2.知道相像多边形的主要特色,即:相像多边形的对应角相等,对应边的比相等.3.会依据相像多边形的特色辨别两个多边形能否相像,并会运用其性质进行有关的计算.学习重、难点:1.要点:相像图形的主要特色与辨别.2.难点:运用相像多边形的特色进行有关的计算.学习过程:一、依标独学1、同学们,请察看以下几幅图片,你能发现些什么?你能对察看到的图片特色进行概括吗?2、小组议论、沟通.获得相像图形的观点.相像图形3、如图,是人们从平面镜及哈哈镜里看到的不一样镜像,它们相像吗?二、围标群学实验研究:假如把老师手中的教鞭与铅笔,分别当作是两条线段AB 和 CD,那么这两条线段的比是多少?成比率线段:关于四条线段a, b, c, d ,假如此中两条线段的比与另两条线段的比相等,如a c(即 ad bc ),我们就说这四条线段是成比率线段,简称比率线段.b d【注意】( 1 )两条线段的比与所采纳的长度单位没有关系,在计算时要注意一致单位;线段的比是一个没有单位的正数;( 2 )四条线段 a,b, c, d 成比率,记作ac或 a : bc :d ;bd ( 3 )若四条线段知足a cbc .b,则有 add小应用: 一张桌面的长 a1.25m ,宽 b 0.75m ,那么长与宽的比是多少?( 1)假如 a 125cm , b 75cm ,那么长与宽的比是多少?( 2)假如 a1250mm , b750mm ,那么长与宽的比是多少?三、研究1、如图的左侧格点图中有一个四边形,请在右侧的格点图中画出一个与该四边形相像的图形.问题:关于图中两个相像的四边形,它们的对应角,对应边的比能否相等.2.【结论】:(1)相像多边形的特色:相像多边形的对应角______,对应边的比 _______.反之,假如两个多边形的对应角 ______,对应边的比 _______,那么这两个 多边形 _______.几何语言:在四边形 ABCD 和四边形 A 11 1 1 中B C D若 ? A 行A 1; B =行B 1; C =行C 1; D =?D 1.AB =BC=CD =DAA 1B 1B 1C1C 1D 1 D 1 A 1则四边形 ABCD 和四边形 A 1 1 1D 1 相像B C(2)相像比:相像多边形 ________的比称为相像比.问题:相像比为 1 时,相像的两个图形有什么关系?结论:相像比为 1 时,相像的两个图形 ______,所以 ________形是一种特别的相像形.四、自我检测1.在比率尺为 1:10 000 000 的地图上,量得甲、乙两地的距离是30 cm,求两地的实质距离.2.如下图的两个直角三角形相像吗?为何?3.如下图的两个五边形相像,求未知边 a 、b、c、d的长度.五、概括小结。

人教版第27章相似全章导学案2

人教版第27章相似全章导学案2

课题27.1 图形的相似1九年级备课人:洪双桥审核:审批:班级:____________ 姓名:____________ 使用时间:2012年2月日导学目标知识点:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.了解成比例线段的概念,会确定线段的比.课时:1课时导学方法:整理、分析、归纳法导学过程:一、自主探究(课前导学)1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)2 、小组讨论、交流.得到相似图形的概念.相似图形3 、思考:如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:二、合作探究(课堂导学)实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的比是多少?归纳:两条线段的比,就是两条线段长度的比. 成比例线段:对于四条线段,,,a b c d ,如果其中两条线段的比与另两条线段的比相等,如a cb d=(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数; (2)四条线段,,,a b c d 成比例,记作a cb d=或::a b c d =; (3)若四条线段满足a cb d=,则有ad bc =. 例1如图,下面右边的四个图形中,与左边的图形相似的是( )例2一张桌面的长 1.25a m =,宽0.75b m =,那么长与宽的比是多少?(1)如果125a cm =,75b cm =,那么长与宽的比是多少? (2)如果1250a mm =,750b mm =,那么长与宽的比是多少?小结:上面分别采用,,m cm mm 三种不同的长度单位,求得的ab的值是________的,所以说,两条线段的比与所采用的长度单位______,但求比时两条线段的长度单位必须____.三、讨论交流(展示点评)四、课堂检测(当堂训练)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm ,求北京到上海的实际距离大约是多少km ?分析:根据比例尺=实际距离图上距离,可求出北京到上海的实际距离.拓展延伸(课外练习):1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a ~f 中,哪些是与图形(1)或(2)相似的?3、下列说法正确的是( )A .小明上幼儿园时的照片和初中毕业时的照片相似.B .商店新买来的一副三角板是相似的.C .所有的课本都是相似的.D .国旗的五角星都是相似的. 4、填空题形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。

九年级数学下册27.1.1图形的相似导学案

九年级数学下册27.1.1图形的相似导学案

27.1.1图形的相似导学案主备人:董庚审核人:学生姓名:班级:学习目标:1.联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;2.经历探索、发现、创造、交流等丰富多彩的数学游戏活动,实现发展自己的数学能力和审美观,会从数学的角度认识世界,解释生活;以“生活中的数学”为载体,体会相似图形的神奇,养成“学数学、用数学”的意识。

学习重点:自主探索出相似图形的基本特征;利用坐标的变化放大(或缩小)图形。

学习难点:正确地运用相似图形的特征解决生活中实际问题。

学习过程:1、情境引入:在安踏专卖店卖的同款运动鞋中39码和42码有怎样的异同点?同一相底洗出5寸和7寸的相片有何异同?2、自主探究:请同学们自己认真阅读课文P34-35.然后概括出相似形的1)定义:2)形状特征:2、与同学想想P35的思考:并与同学合作交流。

