Comparison of response surface and kriging models for multidisciplinary design optimization

合集下载

《英语(二)》新教材课后单词(完整版)

《英语(二)》新教材课后单词(完整版)

UNIT 1 Text A New words 1.critic al[ˈkrɪtɪkl] adj. 有判断力的;判断公正(或审慎)的;批评的,爱挑剔的critic n. → critic ize vt. → critic ism n.2. non-fiction [nɒn 'fɪkʃn] n. 纪实文学← fiction n.3. position [pəˈzɪʃn] n. 观点;态度;立场4. state ment[ˈsteɪtmənt] n. 说明;说法;表态← state vt.5.question ['kwestʃən] v. 表示疑问;怀疑out of question没问题out of the question=impossible 不可能6. evaluate [ɪ'væljʊeɪt] v. 估计;评价;评估→ evalua tion n.7. context [ˈkɒntekst] n. 事情发生的背景,环境,来龙去脉8.value ['vælju:] n. values [pl.]是非标准;价值观valu able adj. 有价值的→ in valuable=priceless无价的value less adj.不足道的,没有价值的9. represent [ˌreprɪ'zent] v. 描述;表现representat ive[ˌreprɪˈzentətɪv] adj./n.10. asser tion [əˈsɜːʃn] n. 明确肯定;断言← assert vt.11. sufficient [səˈfɪʃnt] adj. 足够的;充足的同enough/adequatesufficien cy n.in sufficient adj. not enough12. statistic n. statistics [pl.]统计数字;统计资料13. integrate ['ɪntɪɡreɪt] v.(使)合并,成为一体→integra tion n. integrate A with B 把A和B合并14. author ity[ɔ:ˈθɒrəti] n.专家;学术权威;泰斗an/the authority on sth.author ize vt.授权15. compare [kəm'peə(r)] v. 比较;对比-->comparison n.compare A with B 拿A跟B作比较compare A to B 拿A跟B作比较;把A比作B16. subject ['sʌbdʒɪkt] n. 主题;题目;题材17. consistent [kənˈsɪstənt] adj. 相符的;符合的→consisten cy n.be consistent with与……相符/一致18. in consistency[ˌɪnkən'sɪstənsɪ] n. 不一致19. assump tion [ə'sʌmpʃn] n. 假定;假设← assume vt.20. case [keɪs] n. 具体情况;事例in case of+n. 如果,万一in case that +从句a case in point = a good/typical example一个很好/典型的例子in this case在这种情况下21. direct ly [dəˈrektli] adv. 直接地;径直地← direct adj.in direct adj.间接的22. ident ify [aɪ'dentɪfaɪ] v. 找到;发现;辨别,认出←ident ity n.identical adj.相同的-->be identical to = be the same as23. valid ['vælɪd] adj. 符合逻辑的;合理的;确凿的valid ity [vəˈlɪdəti] n. 有效性,正确(性)in valid adj.无效的24. cred ible[ˈkredəbl] adj. 可信的;可靠的←credit n.in credible=un believ able adj.25. landmark[ˈlændmɑ:k] n.(标志重要阶段的)里程碑26. relevant [ˈreləvənt] adj. 紧密相关的;切题的relevan cy ['reləvənsi:] n. 关联;恰当ir relevant adj.无关的be relevant to与……有关27. curren t ['kʌrənt] adj. 现时发生的;当前的current affairs时事current ly adv.curren cy n.28. appropriate [ə'prəʊprɪət] adj. 合适的;恰当的【同proper】in appropriate = im proper不恰当的It's (not) appropriate that ….29. bias ['baɪəs] n. 偏见;偏心;偏向30. considerably [kənˈsɪdərəbli] adv. 非常;很;相当多地consider vt. --> consider doing sth.考虑做某事considering conj.鉴于……,考虑到……consider able adj.值得考虑的,相当的considerate adj.体贴的--> be ~ of体贴……consider ation n.--> take sth. into consideration/account = consider31. Democrat n. (美国)民主党党员,民主党支持者民32. Republican n. (美国)共和党党员,共和党支持者33. reflect [rɪ'flekt] v. 显示;表明;表达reflec tion n.reflect ive adj.34. informed [ɪnˈfɔ:md] adj. 有学问的;有见识的←inform vt. →~ sb. of sth.well-informed / ill-informed adj.inform ation n.消息Phrases and Expressions1. apply to 使用;应用apply to sb. for sth.向某人申请……2. put forth 提出;产生= put forward3. take ... into account 考虑到;顾及=take ... into consideration = consider4. accept/take …at face value 相信表面;信以为真5. with a grain of salt 有保留地;持怀疑态度地UNIT 1 Text B New words 1. confiden ce ['kɒnfɪdəns] n.自信心;把握;机密confiden t adj.confident ial adj.be confident of sb. / sth.have / lose confidence in sb. / sth.keep sth. strictly confidential对……严加保密= keep sth. in strict confidence2. program ['prəʊɡræm] v. 训练;培养;n.节目,程序3. master y ['mɑ:stərɪ] n. 控制;驾驭master vt.master sth. well = have a good mastery of sth.4. destiny['destənɪ] n. 命运;天命;天数destine vt. --> be destined to do sth.注定……5. dramatical ly [drə'mætɪklɪ] adv. 巨大地;惊人地;显著地drama n. --> dramat ic adj. -->dramat ist n.戏剧家6. quality['kwɒlətɪ] n. 质量;品质quantity n.数量7. sub consci ous[ˌsʌbˈkɒnʃəs] adj. 下意识的;潜意识的conscious adj.有意识的--> be ~ of意识到……conscious ness n.8. please[pli:z] v. 使满意;使愉快It is difficult to please all.众口难调。

新世纪大学英语3-unit3课文翻译及单词解析

新世纪大学英语3-unit3课文翻译及单词解析

追求以公众利益为宗旨的幸福理查德·莱亚德在过去的50年里,我们西方国家的经济获得了史无前例的增长。

我们的家园、车辆、假期、工作、教育,尤其是健康,均得以改善。

依据标准经济理论,这些改善原本应该使我们更加幸福,然而,调查显示并非如此。

英国人和美国人接受幸福程度的调查时说,在过去的50年里,他们的幸福程度并没有得到改善。

抑郁症患者人数上升,同时犯罪率大幅增长也说明了人们对生活的不满足。

上述事实对我们个人以及社会优先考虑的诸多事情都提出了挑战。

事实上,我们现在的处境是人类从未经历过的。

当大多数人还在为温饱发愁时,物质条件的改善的确能令他们幸福一些。

富庶国家(比如,人均年收入在两万美元以上)的人民比贫穷国家的人民幸福一些;而贫穷国家的人民,如果稍微富裕,也会幸福得多。

然而,物质上的匮乏一旦消除,收入的增加便不如亲情、友情、邻里和睦等人际关系那么重要。

但是,我们在追求更高的收入时牺牲了太多这样的关系,这很危险。

渴望幸福是人类本性的核心。

人人都渴望这样一个社会:人们尽可能地幸福,每个人的幸福同等重要。

这应当是我们这个时代的人生哲学,应当用来指导公共利益的维护准则和每个人的行为,应当逐渐取代无法使我们更加幸福的极端的个人主义。

金钱的确是影响个人幸福的关键因素之一。

但是,金钱本身能使我们最终获得幸福吗?在任何一个社会,富人往往比穷人幸福。

然而,当一个西方国家越来越富有的时候,其人民的幸福程度在总体上并未得到改善。

随着时间的推移,我们的标准和期望随着收入的增加而上升。

盖洛普民意测验每年都向美国人提问:“一个四口之家至少需要多少钱才能在这个国家生活下去?”人们说出的数字上升的幅度与平均收入增加的幅度是一样的。

因为人们总是拿自己的收入和他人的收入以及他们惯于拥有的收入相比较,只有当他们认为和平均水准相比有所上升时才感到幸福。

这一过程反而达不到预期的目的。

我努力工作、赚更多钱的动力是:这会使我更幸福一些。

其他的社会成员也同样如此,他们也关注自己相对的生活标准。

Response Surface Methodology

Response Surface Methodology
6


Response Surface Methodology – When?
Response Surface Methods may be employed to

find factor settings that produce the “best” response
find factor settings in which operating or process specifications are satisfied
8.2 9.2 10.2 11.2 12.2 13.2
Surface Plot of Yield
Phosphoric Acid
1
14 13 12 11
0
Yield
-1
10 9 8 7 -2 -1 -1 0 1 -2 2 1 0 2
Phosphoric Acid
Nitrogen
-1 0 1
Nitrogen
2
Response Surface
The yield of a process (Y) was determined to be influenced by the amount of nitrogen (X1) and phosphoric acid (X2), i.e. Y = ƒ(X1, X2) + where is the noise or error observed in the response. If we denote the expected response by E(Y) = ƒ(X1, X2) = then the surface represented by = ƒ(X1, X2) is called a response surface.

美国FDA批准Fabhalta(iptacopan)治疗阵发性睡眠性血红蛋白尿症

美国FDA批准Fabhalta(iptacopan)治疗阵发性睡眠性血红蛋白尿症

第1期伍国羽,等. 白簕多糖颗粒剂的制备工艺研究实验结果的影响趋势,在实验次数少的情况下保证结果精度,得到各参数的最优比例。

颗粒剂符合中医药现代化、国际化的发展需求[19-21],将白簕多糖制作成颗粒剂,解决了白簕多糖粉末黏度大、易吸湿、流动性差、量取不方便等问题,提高了白簕多糖的稳定性,日常携带服用方便,依从性强,值得推广。

参考文献:[1]杨慧文, 周露, 张旭红, 等. 白簕茎多糖对链脲佐菌素致糖尿病小鼠的降血糖作用研究[J]. 现代食品科技, 2017:33(5):52-57.[2]HAMID R A, KEE T H, OTHMAN F. Anti-inflammatory andanti-hyperalgesic activities of Acanthopanax trifoliatus(L) Merr leaves[J]. Pharmacognosy Res, 2013, 5(2):129-133.[3]CHEN Z, CHENG S, LIN H, et al. Antibacterial, anti-inflammatory, analgesic, and hemostatic activities of Acantho‐panax trifoliatus (L.) merr[J]. Food Sci Nutr, 2021, 9(4):2191-2202.[4]WANG H, LI D, DU Z, et al. Antioxidant and anti-inflammatory properties of Chinese ilicifolius vegetable (Acan‐thopanax trifoliatus (L) Merr) and its reference compounds[J].Food Sci Biotechnol, 2015, 24(3): 1131-1138.[5]俞佳妮, 冯彩霞, 刘向前, 等. 白簕叶总多酚对Aβ25-35与AAPH诱导的PC12细胞氧化损伤和衰老的保护作用[J]. 浙江理工大学学报(自然科学版), 2022,49(3):1-6.[6]LI P, CHEN Y, LUO L, et al. Immunoregulatory effect ofAcanthopanax trifoliatus(L.) Merr. polysaccharide on T1DM mice[J]. Drug Des Devel Ther, 2021, 15:2629-239.[7]LIN Y, PAN J, LIU Y, et al. Acanthopanax trifoliatus (L.) Merrpolysaccharides ameliorates hyperglycemia by regulating hepatic glycogen metabolism in type 2 diabetic mice[J].Front Nutr, 2023, 10:1111287.[8]GUO L, DAI H, MA J, et al. Isolation, structure characteristicsand antioxidant activity of two water-soluble polysaccharides from Lenzites betulina [J]. BMC Chem, 2021, 15(1):19.[9]SANKHA B. Central composite design for response surfacemethodology and its application in pharmacy[M]. Rijeka: Response Surface Methodology in Engineering Science, 2021:5.[10]De SIMONE V, CACCAVO D, LAMBERTI G, et al.Wet-granulation process: phenomenological analysis and process parameters optimization[J]. Powder Technol, 2018, 340: 411-419.[11]LIU B, WANG J, ZENG J, et al. A review of high shear wetgranulation for better process understanding, control and product development [J]. Powder Technol, 2021, 381:204-223.[12]SINGH M, SHIRAZIAN S, RANADE V, et al. Challenges andopportunities in modelling wet granulation in pharmaceutical industry-A critical review[J]. Powder Technol, 2022, 403: 117380.[13]PAL D, RAJ K. Chapter 2-Properties of plant polysaccharidesused as pharmaceutical excipients[M]. Plant Polysaccharides as Pharmaceutical Excipients, 2023:25-44.[14]祁广宾. 赤藓糖醇制备研究[D]. 济南: 齐鲁工业大学, 2012.[15]MOUSAVI L, TAMIJI Z, KHOSHAYAND M R. Applicationsand opportunities of experimental design for the dispersive liquid-liquid microextraction method-A review[J]. Talanta, 2018, 190:335-356.[16]LI BX, WANG WC, ZHANG XP, et al. Integrating uniformdesign and response surface methodology to optimize thiacloprid suspension[J]. Sci Rep, 2017, 7(1): 46018.[17]KRISHNAN P. When and how to use factorial design in nursingresearch[J]. Nurse Res, 2021, 29(1): 26-31.[18]HASAN S, HASAN M A, HASSAN M U, et al. Statisticaland neural intelligence modeling for basil seed mucilage extraction optimization: Implications for sustainable and cost-effective industrial plant products[J]. Ind Crops Prod, 2023, 204: 117258.[19]XU J, XIA Z. Traditional Chinese Medicine (TCM)-Does itscontemporary business booming and globalization really reconfirm its medical efficacy & safety?[J]. Med Drug Discov, 2019, 1:100003.[20]K M P, VENKATESH P, VENKATESH M, et al. Strategiesfor revitalization of Traditional Medicine[J]. Chin Herb Med (CHM), 2019, 2(1):1-15.[21]CHEUNG H, DOUGHTY H, HINSLEY A, et al. UnderstandingTraditional Chinese Medicine to strengthen conservation outcomes [J]. People and Nature, 2021, 3(1):115-128.(责任编辑:陈翔)美国FDA批准Fabhalta(iptacopan)治疗阵发性睡眠性血红蛋白尿症美国FDA于2023年12月5日批准Fabhalta(iptacopan,CAS登记号1644670-37-0,分子式:C25H30N2O4)用于成人治疗阵发性睡眠性血红蛋白尿症(paroxysmal nocturnal hemoglobinuria, PNH)。