3、课堂检测题。

一、判断题1、任意两个正方形的形状都相同2、任意两个矩形的形状都相同3、任意两个等边三角形的形状一定相同4、形状相同的两个三角形一定全等5、把一个图形放大或缩小后得到的图形与原来图形的形状一定相同二、选择题6、下列说法中,正确的是()A、正方形与矩形的形状一定相同B、两个直角三角形的形状一定相同C、形状相同的两个图形的面积一定相等D、两个等腰直角三角形的形状一定相同7、下列说法中,错误的是()A、放大镜下看到的图象与原图象的形状相同B、哈哈镜中人像与真人的形状是相同的C、显微镜下看到的图象与原图象的形状相同D、放大一万倍的物体与它本身的形状是相同的8、已知:(1)两个圆;(2)两个等边三角形;(3)两个正方形;(4)两个菱形;(5)两个直角三角形。

在上述的两个图形中,形状一定相同的图形有几组?()A、一组B、二组C、三组D、四组9、(1)☺☹;(2)✶✷;(3)→↑;(4) 。

在上述各种符号中,形状相同的符号有几组? ( )A 、一组B 、二组C 、三组D 、四组10、已知下列各图形中,相似图形共有几组? ( )A 、一组B 、二组C 、三组D 、四组11、经历平移、旋转、轴对称变化前后的两个图形 ( )A 、形状大小都一样B 、形状一样,大小不一样C 、形状不一样,大小一样D 、形状大小都不一样12、下列各种小动物中,动物的形状相同的共有几组 ( )A 、一组B 、二组C 、三组D 、四组13、如图中,相似图形共有几组? ( )A 、5组B 、6组C 、7组D 、8组学生自学疑惑教师教后体会。

人教版初三数学下册《27.1 图形的相似》学案.1 图形相似》导学案

人教版初三数学下册《27.1 图形的相似》学案.1 图形相似》导学案

《27.1 图形的相似》导学案学号___________ 姓名___________【学习目标】1.通过具体实例认识图形的相似.2.理解相似多边形的概念.3. 掌握相似多边形的性质以及相似多边形的初步判定方法.【教学过程】一、实例导入,引入概念问题1:图中的两图形有什么关系?问题2:观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?归纳:我们把___________的图形叫做相似图形.两个图形相似,其中一个图形可以看作由另一个图形____或______得到. 问题3:你能再举出一些相似图形的例子吗?问题4:全等与相似之间有什么联系呢?二、探究新知,体验过程问题:要在一块长为10m、宽为5m的长方形空地内修建长方形的草坪,不过需要在草坪的四周留出宽度相等的小路(设路宽度为a米)。

里面草坪所对应的长方形与外面整块地所对应的长方形,它们形状相同吗?也就是说它们是相似图形吗?._____''____,''____,''===C B BC C A AC B AAB环节1:任意两个正方形相似吗?请从边和角两方面开展研究.角:边:环节2:任意两个长方形都相似吗?长和宽需要满足的什么样的条件才相似.角:边:环节3:任意两个菱形相似吗?如果相似,边和角需要满足什么条件?环节4:任意两个三角形相似吗?如果相似,边和角需要满足什么条件?边:AB=_____, AC=_____, BC=______.A ’B ’=____,A ’C ’=____, B ’C ’=_____.角:∠A=___,∠B=____,∠C=____.∠A ’=__,∠B ’=____,∠C ’=____.发现:对应角______;对应边的比________.环节5:经过前面的探究,那么对于一般的相似多边形,是否该结论都成立呢? (以任意五边形为例)归纳:相似多边形的定义:两个多边形,如果它们的对应角___,对应边的比____.那么这两个多边形叫做相似多边形. 相似多边形的对应边的比称为_______;相似多边形的性质:如果两个多边形相似,则对应角______,对应边的比_______.符号语言(以右图两个相似四边形为例描述):∵___________________________________________∴_____________________________________________________________________________________相似多边形的判定方法:如果两个多边形对应角_____,对应边的比____,那么这两个多边形______.符号语言(以右图两个相似四边形为例描述):∵______________________________________________________________________________________∴___________________________________________三、应用新知,小组交流α和的大小,EH的长度x.例如图,四边形ABCD和EFGH相似,求角β四、拓展训练,提升思维5. 要在一块长为10m、宽为5m的长方形空地内修建长方形的草坪,不过需要在草坪的四周留出宽度相等的小路(设路宽度为a米)。

人教版九年级数学下册27图形的相似导学案

人教版九年级数学下册27图形的相似导学案

知人者智,自知者明。

《老子》原创不容易,【关注】,不迷路!第二十七章相似27.1图形的相似学习目标:1.了解相似图形和相似比的概念.2.理解相似多边形的定义.3.能根据多边形相似进行相关的计算,会根据条件判断两个多边形是否相似.(重点、难点)一、知识链接全等形指的是两个能完全重合的图形,请画出两个可以完全重合的五边形,说说它们的对应边的比为多少?对应角有什么关系?一、要点探究探究点1:相似的概念观察与思考下面的“神烦狗”有什么相同和不同的地方?【要点归纳】形状相同的图形叫做相似图形.相似图形的大小不一定相同.思考1下面这2组分别是图形放大或缩小的情况,请问它们相似吗?1.图形的放大:2.图形的缩小:【要点归纳】两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.思考2你见过哈哈镜吗?哈哈镜与平面镜中的形象哪一个与你本人相似?【针对训练】放大镜下的图形和原来的图形相似吗?探究点2:比例线段 【概念提出】对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度的比)与另两条线段的比相等,如dcb a (即ad=bc ),我们就说这四条线段成比例.【典例精析】下列四组长度中的四条线段能成比例的是()A.1cm,2cm,3cm,4cmB.2cm,4cm,6cm,8cmC.5cm,30cm,10cm,15cmD.5cm,10cm,15cm,20cm探究点3:相似多边形与相似比观察与思考多边形ABCDEF是显示在电脑屏幕上的,而多边形A1B1C1D1E1F1是投射到银幕上的.问题1这两个多边形相似吗?问题2在这两个多边形中,是否有对应相等的内角?问题3在这两个多边形中,夹相等内角的两边是否成比例?思考1任意两个等边三角形相似吗?任意两个正方形呢?任意两个正n边形呢?分析已知等边三角形的每个角都为60°,三边都相等.所以满足边数相等,对应角相等,以及对应边的比相等.推理同理,任意两个正方形都相似.归纳任意两个边数相等的正多边形都.思考2任意的两个菱形(或矩形)是否相似?为什么?【典例精析】ABCD和EF,则甲、乙两地的实际距离是()A.3000mB.3500mC.5000mD.7500m3.如图所示的两个四边形是否相似?说明理由.4.观察下面的图形(a)~(e),其中哪些是与图形(1)或(2)相似的?5.填空:(1)如图①是两个相似的四边形,则x=,y=,α=; (2)如图②是两个相似的矩形,x=.6.如图,把矩形ABCD 对折,折痕为EF ,若矩形ABCD 与矩形EABF 相似,AB=1. (1)求BC 的长;(2)求矩形ABFE 与矩形ABCD 的相似比.参考答案 作探究 一、要点探究 探究点1:相似的概念【针对训练】解:相似,放大镜下的图形,只是大小变了,形状没有变. 探究点2:比例线段 【典例精析】C探究点3:相似多边形与相似比 归纳相似 【典例精析】ABCD 和EFG.【针对训练】解:相似多边形的对应边的比相等,由此可得55.72=a ,55.73=b ,55.76=c ,,解得a=3,b=4.5,c=4,d=6.所以未知边a ,b ,c ,d 的长度分别为3,4.5,4,6. 当堂检测 1.ABDF2.D3.解:不相似.因为四条对应边的比例不相等.4.解:(1)与(a )、(2)与(d )相似.5.(1)2.51.590°(2)2.56.解:∵E 是D 的中点,∴BC AD AE 2121==. 又∵矩形ABCD 与矩形EABF 相似,AB=1, ∴AB BC AE AB =,∴AB2=AE ·BC ,∴BC BC ⋅=2112.解得2=BC ∴矩形ABEF 与矩形ABCD 的相似比为2221==BC AB .【素材积累】从诞生的那一刻起,我们就像一支离弦的箭,嗖嗖地直向着生命的终点射去。

人教版九年级数学下册 27.1 图形的相似 精品导学案1 新人教版

人教版九年级数学下册 27.1 图形的相似 精品导学案1 新人教版

图形的相似课题:27.1 图形的相似(1)学习目标:1、知识和技能:通过对事物的图形的观察、思考和分析,认识理解相似。

2、过程和方法:经历动手操作的活动过程,增强学生的观察、动手能力。

3、情感、态度、价值观:体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识。

学习重点:认识图形的相似,形成图形相似的概念学习难点:相似图形的认识导学方法:自主探索法课时:1课时导学过程:一、课前预习预习课本内容,完成《导学案》的教材导读和自主测评。

二、课堂导学1.导入请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?给我们什么样的印象呢?2.出示任务,自主学习相似图形的概念:观察:请同学们观察教材P34图27.1-1想想:用同一张底片洗出不同尺寸的照片;大小不同的两个足球;一辆汽车和它的模型,它们给我们什么印象?观察:教材P34图27.1-2,每组中的两个图形的大小之间有什么联系?3.合作探究两个相似图形之间的关系人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么?三、展示反馈归纳:把形状相同的图形说成是相似图形.归纳:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.四、学习小结1、相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形)。

2、相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形。

3、两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形。

五、达标检测1.教材P35的练习.2.《导学案》基础反思和展题设计.课后作业:1. 课本习题.2.《导学案》难点探究和能力提升.板书设计:1、相似图形的概念2、两个相似图形之间的关系课后反思:通过本节课的学习,教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