人教版 英语 必修二 总词表

人教版 英语 必修二 总词表

Unit 11. app [æp] n. a应用程序;应用软件(application的缩略形式)2. application [ˌæpləˈkeʃən] n. a申请(表);用途;运用;应用(程序)3. identify [aɪˈdɛntɪfaɪ] vt. i确认;认出;找到4. archaeologist [ˌɑrkɪˈɑlədʒɪst] n. a考古学家5. balance [ˈbæləns] n./vt. b平衡;均匀;使平衡6. document [ˈdɑːkjumənt] n./vt. d文件;公文;(计算机)文档;记录;记载(详情)7. dam [dæm] n. d水坝;拦河坝8. download [ˌdaʊnˈlod] n./vt. d下载;已下载的数据资料9. digital [ˈdɪdʒɪtl] adj. d数码的;数字显示的10. department [dɪˈpɑrtmənt] n. d部;司;科11. disappear [ˈdɪsəˈpɪr] vi. d消失;灭绝;消亡12. donate [ˈdonet] vt. d(尤指向慈善机构)捐赠;赠送;献(血)13. dragon [ˈdræɡən] n. d龙14. opinion [əˈpɪnjən] n. o意见;想法;看法15. attempt [əˈtɛmpt] n./vt. a企图;试图;尝试16. exit [ˈɛɡzɪt] n./vi./vt. e出口;通道;出去;离去17. entrance [ˈɛntrəns] n. e入口;进入18. former [ˈfɔrmɚ] adj. f以前的;(两者中)前者的19. forever [fɚˈɛvɚ] adv. f永远;长久地20. forgive [fɚˈɡɪv] vi./vt. f原谅;宽恕;对不起;请原谅21. further [ˈfɝðɚ] adv. f(far的比较级)更远;进一步22. fund [fʌnd] n. f基金;专款23. heritage [ˈhɛrɪtɪdʒ] n. h遗产(指国家或社会长期形成的历史、传统和特色)24. historic [hɪˈstɔrɪk] adj. h历史上著名(或重要)的;有史时期的25. image [ˈɪmɪdʒ] n. i形象;印象26. investigate [ɪnˈvɛstɪɡet] vi./vt. i调查;研究27. establish [ɪˈstæblɪʃ] vt. e建立;刽立28. issue [ˈɪʃu] n./vt. i重要议题;争论的问题;宣布;公布29. contrast [ˈkɑntræst] n./vt. c对比;对照30. contribution [ˌkɑntrɪˈbjuʃən] n. c捐款;贡献;捐赠31. committee [kəˈmɪti] n. c委员会32. comparison [kəmˈpærɪsn] n./vi./vt. c比较;相比33. conduct [kənˈdʌkt] n./vt. c行为;举止;管理方法;组织;安排;带领34. contribute [kənˈtrɪbjut] vi./vt. c捐献;捐助35. cave [kev] n. c山洞;洞穴36. clue [klʊ] n. c线索;提示37. creatively [kriˈeɪtɪvli] adv. c创造性地;有创造力地38. creative [krɪˈetɪv] adj. c创造性的;有创造力地39. quality [ˈkwɑləti] n./adj. q质量;品质;素质;特征;优质的;高质量的40. quote [kwot] vt. q引用41. likely [ˈlaɪkli] adj./adv. l可能的;可能地42. loss [lɔs] n. l丧失;损失43. limit [ˈlɪmɪt] n./vt. l限度;限制;限制;限定44. mount [maʊnt] n./vt./vi. m山峰;爬上,骑上;爬,登上45. mirror [ˈmɪrɚ] n. m镜子46. overseas [ˌovɚˈsiz] adj./adv. o海外的;在海外47. paraphrase [ˈpærəfreɪz] n./vi./vt. p(用更容易理解的文字)解释48. parade [pəˈred] n./vi. p游行;检阅;游行庆祝;游行示威49. pyramid [ˈpɪrəmɪd] n. p(古埃及的)金字塔;棱锥体50. process [ˈprɑsɛs] n./vt. p过程;进程;步骤;处理;加工51. professional [prəˈfɛʃənl] n./adj. p专业的;职业的;专业人员;职业选手52. promote [prəˈmot] vt. p促进;提升;推销;晋级53. proposal [prəˈpozl] n. p提议;建议54. prevent [priˈvɛnt] vt. p阻止;阻碍;阻挠55. preserve [prɪˈzɝv] vt./n. p保存;保护;维持;保护区56. protest [ˈprotɛst] n./vi/vt. p抗议;(公开)反对;抗议57. relic [ˈrɛlɪk] n. r遗物;遗迹58. republic [rɪˈpʌblɪk] n. r共和国59. roof [ruf] n. r顶部;屋顶60. cypress [ˈsaɪprəs] vt. c柏树61. sheet [ʃit] n. s—张(纸);床单;被单62. temple [ˈtɛmpl] n. t庙;寺63. tradition [trəˈdɪʃən] n. t传统;传统的信仰或风俗64. chiwen [ˈtʃəwən] n. c鸱吻65. worthwhile [ˈwɝθˈwaɪl] adj. w值得做的;值得花时间的66. within [wɪˈðɪn] prep./adv. w在(某段时间、距离或范围)之内67. throughout [θrʊˈaʊt] prep. t各处;遍及;自始至终68. take part in 参与(某事);参加(某活动)69. give way to 让步;屈服70. keep balance 保持平衡71. lead to 导致72. make a proposal 提出建议73. turn to 向......求助74. prevent…from…阻止;不准75. donate…to…向......捐赠......76. make sure 确保;设法保证77. all over the world 在世界各地\Unit 21. antelope [ˈæntɪlop] n. a羚;羚类动物2. average [ˈævərɪdʒ] n./adj. a平均数;平均水平;平均的;正常的;普通的3. binoculars [bɪˈnɑkjəlɚz] n. b双筒望远镜4. beauty [ˈbjuti] n. b美;美人;美好的东西5. dolphin [ˈdɑlfɪn] n. d海豚6. deer [dɪr] n. d鹿7. due [du] adj. d办由于;因为8. observe [əbˈzɝv] n. o观察(到);注视;遵守9. adapt [əˈdæpt] vi./vt. a适应;使适应;使适合10. alarm [əˈlɑrm] vt./vi. a使惊恐;使害怕;使担心;恐慌;警报;警报器11. alarming [əˈlɑrmɪŋ] adj. a办惊人的;使人惊恐的12. attack [əˈtæk] n./vi./vt. a攻击;抨击13. aware [əˈwɛr] adj. a办知道;发觉;有……意识的14. authority [əˈθɔrəti] n. a官方;权威;当权15. herb [ɝb] n. h兽群16. fur [fɝ] n. f毛(皮); 毛皮衣服17. fin [fɪn] n. f(鱼的)鳍18. goods [ɡʊdz] n. g商品;货物19. habitat [ˈhæbəˈtæt] n. h(动植物的)生活环境;栖息地20. harmony [ˈhɑrməni] n. h和谐;融洽21. hunt [hʌnt] vi./vt. h打猎;捜寻;追捕22. hunter [ˈhʌntɚ] n. h猎人23. effective [ɪˈfɛktɪv] adj. e有效的;生效的24. exist [ɪɡˈzɪst] vi. e存在;生存25. extinction [ɪkˈstɪŋkʃən] n. e灭绝26. extinct [ɪkˈstɪŋkt] adj. e已灭绝的27. illegally [ɪˈliːɡəli] adv. i不合法地;非法地28. illegal [ɪˈligl] adj. i不合法的;非法的29. immediately [ɪˈmidɪətli] adv. i立刻30. emotion [ɪˈmoʃən] n. e感情;情感;情绪31. endanger [ɪnˈdendʒɚ] vt. e使遭受危险;危害32. insect [ˈɪnsɛkt] n. i昆虫33. intend [ɪnˈtɛnd] vi./vt. i打算;计划;想要34. kangaroo [ˌkæŋɡəˈru] n. k袋鼠35. concern [kənˈsɝn] vt. c涉及;让......担忧36. concerned [kənˈsɝnd] adj. c办担心的;关切的37. koaLa [koˈɑlə] n. k树袋熊;考拉38. creature [ˈkritʃɚ] n. c生物;动物39. living [ˈlɪvɪŋ] n./adj. l居住的;活的;在用的;生活;生计40. mass [mæs] n./adj. m大量的;广泛的;大量;堆;群41. measure [ˈmɛʒɚ] n./vt. m措施;方法;测量;度量;估量42. neighbourhood [ˈneɪbərhʊd] n. n临近的地方;街区43. net [nɛt] n./adj. n网(Internet);办净得的;纯的44. plain [plen] n./adj. p平原; 简单明了的;直率的;平凡的45. poster [ˈpostɚ] n. p海报46. profit [ˈprɑfɪt] n. p利润;利益47. pressure [ˈprɛʃɚ] n. p压力;要求48. prince [prɪns] n. p王子;王孙;亲王49. rate [ret] n./vt. r速度;(比)率;划分等级50. rating [ˈretɪŋ] n. r等级;级别51. reduce [rɪˈdʊs] vt. r减少52. recover [rɪˈkʌvɚ] vi./vt. r恢复;康复;找回;寻回53. remind [rɪˈmaɪnd] vt. r提醒;使想起54. remove [rɪˈmuv] vt. r去除;移开;脱去55. reserve [rɪˈzɝv] n./vt. r保护区;储藏(量);预订;预留;保留56. shark [ʃɑrk] n. s鲨鱼57. sacred [ˈsekrɪd] adj. s神圣的;受尊敬的58. skin [skɪn] n. s皮;皮肤59. species [ˈspiʃiz] n. s物种60. stir [stɝ] vt. s激发;搜动61. shoot [ʃut] vt./vi. s杀;射伤;发射62. unusual [ʌnˈjʊʒʊəl] adj. u特别的;不寻常的63. whale [wel] n. w鲸64. threat [θrɛt] n. t威胁65. threaten [ˈθrɛtn] vt. t威胁;危及66. on earth (放在疑问词之后表示强调)究竟;到底67. die out 灭亡;逐渐消失68. aware of 意识到;知道69. on average 平均70. make progress 取得进步71. concerned about 对......关切的;为……担忧的72. adapt to 适应73. under pressure 在承受压力74. Tibetan anteLcce 藏羚羊75. remind sb of sb/sth 使某人想起(类似的人或物)76. watch ove 保护;照管;监督77. day and night 曰曰夜夜;夜以结曰78. due to 由于;因为79. bird field guide 鸟类图鉴80. search for 捜索;查找81. Yangtze River dolphin 白鳍豚82. stir up 激起Unit 31. access [ˈæksɛs] n./vt. a通道;(使用、查阅、接近或面见的)机会;进入;使用;获取2. identity [aɪˈdɛntəti] n. i身份;个性3. battery [ˈbætri] n. b电池4. benefit [ˈbɛnɪfɪt] n./vt./vi. b益处;使受益;得益于5. blog [blɑg] n./vt. b博客;写博客6. blogger [ˈblɒɡə(r)] n. b博客作者;博主7. button [ˈbʌtn] n. b按钮;纽扣8. author [ˈɔθɚ] n. a作者;作家9. database [ˈdetəbes] n. d数据库;资料库10. define [dɪˈfaɪn] vt. d给……下定义;界定;解释11. discount [dɪsˈkaʊnt] n./vt. d折扣;打折12. distance [ˈdɪstəns] n. d距离13. account [əˈkaʊnt] n. a账户;描述14. engine [ˈɛndʒɪn] n. e引擎;发动机;火车头15. file [faɪl] n. f文件;文件夹;档案16. false [fɔls] adj. f办假的;错误的17. familiar [fəˈmɪljɚ] adj. f办熟悉;熟知18. function [ˈfʌŋkʃən] n./vi. f功能;作用;机能;起作用;正常工作;运转19. guideline [ˈɡaɪdlaɪn] n. g准则; 指导原则20. embarrassing [ɪmˈbærəsɪŋ] adj. e让人难堪(尴尬;害羞)的21. inspire [ɪnˈspaɪɚ] vt. i鼓舞;激励;启发思考22. cash [kæʃ] n. c现金;金钱23. conference [ˈkɑnfərəns] n. c会议;研讨会;正式会谈24. confirm [kənˈfɝm] vt. c确认;使确信25. convenient [kənˈvinɪənt] adj. c方便的;近便的26. case [kes] n. c盒;箱;情况;案件27. click [klɪk] vt./vi. c点击28. network [ˈnɛtwɝk] n./vt./vi. n(互联)网络;网状系统;人际网将……连接成网络;联播;建立工作关系29. particular [pɚˈtɪkjəlɚ] adj. p特定的;特别的;讲究的30. plus [plʌs] conj./n./prep. p而且;此外;加号;优势;加;另加31. privacy [ˈpraɪvəsi] n. p隐私;私密32. province [ˈprɑvɪns] n. p省33. press [prɛs] vt. p按,压;敦促34. resident [ˈrɛzɪdənt] n./adj. r居民;(美国的)住院医生;(在某地)居住的35. rude [rud] adj. r办粗鲁的;无礼的36. cyberbully ['saɪbəˈbʊli] n./vt./vi. c网霸;网络欺凌37. software [ˈsɔftwɛr] n. s软件38. surf [sɝf] vt./vi. s浏览;冲浪39. stream [strim] n./vt./vi. s流播(不用下载直接在互联网上播放音视频);流出;流动;小河;溪流40. stuck [stʌk] adj. s办卡住;陷(入);困(于)41. target [ˈtɑrɡɪt] n./vt. t目标;对象;靶子;把……作为攻击目标42. tip [tɪp] n. t忠告;诀窍;实用的提示43. troll [trol] n. t发挑衅帖子的人;恶意挑衅的帖子44. charity [ˈtʃærəti] n. c慈善;慈善机构(或组织)45. chat [tʃæt] vi. c聊天;闲聊46. tough [tʌf] adj. t办艰难的;严厉的47. update [ˌʌpˈdet] n./vt. u更新;向……提供最新信息;更新;最新消息48. upset [ʌpˈsɛt] adj./vt. u心烦的;苦恼的;沮丧的;使烦恼;使生气;搅乱49. Wi-Fi [ˈwaɪfaɪ] n. W无线保真(用无线电波而非网线在计算机网络传输数据的系统)50. theft [θɛft] n./vt. t偷(窃);盗窃罪51. blog post 博文;博客帖子52. search engine (互联网上的)搜索引擎53. identity card 身份证54. keep sb. company 陪伴某人55. now that 既然;由于56. go through 经历;度过;通读57. in shape 状况良好58. keep track of 掌握......的最新消息;了解……的动态59. make fun of 取笑;戏弄60. keep sth. in mind 牢记Unit 41. ancestor [ˈænsɛstɚ] n. a祖宗;祖先2. battle [ˈbætl] n./vt./vi. b战斗;搏斗;奋斗3. belong [bɪˈlɔŋ] vi. b应在(某处);适应4. beer [bɪr] n. b(—杯)啤酒5. butter [ˈbʌtɚ] n./vt. b黄油;奶牛;涂奶油6. dot [dɑt] n./vt. d点;小(圆)点;加点;遍布7. defence [dɪˈfens] n. d防御;保卫8. descendant [dɪˈsɛndənt] n. d后裔;后代;子孙9. generous [ˈdʒɛnərəs] adj. g慷慨的;大方的;丰富的10. amount [əˈmaʊnt] n. a金额;数量11. announce [əˈnaʊns] vt. a宣布;通知;声称12. approach [əˈprotʃ] n./vt./vi. a方法;途径;接近;靠近;着手处理13. achievement [əˈtʃivmənt] n. a成就;成绩;达到14. evidence [ˈɛvɪdəns] n. e证据;证明15. fascinating [ˈfæsɪnetɪŋ] adj. f极有吸引力的;迷人的16. philosophy [fəˈlɑsəfi] n. p哲学17. feast [fist] n. f盛宴;宴会;节曰18. gallery [ˈgæləri] n. g(艺术作品的)展览馆;画廊19. greet [ɡrit] vt. g问候;迎接20. heel [hil] n. h足跟;(脚、袜子、鞋等的)后跟21. honey [ˈhʌni] n. h蜂蜜22. eager [ˈigɚ] adj. e热切的;渴望的23. individual [ˌɪndɪˈvɪdʒuəl] n./adj. i办单独的;个别的;个人24. ensure [ɪnˈʃʊr] vt. e保证;确保;担保25. cattle [ˈkætl] n. c牛26. conquer [ˈkɑŋkɚ] vt. c占领;征服;控制27. county [ˈkaʊnti] n. c(英国、爱尔兰的)郡;(美国的)县28. courtyard [ˈkɔrtjɑrd] n. c庭院;院子29. Confucius [kənˈfjuʃəs] n. C孔子30. currency [ˈkɝənsi] n. c通货;货币31. kingdom [ˈkɪŋdəm] n. k王国;领域32. crowd [kraʊd] n./vt. c人群;一群人;民众;挤满;使……拥挤33. custom [ˈkʌstəm] n. c风俗;习俗;习惯34. landscape [ˈlændˈskep] n. l风景35. legal [ˈligl] adj. l办法律的;合法的36. location [loˈkeʃən] n. l地方;地点;位置37. mansion [ˈmænʃən] n. m公馆;宅第38. military [ˈmɪlətɛri] adj. m军事的;军用的39. nearby [ˌnɪrˈbaɪ] adj.adv. n附近的;邻近的;在附近40. ocean [ˈoʃən] n. o大海;海洋41. port [pɔrt] n. p港口(城市)42. position [pəˈzɪʃən] n. p位置;姿态;职位43. poet [ˈpoət] n. p诗人44. pub [pʌb] n. p酒吧;酒馆45. puzzle [ˈpʌzl] n./vt. p谜;智力游戏;疑问;迷惑;使困惑46. roar [rɔr] n./vi. r吼叫;咱哮47. roll [rol] n./vt./vi. r(使)翻滚;(使)滚动;卷(轴);翻滚48. surround [səˈraʊnd] vt. s包围;围绕49. cemetery [ˈsɛməˈtɛri] n. c墓地;公墓50. sensory [ˈsɛnsəri] adj. s办感觉的;感官的51. scent [sɛnt] n. s气味;气息52. snack [snæk] n. s点心;小吃53. striking [ˈstraɪkɪŋ] adj. s办引人注目的;显著的54. stew [stuˌstju] n./vt. s炖菜(有肉和蔬菜);炖55. transition [trænˈzɪʃən] n. t过渡;转变;变迁56. charge [tʃɑrdʒ] n./vt. c收费;指控;主管;充电57. chief [tʃif] n./adj. c最重要的;最高级别的;(公司或机构的)首领;酋长58. wine [waɪn] n. w葡萄酒;果酒59. join ... to ...把……和……连接或联结起来60. break away (from sb./sth.) 脱离;背叛;逃脱61. belong to 属于62. as well as 同(一样也);和;还63. keep your eyes open for 留意Unit 51. album [ˈælbəm] n. a相册;集邮簿;音乐专辑2. onto [ˈɑnˌtuˌ-təˌˈɔn-] prep. o(朝)向3. opportunity [ˌɑpɚˈtunɪtiˌ-ˈtju-] n. o机会;时机4. outline [ˈaʊtlaɪn] n./vt. o概述;概要5. bagpipes [ˈbæɡpaɪps] n. b风笛6. band [bænd] n./vt./vi. b乐队;带子;快速敲击;说唱音乐;敲击7. being [ˈbiɪŋ] n. b身心;存在;生物8. altogether [ˌɔltəˈɡɛðɚ] adv. a(用以强调)全部;总共9. ordinary [ˈɔrdnɛri] adj. o办普通的;平凡的10. disease [dɪˈziz] n. d(疾)病11. thus [ðʌs] adv. t如此;因此12. addition [əˈdɪʃən] n. a添加;加法;增加物13. ache [ek] n. a疼痛14. aim [em] n./vi./vt. a目的;目标;力求达到;力争做到;瞄准;目的是;旨在15. original [əˈrɪdʒənl] n./adj. o原来的;独创的;原作的;心原件;原作16. assume [əˈsum] vt. a以为;假设17. award [əˈwɔrd] vt./n. a授予;奖品18. energy [ˈɛnɚdʒi] n. e能源;能量;精力19. phenomenon [fəˈnɑːmɪnən] n. p现象20. gradual [ˈɡrædʒuəl] adj. g逐渐的;渐进的21. hip-hop [ˈhɪphˈɒp] n. h嘻哈音乐;嘻哈文化22. equipment [ɪˈkwɪpmənt] n. e设备;装备23. impact [ɪmˈpækt] n. i巨大影响;强大作用;冲击力24. enable [ɪˈnebl] vt. e广使能够;使可能25. composition [ˌkɑmpəˈzɪʃən] n. c成分;(音乐、艺术、诗歌的)作品26. composer [kəmˈpozɚ] n. c作曲者;作曲家27. conductor [kənˈdʌktɚ] n. c(乐队、合唱团等的)指挥;(公共汽车的)售票员28. capable [ˈkepəbl] adj. c办有能力的;有才能的29. cure [kjʊr] n./vt. c治愈;治好(疾病);解决(问题)药物;治疗;(解决问题、改善糟糕情况的)措施30. classical [ˈklæsɪkl] adj. c办古典的;经典的31. lean [lin] vt l依靠;倾斜32. moreover [mɔrˈovɚ] adv. m而且;让匕夕卜33. metaphor [ˈmɛtəfɚ] n. m暗喻;隐喻34. nowadays [ˈnaʊədez] adv. n现在;目前35. perform [pɚˈfɔrm] vt./vi. p表演;履行;执行36. performer [pɚˈfɔrmɚ] n. p表演者;演员37. performance [pɚˈfɔrməns] n. p表演;演技;表现38. personification [pərˌsɑːnɪfɪˈkeɪʃn] n. p拟人;人格化;化身39. piano [pɪˈæno] n. p钢琴40. previous [ˈprivɪəs] adj. p先前的;以往的41. prove [pruv] vt. p证明;展现42. repetition [ˈrɛpəˈtɪʃən] n. r重复;重做43. reaction [rɪˈækʃən] n. r反应;回应44. relief [rɪˈlif] n. r(焦虑、痛苦的)减轻或消除;(不快过后的)宽慰、轻松或解脱45. rhetorical [rɪˈtɔrɪkl] adj. r办修辞的46. romantic [roˈmæntɪk] n./adj. r浪漫的;浪漫的人47. satisfaction [ˌsætɪsˈfækʃən] n. s满足;满意;欣慰48. simile [ˈsɪməli] n. s明喻49. soul [sol] n. s灵魂;心灵50. stage [stedʒ] n. s(发展或进展的)时期;阶段;(多指剧场中的)舞台51. stringed [strɪŋd] adj. s有弦的52. Studio [ˈstudɪo] n. S演播室;(音乐的)录音棚;工作室53. somehow [ˈsʌmhaʊ] adv. s以某种方式(或方法);不知怎么地54. talent [ˈtælənt] n. t天才;天资;天赋55. techno [ˈtɛkno] n. t泰克诺音乐(一种节奏快、通常无歌声相伴的音乐)56. treatment [ˈtritmənt] n. t治疗;对待;处理57. various [ˈvɛrɪəs] adj. v办各种不同的;各种各样的58. virtual [ˈvɝtʃuəl] adj. v很接近的;事实上的;虚拟的59. unemployed [ˌʌnɪmˈplɔɪd] adj. u失业的;待业的60. stringed instrument 弦乐器61. virtual choir 虚拟合唱团62. fall in love with 爱上63. absorbed in sth./sb. 被……吸引住;专心致志64. set sth up 安装好(设备或机器)65. try out 参加……选拔(或试演)66. in addition to sb./sth. 除……以外(还)67. from (then) on 从(那)时起68. get through (设法)处理;完成。