人教版九年级数学下《27.1.1相似图形》导学案

人教版九年级数学下《27.1.1相似图形》导学案

第二十七章相似27.1 图形的相似第1课时相似图形1.通过对事物的图形的观察、思考和分析,认识理解相似的图形.2.经历动手操作的活动过程,增强学生的观察、动手能力.3.体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识.阅读教材P24-25,弄清楚相似图形的概念,能正确判断两个图形是否相似;自学反馈学生独立完成后集体订正①把图形叫做相似图形.②两个图形相似,其中一个图形可以看作是由另一个图形和得到的.③从放大镜里看到的三角板和原来的三角板相似吗?④哈哈镜中人的形象与本人相似吗?⑤全等三角形相似吗?⑥生活中哪些地方会见到相似图形?研究几何主要是研究几何图形的形状、大小与位置,只要形状相同的两个图形就叫做相似图形.活动1 小组讨论例下列各图中哪组图形是相似图形( C )观察图形,要从本质入手,如C,将小图的位置稍加旋转就可以发现它们是相似图形.活动2 跟踪训练(独立完成后展示学习成果)1.下列说法中,不正确的是()A.两幅比例不同的中国行政地图是相似图形B.两个图形相似与形状有关而与位置无关C.哈哈镜中人的形象与本人是相似的D.同一底片洗出来的不同尺寸的照片是相似的2.下列各组多边形每一组中各取两个大小不同的多边形,一定是相似图形的是.①三角形;②等边三角形;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦梯形;⑧直角三角形.活动3 课堂小结本节课学习的数学知识:形状相同的图形是相似图形;两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.本节学习的数学方法:观察类比法.教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①形状相同的图形②放大缩小③相似④不相似⑤相似⑥略【合作探究】活动2 跟踪训练1.C2.②⑥。

新人教版九年级数学下册27.1图形的相似导学案新版

新人教版九年级数学下册27.1图形的相似导学案新版

图形的相似一、新课导入1、根据PPT,思考:两张汽车的照片,两张中国地图的照片有什么关系?观察:两张黄山松、两张天坛的照片有什么特点?2、我们所见到的这些图形有什么相同和不同的地方?二、学习目标1.从生活中形状相同的图形的实例中,认识图形的相似,理解相似图形的概念.2.会根据相似多边形的特征,识别两个多边形是否相似,并会运用其性质进行有关的计算.三、研读课本认真阅读课本的内容,完成以下练习。

(一)划出你认为重点的语句。

(二)完成下面练习,并体验知识点的形成过程。

研读一、认真阅读课本理解相似图形的概念。

一边阅读一边完成检测一。

检测练习一、1.你认为下列哪个是相似图形的本质属性?A、大小不同B、大小相同C、形状相同D、形状不同2.同一底片扩印出来的不同尺寸的照片是_____图形.放电影时胶片上的图像和它映射到屏幕上的图象是_____图形.放大镜下的图形和原来的图形是_____图形.两个全等的图形________相似,但相似的图形_____全等.(填“一定”“不一定”或“一定不”) 研读二、认真阅读课本根据PPT,观察图形变换后与原来的图形相似吗?检测练习二、你看到过哈哈镜吗?哈哈镜中的形象与你本人相似吗?平面镜呢?研读三、认真阅读课本总结:相似多边形的性质,判定。

知道相似比的概念。

完成例题。

研读四、问题探究:如图,DE∥BC,求AD AE DEAB AC BC==,并证明△ADE 与△ABC相似。

解:由图形可知 21243AD AB ==+ 2.512.553AE AC ==+ 3193DE BC == 所以AD AE DE AB AC BC== 又因为DE ∥BC ,所以∠ A=∠A ,∠ADE=∠ABC ,∠AED=∠ACB所以△ADE 与△ABC 相似。

四、完成跟踪训练(PPT)五、归纳小结(一)这节课我们学到了什么? (二)你认为应该注意什么问题?六、作业布置:完成课后练习.。

九年级数学下册(27.1)图形的相似导学案

九年级数学下册(27.1)图形的相似导学案

27.1图形的相似学习目标:1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、 了解成比例线段的概念,会确定线段的比.3.会根据相似多边形的判定识别两个多边形是否相似,并会运用其性质进行相关的计算. (一)基础我梳理 1、相似图形的定义:观察下列几幅图片,你能发现什么?你能对图片特点进行归纳吗?得到相似图形的概念定义:形状相同的图形称为 ;练习1:观察图形A-G ,其中哪些与图形1、2或3相似2.下列说法中正确的是( )A.小明上幼儿园时的照片与上高中时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的 2.成比例线段由下面的格点图可知,=''B A AB,=''C B BC,这样''B A AB与''C B BC会有 的关系; 归纳:对四条线段a 、b 、c、d ,如果其中两条线段的比与另外两条线段的比 ,如)(bc ad dcb a ==或,则这四条线段叫做成比例线段,简称 ; 练习1、已知线段a 、b 、c 、d 成比例,若a=2,b=4,d=8,则c = ;2、下列各组线段,是成比例线段的是( ) A 、1cm,2cm,3cm,4cm B 、1cm,2cm,2dm,4cm C 、3cm,5dm,9cm,13dm D 、3cm,6cm,6cm,1.2dm3、相似图形性质:相似多边形的对应角______,对应边的比_______.4、相似图形判定:如果两个多边形的对应角_____,对应边的比______,那么这两个多边形_______. 相似比:相似多边形________的比称为相似比.结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.练习1、下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.(7)所有的矩形(8)所有的菱形(9)所有的平行四边形 A .3个 B .4个 C .5个 D .6个练习2、如图,四边形ABCD 和EFGH 相似,求角βα和的大小和EH 的长度x .27.1-6练习3、已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长.(二)达标我能行1、△ABC与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是(). A.32 B .23 C .52 D .942、在比例尺为1﹕10 000 000的地图上,量得甲、乙两地之间的距离是30 cm ,求两地的实际距离大约是 km ;3、AB 两地的实际距离为2500m ,在一张平面图上的距离是5cm ,那么这张平面地图的比例尺是 4.如图所示的两个直角三角形相似吗?为什么?5.如图所示的两个五边形相似,求未知边a 、b 、c 、d 的长度.5.如图,AB ∥EF ∥CD ,CD=4,AB=9,若梯形CDEF 与梯形EFAB 相似,求EF 的长.1 2 3C D E F A B 510152025。