Box-Behnken响应面法优化盆炎灵颗粒的醇沉工艺研究

Box-Behnken响应面法优化盆炎灵颗粒的醇沉工艺研究

Box-Behnken响应面法优化盆炎灵颗粒的醇沉工艺研究作者:蔡霈郑艺王哲明来源:《中国医药导报》2020年第22期[摘要] 目的优化盆炎灵颗粒的醇沉工艺。

方法在单因素试验的基础上,以醇沉前液相对密度、乙醇终浓度与静置时间为考察因素,以绿原酸、芍药苷、阿魏酸、丹酚酸B、去甲异波尔定、甘草苷、延胡索乙素、落新妇苷的转移率与固体去除率的综合评分值为考察指标,采用基于Box-Behnken设计的响应面法优化盆炎灵颗粒的醇沉工艺。

色谱条件:色谱柱为Agilent TC-C18(250 mm×4.6 mm,5 μm),流速1.0 mL/min,流动相A为乙腈,流动相B为0.2%磷酸水溶液,梯度洗脱(0~10 min,2% A;10~40 min,2%~12% A;40~80 min,12%~18% A;80~110 min,18%~25% A;110~120 min,25%~50% A),柱温30℃,检测波长200~400 nm。

结果最佳醇沉工艺条件为醇沉前液相对密度1.13,乙醇终浓度60%,静置时间21 h。

验证试验结果显示,综合评分的预测值与实测值相对偏差为0.7%。

结论优化的醇沉工艺方法简单、操作简便且结果准确稳定,可为盆炎灵颗粒的制剂生产提供可靠的理论依据。

[关键词] Box-Behnken;响应面法;醇沉工艺;转移率;固体去除率[中图分类号] R284.2; ; ; ; ; [文献标识码] A; ; ; ; ; [文章編号] 1673-7210(2020)08(a)-0032-06[Abstract] Objective To optimize the ethanol precipitation process for Penyanling Granules. Methods Based on the single factor test, the relative density of the liquid before ethanol precipitation, the final ethanol concentration and the ethanol precipitation time were used as factors. The transfer rates of chlorogenic acid, paeoniflorin, ferulic acid, salvianolic acid B,norisoboldine, liquiritin, tetrahydropalmatine, astilbin and the composite score of solid removal rate were selected as evaluation indexes. The ethanol precipitation process of Penyanling Granules was optimized by Box-Behnken response surface method. Chromatographic conditions: the column was Agilent TC-C18 (250 mm×4.6 mm,5 μm), the flow rate was 1.0 mL/min. The mobile phase A was acetonitrile and the mobile phase B was 0.2% phosphoric acid solution with gradient elution (0-10 min, 2% A; 10-40 min, 2%-12% A; 40-80 min, 12%-18% A; 80-110 min, 18%-25% A; 110-120 min, 25%-50% A). The column temperature was 30℃ and the detection wavelength was 200-400 nm. Results The optimal ethanol precipitation process was as followed: the relative density of the extract was 1.13, and ethanol was added to allow the content of ethanol to reach 60%, and then been placed for 21 h. The test results indicated that the relative difference of comprehensive scoring value between predicated value and measured value was 0.7%. Conclusion The optimal ethanol precipitation process is simple, easy to operate and the results are accurate and stable, which can provide a reliable theoretical basis for the preparation production of Penyanling Granules.[Key words] Box-Behnken; Response surface methodology; Ethanol precipitation process; Transfer rate; Solide removal rate盆炎灵颗粒是已在湖南省妇幼保健院临床使用20年的中药复方制剂,由醋延胡索、香附、败酱草、丹参、茯苓等多味中药材组成,具有通畅血脉、消散瘀滞、消炎镇痛等功效,主要用于妇科盆腔炎性疾病的治疗[1]。

四六级听力听写易错词+词组整理

四六级听力听写易错词+词组整理

四六级听力听写易错词+词组整理一、单词部分:convenient [kən'viːnɪənt] adj. 方便的associate [ə'soʃɪet] vt. 联想;使联合;使发生联系colleague ['kɒliːg] n. 同事,同僚distant ['dɪst(ə)nt] adj. 遥远的dramatically [drə'mætɪkəlɪ] adv. 戏剧地,显著地official [ə'fɪʃ(ə)l] adj. 官方的;正式的normal ['nɔːm(ə)l] adj. 正常的;正规的phenomenon [fɪ'nɒmɪnən] n. 现象variety [və'raɪətɪ] n. 多样化instrument ['ɪnstrʊm(ə)nt] n. 仪器survive [sə'vaɪv]vt. 幸存;生还;幸免于constant(constantly)['kɒnst(ə)nt] adj. 不变的;恒定的figure(figuring )['fɪɡjɚ] n. 数字;人物 vt. 计算identify(identifying)[aɪ'dentɪfaɪ] vt. 确定;鉴定;识别increase(increased increasingly )[ɪn'kriːs] vi. 增加investigate [ɪn'vestɪgeɪt] v. 调查;研究murder ['mɜːdə] vt. 谋杀,凶杀 n. 谋杀,凶杀mysterious(mystery )[mɪ'stɪərɪəs] adj. 神秘的reference ['rɛfrəns] n. 参考,提及;参考书目;介绍信;particular [pəˈtɪkjələ(r)] adj. 特别的;详细的percent (percentage )[pə'sent] adj. 百分之…的average ['ævərɪdʒ]n. 平均;平均数;appreciate(appreciation ) [ə'priʃɪet] vt. 欣赏;感激addition (additional)[ə'dɪʃən] n. 添加accuracy(accurate)['ækjərəsi] n. [数] 精确度,准确性abruptly [ə'brʌptli] adv. 突然地;唐突地abstract ['æbstrækt] n. 摘要;抽象accomplish [ə'kɑmplɪʃt] vt. 完成;实现;达到accustomed [ə'kʌstəm] vt. 使习惯于addict ['ædɪkt] vt. 使沉溺;使上瘾adjusting [ə'dʒʌstiŋ] v. 调整administration [əd,mɪnɪ'streʃən] n. 管理;行政;admire [əd'maɪə]v. 钦佩;赞美adverse ['ædvɜːs] adj. 不利的;相反的afford [ə'fɔːd] vt. 给予,提供alarming [ə'lɑːmɪŋ] adj. 令人担忧的;使人惊恐的album ['ælbəm] n. 相簿;唱片集alleviate [ə'livɪ'et] vt. 减轻,缓和apartment [ə'pɑːtm(ə)nt] n. 公寓;房间apparent [ə'pær(ə)nt] adj. 显然的;表面上的appearance [ə'pɪər(ə)ns] n. 外貌,外观assess [ə'ses] vt. 评定;估价assign [ə'saɪn] vt. 分配;指派available [ə'veləbl]adj.可得的;可利用的;空闲的backward ['bækwəd] adv. 向后地;相反地behavior [bɪ'hevjɚ] n. 行为,举止calculator ['kælkjuletɚ] n. 计算器;计算者challenge ['tʃælɪndʒ] n. 挑战circumstance ['sɜːkəmst(ə)ns] n. 环境,情况classify (classified) ['klæsɪfaɪ] vt. 分类;分等collaborate [kə'læbəret] vi. 合作combination [,kɑmbɪ'neʃən] n. 结合;组合;联合commerce ['kɑmɝs] n. 贸易,商业commit [kə'mɪt] vt. 犯罪,做错事comparison [kəm'pærɪs(ə)n]n. 比较;对照competence ['kɒmpɪt(ə)ns] n. 能力,胜任competition [kɒmpɪ'tɪʃ(ə)n] n. 竞争;比赛,竞赛completely [kəm'pliːtlɪ] adv. 完全地,彻底地;完整地complicated ['kɒmplɪkeɪtɪd] adj. 难懂的,复杂的concentrated ['kɒnsntreɪtɪd] adj. 集中的;全神贯注的consequence ['kɑnsəkwɛns] n. 结果;重要性confused [kən'fjuːzd] adj. 困惑的;混乱的considerate [kən'sɪd(ə)rət] adj. 体贴的;考虑周到的coordinate [kəʊ'ɔ:dɪneɪt] vt. 调整;整合curious ['kjʊərɪəs] adj. 好奇的,有求知欲的currently ['kʌrəntlɪ]adv. 当前;一般地decade ['dɛked] n. 十年decline [dɪ'klaɪn] n. 下降;衰退v.拒绝;delicate [ˈdɛlɪkɪt] adj. 微妙的;精美的depend [dɪ'pend] vi. 依赖,依靠;取决于deprive [dɪ'praɪv] vt. 使丧失,剥夺derive [dɪ'raɪv] vt. 源于;得自describe [dɪ'skraɪb] vt. 描述,形容destroy [dɪ'strɒɪ] vt. 破坏;消灭;毁坏difficulty ['dɪfɪk(ə)ltɪ] n. 困难,困境disadvantage [dɪsəd'vɑːntɪdʒ] n. 缺点;不利条件;损失diverse [daɪ'vɝs]adj. 不同的;多种多样的;变化多的dizzy ['dɪzi] adj. 晕眩的;使人头晕的;昏乱的dutifully ['dju:tifuli] adv. 忠实地;忠贞地efficiently [ɪ'fɪʃəntli] adv. 有效地;效率高地electricity [ɪ'lɛk'trɪsəti] n. 电力;电流emergencies [ɪ'mɝdʒənsi] n. 紧急事件;紧急需要emotionally [ɪ'moʃənli] adv. 感情上;情绪上engage [ɪn'ɡedʒ] v. 吸引,占用;使参加;essay ['eseɪ] n. 散文;establish [ɪˈstæblɪʃ] vt. 建立;创办evidence ['ɛvɪdəns] n. 证据,证明exception [ɪk'sɛpʃən]n. 例外;异议experienced [ɪk'spɪərɪənst;ek-] adj. 熟练的;富有经验的explosion [ɪk'sploʒən] n. 爆炸;爆发;激增export [ɪk'spɔːt; ek-;'ek-] n. 输出,出口familiar [fə'mɪlɪə] adj. 熟悉的fatigue [fə'tiːg] n. 疲劳,疲乏flavor ['flevɚ] n. 风味floating ['flotɪŋ] adj. 流动的;漂浮的focus ['fokəs] vt. 使集中;使聚焦foreign ['fɒrɪn] adj. 外国的;外交的formal ['fɔːm(ə)l] adj. 正式的;foundation [faʊn'deʃən]n. 基础;地基grasp [ɡræsp] n. 抓住;理解guilt [ɡɪlt] n. 犯罪,过失;内疚hinder ['hɪndɚ] vt. 阻碍;打扰historical [hɪ'stɒrɪk(ə)l] adj. 历史的humorous ['hjumərəs] adj. 诙谐的,幽默image ['ɪmɪdʒ] n. 影像;想象immense [ɪ'mens] adj. 巨大的,广大的imply (implies) [ɪm'plaɪ] vt. 意味;暗示;隐含inappropriate [ɪnə'prəʊprɪət] adj. 不适当的;不相称的incur (incurring) [ɪn'kɜː] vt. 招致,引发independent ['ɪndɪ'pɛndənt]adj. 独立的;单独的;indication [,ɪndɪ'keʃən] n. 指示,指出individual [,ɪndɪ'vɪdʒuəl] n. 个人,个体influence ['ɪnflʊəns] vt. 影响;改变information ['ɪnfɚ'meʃən] n. 信息,资料ingredient [ɪn'ɡridɪənt] n. 原料;要素inquire [ɪn'kwaɪr] v. 询问instinct ['ɪnstɪŋkt] n. 本能,直觉intelligent [ɪn'telɪdʒ(ə)nt] adj. 智能的;聪明的interact [ɪntər'ækt] v. 互相影响;互相作用interpersonal ['ɪntɚ'pɝsnl] adj. 人际的;人与人之间的introduce [ɪntrə'djuːs] vt. 介绍;引进largely ['lɑːdʒlɪ] adv. 主要地;大部分;maintain [men'ten] vt. 维持;继续material [mə'tɪrɪəl] n. 材料,原料meaning ['minɪŋ] n. 意义;含义mechanism ['mɛkənɪzəm] n. 机制;原理motion ['moʃən] n. 动作;移动natural ['nætʃrəl] adj. 自然的;物质的necessarily [,nɛsə'sɛrəli] adv. 必要地;必定地obligation [,ɑblɪ'ɡeʃən] n. 义务;职责;债务occasionally[o'keʒənəli] adv.偶尔occur [ə'kɝ] vi. 发生;出现;offences [ə'fɛns] n.违反;过错;攻击offender [ə'fɛndɚ] n. 冒犯者;违法者outcome ['aʊtkʌm] n. 结果,结局;成果overwhelmed [,ovɚ'wɛlmd] adj. 受宠若惊的,使不知所措permit(permitted) [pɚ'mɪt] vt. 许可;允许permanent ['pɝmənənt] adj. 永久的,永恒的;不变的personal ['pɝsənl] adj. 个人的;身体的popular ['pɒpjʊlə] adj. 流行的,通俗的;potentially [pə'tɛnʃəli] adv. 可能地,潜在地poverty ['pɑvɚti] n. 贫困;困难precaution [prɪ'kɔʃən] n. 预防,预防措施predict [prɪ'dɪkt] vt. 预报,预言preserve [prɪ'zɝv] vt. 保存;保护primary ['praɪmɛri] adj. 主要的;初级的;prime [praɪm] adj. 主要的;最好的primitive ['prɪmətɪv] adj. 原始的,远古的;privilege ['prɪvlɪdʒ] n. 特权;优待profound [prə'faʊnd] adj. 深厚的;意义深远的proportion [prə'pɔrʃən] n. 比例;部分;psychologist [saɪ'kɑlədʒɪst] n. 心理学家quality ['kwɑləti] n. 质量,[统计] 品质rarely ['rɛrli] adv. 很少地;难得;罕有地recall ['rikɔl] vt. 召回;回想起receive [rɪ'siv] vt. 收到;接待recognize ['rɛkɚɡnaɪz] vt. 认出,识别recommend [rekə'mend] vt. 推荐,介绍reflect [rɪ'flɛkt] vt. 反映;反射relatively ['rɛlətɪvli] adv. 相当地;相对地respond [rɪ'spɑnd] vi. 回答;作出反应responsibility [rɪˌspɑːnsəˈbɪləti] n. 责任,职责retirement [rɪ'taɪɚmənt] n. 退休,退役reverse [rɪ'vɝs] n. 背面;相反revolution ['rɛvə'lʊʃən] n. 革命romantic [ro'mæntɪk] adj. 浪漫的;多情的ruin ['ruɪn] n. 废墟;毁坏;vt. 毁灭scale [skel] n. 规模;比例;scene [sin] n. 场面;情景schedule ['skɛdʒul] n. 时间表;计划表scientific [,saɪən'tɪfɪk] adj. 科学的secret ['sikrɪt] n. 秘密;秘诀semester [səˈmɛstɚ] n. 学期;半年senior ['sinɪɚ] adj. 高级的;年长的shrink [ʃrɪŋk] vi. 收缩;畏缩significant [sɪɡ'nɪfɪkənt] adj. 重大的;有效的;有意义的species ['spiʃiz] n. [生物] 物种;种类specific [spɪ'sɪfɪk] adj. 特殊的,特定的;明确的spread [sprɛd] vi. 传播;伸展squarely ['skwɛrli] adv. 直角地;诚实地standard ['stændɚd] n. 标准;水准;straight [stret] adj. 直的;连续的strategy (strategies) ['strætədʒi] n. 战略,策略submit [səb'mɪt] vt. 使服从;主张;呈递suspected [sə'spektɪd] adj. 有嫌疑的symbol ['sɪmbl] n. 象征;符号texture ['tɛkstʃɚ] n. 质地;纹理tongue [tʌŋ] n. 舌头;语言tragic ['trædʒɪk] adj. 悲剧的;悲痛的,typical ['tɪpɪkl] adj. 典型的;特有的uniform ['junɪfɔrm] n. 制服unusual [ʌn'jʊʒʊəl ] adj. 不寻常的usage ['jusɪdʒ] n. 使用;用法;vacation [və'keʃ(ə)n;ve-] n. 假期value ['vælju] n. 值;价值;价格;vessel ['ves(ə)l] n. 船,舰;[组织] 脉管,血管visible ['vɪzəbl] adj. 明显的;看得见的vital ['vaɪtl] adj. 至关重要的;whereby [weə'baɪ] adv. 凭借;通过witty ['wɪti] adj. 诙谐的;富于机智的二、词组部分:figuring things out 弄清…事情, 解决…事情interacting with 与……相互作用trying it out 尝试...be deprived of 被剥夺…,被夺去…is linked to 与...连接scores of 许多,大量on your own 独立地,自愿地consequence of 由于…的缘故take responsibility for 对…负责was supposed to 应该…,猜想会…slow down 放慢速度;使……慢下来conceptof …的观念serve as 担任…,充当…;起…的作用be obsessed with 沉迷于 ; 痴迷于measured by 用...来测量,用...来衡量keep in touch 保持联系communicate with 与某人联系care about担心,关心imageof…的图像mix with 与... 混合concentrated on 集中精力于;全神贯注于depend on 集中精力于;全神贯注于in a row 连续,成一行a stack of 一堆;一摞associated with 与…有关系;与…相联系sort of 到某种程度;稍稍failure to 不能,无法exchangeof...的交换get paid for 因为…得到报酬keep up with 赶得上;和…保持联系comparison of 与…的比较percentageof …的百分比a result of 是…结果;由于…结果proportionof...的比例let alone 更不必说;听任adjust to 调整以适应aware of 意识到…,知道…accustomed to习惯于…be responsible for 对……负责;是……的原因bound to be 注定是... 一定会…be seen as 被看作..,被看成...be viewed as 被看作..,被看成...emphasis on 对…的强调a range of 一系列;be familiar with 对于…熟悉satisfy with 满足于…deal with 处理;涉及focus on 集中于transmitted to把…传送到...promise to 许诺…versionof... 的版本a variety of 各种各样的…base on 以…为基础end up with 以...而结束turn down 拒绝…调小…turn out 结果是…turn around 转身,好转cope with 处理...,应付…isolate from 使与…发生隔离vulnerable to 易受伤害的 ; 易受影响的derive from 源出,来自relate to 涉及,有关be acquired as 作为…所需要获得的response to 对……的回答;对……的反应a variety of 各种各样的…suffer from 忍受,遭受caused by 归因于compete with 与…竞争concern about 对…表示担心/忧虑serving for 被用作;起…的作用alternative to 是…的替代品indulge in 沉湎于,沉溺于be sensitive to 对…感到敏感pretend to 假装;自称有suitable for 适合…的,适合于…carry it out 完成…,执行…due to 因为,由于apart from 远离,除…之外;catch up with 赶上,追上associated with 与…有关系;与…相联系be entitled to 有…的资格refer to 参考;涉及desire to 希望...,想要…assign to 指定到;分配给vast majority of 绝大多数,大部份get on with 与某人相处carry on 继续下去check in 登机,报到fill out 填写stand for 代表…consist of 由…组成insist on 坚持…rush into 匆忙做某事senseof…的感觉distract by 因为…所分心restriction on 对…的限制collision with 与…相撞serious about 认真对待...absorb in 集中精力做某事;全神贯注于account for 对…负有责任;对…做出解释。

乙腈不同温度下的表面蒸气压_概述及解释说明

乙腈不同温度下的表面蒸气压_概述及解释说明

乙腈不同温度下的表面蒸气压概述及解释说明1. 引言1.1 概述乙腈(化学式CH3CN)是一种常用的有机溶剂,广泛应用于化学实验室、工业生产和科研领域。

乙腈的表面蒸气压是其在不同温度下从液态向气态转变时产生的压强。

了解乙腈在不同温度下的表面蒸气压变化规律对于科学研究及工业应用有着重要意义。

1.2 文章结构本文将首先介绍乙腈的物性特点,包括分子结构、物理性质和化学性质等方面。

接着将对表面蒸气压的概念进行解释,并探讨影响乙腈表面蒸气压变化的因素。

最后,通过实验方法与结果分析,详细讨论不同温度下乙腈表面蒸气压的变化规律,并总结归纳实验结果。

1.3 目的本文旨在深入探讨乙腈在不同温度下的表面蒸气压变化规律,并通过实验结果分析验证相关理论模型。

通过研究乙腈的表面蒸气压,可以拓宽我们对乙腈及相关有机溶剂的认识,并为实验室操作、工业生产以及科学研究提供技术参考和应用前景展望。

2. 正文2.1 乙腈的物性介绍乙腈是一种常见的有机溶剂,化学式为CH3CN。

它具有无色、透明、有刺激性气味以及良好的溶解性等特点,在化工、制药等多个领域广泛应用。

乙腈的分子量为41.05 g/mol,密度为0.786 g/cm^3。

它的沸点为81.6°C,熔点为-45°C。

2.2 表面蒸气压的概念和影响因素表面蒸气压指在一定温度下,液体与其饱和蒸气之间达到动态平衡时所对应的气相压强。

表面蒸气压受多种因素影响,包括温度、分子间吸引力以及液体分子挥发速率等。

较高温度和较强分子间相互作用力会提高液体表面上的分子挥发速率,从而增加表面蒸气压。

2.3 不同温度下乙腈表面蒸气压的变化规律随着温度升高,乙腈的表面蒸气压将增加。

根据饱和蒸气压与温度之间的关系,一般而言,液体的饱和蒸气压随着温度的升高而增加。

对于乙腈来说也是如此。

以常规大气压下为例,乙腈在25°C时的表面蒸气压约为76.15 mmHg,在50°C时增至131.3 mmHg。

基于自适应响应面法的脂肪组织材料参数反求

基于自适应响应面法的脂肪组织材料参数反求

DOI 10.19529/j.cnki.1672-6278.2019.02.06
国家自然科学基金资助项目(81471274,81371360)。 △通信作者 Email:lihaiyan@tust.edu.cn
第 2期
崔世海,等:基于自适应响应面法的脂肪组织材料参数反求
Байду номын сангаас
157
伤的常用工具。其中,有限元模型在肥胖乘员损伤 机理研究中有着独到的优势,其可以反映身体各部 分力学响应情况,且具有可重复性,同时能将混淆的 影响因素单独分开。对于肥胖有限元模型,其增加 的大量脂肪是影响生物力学响应的重要因素,脂肪 组织材料本构的选择及参数的确定是影响其生物仿 真度及损伤评价的关键因素。
Abstract:Theparametersofadiposetissuematerialsindifferentliteraturesvarygreatly,andthebiologicalfidelityofadiposetis sueinhumanfiniteelementmodelneedstobeimproved.Inthispaper,thefiniteelementmodelofadiposetissuecompressiontestwas constructed.TheconstitutivemodelofOgdenhyperelasticmaterialwasusedandthescreeningexperimentaldesignwascarriedonto determinetheeffectofeachfactoronthetargetresponse.ThefactorsofOgdencoefficientandshearrelaxationmoduluswhichhadthe greateffectonthetargetresponsewereselectedastheinversionobject.Combiningthefiniteelementmethodandtheoptimizationstrat egy,theparametersoftheadiposetissuematerialwereinverselydeterminedbasedontheadaptiveresponsesurfacemethod.Thein verselydeterminedmaterialparameterswereappliedtothesimulation.Theresultsshowthatthecorrelationcoefficientbetweenthesim ulationcurveandtheexperimentalcurvewas0.98876.Thesimulationcurveofthematerialparameteroutputbasedonthereversestrat egyishighlyconsistentwiththeexperimentalcurve.Thematerialparametersoftheadiposetissueobtainedbytheinversemethodinthe simulationareofgreatbiofidelity.

A Review of Surface Roughness021004_1

A Review of Surface Roughness021004_1

J.P.Bons Department of Aerospace Engineering,Ohio State University,2300West Case Road,Columbus,OH43017A Review of Surface Roughness Effects in Gas TurbinesThe effects of surface roughness on gas turbine performance are reviewed based on publications in the open literature over the past60years.Empirical roughness correla-tions routinely employed for drag and heat transfer estimates are summarized and found wanting.No single correlation appears to capture all of the relevant physics for both engineered and service-related(e.g.,wear or environmentally induced)roughness. Roughness influences engine performance by causing earlier boundary layer transition, increased boundary layer momentum loss(i.e.,thickness),and/orflow separation. Roughness effects in the compressor and turbine are dependent on Reynolds number, roughness size,and to a lesser extent Mach number.At low Re,roughness can eliminate laminar separation bubbles(thus reducing loss)while at high Re(when the boundary layer is already turbulent),roughness can thicken the boundary layer to the point of separation(thus increasing loss).In the turbine,roughness has the added effect of aug-menting convective heat transfer.While this is desirable in an internal turbine coolant channel,it is clearly undesirable on the external turbine surface.Recent advances in roughness modeling for computationalfluid dynamics are also reviewed.The conclusion remains that considerable research is yet necessary to fully understand the role of rough-ness in gas turbines.͓DOI:10.1115/1.3066315͔1IntroductionThe degradation of gas turbines with service is a serious prob-lem that must be appropriately addressed for efficient and safe operation of both land-based͑power͒and aeropropulsion gas tur-bines.Due to the importance of this topic,there have been a number of excellent review articles addressing its root causes and exploring preventive measures͓1,2͔.Technical advancements in the design and manufacture of gas path turbomachinery compo-nents over the past two decades have only heightened the signifi-cance of understanding the effects offlowpath degradation on gas turbine operation.For example,surface coatings in both the com-pressor and turbine,more aggressive airfoil shapes,advanced ro-tor tip and passage endwall designs,and an increased number of bleeds to feed more intricatefilm cooling hole geometries are among the technologies that have created an increased urgency for fundamental research into the root causes and effects of degrada-tion.As evidence of this increased emphasis,Fig.1shows the number of degradation-related journal articles that have been pub-lished each year in three of the leading publications for gas tur-bine research.The rising trend evidenced in thefigure is likely to continue for the foreseeable future as gas turbines continue tocommand an impressive market share in both the power genera-tion and transportation industries.Degradation in gas turbines is caused by a wide variety of op-erational and environmental factors.Perhaps the most commonsources are ingested aerosols,namely,salt spray from marine ap-plications͓3–6͔,airborne dust,sand͓7,8͔,pollen,combustionproducts͓5,9͔,and even volcanic ash͓10͔.Occasionally,largerobjects can be ingested͑e.g.,inlet nacelle ice accumulation͓11͔orbirdstrikes͒at times resulting in significant component damage ͑FOD͒.From within the gas turbine itself,oil leaks,rust or scale, and even dirty fuels͑for power turbines͓͒12,13͔can result infouled gas path surfaces and clogged bleed systems.These variousdegradation sources influence gas turbine performance in differentways depending on the interaction with the wetted surfaces in theengine.Foreign particulate that deposits on the surface can result in modified airfoil shapes͑e.g.,at the leading edge͓6,7͔͒,in-creased surface roughness͓14–17͔,and cloggedfilm coolingholes͓10,16,18͔and fuel nozzles.Figure2shows an example ofdeposition on a nozzle guide vane due to inadequately cleanedfuel used in a land-based turbine.In extreme cases such as this,deposition can significantly reduce theflowpath area and alter theoperating point of the engine.Surface erosion,typically caused bylarger particles͑e.g.,desert sand͒,can be equally damaging.Ero-sion at the airfoil leading edge reduces the effective chord of theblade or vane,limiting the aerodynamic turning and changing theincidence angle.Rotor blades often show the effects of erosion attheir tip,thus increasing the tip gapflow and associated secondarylosses͓7,19,20͔.An example of compressor rotor tip wear due tosand ingestion is shown in Fig.3.Perhaps most importantly,ero-sion can result in the removal of critical thermal barrier coatingsin the turbine͑i.e.,coating spallation͒,thus exposing the underly-ing metal to excessive gas temperatures.Finally,many of thesources that cause degradation contain corrosive elements thatpromote rapid deterioration of metal components in the gas path,potentially leading to catastrophic failure.Unless frequent boroscopic evaluations are made to detect andassess surface damage,gas turbine operators will likely see agradual drop in performance͑thrust or power output͒as thefirstsign of degradation.Upon closer inspection,an increase in spe-cific fuel consumption͑SFC͒will be evident as component effi-ciencies͑for the compressor and/or turbine͒decline.As degrada-tion worsens,excessive temperatures may occur in the turbine dueto coating loss orflow restriction.In the most severe case ofexcessive deposition buildup,loss of compressor stall margin maymake safe operation of the gas turbine altogether impossible ͓1,2,4,20–22͔.Fortunately,there are a number of preventive mea-sures that,if implemented properly,can mitigate unacceptablelosses in performance and/or availability͓1͔.For example,depositbuildup on compressor blading has traditionally been removedusing abrasive chaff͑e.g.,nutshells͒.With the advent of coatedcompressor blades in the past decade,compressor maintenancehas moved to on-line water washing,possibly with detergents ͓3,13,21,23,24͔.More stubborn deposits can be removed with off-line͑crank͒washing of both compressor and turbine blading. Dirty fuels͑e.g.,biomass or high ash-bearing heavy fuel oils͓12͔͒can be safely used with adequate cold and/or hot gas cleanup,Contributed by the Turbomachinery Division of ASME for publication in the J OURNAL OF T URBOMACHINERY.Manuscript received December13,2007;final manu-script received September10,2008;published online January11,2010.Review conducted by Gregory J.Walker.although these auxiliary systems can be expensive and require regular maintenance as well.Ultimately,the most severe cases of degradation ͑erosion and corrosion,in particular ͒may necessitate a major engine overhaul with significant downtime.Only then can individual blades or vane sectors be removed for refurbishment and resurfacing to recover lost performance margin.Since many of these preventive measures are costly and nega-tively impact availability,operators must be equipped with accu-rate cost and benefit estimates to maintain efficient gas turbine operation.A number of recent studies have proposed system-level models aimed at determining optimum maintenance intervals and procedures to maximize gas turbine availability and performance ͓13,21,24–27͔.These models account for system degradation through performance decrements associated with component effi-ciency loss and/or changes in massflow ͑increase for erosion and decrease for deposition ͒.Specific numerical values for these dec-rements are obtained from reported degradation losses available in the open literature ͓1,2͔.For example,Zwebek and Pilidis ac-counted for turbine fouling ͑deposition ͒in their system-level analysis by assuming a 1%reduction in nondimensional mass flow and a 0.5%reduction in turbine efficiency ͓25,26͔.With this component-level input,their model predicts a drop in gas turbine power output and efficiencies of 1.2%and 1%,respectively.Mod-els have also been developed to predict specific component-level performance losses with degradation.For instance,Millsaps et al.͓28͔evaluated the effect of fouled airfoil surfaces due to deposits on a three-stage axial compressor.They assumed a doubling ofblade profile losses and predicted a 1.5%drop in ␲c and ␩c with a 1%drop in massflponent-level model predictions such as this can then be used as building blocks in a larger system-level model ͓25͔.While such models are useful to indicate trends,their ability to accurately predict changes in overall gas turbine system perfor-mance for a given installation is dependent on the accuracy of the numeric decrements employed.Determining these quantitative ad-justments is complicated by the diversity of degradation sources and turbomachinery designs.There have been some attempts to test the accuracy of these system-level models using accelerated deposition testing,for example,with interim measurements of de-posit thickness and surface roughness levels ͓3,4,6–8,29͔.How-ever,even with measurements of surface roughness in hand,there is still a significant leap from centerline averaged roughness ͑Ra ͒measurements to predicting compressor efficiency ͑␩c ͒.In prac-tice,this chasm is often spanned using empirical correlations to convert measured roughness ͑e.g.,Ra or Rq ͒to an “equivalent sandgrain”͑k s ͒value.This k s value can then be used to predict local changes in boundary layer parameters ͑e.g.,␪and c f ͒leading to profile loss estimates,again using empirical correlations ͓22,30–34͔.Finally,summing profile losses through multiple stages ͑using a stage-stacking model,for example ͓29͔͒yields the desired estimate for an efficiency decrement ͑⌬␩c ͒.The remainder of this article will review research studies that have been con-ducted to bridge this gap between actual surface measurements and predicted performance decrements,specifically for the case of surface roughness caused by degradation.2Background:Surface RoughnessThe use of roughness correlations dates back three quarters of a century to the turbulent pipe flow study of Nikuradse ͓35͔.His pressure loss data,taken with sand-roughened pipe walls,mani-fested different dependencies on Reynolds number and roughness for different flow regimes ͑Fig.4͒.Nikuradse defined a dimen-sionless roughness parameter,k +=k s u ␶/␯,using the actual sandgrain diameter ͑k s ͒,the measured friction or shear velocity ͑u ␶͒,and kinematic viscosity ͑␯͒.He found that for values of this parameter greater than 70,the pipe loss coefficient was only a function of k s ,while for 5Ͻk +Ͻ70,both Re and k s were impor-tant.These regimes are termed “completely”or “fully”rough and “transitionally”rough,respectively.For k +values below 5,rough-ness was found to have no effect on pressure loss since the rough-ness peaks were wholly immersed in the laminar sublayer of the turbulent boundary layer.Thus,this regime is declared “hydrauli-cally smooth.”Nikuradse observed that the turbulent boundary layer “law of the wall”͑u +=1/␬ءln y ++B ͒was still valid for rough surfaces except that the constant B was shown to be depen-dent on k +.For “completely rough”surfaces,this dependency can be approximated as B =5.5−1/␬͕ln ͑1+0.3k +͖͓͒36͔.Note that the constant in this expression varies between 5and 5.5in thelitera-Fig.2Deposition on first stage vane of utility gas turbine after approximately 8000h of service.Firing temperature1150°C.Fig.3Eroded test rotor blades due to sand ingestion near design point during 9h …Fig.9from Ghenaiet et al.†20‡…Fig.1Gas turbine roughness-related journal articles pub-lished in ASME Journal of Turbomachinery,ASME Journal of Engineering for Gas Turbines and Power,and AIAA Journal of Propulsion and Power,AIAA Journal of Aircraft,and AIAA Jour-nal …numbers are not comprehensive prior to 1990….Also,roughness-related IGTI conference papers from 2000–2006.ture and care should be taken to consistently employ the same expression when comparing various models.In this way,k +can be used ͑in a boundary layer calculation,for example,Ref.͓37͔͒to calculate skin friction for a rough wall.Schlichting ͓38͔subse-quently used Nikuradse’s data to correlate various types of “non-sand”roughness ͑e.g.,rivets,bumps,and protuberances ͒.In so doing,Schlichting ͓39͔coined the term “equivalent sandgrain roughness”to connote a roughness feature ͑and spacing ͒that has the “equivalent”effect on skin friction losses as a uniform layer of actual sandgrains of diameter k s .Though Schlichting’s quantita-tive results have since been disputed by Coleman et al.