九年级数学下册人教版27.1图形的相似优秀教学案例

九年级数学下册人教版27.1图形的相似优秀教学案例
(五)作业小结
在课堂教学结束后,我会布置一些作业,让学生进一步巩固所学知识。同时,我会提醒学生在完成作业时注意运用相似图形的性质,解决实际问题。作业小结环节有助于学生巩固课堂所学,提高他们的应用能力。
五、案例亮点
1.生活实例导入:通过展示生活中的实例,引导学生关注相似图形在实际中的应用,激发学生的学习兴趣,引出相似图形的概念。这种教学方法使学生能够更好地理解抽象的数学概念,并感受到数学与生活的紧密联系。
三、教学策略
(一)情景创设
在教学过程中,我注重创设贴近学生生活实际的情景,激发学生的学习兴趣。例如,通过展示实际生活中的图片、模型等,引导学生关注相似图形在生活中的应用,从而引出相似图形的概念。同时,我还会设计一些有趣的实践活动,如让学生自己动手绘制、变换图形,使其在实际操作中感受相似图形的性质。
(二)问题导向
4.反思与评价:在教学过程中,我注重引导学生进行反思与评价,使其能够及时发现自己的不足,调整学习方法。这种教学方法有助于学生建立自信,提高学习兴趣,培养良好的学习习惯。
5.多媒体教学手段:我运用动画、图片等多媒体教学手段,形象地展示相似图形的变化过程,帮助学生建立起空间想象能力。这种教学方法使抽象的数学概念更加直观,有助于学生更好地理解和掌握知识点。同时,多媒体教学手段也使课堂更加生动有趣,提高了学生的学习兴趣。
在教学过程中,我以生活实际为出发点,设计了一系列具有针对性和实用性的教学活动,旨在激发学生的学习兴趣,提高学生的动手操作能力和解决问题的能力。同时,我也注重引导学生从直观图形中抽象出相似图形的共同特征,培养学生的高级思维能力。
二、教学目标
(一)知识与技能
1.学生能够理解相似图形的概念,掌握相似比、对应角、对应边等基本性质。

人教版九年级数学下册第二十七章《相似》27.1图形的相似(教案)

人教版九年级数学下册第二十七章《相似》27.1图形的相似(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相似图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,学生们对于相似在实际生活中的应用提出了很多有趣的想法,这说明他们在思考问题时能够联系实际,这是我很乐意看到的。但同时,我也发现有些学生在讨论中不够主动,可能是因为他们对知识点的掌握不够自信。在未来的教学中,我需要更多地鼓励这些学生,帮助他们建立信心。
我还注意到,在教学难点解析部分,尽管我尽量用简单明了的语言和丰富的例子来解释,但仍有学生表现出了一定的困惑。这告诉我,可能需要寻找更多的教学策略来突破这些难点,比如通过分组辅导或者设置课后小灶课程,为学生提供更多的个别指导。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体形状相似的情况?”比如,放大镜下的图形和原图形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似图形的奥秘。
4.培养学生的数学建模素养,通过相似知识的应用,构建数学模型,解决实际情境中的几何问题。
5.培养学生的创新意识和团队合作精神,在探索相似图形的活动中,鼓励学生提出新思路,与他人合作交流,共同解决问题。
三、教学难点与重点
1.教学重点
-理解并掌握相似图形的定义及其性质,特别是相似三角形的判定方法(AA、SSS、SAS)。

人教版-数学-九年级下册---27.1 图形的相似 导学案

人教版-数学-九年级下册---27.1 图形的相似 导学案

27.1 图形的相似学习目标、重点、难点【学习目标】1.理解并掌握两个图形相似的概念;了解成比例线段的概念,会确定线段的比 .2.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.【重点难点】1.相似图形的概念与成比例线段的概念;相似多边形的主要特征与识别.2.成比例线段概念;运用相似多边形的特征进行相关的计算.知识概览图相似多边形的特征:对应角相等,对应边的比相等判断两个多边形相似:对应角相等,对应边的比相等比例线段:有四条线段,其中两条线段的比与另两条线段的比相等,称这四条线段是比例线段新课导引【生活链接】如下图所示,有用同一张底片洗出的不同尺寸的照片,也有一辆汽车和它的模型,这些都给我们以形状相同的图形的形象.【问题探究】这种形状相同的图形叫做相似图形,两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.那么相似的图形具有哪些性质呢?教材精华知识点1 相似图形我们把形状相同的图形叫做相似图形.两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.例如:如图27-1所示的几组图形都是形状相同、大小不同的图形,因此这几组图形分别都是相似图形.当两个图形的形状相同、大小也相同时,这两个图形也是相似图形,它们是特殊的相似图形:全等形.例如:如图27-2所示,△ABC与△A′B′C′的形状相同,并且大小也相同,因此这两个三角形相似,并且这两个三角形全等.拓展所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的差异,但也不能认为是“形状相同”.知识点2 比例线段对于四条线段a,b,c,d,如果其中两条线段的比(即它们长度的比)与另两条线段的图形的相似比相等,如a c b d=(即ab =bc ),我们就说这四条线段是成比例线段,简称比例线段. (1)式子a cb d =也可以写成a :b =c :d ,通常这里的a 叫做第一比例项,b 叫做第二比例项,c 叫做第三比例项,d 叫做第四比例项.(2)有时在a c b d =中,b =c ,例如:4669=,这时我们把b 叫做a ,d 的比例中项,此时b 2=ad .(3)在式子a c b d=的两边同时乘以bd ,得ad =cb ,在与比例有关的计算中,我们常通过上述变形转化字母之间的关系.拓展 通常情况下,四条线段a ,b ,c ,d 的单位应该一致,但有时为了计算方便,a ,b 的单位一致,c ,d 的单位一致也可以.知识点3 相似多边形对应边成比例,对应角相等的两个多边形叫做相似多边形.拓展 在多边形中,只有当“对应边成比例”、“对应角相等”这两个条件同时成立时,才能说明两个多边形是相似多边形.知识点4 相似多边形的性质相似多边形的对应角相等,对应边的比相等.例如:若△ABC 与△A ′B ′C ′相似,则∠A =∠A ′,∠B =∠B ′,∠C =∠C ′,AB AC BC A B A C B C ==''''''. 拓展 如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似. 知识点5 相似比相似多边形对应边的比称为相似比.拓展 相似多边形面积的比等于相似比的平方.规律方法小结 (1)相似的两个图形之间大小、方向、位置可以相同,也可以不同,但它们的形状必须相同.如:两张大小不同的世界地图或中国地图;两面大小不同的中国国旗;同一底片、尺寸不同的两张照片.有些图形之间很相像,但不相似,如:哈哈镜中人的形象与本人不相似;农历十五晚上的月亮与十六晚上的月亮虽然很相像,但并不相似.(2)学习本节知识时要充分运用转化思想,即把求证的线段之间的关系转化为易证、易求的线段间的另一种关系,同时,对于给出两条线段的比而没有指明两条线段的大小关系时,要分类讨论.探究交流 当相似比为1时,相似的两个图形之间有什么关系?点拨 相似比为1的两个图形是全等形.课堂检测基本概念题1、下列多边形中,一定相似的是 ( )A .两个矩形B .两个菱形C .两个正方形D .两个平行四边形2、下列命题中,正确的是 ( )A .相似多边形是全等多边形B .不全等的多边形不是相似多边形C .全等多边形是相似多边形D .不相似的多边形可能是全等多边形3、如果线段a是线段b、线段c的比例中项,b=3,c=12,那么线段a的长是多少?基础知识应用题4、如果两地的实际距离为750m,图上距离为5 cm,那么这张图的比例尺是多少?5、已知四边形ABCD与四边形A′B′C′D′相似,且AB:BC:CD:DA=20:15:9:8,四边形A′B′C′D′的周长为26,求四边形A′B′C′D,的各边长.综合应用题6、等腰梯形ABCD与等腰梯形A′B′C′D′,相似,AD=BC,∠A=65°,AB=8 cm,A′B′=6 cm,AD=5 cm,求A′D′的长及梯形A′B′C′D′各内角的度数.7、已知相同时刻的物高与影长成比例,如果高为1.5 m的竹竿的影长为2.5 m,那么影长为30 m的旗杆的高度为 ( )A.20 m B.16 mC.18 m D.15 m探索与创新题8、已知线段AB=8,C为线段AB的黄金分割点,求AC:BC的值.体验中考在同一时刻,身高为1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为 ( )A.4.8米 B.6.4米C.9.6米 D.10米学后反思附:课堂检测及体验中考答案课堂检测1、分析根据相似多边形的定义,两个矩形只满足对应角相等,而对应边不一定成比例;两个菱形只满足对应边成比例,而对应角也不一定相等;两个正方形的对应边成比例,对应角都是90°,一定相似;两个平行四边形的对应边不一定成比例,对应角也不一定相等.故选C.【解题策略】判断两个多边形是否相似,必须同时具备对应角相等、对应边的比相等,这两个条件缺一不可.2、分析全等多边形是特殊的相似多边形.故选C.【解题策略】如果两个多边形全等,则一定相似,但是如果两个多边形相似,则不一定全等.3、分析四条线段a,b,c,d是成比例线段,若第二比例项和第三比例项是两条相同的线段,即a:b=b:c,则把b叫做a和c的比例中项.将a:b=c:d变形,可得到bc =ad,当a:b=b:c时,有b2=ac.解:∵a是b,c的比例中项,且b=3,c=12,∴a2=bc=3×12=36,∴a=±6.∵a是线段,∴线段a的长是6.【解题策略】如果线段a是线段b,c的比例中项,那么a2=bc.(其中a,b,c均为正数)4、分析图的比例尺是一种比例关系,是图上距离与实际距离的比,通常写成1:x 的形式,也就是说,图上的1 cm相当于实际的x cm,如某图的比例尺为1:40000,就是说图上的1 cm相当于实际的40000 cm,即400 m.解:∵750 m=75000 cm,∴5:75000=1:15000,即这张图的比例尺是1:15000.【解题策略】不论是将图形放大还是缩小,比例尺都是图上距离与实际距离的比.5、分析根据四边形ABCD各边的比为20:15:9:8可得四边形A′B′C′D′各边的比也为20:15:9:8,再根据四边形A′B′C′D′的周长为26,可求出各条边的长.解:∵四边形ABD与四边形A′B′C′D′相似,且AB:BC:CD:DA=20:15:9:8,∴A′B′:B′C′:C′D′:D′A′=20:15:9:8.又∵四边形A′B′C′D′的周长为26,∴A′B′=26×20201598+++=10,B′C′=26×15201598+++=7.5,C′D′=26×9201598+++=4.5,D′A′=26×20201598+++=4,即四边形A′B′C′D′的各边长分别为A′B′=10,B′C′=7.5,C′D′=4.5,D ′A ′=4.【解题策略】 相似多边形的相似比等于对应边的比.6、分析 充分利用相似多边形的对应角相等、对应边成比例的性质和等腰梯形的性质来解题.解:∵等腰梯形ABCD 与等腰梯形A ′B ′C ′D ′相似,∴∠A =∠A ′=65°,AB AD A B A D ='''', 即856A D ='',∴A ′D ′=154(cm), ∴B ′C ′=154cm ,∠A ′=∠B ′=65°, ∴∠C ′=∠D ′=180°-65°=115°.【解题策略】 本题是一道综合性题目,在运用相似多边形性质的同时也运用了等腰梯形的性质.7、分析 本题考查比例线段的基本性质.因为同一时刻物高与影长成比例,所以2.5301.5=旗杆的高度,∴旗杆的高度=30 1.52.5⨯=18(m).故选C . 【解题策略】 解决此类问题时,也可以根据比例式列出方程,通过解方程求出旗杆的高度.8、分析 黄金分割点指的是线段上的某一点,它将线段所分成的两条线段中,较长的一条线段是较短的一条线段和整条线段的比例中项,其中较长的一条线段与整条线段的比值叫做黄金比,黄金比的近似值约为0.618.解:当AC >BC 时,AC -1),∴BC =AB -AC =8--1)=12-=4(3),∴AC :BC -1):4(3当AC <BC 时,BC -1),∴AC =AB -BC =4(3),∴AC :BC =4(3- 【解题策略】 对于给出两条线段的比,而没有指明两条线段的大小关系时,要分类讨论.体验中考 分析 设这棵树的高度为x 米,则1.6:0.8=x :4.8,解得x =9.6.故选C .【解题策略】 相同时刻的物高与影长成比例.。