͓40͔,his equivalent sandgrain methodology has gained universal accep-tance.Until recently,practically every roughness correlation for skin friction,convective heat transfer,and even boundary layer transition utilized k s ͓36,39,41–44͔.In roughness work related to gas turbines,various correlations have been employed to convert measurable surface roughness pa-rameters ͑Ra ,Rq ,or Rz ͒to equivalent sandgrain roughness ͑k s ͒,following the Schlichting model.Table 1contains a survey from the open literature.The first thing that is apparent from the table is the wide variety of proposed correlations.Since many of the cor-relations vary by up to a factor of 5,the uninitiated would be hard pressed to select an appropriate value for a new application ͓54͔.Fig.4Nikuradse’s original sand-roughened pipe flow data …Fig.20.18from Schlichting †39‡…Table 1Roughness correlations for k s determination of gas turbine roughnessYear Reference k s relation Surface type1962Speidel ͓45͔k s =Rz /5Milled surface with grooves parallel ͑within 10deg ͒toflow ͑Rz =groove height ͒k s =Rz /2.56Milled surface with grooves greater than 10deg fromflow-aligned 1967Forster ͓46͔k s Ϸ2Ra Machined surfaces k s Ϸ7Ra Emery papers 1976Koch and Smith ͓32͔k s Ϸ6Ra Sandgrains1976Bammert and Sandstede ͓47͔k s Ϸ2.2Ra 0.88Mechanically produced surface and emery grain surface1980Schaffler ͓48͔k s Ϸ8.9Ra Forged and machined blades1984Simon and Bulskamper ͓33͔k s Ϸ2Ra Machined surfaces 1990Sigal and Danberg ͓49͔͑as used by Boyle andCivinskas ͓50͔and Bogard et al.͓16͔͒0.5Ͻk s /k Ͻ5as f ͑⌳s ͒Isolated 2D and 3D roughness elements of height k1997Barlow and Kim ͓51͔k s Ϸ2.7k or k s Ϸ16RaOrdered array of pedestals of height k1996Hoffs et al.͓52͔k s =Rz Liquid crystal surface 1998Guo et al.͓53͔k s =Rz Liquid crystal surface1998Bogard et al.͓16͔k s Ϸ4Ra Turbine vane surface roughness 1998Abuaf et al.͓54͔Ra Ͻk s Ͻ10Ra Cast and polished metal surfaces1998Kind et al.͓34͔ 2.4Ͻk s /k Ͻ6.1as f ͑␭͒Sparsely distributed sandgrains of average size k2001Boyle et al.͓55͔k s Ϸ2.1Rq Research vane surface2003Boyle and Senyitko ͓43͔k s Ϸ4.8Rq ZrO spray-on roughness particles2003Bunker ͓56͔k s Ϸ10Ra Polished TBC 2004Shabbir and Turner ͓57͔k s =8.9Ra Turbine roughness 2004Zhang and Ligrani ͓58͔k s Ϸ1.9Rz as f ͑⌳s ͒20–150␮m Ni particles 2005Bons ͓59͔0.5Ͻk s /Rz Ͻ3.5as f ͑␣f ͒Scaled turbine blade roughness 2005Syverud et al.͓6͔0.4Ͻk s /k Ͻ2as f ͑␭͓͒47͔Salt grains from sea-spray ingestion2005Stripf et al.͓60͔2Ͻk s /k Ͻ5as f ͑k ,t ͒Ordered arrays of truncated cones of height,k ,andspacing,t2005Hummel et al.͓61͔k s Ϸ5.2Ra Correlation with various surfaces2006Yuan and Kind ͓62͔k s Ϸ1.8kSparsely distributed sandgrains of average size kSeveral of those identified in the table have lamented over this morass of data,ultimately taking matters into their own hands by defining their own correlation.For example,Hummel et al.͓61͔used a turbine blade loss model from Traupel͓63͔to correlateestimated blade row losses versus Ra/c from several previous experiments͑including some of their own data͒and arrived at abestfit using k s=5.2Ra.Boyle and Senyitko͓43͔provide a de-tailed evaluation of a number of the leading correlations showinghow estimates for k s can vary up to an order of magnitude depend-ing on the method used.Of course,part of the problem with defining a single universal correlation is the variety of roughness characterizations:machined,sandgrain,ordered arrays of identical roughness elements͑e.g.,cones͒,andfinally actual degraded sur-face roughness.Recognizing this difficulty,many have proposed correlations based on something other than the standard roughnessmetrics͑Ra,Rq,or Rz͒.Parameters that account for the individualshape and density of roughness elements͑e.g.,⌳s,␭,and␣f͒have broader appeal but still fall short of being universal ͓6,34,49,59,60͔.Moreover,the vast majority of these correlations are defined using“artificial”or“simulated”roughness rather than “real”roughness.Bons͓64͔studied scaled models of real rough-ness samples taken from in-service turbine hardware and found amarkedly different k s correlation when compared with ordered arrays of deterministic roughness elements͑e.g.,cones,hemi-spheres,or sandgrains͒.Onefinal difficulty with defining a single universal k s correlation for all roughness characterizations is that while Schlichting defined k s from the perspective of aerodynamic drag equivalence,it has since been adopted for convective heat transfer equivalence as well.Fundamental issues with this ill-conceived“adoption”from aerodynamics to heat transfer are ad-dressed below in further detail.In many cases,the gas turbine operator is solely concerned with ensuring that the surface roughness is below the hydraulically smooth limit.Schlichting͓39͔plotted skin friction data for turbu-lent boundary layerflow over sand-roughened plates͑again based on Nikuradse’s pipeflow data͒and noted thefirst evidence of roughness influence for k sХ100␯/Uϱ.For gas turbine roughness on airfoils,it is most convenient to represent this admissible level of roughness͑k s,adm͒relative to the blade͑or vane͒chord,c:k s,adm c Յ100Re c͑1͒For a typical chord Reynolds number of1ϫ106and blade chord of5cm,this represents a k s,adm of5␮m.Given the range of correlations in Table1͑1Ͻk s/RaϽ10͒,this explains industry-wide specifications for surfacefinish͑Ra͒Յ1␮m.The dimen-sionless roughness parameter,Uϱk s/␯,͑sometimes called the “roughness Reynolds number”or Re k͒is often reported relative to the“100”threshold for admissible roughness.A review of gas turbine roughness literature shows a broad acceptance of Eq.͑1͒as a design guideline͓30,31,48,61,65,66͔,although anecdotal evi-dence of temporary SFC reductions immediately following sur-face refurbishment on aeroengines well below the100threshold has been supported by recent research into“ultrapolishing”͓67͔. Nevertheless,the roughness Reynolds number͑Re k͒is the most commonly reported roughness parameter in the open literature and is routinely used in the scaling of research facilities for roughness research͓37,68–70͔.At issue then is how far above k s,adm can the surface roughness be tolerated before maintenance is necessary.Unfortunately,to answer this question requires an understanding of two of the most intractable problems in thefluid dynamics of wall-boundedflows, namely,boundary layer separation and transition.The limited scope of this article cannot possibly do justice to these two sub-jects.Hopefully,the reader will forgive the meager illustration provided here.Boundary layer transition is influenced by a wide assortment of flow and surface parameters in addition to surface roughness͑e.g.,Reynolds number,freestream turbulence level and lengthscale,surface heating or cooling,pressure gradient,upstream history,blowing or suction,Mach number,shocks,and curvature͒.As anexample of surface roughness effects on transition,Feindt͓71͔studied boundary layer transition on a sand-roughened wall andfound the critical sandgrain dimension that induced early transi-tion to be Uk s/␯Ϸ120.The same threshold was noted for a mod-est range of adverse and favorable freestream pressure gradients. This criterion is very close to the k s,adm relation for turbulentboundary layers͑Eq.͑1͒͒,which should be good news for gasturbine operators.Unfortunately,there are at least two complicat-ing factors that must be taken into account.First,Feindt’s data show a smooth-wall transition Reynolds number͑Re x,tr͒of6.6ϫ105,which is considerably less than values that can be obtained experimentally using clean/quiet wind tunnels͑Re x,trϾ3ϫ106͒. Thus,Feindt’s criterion of Uk s/␯Ͻ120must be adjusted forflows with other mitigating factors that influence transition͑e.g.,higher or lower freestream turbulence levels͒.The only component in a gas turbine engine that would likely have a more“disturbance-free”environment than Feindt’s experimental facility is the engine inlet or nacelle.Thus,the roughness criterion for transition would be more stringent͑less than120͒in this case.Embedded blade rows in compressors and turbines are rife with disturbances͑e.g., wakes and shocks͒and thus may have significantly higher thresh-olds for roughness to effect transition.Braslow͓44͔reviewed boundary layer development with distributed roughness and sug-gested a criterion of k+Ͼ19for roughness-induced transition.For the Re c values typical of gas turbine airfoils,this corresponds to a roughness Reynolds number criterion of Uk s/␯Ͻ500.This is close to the threshold of600suggested by White͓36͔for an isolated roughness element.Indeed,transition is generally consid-ered to be a significant factor in turbomachinery for chord Rey-nolds numbers above͑2–4͒ϫ105͓43,48͔.Roughness can also promote earlier transition in separated free shear layers,thus re-ducing the size of separation bubbles,as noted by Roberts and Yaras͓72͔.Prior to boundary layer transition,roughness has no perceptible influence on local values of aerodynamic drag͑Fig.4͒or heat transfer͓73,74͔.The second complicating factor with using a universal k s/c cri-terion for both turbulent and laminar boundary layers is what hap-pens once the threshold is exceeded.For a turbulent boundary layer,exceeding k s,adm may mean a modest increase in blade pro-file losses͑Fig.4͒.For a laminar boundary layer,if exceeding k s,adm causes transition,the profile loss could increase by up to a factor of2͓43͔͑and the local heat transfer coefficient up to a factor of8͓73͔͒.On the other hand,if the laminar boundary layer was already prone to separation,roughness-induced transition could minimize or eliminate separation and actually reduce profile losses͓75͔͑as in the golf ballflow͒.Thus,the effects of transition and separation are coupled in many turbomachineryflows.3Real Gas Turbine Roughness Characterizations The majority of roughness studies referenced thus far were con-ducted using sand-roughened walls.Indeed,this is the most com-mon roughness characterization employed historically for gas tur-bine research as well as in other industries.Before reviewing gas turbine roughness research in more detail,it is instructive to evaluate how closely actual degradation-induced gas turbine sur-face roughness compares to sandgrains.There are relatively few studies of this type in the open literature.Dunn et al.͓10͔showed pictures of compressor rotor blades subjected to“simulated”volcanic-ash ingestion with varying levels of erosion.Although the images do not allow an up-close assessment of surface char-acter,it is evident that the erosion is not spatially uniform.Erosion is primarily evident in the leading edge and tip regions.Acceler-ated salt-spray ingestion tests by Kacprzynski et al.͓3͔and Syverud et al.͓6͔show similar spatial variation.A picture of second stage compressor vanes shows0.5mm thick salt depositsat the vane leading edge,with a strong preference for the hubversus the tip annulus͓6͔.A boroscope image of afirst stagecompressor blade shown in Ref.͓3͔has regions with pronouncedridge-lines of salt deposit as well as regions without any obviousdeposit.Finally,a magnified image of salt grains on afirst stagevane pressure surface shows a nonuniform distribution of salt grains with sizes from3ϽkϽ30␮m͑mean grain size=22␮m and mean grain spacing=88␮m͒.In2000,Leipold et al.͓70͔studied roughness on precision forged compressor blades andfound sparsely distributed roughness elements͑similar to thosestudied by Kind et al.͓34͔for turbines͒rather than the close-packed elements typical of sandgrain characterizations.For turbines,Taylor͓15͔measured surface roughness on twosets offirst stage turbine vanes,30from a TF-39and30from anF-100engine.He found that the roughness level varied by an order of magnitude around the blades on average͑1ϽRa Ͻ10␮m͒,with degradation favoring the leading edge suction surface for one engine and the trailing edge pressure surface forthe other.In addition,individual traces showed the roughness tobe highly non-Gaussian in many cases͑nonzero skewness andkurtosis͒.Tarada and Suzuki͓14͔reported on a survey of58usedturbine blades from aero-,marine,and industrial engines.Peak roughness levels͑Ra͒ranged from50␮m to160␮m in the most severely degraded portions of the blades,particularly in the lead-ing edge region.Bogard et al.͓16͔studied the oxidized and de-posited turbine vanes from two military aeroengines and reported that the surface character bore greater similarity to“scale”rather than the sand grit typically used to model roughness.Finally,Bons et al.͓17͔reported on a study of over100different used industrial turbine components,showing examples of deposition,corrosion, erosion,and coating spallation͑Fig.5͒.Spatial nonuniformity of roughness character was the norm for all blades,and transitions between rough and smooth surface conditions were at times abrupt.Differences between the roughness signatures of various degradation mechanisms͑e.g.,deposition versus spallation͒led the authors to conclude that no single characterization͑e.g.,sand, cones,and hemispheres͒can accurately capture the range of di-verse features exhibited by the various forms of surface roughness on serviced turbine blades.Given this assessment,it is perhaps inconceivable that any roughness parameter͑e.g.,k s or Re k͒could ever be effectively used to characterize roughness from such di-verse samples.Yet,Bons͓59͔later reported that both⌳s and␣f provided reasonable correlation for c f and St enhancement caused by roughness for a broad spectrum of surface features. Observed spatial variations in roughness for in-service turbo-machinery components are of particular significance since the sand-roughness experiments of Nikuradse͓35͔͑and many since then͒have studied the effects of uniform distributions of closely packed sandgrains of a similar size.All three of these character-izations͑“uniform,”“closely packed,”and“similar size”͒appear to be contradicted by actual surface measurements in gas turbines. Also,roughness modeling algorithms in commercially available computationalfluid dynamics͑CFD͒codes that typically apply a uniform k s roughness level to all wetted surfaces may produce misleading results when compared with real turbine airfoils with degraded leading edges but smooth surfaces elsewhere.In addi-tion,experimental work by Pinson and Wang͓76͔showed that abrupt changes in roughness size can have a significant effect on transition location.Specifically,abrupt streamwise changes fromlarge roughness to a smooth-wall condition exhibited earlier tran-sition than changes from large to small roughness.The remainder of this article will focus on roughness studies of compressor and turbine airfoils.The turbine section will also ad-dress roughness effects onfilm cooling.Finally,some comments regarding the state of the art in roughness modeling for CFD will be addressed.Though considerable effort has been made to canvas the literature,these reviews are by no means comprehensive. Rather,they are intended to provide a sampling of past and current research in a very active and difficult area of study.4Roughness in CompressorsA review of the past30years of compressor roughness research shows nearly an equal interest in axial and centrifugal machines. Since the two devices experience differentfluid mechanics issues, they will be treated separately here,although the primary focus is on axial machines.The role of the compressor is to increase the total pressure of the gas prior to combustion.This is done by imparting kinetic energy to thefluid and subsequently decelerat-ing it to collect static pressure.Thus,compressor airfoils arede-Fig.5Samples of erosion,deposition,and TBC spallation on turbine blading.…a…Erosion sample from suction surface lead-ing edge region…7Ã10mm2….…b…Fuel deposition sample from pressure surface trailing edge region…3Ã4mm2….…c…Spalla-tion on turbine blade pressure surface.。