新人教版九年级数学下 27.1 图形的相似学案1

新人教版九年级数学下 27.1 图形的相似学案1

图形的相似课题:27.1 图形的相似(1)学习目标:1、知识和技能:通过对事物的图形的观察、思考和分析,认识理解相似。

2、过程和方法:经历动手操作的活动过程,增强学生的观察、动手能力。

3、情感、态度、价值观:体会图形的相似在现实生活中的存在与应用,进一步提高学生的数学应用意识。

学习重点:认识图形的相似,形成图形相似的概念学习难点:相似图形的认识导学方法:自主探索法课时:1课时导学过程:一、课前预习预习课本内容,完成《导学案》的教材导读和自主测评。

二、课堂导学1.导入请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?给我们什么样的印象呢?2.出示任务,自主学习相似图形的概念:观察:请同学们观察教材P34图27.1-1想想:用同一张底片洗出不同尺寸的照片;大小不同的两个足球;一辆汽车和它的模型,它们给我们什么印象?观察:教材P34图27.1-2,每组中的两个图形的大小之间有什么联系?3.合作探究两个相似图形之间的关系人站在平面镜前看到的镜像及哈哈镜里看到的镜像,它们相似吗?为什么?三、展示反馈四、学习小结1、相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形)。

2、相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形。

3、两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形。

五、达标检测1.教材P35的练习.2.《导学案》基础反思和展题设计.课后作业:1. 课本习题.2.《导学案》难点探究和能力提升.板书设计:1、相似图形的概念2、两个相似图形之间的关系课后反思:通过本节课的学习,。

新人教版九年数学下导学案(27.1 图形的相似2)

新人教版九年数学下导学案(27.1  图形的相似2)

班 姓名 成绩: 优 良 差 学习目标1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.【导读指导】1.情景导入2.明确目标3.预习检测观察图片,体会相似图形性质(教材P36页)(1) 图中的111ABC ∆是由正ABC ∆放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?(2) 对于图中两个相似的正六边形,是否也能得到类似的结论?(3)什么叫成比例线段?(阅读课本回答)【导学指导】4.探究展示实验探究:如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.结论:(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______. 几何语言:在ABC ∆和111ABC ∆中 若111;;A A B B C C ∠=∠∠=∠∠=∠.111111C A AC C B BC B A AB ==则ABC ∆和111ABC ∆相似 (2)相似比:相似多边形________的比称为相似比.问题:相似比为1时,相似的两个图形有什么关系?结论:相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.【导练指导】5.拓展测评1.下列说法正确的是( )A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似2.ABC ∆与DEF ∆相似,且相似比是23,则DEF ∆ 与ABC ∆与的相似比是( ). A .23 B .32 C .25 D .493.已知四边形ABCD 与四边形1111ABC D 相似,且11111111:::7:8:11:14A B B C C D D A =,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长.分析:因为两个四边形相似,因此可根据相似多边形的对应边的比相等来解题.解:【导思指导】6.小结收获7.点评激励8.课后作业1.下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个2.如图,AB ∥EF ∥CD ,4CD=,9AB =,若梯形CDEF 与梯形FEAB 相似,求EF 的长.。