金属材料专业英语[带音标]

金属材料专业英语[带音标]

金属材料专业英语Material Science 材料科学Material Science Definition 材料科学定义Machinability [məʃi:nə'biliti] 加工性能Strength .[streŋθ] 强度Corrosion & resistance durability.[kə'rəʊʒən] &[ri'zistəns] .[ 'djʊrə'bɪlətɪ] 抗腐蚀及耐用Special metallic features 金属特性Allergic, re-cycling & environmental protection 抗敏感及环境保护 [ə'lə:dʒik]Chemical element 化学元素 'elimənt]Atom of Elements 元素的原子序数Atom and solid material 原子及固体物质Atom Constitutes 原子的组织图 ['kɔnstitju:t] Periodic Table 周期表 [,piəri'ɔdik] adj. 周期的;定期的Atom Bonding 原子键结合Metal and Alloy 金属与合金['ælɔi, ə'lɔi] Ferrous & Non Ferrous Metal 铁及非铁金属['ferəs] adj. [化]亚铁的;铁的,含铁的Features of Metal 金属的特性Crystal Pattern 晶体结构 ['kristəl] n. 水晶;结晶,晶体;水晶饰品adj. 水晶的;透明的,清澈的Crystal structure, Space lattice & Unit cell 晶体结构,定向格子及单位晶格['lætis] n. 格子;格架;晶格vt. 使成格子状X – ray crystal analytics method X线结晶分析法[,ænə'litik,-kəl]Metal space lattice 金属结晶格子Lattice constant 点阵常数Mill's Index 米勒指数Metal Phase and Phase Rule金相及相律Solid solution 固熔体Substitutional type solid solution 置换固熔体[,sʌbstitju:ʃənəl]Interstitial solid solution 间隙固熔体 [,intə'stiʃəl]n. 填隙原子;节间adj. 间质的;空隙的;填隙的Intermetallic compound 金属间化合物[,intəmi'tælik] ['kɔmpaund, kəm'paund]vt. 混合;合成;和解妥协;搀合vi. 妥协;和解n. 化合物;复合词;混合物adj. 复合的;混合的Transformation 转变Transformation Point 转变点Magnetic Transformation 磁性转变 [mæɡ'netik] Allotropic Transformation 同素转变[mæɡ'netik] adj. [化]同素异形的Thermal Equilibrium 热平衡['θə:məl] adj. 热的,热量的n. 上升暖气流 adj. 热的,热量的[,i:kwi'libriəm] Degree of freedom 自由度Critical temperature 临界温度Eutectic 共晶[ju:'tektik]n. 共熔合金adj. 共熔的;容易溶解的Peritectic [.peri’tektik] Temperature包晶温度Peritectic Reaction 包晶反应Peritectic Alloy 包晶合金Hypoeutectic Alloy 亚共晶体[,haipəuju'tektik]n. 低级低共熔体adj. 亚共晶的Hypereutectic Alloy 过共晶体Plastic Deformation 金属塑性[,di:fɔ:'meiʃən] n. 变形Slip Plan 滑动面Distortion 畸变[dis'tɔ:ʃən]Work Hardening 硬化Annealing 退火Crystal Recovery 回复柔软Recrystallization 再结晶[ri:,kristəlai'zeiʃən] Properties & testing of metal 金属材料的性能及试验Chemical Properties 化学性能['prɔpəti]Physical Properties 物理性能Magnetism 磁性['mæɡnitizəm]Specific resistivity & specific resistance 比电阻Specific gravity & specific density比重Specific Heat比热热膨胀系数 Coefficient of thermal expansion['mæɡnitizəm] n. 协同因素;[数]系数;[物]率adj. 合作的;共同作用的['θə:məl] adj. 热的,热量的n. 上升暖气流导热度 Heat conductivity机械性能 Mechanical properties [mi'kænikəl] adj. 机械的;呆板的;力学的;无意识的;手工操作的屈服强度(降伏强度) (Yield strength)弹性限度、杨氏弹性系数及屈服点 elastic limit, Young’s module of elasticity to yield point [i'læstik] adj. 有弹性的;易伸缩的;灵活的n. 松紧带;橡皮圈 ['mɔdju:l, -dʒu:l] n. 模数;模块;组件 [,elæs'tisəti] n. 弹性;弹力;灵活性伸长度[,i:lɔŋ'ɡeiʃən, i,lɔŋ-]断面缩率 Reduction of area [ri'dʌkʃən]破坏性检验 destructive inspections渗透探伤法 Penetrate inspection磁粉探伤法 Magnetic particle inspection放射线探伤法Radiographic inspection [,reidiəu'græfik] adj. 射线照相术的超声波探伤法 Ultrasonic inspection [,ʌltrə'sɔnik] adj. 超音速的;超声的n. 超声波显微观察法 Microscopic inspection [,maikrə'skɔpik] 破坏的检验 Destructive Inspection冲击测试 Impact Test疲劳测试 Fatigue Test [fə'ti:ɡ] n. 疲劳,疲乏;杂役vt. 使疲劳;使心智衰弱vi. 疲劳adj. 疲劳的蠕变试验Creep Test [kri:p] vi. 爬行;慢慢地移动;起鸡皮疙瘩;蔓延n. 爬行;毛骨悚然的感觉;谄媚者潜变强度 Creeps Strength第一潜变期 Primary Creep第二潜变期 Secondary Creep第三潜变期 Tertiary Creep主要金属元素之物理性质 Physical properties of major Metal Elements工业标准及规格–铁及非铁金属 Industrial Standard –Ferrous & Non – ferrous Metal磁力 Magnetic简介 General软磁 Soft Magnetic硬磁 Hard Magnetic磁场 Magnetic Field磁性感应 Magnetic Induction导磁率[系数,性] Magnetic Permeability [,pə:miə'biliti] n. 弥漫;渗透性;[物]透磁率,导磁系数磁化率Magnetic Susceptibility (Xm) [sə,septə'biləti]磁力(Magnetic Force)及磁场 (Magnetic Field)是因物料里的电子 (Electron)活动而产生抗磁体、顺磁体、铁磁体、反铁磁体及亚铁磁体Diamagnetism, Paramagnetic,Ferromagnetisms, Antiferromagnetism & Ferrimagnetisms 抗磁体 Diamagnetism磁偶极子 Dipole ['daipəul]负磁力效应 Negative effect顺磁体 Paramagnetic正磁化率Positive magnetic susceptibility [sə,septə'biləti]铁磁体 Ferromagnetism转变元素 Transition element交换能量 Positive energy exchange外价电子 Outer valence electrons ['veiləns] n. [化]价;原子价;化合价;[生]效价化学结合 Chemical bond自发上磁 Spontaneous magnetization [spɔn'teiniəs] 磁畴 Magnetic domain [dəu'mein] n. 领域;产业;地产;[计]域名相反旋转 Opposite span ['ɔpəzit, -sit]比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism, Paramagnetic & Ferromagnetism反铁磁体 Antiferromagnetism亚铁磁体 Ferrimagnetism磁矩 magnetic moment净磁矩 Net magnetic moment钢铁的主要成份 The major element of steel钢铁用"碳"之含量来分类Classification of Steel according to Carbon contents铁相 Steel Phases ['feisi:z] n. 阶段,时期(phase 的复数形式)v. 逐步实行(phase的三单形式)钢铁的名称 Name of steel铁素体Ferrite ['ferait]渗碳体 Cementitle奥氏体 Austenite珠光体及共析钢 Pearlite &Eutectoid奥氏体碳钢 Austenite Carbon Steel单相金属 Single Phase Metal共释变态 Eutectoid Transformation珠光体 Pearlite亚铁释体 Hyppo-Eutectoid初释纯铁体 Pro-entectoid ferrite过共释钢 Hype-eutectoid [haip] n. 大肆宣传;皮下注射vt. 大肆宣传;使…兴奋粗珠光体 Coarse pearlite [kɔ:s] adj. 粗糙的;下等的;粗俗的中珠光体 Medium Pearlite幼珠光体 Fine pearlite磁性变态点 Magnetic Transformation钢铁的制造 Manufacturing of Steel [,mænju'fæktʃəriŋ]连续铸造法 Continuous casting process电炉 Electric furnace均热炉 Soaking pit ['səukiŋ] n. 浸湿,浸透adj. 湿透的,极湿的adv. 湿透地全静钢 Killed steel半静钢 Semi-killed steel沸腾钢(未净钢) Rimmed steel [rim] n. 边,边缘;轮辋;圆圈vi. 作…的边,装边于vt. 作…的边,装边于钢铁生产流程 Steel Production Flow Chart钢材的熔铸、锻造、挤压及延轧 The Casting, Fogging, Extrusion, Rolling & Steel熔铸 Casting锻造 Fogging挤压 Extrusion延轧Rolling冲剪 Drawing & stamping特殊钢以元素分类Classification of Special Steel according to Element特殊钢以用途来分类 Classification of Special Steel according to End Usage 易车(快削)不锈钢 Free Cutting Stainless Steel含铅易车钢 Leaded Free Cutting Steel含硫易车钢 Sulphuric Free Cutting Steel [sʌl'fjuərik]硬化性能 Hardenability钢的脆性 Brittleness of Steel ['britlnis] n. 脆弱性;脆性,脆度低温脆性 Cold brittleness回火脆性 Temper brittleness日工标准下的特殊钢材 Specail Steel according to JIS Standard铬钢–日工标准 JIS G4104 Chrome steel to JIS G4104 铬钼钢钢材–日工标准G4105 62 Chrome Molybdenum steel to JIS G4105 [krəum]镍铬–日工标准 G4102 63 Chrome Nickel steel to JIS G4102 ['nikəl] n. 镍;镍币;五分镍币vt. 镀镍于镍铬钼钢–日工标准G4103 64 Nickel, Chrome & Molybdenum Steel to JIS G4103高锰钢铸–日工标准High manganese steel to JIS standard ['mæŋɡə,ni:s, ,mæŋɡə'ni:z]片及板材 Chapter Four-Strip, Steel & Plate冷辘低碳钢片(双单光片)(日工标准 JIS G3141) 73 - 95 Cold Rolled (Low carbon) Steel Strip (to JIS G 3141) 简介 General美材试标准的冷辘低碳钢片 Cold Rolled Steel Strip American Standard – American Society for testing and materials (ASTM)日工标准 JIS G3141冷辘低碳钢片 (双单光片)的编号浅释 Decoding of cold rolled(Low carbon)steel strip JIS G3141 [,di:'kəudiŋ] n. 译码;解码v. 破译;译解(decode的ing形式)材料的加工性能 Drawing ability硬度 Hardness表面处理 Surface finish冷辘钢捆片及张片制作流程图表 Production flow chart cold rolled steel coil sheet冷辘钢捆片及张片的电镀和印刷方法 Cold rolled steel coil & sheet electro-plating & painting method [kɔil] vt. n. 延长;伸长;延伸率;伸长率盘绕,把…卷成圈n. 卷;线圈vi. 成圈状冷辘(低碳)钢片的分类用途、工业标准、品质、加热状态及硬度表End usages, industrial standard, quality,condition and hardness of cold rolled steel strip 硬度及拉力 Hardness & Tensile strength test ['tensail, -səl] adj. [物]拉力的;可伸长的;可拉长的拉伸测试(顺纹测试) Elongation test [,i:lɔŋ'ɡeiʃən, i,lɔŋ-]杯突测试(厚度: 0.4公厘至 1.6公厘,准确至 0.1公厘 3个试片平均数 ) Erichsen test (Thickness: 0.4mm to 1.6mm, figure round up to 0.1mm)曲面(假曲率) Camber厚度及阔度公差 Tolerance on Thickness & Width平坦度(阔度大于500公厘,标准回火) Flatness (width>500mm, temper: standard)弯度 Camber冷辘钢片储存与处理提示 General advice on handling & storage of cold rolled steel coil & sheet防止生锈 Rust Protection生锈速度表 Speed of rusting焊接 Welding气焊 Gas Welding埋弧焊 Submerged-arc Welding [səb'mə:dʒd] adj. 水下的,在水中的v. 使陷入;潜入水中(submerge的过去分词)电阻焊 Resistance Welding冷辘钢片(拉力: 30-32公斤/平方米)在没有表面处理状态下的焊接状况 Spot welding conditions for bared (free from paint, oxides etc) Cold rolled mild steel sheets(T/S:30-32 Kgf/ µ m2)时间效应(老化)及拉伸应变 Aging & Stretcher Strains 日工标准(JIS G3141)[strein] n. 张力;拉紧;血缘;负担;扭伤vi. 拉紧;尽力vt. 拉紧;滥用;滤去;竭力冷辘钢片化学成份 Chemical composition – cold rolled steel sheet to JIS G3141冷辘钢片的"理论重量"计算方程式 Cold Rolled Steel Sheet – Theoretical mass 日工标准(JIS G3141)冷辘钢片重量列表 Mass of Cold-Rolled Steel Sheet to JIS G3141 冷辘钢片订货需知[,θiə'retikəl, ,θi:ə-] adj. 理论的;假设的;理论上的;推理的Ordering of cold rolled steel strip/sheet其它日工标准冷轧钢片(用途及编号) JIS standard & application of other cold Rolled Special Steel电镀锌钢片或电解钢片Electro-galvanized Steel Sheet/Electrolytic Zinc Coated Steel Sheet电解/电镀锌大大增强钢片的防锈能力Galvanic Action improving Weather & Corrosion Resistance of the Base Steel Sheet [kə'rəuʒən] n. 腐蚀;腐蚀产生的物质;衰败上漆能力 Paint Adhesion [əd'hi:ʒən] n. 支持;粘附;固守电镀锌钢片的焊接 Welding of Electro-galvanized steel sheet ['ɡælvənaiz] vt. 通电;镀锌;刺激点焊 Spot welding滚焊 Seam welding [si:m] n. 缝;接缝vt. 缝合;接合;使留下伤痕Vi. 裂开;产生裂缝电镀锌(电解)钢片 Electro-galvanized Steel Sheet生产流程 Production Flow Chart常用的镀锌钢片(电解片)的基层金属、用途、日工标准、美材标准及一般厚度 Base metal, application, JIS & ASTM standard, and Normal thickness of galvanized steel sheet锌镀层质量 Zinc Coating Mass [ziŋk]表面处理 Surface Treatment冷轧钢片 Cold-Rolled Steel Sheet/Strip热轧钢片 Hot-Rolled Sheet/Strip电解冷轧钢片厚度公差Thickness Tolerance of Electrolytic Cold-rolled sheet热轧钢片厚度公差 Thickness Tolerance of Hot-rolled sheet冷轧或热轧钢片阔度公差 Width Tolerance of Cold or Hot-rolled sheet长度公差 Length Tolerance理论质量Theoretical Mass [,θiə'retikəl, ,θi:ə-]锌镀层质量(两个相同锌镀层厚度) Mass Calculation of coating (For equal coating)/MM锌镀层质量(两个不同锌镀层厚度) Mass Calculation of coating (For differential coating)/MM镀锡薄铁片(白铁皮/马口铁) (日工标准 JIS G3303)简介 General镀锡薄铁片的构造Construction of Electrolytic Tinplate镀锡薄钢片(白铁皮/马日铁)制造过程 Production Process of Electrolytic Tinplate锡层质量 Mass of Tin Coating (JIS G3303-1987)两面均等锡层 Both Side Equally Coated Mass两面不均等锡层 Both Side Different Thickness Coated Mass级别、电镀方法、镀层质量及常用称号Grade, Plating type,Designation of Coating Mass & Common Coating Mass镀层质量标记 Markings & Designations of Differential Coatings硬度 Hardness单相轧压镀锡薄铁片(白铁皮/马口铁) Single-Reduced Tinplate双相辗压镀锡薄钢片(马口铁/白铁皮) Dual-Reduction Tinplate钢的种类 Type of Steel常用尺寸 Commonly Used Size电器用硅 [硅] 钢片 Electrical Steel Sheet简介 General软磁材料 Soft Magnetic Material滞后回线 Narrow Hysteresis矫顽磁力 Coercive Force [kəu'ə:siv] adj. 强制的;高压的;胁迫的硬磁材料 Hard Magnetic Material最大能量积 Maximum Energy Product硅含量对电器用的低碳钢片的最大好处 The Advantage of Using Silicon low Carbon Steel晶粒取向(Grain-Oriented)及非晶粒取向(Non-Oriented) Grain Oriented & Non-Oriented ['ɔ:rientid, 'əu-]adj. 定向的;导向的;以…为方向的v. 调整;确定…的方位;使朝向(orient的过去分词)电器用硅 [硅] 钢片的最终用途及规格 End Usage and Designations of Electrical Steel Strip电器用的硅 [硅] 钢片之分类 Classification of Silicon Steel Sheet for Electrical Use电器用钢片的绝缘涂层Performance of Surface Insulation of Electrical Steel Sheets [,insju'leiʃən, 'insə-] n. 绝缘;隔离,孤立晶粒取向电器用硅钢片主要工业标准International Standard – Grain-Oriented Electrical Steel Silicon Steel Sheet for Electrical Use晶粒取向电器用硅钢片 Grain-Oriented Electrical Steel 晶粒取向,定取向芯钢片及高硼定取向芯钢片之磁力性能及夹层系数 (日工标准及美材标准) Magnetic Properties and Lamination Factor of SI-ORIENT-CORE& SI-ORIENT-CORE-HI B Electrical Steel Strip (JIS and AISI Standard)退火 Annealing [ə'ni:l]电器用钢片用家需自行应力退火原因 Annealing of the Electrical Steel Sheet退火时注意事项 Annealing Precautionary碳污染 Prevent Carbon Contamination [kən,tæmi'nei ʃən] n. 污染,玷污;污染物热力应先从工件边缘透入 Heat from the Laminated Stacks Edges ['læmineitid] adj. 层压的;层积的;薄板状的v. 分成薄片;用薄片覆盖(laminate的过去分词)提防过份氧化 No Excessive Oxidation [ik'sesiv] [,ɔksi'deiʃən]应力退火温度Stress –relieving Annealing Temperature绝缘表面 Surface Insulation非晶粒取向电力用钢片的电力、磁力、机械性能及夹层系数Lamination Factors of Electrical, Magnetic & Mechanical Non-Grain Oriented Electrical电器及家电外壳用镀层冷辘 [低碳] 钢片 Coated (Low Carbon) Steel Sheets for Casing,Electricals & Home Appliances镀铝硅钢片 Aluminized Silicon Alloy Steel Sheet镀铝硅合金钢片的特色 Feature of Aluminized Silicon Alloy Steel Sheet用途 End Usages抗化学品能力 Chemical Resistance镀铝(硅)钢片–日工标准(JIS G3314)Hot-aluminum-coated sheets and coils to JIS G 3314 镀铝(硅)钢片–美材试标准 (ASTM A-463-77)35.7 JIS G3314镀热浸铝片的机械性能 Mechanical Properties of JIS G 3314 Hot-Dip Aluminum-coated Sheets and Coils公差 Size Tolerance镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较Comparsion of various resistance of aluminized steel & other kinds of steel镀铝(硅)钢片生产流程 Aluminum Steel Sheet, Production Flow Chart焊接能力 Weldability镀铝钢片的焊接状态(比较冷辘钢片) Tips on welding of Aluminized sheet in comparasion with cold rolled steel strip钢板 Steel Plate钢板用途分类及各国钢板的工业标准包括日工标准及美材试标准 Type of steel Plate & Related JIS, ASTM and Other Major Industrial Standards钢板生产流程 Production Flow Chart钢板订货需知 Ordering of Steel Plate不锈钢 Stainless Steel不锈钢的定义 Definition of Stainless Steel不锈钢之分类,耐腐蚀性及耐热性Classification, Corrosion Resistant & Heat Resistance of Stainless Steel [kə'rəuʒən] n. 腐蚀;腐蚀产生的物质;衰败铁铬系不锈钢片Chrome Stainless Steel马氏体不锈钢Martensite Stainless Steel低碳马氏体不锈钢Low Carbon Martensite Stainless Steel含铁体不锈钢Ferrite Stainless Steel镍铬系不锈钢Nickel Chrome Stainless Steel释出硬化不锈钢Precipitation Hardening Stainless Steel [pri,sipi'tei ʃən] n. 