人教版九年级下册数学《图形的相似》导学案

人教版九年级下册数学《图形的相似》导学案

学习主题:27.1图形的相似(2)学习目标:1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.2.能根据相似比进行计算.3.能根据定义判断两个多边形是否相似,训练学生的判断能力.4.能根据相似比求长度和角度,培养学生的运用能力.学习过程:一知识回顾1、相似图形的定义:二问题引入1、思考:(1)、下图是两个等边三角形,它们相似吗?它们的对应角、对应边分别有什么关系?答:文字叙述:。

(2)、思考:下图是两个正六边形,它们相似吗?它们的对应角、对应边分别有什么关系?答:总结:从上述两个问题的探索中你能得到什么结论?答:2、任意两个相似三角形,它们的对应角、对应边有上面的结论吗?答:结论:任意两个相似三角形,它们的对应角、对应边。

HGFE DB A2124cm118︒83︒78︒21cm18cm 3、图中两个四边形是相似形,仔细观察这两个图形,它们的对应边之间是否有以上的关系呢?对应角之间又有什么关系? 答:结论:任意两个相似多边形,它们的对应角 、对应边 。

由此,我们得到了:相似多边形的性质: 。

相似多边形的判定: 。

并且相似多边形对应边的比叫 。

三 经典例题例题1.如图(多媒体出示),四边形ABCD 和EFGH 相似,求∠1、∠2的度数和EF 的长度.跟踪练习1如图,有一块呈三角形形状的草坪,其中一边的长是20 m ,在这个草坪的图纸上,这条边长5 cm ,其他两边的长都是3.5 cm ,求该草坪其他两边的实际长度.例题2、根据下图所示,这两个多边形相似吗?说说你的理由.跟踪练习2正方形的边长a=10,菱形的边长b=5它们相似吗?说明理由.例题3、如下图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形。

问题1:指出他们的对应角、对应边.问题2:左边的四边形与右边的四边形的相似比是多少?右边与左边的相似比呢?四基础演练1.判断题⑴两个菱形是相似形. ( )⑵两个矩形是相似形. ( )⑶两个正方形是相似形. ( )⑷两个正多边形是相似形. ( )⑸有一个角相等的两个等腰梯形是相似形 .( )⑹两个直角梯形是相似形. ( )2.点P在线段AB上,且AP∶PB=2∶5,则AB∶PB=,AP∶AB= .3.某市城市广场,是一个因周边环境设计建造的一个不规则多边形,具有和谐的自然美.设计图的比例尺是1∶10 000.则图上多边形与实际多边形的相似比是 .4.下列图形中,必是相似形的是()A.都有一个角是40º的两个等腰三角形B.都有一个角为50º的两个等腰梯形C.都有一个角是30º的两个菱形D.邻边之比为2:3的两个平行四边形.5.如图,有三个矩形,其中相似的是( )A.甲和乙B.甲和丙C.乙和丙D.没有相似的矩形6.一个四边形的各边长分别为1 cm,2 cm,3 cm,4 cm,另一个与它相似的四边形的周长是40 cm 那么后一个四边形的最长边的长是()A.1 cm.B. 4 cm.C. 10 cm.D.16 cm.7.请在方格子内画出一个与已知图形相似的图形.8.如图,四边形ABCD ∽四边形A ′B ′C ′D ′,∠A=∠A ′=55°, ∠B=65 ° ,∠D ′=128°,AD=12,A ′D ′=6,A ′B ′=10,B ′C ′=8.求∠ C ′的大小和AB ,BC 的长度.9.在边长分别为6和13的矩形的较长边上取一点,作平行于另一边的直线将它分为两个小矩形,尽寸如图,求证这两个小矩形相似.10.在一矩形ABCD 的花坛四周修筑小路,使得相对两条小路的宽均相等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十七章 相似
27.1 图形的相似
学习目标:
1.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念. 了解成比例线段的概念,会确定线段的比.
2.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.
3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算.
学习重、难点:
1.重点:相似图形的主要特征与识别.
2.难点:运用相似多边形的特征进行相关的计算.
学习过程:
一、依标独学
1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳
吗?
2 、小组讨论、交流.得到相似图形的概念 .
相似图形
3 、如图,是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?
二、围标群学
实验探究:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB 和CD ,那么这两条线段的比是多少?
成比例线段:对于四条线段,,,a b c d ,如果其中两条线段的比与另两条线段的比相等,如a c b d
=(即ad bc =),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;线段的比是一个没有单位的正数;
(2)四条线段,,,a b c d 成比例,记作a c b d
=或::a b c d =; (3)若四条线段满足a c b d
=,则有ad bc =. 小应用: 一张桌面的长 1.25a m =,宽0.75b m =,那么长与宽的比是多少?
(1)如果125a cm =,75b cm =,那么长与宽的比是多少?
(2)如果1250a mm =,750b mm =,那么长与宽的比是多少?
三、探索
1、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.
问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.
2.【结论】:
(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______. 反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在四边形ABCD 和四边形A 1B 1C 1D 1中
若1111;;D D A A B B C C ?行
=行=行=?;. 1111111
1D =AB BC C DA A B B C C D D A == 则四边形ABCD 和四边形A 1B 1C 1 D 1相似
(2)相似比:相似多边形________的比称为相似比.
问题:相似比为1时,相似的两个图形有什么关系?
结论:相似比为1时,相似的两个图形______,因此________形是一种特殊
的相似形.
四、自我检测
1.在比例尺为1:10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.
2.如图所示的两个直角三角形相似吗?为什么?
3.如图所示的两个五边形相似,求未知边a、b、c、d的长度.
五、归纳小结。

相关文档
最新文档