坠落;沉淀,沉淀物;鲁莽;冰雹铁锰铝不锈钢Fe / Mn / Al / Stainless Steel不锈钢的磁性Magnetic Property & Stainless Steel不锈钢箔、卷片、片及板之厚度分类Classification of Foil, Strip, Sheet & Plate by Thickness表面保护胶纸Surface protection film不锈钢片材常用代号Designation of SUS Steel Special Use Stainless 表面处理 Surface finish 薄卷片及薄片(0.3至 2.9mm厚之片)机械性能Mechanical Properties of Thin Stainless Steel(Thickness from 0.3mm to 2.9mm) – strip/sheet 不锈钢片机械性能(301, 304, 631, CSP) Mechanical Properties of Spring use Stainless Steel不锈钢–种类,工业标准,化学成份,特点及主要用途Stainless Steel –Type, Industrial Standard, Chemical Composition, Characteristic & end usage of the most commonly used Stainless Steel不锈钢薄片用途例End Usage of Thinner Gauge [ɡeidʒ] n. 计量器;标准尺寸;容量规格vt. 估计;测量;给…定规格不锈钢片、板用途例Examples of End Usages of Strip, Sheet & Plate不锈钢应力退火卷片常用规格名词图解General Specification of Tension Annealed Stainless Steel Strips耐热不锈钢Heat-Resistance Stainless Steel镍铬系耐热不锈钢特性、化学成份、及操作温度Heat-Resistance Stainless Steel铬系耐热钢Chrome Heat Resistance Steel镍铬耐热钢Ni - Cr Heat Resistance Steel超耐热钢Special Heat Resistance Steel抗热超级合金Heat Resistance Super Alloy耐热不锈钢比重表Specific Gravity of Heat –resistance steel plates and sheets stainless steel不锈钢材及耐热钢材标准对照表Stainless and Heat-Resisting Steels发条片 Power Spring Strip发条的分类及材料 Power Spring Strip Classificationand Materials上链发条 Wind-up Spring倒后擦发条 Pull Back Power Spring圆面("卜竹")发条 Convex Spring Strip [kɔn'veks] adj. 凸面的;凸圆的n. 凸面体;凸状拉尺发条 Measure Tape魔术手环 Magic Tape魔术手环尺寸图 Drawing of Magic Tap定型发条 Constant Torque Spring定型发条及上炼发条的驱动力 Spring Force of Constant Torque Spring and Wing-up Spring [tɔ:k] n. 转矩,扭矩;项圈,金属领圈定型发条的形状及翻动过程 Shape and Spring Back of Constant Torque Spring定型发条驱动力公式及代号The Formula and Symbol of Constant Torque Spring边缘处理 Edge Finish硬度 Hardness高碳钢化学成份及用途 High Carbon Tool Steel, Chemical Composition and Usage每公斤发条的长度简易公式 The Length of 1 Kg of SpringSteel Strip SK-5 & AISI-301每公斤长的重量 /公斤(阔 100-200公厘) Weight per one meter long (kg) (Width 100-200mm) SK-5 & AISI-301 每公斤之长度 (阔 100-200公厘) Length per one kg (Width 100-200mm) SK-5 & AISI-301每公尺长的重量 /公斤(阔 2.0-10公厘) Weight per one meter long (kg) (Width 2.0-10mm) SK-5 & AISI-301每公斤之长度 (阔 2.0-10公厘) Length per one kg (Width 2.0-10mm)高碳钢片 High Carbon Steel Strip分类 Classification用组织结构分类Classification According to Grain Structure用含碳量分类–即低碳钢、中碳钢及高碳钢Classification According to Carbon Contains弹簧用碳钢片 Carbon Steel Strip For Spring Use冷轧状态 Cold Rolled Strip回火状态 Annealed Strip淬火及回火状态 Hardened & Tempered Strip/ Precision – Quenched Steel Strip贝氏体钢片 Bainite Steel Strip弹簧用碳钢片材之边缘处理 Edge Finished淬火剂 Quenching Media碳钢回火 Tempering回火有低温回火及高温回火Low & High Temperature Tempering高温回火 High Temperature Tempering退火 Annealing完全退火 Full Annealing扩散退火 Diffusion Annealing [di'fju:ʒən] n. 扩散,传播;[物]漫射低温退火 Low Temperature Annealing中途退火 Process Annealing球化退火 Spheroidizing Annealing光辉退火 Bright Annealing淬火 Quenching [kwentʃ] vt. 结束;熄灭,淬火;解渴;冷浸vi. 熄灭;平息时间淬火 Time Quenching奥氏铁孻回火 Austempering马氏铁体淬火 Marquenching高碳钢片用途 End Usage of High Carbon Steel Strip冷轧高碳钢–日本工业标准 Cold-Rolled (Special Steel) Carbon Steel Strip to JIS G3311电镀金属钢片 Plate Metal Strip电镀金属捆片的优点Advantage of Using Plate Metal Strip金属捆片电镀层 Plated Layer of Plated Metal Strip 镀镍 Nickel Plated镀铬 Chrome Plated镀黄铜 Brass Plated基层金属 Base Metal of Plated Metal Strip低碳钢或铁基层金属 Iron & Low Carbon as Base Metal 不锈钢基层金属 Stainless Steel as Base Metal铜基层金属 Copper as Base Metal [beis] n. 底部;垒;基础adj. 卑鄙的;低劣的vt. 以…作基础黄铜基层金属 Brass as Base Metal轴承合金 Bearing Alloy轴承合金–日工标准 JIS H 5401 Bearing Alloy to JIS H 5401锡基、铅基及锌基轴承合金比较表 Comparison of Tin base, Lead base and Zinc base alloy for Bearing purpose 易溶合金 Fusible Alloy焊接合金 Soldering and Brazing Alloy软焊 Soldering Alloy软焊合金–日本标准 JIS H 4341 Soldering Alloy to JIS H 4341硬焊 Brazing Alloy其它焊接材料请参阅日工标准目录Other Soldering Material细线材、枝材、棒材 Chapter Five Wire, Rod & Bar线材/枝材材质分类及制成品 Classification and End Products of Wire/Rod铁线(低碳钢线)日工标准 JIS G 3532 Low Carbon Steel Wires ( Iron Wire ) to JIS G 3532光线(低碳钢线),火线 (退火低碳钢线 ),铅水线 (镀锌低碳钢线)及制造钉用低碳钢线之代号、公差及备注 Ordinary Low Carbon Steel Wire, Annealed Low Carbon Steel Wire, Galvanized low Carbon Steel Wire & Low Carbon Steel Wire for nail manufacturing - classification, Symbol of Grade, Tolerance and Remarks.机械性能 Mechanical Properites锌包层之重量,铜硫酸盐试验之酸洗次数及测试用卷筒直径Weight of Zinc-Coating, Number of Dippings in Cupric Sulphate Test and Diameters of Mandrel Used for Coiling Test冷冲及冷锻用碳钢线枝 Carbon Steel Wire Rods for Cold Heading & Cold Forging (to JIS G3507)级别,代号及化学成份 Classification, Symbol of Grade and Chemical Composition直径公差,偏圆度及脱碳层的平均深度Diameter/ dai'æmitə] Tolerance, Ovality and Average Decarburized Layer Depth冷拉钢枝材 Cold Drawn Carbon Steel Shafting Bar枝材之美工标准,日工标准,用途及化学成份 AISI, JIS End Usage and Chemical Composition of Cold Drawn Carbon Steel Shafting Bar冷拉钢板重量表 Cold Drawn Steel Bar Weight Table高碳钢线枝 High Carbon Steel Wire Rod (to JIS G3506) 冷拉高碳钢线 Hard Drawn High Carbon Steel Wire (to JIS G3521, ISO-84580-1&2)化学成份分析表 Chemical Analysis of Wire Rod线径、公差及机械性能(日本工业标准 G 3521) Mechanical Properties (JIS G 3521)琴线(日本标准 G3522) Piano Wires (to G3522)级别,代号,扭曲特性及可用之线材直径 Classes, symbols, twisting characteristic and applied Wire Diameters 直径,公差及拉力强度 Diameter, Tolerance and Tensile Strength ['twistiŋ] n. 缠绕;旋扭法;扭转;诱骗adj. 缠绕的;曲折的;转动的v. 编成;盘绕;扭曲(twist的ing形式) ['tensail, -səl] adj. [物]拉力的;可伸长的;可拉长的裂纹之容许深度及脱碳层 Permissible depth of flaw and decarburized layer [pə'misibl] [flɔ:]常用的弹簧不锈钢线-编号,特性,表面处理及化学成份Stainless Spring Wire – National Standard number, Characteristic, Surface finish & Chemical composition 弹簧不锈钢线,线径及拉力列表Stainless Spring Steel, Wire diameter and Tensile strength of Spring Wire处理及表面状况 Finish & Surface各种不锈钢线在不同处理拉力比较表 Tensile Strength of various kinds of Stainless Steel Wire under Different Finish圆径及偏圆度之公差Tolerance of Wire Diameters & Ovality铬镍不锈钢及抗热钢弹簧线材–美国材验学会 ASTM A313 –1987 Chromium –Nickel Stainless and Heat-resisting Steel Spring Wire – ASTM A313 – 1987 化学成份 Chemical Composition机械性能 Mechanical Properties305, 316, 321及347之拉力表Tensile Strength Requirements for Types 305, 316, 321 and 347A1S1-302贰级线材之拉力表Tensile Strength of A1S1-302 Wire日本工业标准–不锈钢的化学成份 (先数字后字母排列) JIS – Chemical Composition of Stainless Steel (in order of number & alphabet)美国工业标准–不锈钢及防热钢材的化学成份 (先数字后字母排列) AISI – Chemical Composition of Stainless Steel & Heat-Resistant Steel(in order of number & alphabet) ['ælfəbit] n. 字母表,字母系统;入门,初步易车碳钢 Free Cutting Carbon Steels (to JIS G4804 ) 化学成份 Chemical composition圆钢枝,方钢枝及六角钢枝之形状及尺寸之公差 Tolerance on Shape and Dimensions for Round Steel Bar, Square Steel Bar, Hexagonal Steel Bar [hek'sæɡənəl] adj. 六边的,六角形的易车(快削)不锈钢 Free Cutting Stainless Steel易车(快削)不锈钢种类 Type of steel易车(快削)不锈钢拉力表Tensile Strength of Free Cutting Wires枝/棒无芯磨公差表(μ) (μ= 1/100 mm) Rod/Bar Centreless Grind Tolerance [ɡraind]vt. 磨碎;磨快vi.磨碎;折磨n. 磨;苦工作易车不锈钢及易车钢之不同尺寸及硬度比较 Hardness of Different Types & Size of Free Cutting Steel扁线、半圆线及异形线 Flat Wire, Half Round Wire, Shaped Wire and Precision Shaped Fine Wire [pri'siʒən] n. 精确;精度,精密度adj. 精密的,精确的加工方法 Manufacturing Method应用材料 Material Used特点 Characteristic用途End Usages不锈钢扁线及半圆线常用材料 Commonly used materials for Stainless Flat Wire & Half Round Wire扁线公差 Flat Wire Tolerance方线公差 Square Wire Tolerance专业知识材料科学基础常用英语词汇物料科学Material Science物料科学定义Material Science Definition加工性能Machinability强度Strength抗腐蚀及耐用Corrosion & resistance durability金属特性Special metallic features抗敏感及环境保护Allergic, re-cycling & environmental protection化学元素Chemical element元素的原子序数Atom of Elements原子及固体物质Atom and solid material原子的组成、大小、体积和单位图表The size, mass, charge of an atom, and is particles (Pronton,Nentron and Electron)原子的组织图Atom Constitutes周期表Periodic Table原子键结Atom Bonding金属与合金 Metal and Alloy铁及非铁金属Ferrous & Non Ferrous Metal金属的特性Features of Metal晶体结构 Crystal Pattern晶体结构,定向格子及单位晶格Crystal structure, Space lattice & Unit cellX线结晶分析法X – ray crystal analyics method金属结晶格子 Metal space lattice格子常数 Lattice constant米勒指数 Mill's Index金相及相律 Metal Phase and Phase Rule固熔体 Solid solution置换型固熔体 Substitutional type solid solution 插入型固熔体 Interstital solid solution金属间化物 Intermetallic compound金属变态Transformation变态点Transformation Point磁性变态Magnetic Transformation同素变态Allotropic Transformation合金平衡状态Thermal Equilibrium相律Phase Rule自由度Degree of freedom临界温度Critical temperture共晶Eutectic包晶温度 Peritectic Temperature包晶反应 Peritectic Reaction包晶合金 Peritectic Alloy亚共晶体 Hypoeutetic Alloy过共晶体 Hyper-ectectic Alloy金属的相融、相融温度、晶体反应及合金在共晶合金、固熔孻共晶合金及偏晶反应的比较Equilibrium Comparision金属塑性 Plastic Deformation滑动面 Slip Plan畸变 Distortion硬化 Work Hardening退火 Annealing回复柔软 Crystal Recovery再结晶 Recrystallization金属材料的性能及试验Properties & testing of metal化学性能Chemical Properties物理性能Physical Properties颜色Colour磁性Magnetisum比电阻Specific resistivity & specific resistance 比重Specific gravity & specific density比热Specific Heat热膨胀系数Coefficient of thermal expansion导热度Heat conductivity机械性能 Mechanical properties屈服强度(降伏强度) (Yield strangth)弹性限度、阳氏弹性系数及屈服点elastic limit, Yeung's module of elasticity to yield point伸长度Elongation断面缩率Reduction of area金属材料的试验方法The Method of Metal inspection不破坏检验Non – destructive inspections渗透探伤法Penetrate inspection磁粉探伤法Magnetic particle inspection放射线探伤法Radiographic inspection 超声波探伤法Ultrasonic inspection 显微观察法Microscopic inspection 破坏的检验Destructive Inspection 冲击测试Impact Test疲劳测试Fatigue Test潜变测试 Creep Test潜变强度Creeps Strength第壹潜变期Primary Creep第二潜变期Secondary Creep第三潜变期Tertiary Creep主要金属元素之物理性质Physical properties of major Metal Elements工业标准及规格–铁及非铁金属Industrial Standard – Ferrous & Non – ferrous Metal 磁力 Magnetic简介 General软磁 Soft Magnetic硬磁 Hard Magnetic磁场 Magnetic Field磁性感应 Magnetic Induction透磁度 Magnetic Permeability磁化率 Magnetic Susceptibility (Xm)磁力(Magnetic Force)及磁场(Magnetic Field)是因物料里的电子(Electron)活动而产生抗磁体、顺磁体、铁磁体、反铁磁体及亚铁磁体Diamagnetism, Paramagnetic, Ferromagnetism,Antiferromagnetism & Ferrimagnetism 抗磁体 Diamagnetism磁偶极子 Dipole负磁力效应 Negative effect顺磁体 Paramagnetic正磁化率 Positive magnetic susceptibility铁磁体 Ferromagnetism转变元素 Transition element交换能量 Positive energy exchange外价电子 Outer valence electrons化学结合 Chemical bond自发上磁 Spontaneous magnetization磁畴 Magnetic domain相反旋转 Opposite span比较抗磁体、顺磁体及铁磁体Comparison of Diamagnetism, Paramagnetic & Ferromagnetism反铁磁体 Antiferromagnetism亚铁磁体 Ferrimagnetism磁矩 magnetic moment净磁矩 Net magnetic moment钢铁的主要成份The major element of steel钢铁用"碳"之含量来分类Classification of Steel according to Carbon contents 铁相Steel Phases钢铁的名称Name of steel纯铁体Ferrite渗碳体Cementitle奥氏体 Austenite珠光体及共释钢Pearlite &Eutectoid奥氏体碳钢Austenite Carbon Steel单相金属Single Phase Metal共释变态Eutectoid Transformation珠光体 Pearlite亚铁释体Hyppo-Eutectoid初释纯铁体 Pro-entectoid ferrite 过共释钢 Hype-eutectoid珠光体Pearlite粗珠光体 Coarse pearlite中珠光体 Medium pearlite幼珠光体 Fine pearlite磁性变态点 Magnetic Transformation钢铁的制造Manufacturing of Steel连续铸造法 Continuous casting process电炉 Electric furnace均热炉 Soaking pit全静钢 Killed steel半静钢 Semi-killed steel沸腾钢(未净钢) Rimmed steel钢铁生产流程 Steel Production Flow Chart钢材的熔铸、锻造、挤压及延轧The Casting, Fogging, Extrusion, Rolling & Steel 熔铸 Casting锻造 Fogging挤压 Extrusion延轧 Rolling冲剪 Drawing & stamping特殊钢 Special Steel简介General特殊钢以原素分类Classification of Special Steel according to Element 特殊钢以用途来分类Classification of Special Steel according to End Usage 易车(快削)不锈钢Free Cutting Stainless Steel含铅易车钢Leaded Free Cutting Steel含硫易车钢Sulphuric Free Cutting Steel硬化性能Hardenability钢的脆性Brittleness of Steel低温脆性 Cold brittleness回火脆性 Temper brittleness日工标准下的特殊钢材Specail Steel according to JIS Standard铬钢–日工标准 JIS G4104Chrome steel to JIS G4104铬钼钢钢材–日工标准 G4105 62Chrome Molybdenum steel to JIS G4105镍铬–日工标准 G4102 63Chrome Nickel steel to JIS G4102镍铬钼钢–日工标准 G4103 64Nickel, Chrome & Molybdenum Steel to JIS G4103高锰钢铸–日工标准High manganese steel to JIS standard片及板材Chapter Four-Strip, Steel & Plate冷辘低碳钢片(双单光片)(日工标准 JIS G3141) 73 - 95 Cold Rolled (Low carbon) Steel Strip (to JIS G 3141) 简介General美材试标准的冷辘低碳钢片Cold Rolled Steel Strip American Standard – American Society for testing and materials (ASTM)日工标准JIS G3141冷辘低碳钢片(双单光片)的编号浅释Decoding of cold rolled(Low carbon)steel strip JIS G3141材料的加工性能 Drawing abillity硬度 Hardness表面处理 Surface finish冷辘钢捆片及张片制作流程图表Production flow chart cold rolled steel coil sheet冷辘钢捆片及张片的电镀和印刷方法Cold rolled steel coil & sheet electro-plating & painting method冷辘(低碳)钢片的分类用、途、工业标准、品质、加热状态及硬度表End usages, industrial standard, quality, condition and hardness of cold rolled steel strip硬度及拉力 Hardness & Tensile strength test拉伸测试(顺纹测试)Elongation test杯突测试(厚度: 0.4公厘至1.6公厘,准确至0.1公厘 3个试片平均数)Erichsen test (Thickness: 0.4mm to 1.6mm, figure round up to 0.1mm)曲面(假曲率)Camber厚度及阔度公差 Tolerance on Thickness & Width平坦度(阔度大于500公厘,标准回火)Flatness (width>500mm, temper: standard)弯度 Camber冷辘钢片储存与处理提示General advice on handling & storage of cold rolled。

Response Surface Methodology.ppt

Response Surface Methodology.ppt
to search for the setting of critical control factors that would optimize the response
when curvature in the response surface is suspected
6
Response Surface Methodology – When?
2
Response Surface
The yield of a process (Y) was determined to be influenced by the amount of nitrogen (X1) and phosphoric acid (X2), i.e.
Y = ƒ(X1, X2) + where is the noise or error observed in the response. If we denote the expected response by
required improvement in product quality model a relationship between the control factors and the
response
7
Response Surface Functions
First-Order Model
Response Surface Methodology
What is Response Surface Methodology (RSM)
Response Surface Methodology (RSM) is
a collection of mathematical and statistical techniques that are useful for the modeling and analysis of problems in which a response of interest is influenced by several quantifiable variables (or factors), with the objective of optimizing the response.

商务英语单词

商务英语单词

商务英语单词+access\n.通路, 访问, 入门\vt.存取, 接近&5Akses+account\n.计算, 帐目, 说明, 估计, 理由\vi.说明, 总计有, 认为, 得分\vt.认为&E5kaunt+achievement\n.成就, 功绩&E5tFi:vmEnt+activity\n.活跃, 活动性, 行动, 行为, [核]放射性&Ak5tiviti+actually\adv.实际上, 事实上, 竟然, 居然, 如今&5AktFuElI+add\vt.增加, 添加, 计算...总和, 补充说, 又说\vi.加, 加起来, 增添, 做加法&Ad+addition\n.加, 加起来, 增加物, 增加, 加法&E5diFEn+address\n.地址, 致辞, 演讲, 说话的技巧\vt.向...致辞, 演说, 写姓名地址, 从事, 忙于&E5dres+adopt\vt.采用, 收养&E5dCpt+advertise\v.做广告, 登广告&5AdvEtaIz+advertisement\n.广告, 做广告&Ed5vE:tismEnt+affect\vt.影响, 感动, 侵袭, 假装&E5fekt +affiliate\v.(使...)加入, 接受为会员&E5filieit+aggregate\n.合计, 总计, 集合体\adj.合计的, 集合的, 聚合的\v.聚集, 集合, 合计&5A^ri^eit+aggregation\n.集合, 集合体, 聚合&A^ri5^eiFEn+albeit\conj.虽然&C:l5bi:It+alienate\v.疏远&5eiljEneit+alternative\n.二中择一, 可供选择的办法, 事物\adj.选择性的, 二中择一的&C:l5tE:nEtiv+alternatively\adv.做为选择, 二者择一地&R:l`t\:nEtIvlI+analysis\n.分析, 分解&E5nAlisis+analyst\n.分析家, 分解者&5AnElist+anticipate\vt.预期, 期望, 过早使用, 先人一着, 占先\v.预订, 预见, 可以预料&An5tisipeit+anyway\adv.无论如何, 总之&5eniwei+appendix\n.附录, 附属品, [解]阑尾&E5pendiks+applet\Java的程序&+applicable\adj.可适用的, 可应用的&5AplikEbl+application\n.请求, 申请, 申请表, 应用, 运用, 施用, 敷用\应用,应用程序,应用软件&7Apli5keiFEn+apply\vt.申请, 应用\vi.申请, 适用&E5plai+approach\n.接近, 逼近, 走进, 方法, 步骤, 途径, 通路\vt.接近, 动手处理\vi.靠近&E5prEutF+appropriate\adj.适当的&E5prEupriit+approval\n.赞成, 承认, 正式批准&E5pru:vEl+architectural\adj.建筑上的, 建筑学的&7B:ki5tektFErEl+architecture\n.建筑, 建筑学\体系机构&5B:kitektFE+arrangement\n.排列, 安排&E5reindVmEnt+aspect\n.样子, 外表, 面貌, (问题等的)方面&5Aspekt+assemble\vt.集合, 聚集, 装配\vi.集合&E5sembl+associate\vt.使发生联系, 使联合\vi.交往, 结交\n.合作人, 同事\adj.副的&E5sEuFieit+assume\vt.假定, 设想, 采取, 呈现&E5sju:m+assumption\n.假定, 设想, 担任, 承当, 假装, 作态&E5sQmpFEn+attain\vt.达到, 获得\v.达到&E5tein+audit\n.审计, 稽核, 查帐\vt.稽核, 旁听\vi.查账&5C:dit+authority\n.权威, 威信, 权威人士, 权力, 职权, 典据, 著作权威&C:5WCriti+automate\v.使自动化, 自动操作&5C:tEmeit+automatic\n.自动机械\adj.自动的, 无意识的, 机械的&7C:tE5mAtik+automatically\adv.自动地, 机械地&C:tE5mAtIklI+avoid\vt.避免, 消除&E5vCid+awhile\adv.片刻, 一会儿&E5wail+back\adj.后面的, 在后面, 早过去的, 前(欠)的钱\adv.向后地\n.背部, 后面\v.后退, 支持&bAk+balance\n.秤, 天平, 平衡, [商] 收支差额, 结余, 余额\v.平衡, 称, 权衡, 对比, 结算\n.资产平稳表&5bAlEns+band\n.带子, 镶边, 波段, 队, 乐队\v.联合, 结合&bAnd+banner\n.旗帜, 横幅, 标语&5bAnE+barrier\n.(阻碍通道的)障碍物, 栅栏, 屏障&5bAriE+behavior\n.举止, 行为&bi5heivjE+benefit\n.利益, 好处\vt.有益于, 有助于\vi.受益&5benifit+bibliography\n.(有关一个题目或一个人的)书目, 参考书目&7bibli5C^rEfi+blueprint\n.蓝图, 设计图, 计划\vt.制成蓝图, 计划&5blu:7print+brand\n.商标, 牌子, 烙印\vt.打火印, 污辱&brAnd+broadband\宽带&`brR:dbAnd+browser\n 浏览器, 吃嫩叶的动物, 浏览书本的人&braJzE(r)吃嫩叶的动物, 浏览书本的人+bureaucracy\n.官僚, 官僚作风, 官僚机构&bjuE5rCkrEsi +bypass\n.旁路\vt.设旁路, 迂回& (?@) 5baIpAs&5baIpB:s;+capability\n.(实际)能力, 性能, 容量, 接受力&7keipE5biliti+capable\adj.有能力的, 能干的, 有可能的, 可以...的&5keipEbl+capture\n.捕获, 战利品\vt.俘获, 捕获, 夺取&5kAptFE+cash\n.现金\vt.兑现&kAF+catalog\n.目录, 目录册\v.编目录&5kAtElC^+category\n.种类, 别, [逻]范畴&5kAti^Eri+centric\adj.中心的, 中央的&5sentrik+challenge\n.挑战\vt.向...挑战&5tFAlindV+channel\n.海峡, 水道, 沟, 路线\vt.引导, 开导, 形成河道\信道,频道&5tFAnl+charge\n.负荷, 电荷, 费用, 主管, 掌管, 充电, 充气, 装料\v.装满, 控诉, 责令, 告诫, 指示, 加罪于, 冲锋, 收费&tFB:dV+chart\n.海图, 图表\vt.制图&tFB:t+chop\n.砍, 排骨, 官印, 商标\vt.剁碎, 砍, (风浪)突变&tFCp+clearance\n.清除&5kliErEns+click\v.发出滴答声\n.滴答声&klik+client\n.[计]顾客, 客户, 委托人&5klaiEnt+collaboration\n.协作, 通敌&kE7lAbE5reiFEn+collection\n.收藏, 征收, 搜集品, 捐款&kE5lekFEn+commerce\n.商业&5kCmE(:)s+commercial\adj.商业的, 贸易的&kE5mE:FEl+committed\adj.效忠的;忠于…的&+communicate\v.沟通, 通信, (房间、道路、花园等)相通, 传达, 感染&kE5mju:nikeit+communication\n.传达, 信息, 交通, 通讯&kE7mju:ni5keiFn+community\n.公社, 团体, 社会, (政治)共同体, 共有, 一致, 共同体, (生物)群落&kE5mju:niti +comparison\n.比较, 对照, 比喻, 比较关系&kEm5pArisn+compete\vi.比赛, 竞争&kEm5pi:t+competition\n.竞争, 竞赛&kCmpi5tiFEn+competitive\adj.竞争的&kEm5petitiv+competitor\n.竞争者&kEm5petitE+complement\n.补足物, [文法]补语, [数]余角\vt.补助, 补足&5kCmplimEnt+complementary\adj.补充的, 补足的&kRmplE5mentErI+completion\n.完成&kEm5pli:F(E)n+complex\adj.复杂的, 合成的, 综合的\n.联合体&5kCmpleks+complexity\n.复杂(性), 复杂的事物, 复杂性&kEm5pleksiti+complicated\adj.复杂的, 难解的&5kCmplikeitid+component\n.成分\adj.组成的, 构成的&kEm5pEunEnt+comprehensive\adj.全面的, 广泛的, 能充分理解的, 包容的&7kCmpri5hensiv+concept\n.观念, 概念&5kCnsept+concern\vt.涉及, 关系到\n.(利害)关系, 关心, 关注, 关注, 所关心的是&kEn5sE:n+concise\adj.简明的, 简练的&kEn5sais+concisely\adv.简明地&+conduct\n.行为, 操行\v.引导, 管理, 为人, 传导&5kCndQkt, -dEkt+confidence\n.信心&5kCnfidEns+configure\vi.配置, 设定\vt.使成形, 使具一定形式&kEn5fi^E+confirm\vt.确定, 批准, 使巩固, 使有效\v.确认, (基督教中)给...行按手礼&kEn5fE:m+conflict\n.斗争, 冲突\vi.抵触, 冲突&5kCnflikt+connection\n.连接, 关系, 接线, 线路, 亲戚&kE5nekFEn+conscious\adj.有意识的, 有知觉的, 故意的, 羞怯的&5kCnFEs+consolidate\v.巩固&kEn5sClideit+consolidation\n.巩固, 合并&kEn7sCli5deiFEn +consume\vt.消耗, 消费, 消灭, 大吃大喝, 吸引\vi.消灭, 毁灭&kEn5sju:m+consumer\n.消费者&kEn5sju:mE+contact\n.接触, 联系\vt.接触, 联系&5kCntAkt+continual\adj.连续的, 频繁的, 持续不断的&kEn5tinjuEl+continually\adv.不断地, 频繁地&kEn5tInjJElI+continuous\adj.连续的, 持续的&kEn5tinjuEs+continuously\adv.不断地, 连续地&kEn5tInjJEslI+contract\n.合同, 契约, 婚约\v.使缩短, 感染, 订约&5kCntrAkt+convenience\n.便利, 方便, 有益, 有用的, 方便的用具、机械、安排等&kEn5vi:njEns+conversion\n.变换, 转化&kEn5vE:FEn+convince\vt.使确信, 使信服&kEn5vins+cookie\n.(苏格兰)甜面包, (美国)小甜饼&`kJkI+coordination\n.同等, 调和&kEu7C:di5neiFEn+core\n.果核, 中心, 核心&kC:+corny\adj.谷类的, 乡下味的, 粗野的, 有鸡眼的&5kC:ni+corporate\adj.社团的, 法人的, 共同的, 全体的&5kC:pErit+correspondence\n.相应, 通信, 信件&7kCris5pCndEns+counterproductive\adj.反生产的, 使达不到预期目标的&5kauntEprE7dQktiv+create\vt.创造, 创作, 引起, 造成&kri5eit+credit\n.信任, 信用, 声望, 荣誉, [财务]贷方, 银行存款\vt.相信, 信任, 把...归给&5kredit+critical\adj.评论的, 鉴定的, 批评的, 危急的, 临界的&5kritikEl+crush\vt.压碎, 碾碎, 压服, 压垮, 粉碎, (使)变形&krQF+culture\n.文化, 文明&5kQltFE+cumbersome\adj.讨厌的, 麻烦的, 笨重的&5kQmbEsEm+current\adj.当前的, 通用的, 流通的, 现在的, 草写的, 最近的\n.涌流, 趋势, 电流, 水流, 气流&5kQrEnt+currently\adv.普遍地, 通常地, 现在, 当前&5kQrEntlI+customer \n.消费者&5kQstEmE+customization\n.[计]用户化,专用化,定制&+customize\v.[计] 定制, 用户化&kQstEmaIz+customs\n.进口税, 海关&+cyberspace\n.电脑空间&+database\n.[计] 数据库, 资料库&5deitEbeis+decision\n.决定, 决心, 决议, 结果, 果断, 坚定&di5siVEn+define\vt.定义, 详细说明&di5fain+definition\n.定义, 解说, 精确度, (轮廓影像等的)清晰度&7defi5niFEn+deflate\vt.放气, 抽出空气, 使缩小, 紧缩(通货)\vi.缩小&di5fleit+deflation\n.放气, 缩小, 通货紧缩, 物价低廉(尤指成本不降低时的反常情形)&dI5fleIF(E)n+deliberate\adj.深思熟虑的, 故意的, 预有准备的\v.商讨&di5libEreit+deliberately\adv.故意地&dI5lIbErEtlI+delivery\n.递送, 交付, 分娩, 交货, 引渡\n.[律] 财产等的正式移交\发送,传输&di5livEri+demographic\adj.人口统计学的&demE5^rAfIk+deploy\v.展开, 配置&di5plCi+desirable\adj.值得要的, 合意的, 令人想要的, 悦人心意的&di5zaiErEbl+device\n.装置, 设计, 图案, 策略, 发明物, 设备\[计]安装设备驱动程序&di5vais+diagram\n.图表&5daiE^rAm+dial\n.刻度盘, 钟面, 转盘, (自动电话)拨号盘\v.拨&5daiEl+differential\adj.微分的\n.微分&7difE5renFEl+digital\adj.数字的, 数位的, 手指的\n.数字, 数字式&5didVitl+directly\adv.直接地, 立即&di5rektli, dai5rektli+disconcert\vt.使惊惶, 使仓皇失措, 破坏&7diskEn5sE:t+discount\n.折扣&5diskaunt+disintermediation\n.<美>非居间化(指由储蓄银行存款转为直接的证券投资)C.des &dis7intEmi:di5eiFEn+disparate\adj.全异的&5dispErit+dispute\v.争论, 辩论, 怀疑, 抗拒, 阻止, 争夺(土地,胜利等)\n.争论, 辩论, 争吵&dis5pju:t+distinct\adj.清楚的, 明显的, 截然不同的, 独特的&dis5tiNkt+distribution\n.分配, 分发, 配给物, 销售, 法院对无遗嘱死亡者财产的分配, 分布状态, 区分, 分类\发送,发行&7distri5bju:FEn+distributor\n.发行人&dis5tribjutE+document\n.公文, 文件, 文档, 档案, 文献\v.证明&5dCkjumEnt+download\下载&+downward\adj.向下的&5daunwEd+duplicate\adj.复制的, 副的, 两重的, 两倍的, 完全相同\n.复制品, 副本\vt.复写, 复制, 使加倍, 使成双&5dju:plikeit+dynamic\adj.动力的, 动力学的, 动态的&dai5nAmik+earnings\n.所得,收入&5E:niNz+economy\n.经济, 节约, 节约措施, 经济实惠, 系统, 机体, 经济制度的状况&i(:)5kCnEmi+effectively\adv.有效地, 有力地&I5fektIvlI+efficiency\n.效率, 功效&i5fiFEnsi+efficient\adj.(直接)生效的, 有效率的, 能干的&i5fiFEnt+efficiently\adv.有效率地, 有效地&I5fIFEntlI+electronic\adj.电子的&Ilek5trRnIk+electronically\adv.电子地&+element\n.要素, 元素, 成分, 元件, 自然环境&5elimEnt+emergence\n.浮现, 露出, (植物)突出体, 出现&i5mE:dVEns+enable\vt.使能够, 授予权利或方法&i5neibl+encounter\v.遭遇, 遇到, 相遇\n.遭遇, 遭遇战&in5kauntE+encryption\编密码&in5kripFEn+engine\n.发动机, 机车, 火车头&5endVin+enhance\vt.提高, 增强\v.提高&in5hB:ns +enhancement\n.增进, 增加&in5hB:nsmEnt+ensure\vt.保证, 担保, 使安全, 保证得到\v.确保, 确保, 保证&in5FuE+enterprise\n.企业, 事业, 计划, 事业心, 进取心, 干事业&5entEpraiz+entity\n.实体&5entiti+entrant\n.进入者, 新到者, 新工作者, 新会员, 大学新生, 参加竞赛者&5entrEnt+entry\n.登录, 条目, 进入, 入口, [商]报关手续, [律]对土地的侵占, 对房屋的侵入&5entri+environment\n.环境, 外界&in5vaiErEnmEnt+equivalent\adj.相等的, 相当的, 同意义的\n.等价物, 相等物&i5kwivElEnt+establish\vt.建立, 设立, 安置, 使定居, 使人民接受, 确定\v.建立&is5tAbliF+estimate\v.估计, 估价, 评估\n.估计, 估价, 评估&5estimeit+excellence\n.优秀, 卓越, 优点, 美德&5eksElEns+execute\vt.执行, 实行, 完成, 处死, 制成, [律]经签名盖章等手续使(证书)生效&5eksikju:t+execution\n.实行, 完成, 执行, 死刑, 制作, (武器等的)破坏效果, 杀伤力&7eksi5kju:FEn+executive\adj.实行的, 执行的, 行政的\n.执行者, 经理主管人员&i^5zekjutiv+existence\n.存在, 实在, 生活, 存在物, 实在物&i^5zistEns+expand\vt.使膨胀, 详述, 扩张\vi.张开, 发展&iks5pAnd+expansion\n.扩充, 开展, 膨胀, 扩张物, 辽阔, 浩瀚&iks5pAnFEn+expenditure\n.支出, 花费&iks5penditFE, eks-+experience\n.vt.经验, 体验, 经历, 阅历&iks5piEriEns+expertise\n.专家的意见, 专门技术&7ekspE5ti:z+explain\v.解释, 说明&iks5plein+explicit\adj.外在的, 清楚的, 直率的, (租金等)直接付款的&iks5plisit+explicitly\adv.明白地, 明确地&+explosive\adj.爆炸(性)的, 爆发(性)的, 暴露\n.爆炸物, 炸药&iks5plEusiv+expose\vt.使暴露, 受到, 使曝光\v.揭露&iks5pEuz+extend\v.扩充, 延伸, 伸展, 扩大[军]使疏开, 给予, 提供, 演化出的全文, <英>[律]对(地产等)估价&iks5tend+external\adj.外部的, 客观的, [医]外用的, 外国的, 表面的\n.外部, 外面&eks5tE:nl+extra\adj.额外的, 不包括在价目内的, 特大的, 特佳的\adv.特别地, 非常, 另外\n.额外的人(或物), (报纸)号外, 上等产品, (电影)临时演员&5ekstrE+facilitate\vt.(不以人作主语的)使容易, 使便利, 推动, 帮助, 使容易, 促进&fE5siliteit+factor\n.因素, 要素, 因数, 代理人&5fAktE+feasible\adj.可行的, 切实可行的&5fi:zEbl+feature\n.面貌的一部分(眼,口,鼻等)特征, 容貌, 特色, 特写\vt.是...的特色, 特写, 放映\vi.起重要作用&5fi:tFE+finance\n.财政, 金融, 财政学\vt.供给...经费, 负担经费\vi.筹措资金&fai5nAns, fi-+financial\adj.财政的, 金融的&fai5nAnFEl, 7fi-+firewall\Internet 防火墙&+flexible\adj.柔韧性, 易曲的, 灵活的, 柔软的, 能变形的, 可通融的&5fleksEbl+focus\n.(兴趣活动等的)中心, 焦点, 焦距, [医]病灶, [地](地震的)震源\vi.聚焦, 注视\vt.使集中在焦点上, 定焦点, 调焦, 集中&5fEukEs+fordable\可以涉水而过的&+forecast\n.先见, 预见, 预测, 预报\vt.预想, 预测, 预报, 预兆&5fC:kB:st+format\n.开本, 版式, 形式, 格式\vt.安排...的格局(或规格), [计]格式化(磁盘)werWord\NewWord\NewWord.dic&5fC:mAt, -mB:t+frame\n.结构, 体格\vt.构成, 设计, 制定, 使适合, 陷害\vi.<英方>有成功希望\n.帧,画面,框架&freim+freight\n.货物, 船货, 运费, 货运\vt.装货, 使充满, 运送&freit+fruition\n.享用, 结果实, 成就, 实现&fru(:) 5iFEn+fulfill\vt.履行, 实现, 完成(计划等)werWord 2005\Dicts\PWQEC.des&ful5fil+fulfillment\n.履行, 实行&ful5filmEnt +generate\vt.产生, 发生&5dVenE7reit+global\adj.球形的, 全球的, 全世界的&5^lEubEl+growth\n.生长, 种植, 栽培, 发育, 等比级数&^rEuW+guideline\n.方针&+hacker\电脑黑客&5hAkE+handle\n.柄, 把手, 把柄, 口实, 手感\vt.触摸, 运用, 买卖, 处理, 操作\vi.搬运, 易于操纵\n.[计]句柄&5hAndl+herald\n.使者, 传令官, 通报者, 先驱, 预兆\vt.预报, 宣布, 传达, 欢呼&5herEld+highlight\n.加亮区, 精彩场面, 最显著(重要)部分\vt.加亮, 使显著, 以强光照射, 突出&5haIlaIt+historical\adj.历史(上)的, 有关历史的&his5tCrikEl+historically\在历史上, 从历史观点上说&+homegrown\adj.(水果, 蔬菜等)自家种植的, 国产的&+horizon\n.地平线\n.地平(线),(知识,思想等的)范围,视野&hE5raizn+identify\vt.识别, 鉴别, 把...和...看成一样\v.确定&ai5dentifai+identity\n.同一性, 身份, 一致, 特性, 恒等式&ai5dentiti+ignore\vt.不理睬, 忽视, [律](因证据不足而)驳回诉讼&i^5nC:+illustrate\vt.举例说明, 图解, 加插图于, 阐明\vi.举例&5ilEstreit+impact\n.碰撞, 冲击, 冲突, 影响, 效果\vt.挤入, 撞击, 压紧, 对...发生影响&5impAkt+impede\v.阻止&im5pi:d+imperative\n.命令, 诫命, 需要, 规则, 祈使语气\adj.命令的, 强制的, 紧急的, 必要的, 势在必行的, [语法]祈使的&im5perEtiv+implement\n.工具, 器具\vt.贯彻, 实现\v.执行&5implimEnt+implementation\n.执行&7implimen5teiFEn+implicit\adj.暗示的, 盲从的, 含蓄的, 固有的, 不怀疑的, 绝对的&im5plisit+incorporate\adj.合并的, 结社的, 一体化的\vt.合并, 使组成公司, 具体表现\vi.合并, 混合, 组成公司\vt.[律]结社, 使成为法人组织&in5kC:pEreit+independence \n.独立, 自主&7indi5pendEns+independent\n.中立派, 无党派者\adj.独立自主的, 不受约束的&indi5pendEnt+individual\n.个人, 个体\adj.个别的, 单独的, 个人的&7indi5vidjuEl+inefficient\adj.效率低的, 效率差的, (指人)不能胜任的, 无能的&7ini5fiFEnt+inevitable\adj.不可避免的, 必然的&in5evitEbl+infancy\n.幼年&5infEnsi+infrastructure\n.下部构造, 基础下部组织&5infrE5strQktFE+ingredient\n.成分, 因素&in5^ri:diEnt+initially\adv.最初, 开头&I5nIFElI+initiative\n.主动&i5niFiEtiv+installation\n.[计]安装, 装置, 就职&7instE5leiFEn+instance\n.实例, 建议, 要求, 情况, 场合\vt.举...为例, 获得例证&5instEns+instant\adj.立即的, 直接的, 紧迫的, 刻不容缓的, (食品)速溶的, 方便的, 即时的&5instEnt+institution\n.公共机构, 协会, 制度&7insti5tju:FEn+insurance\n.保险, 保险单, 保险业, 保险费&in5FuErEns+intangible\adj.难以明了的, 无形的&in5tAndVEbl+integrate\vt.使成整体, 使一体化, 求...的积分\v.结合&5inti^reit+integration\n.综合&7inti5^reiFEn+intellectual\adj.智力的, 有智力的, 显示智力的\n.知识分子&7inti5lektjuEl+intelligent\adj.聪明的, 伶俐的, 有才智的, [计]智能的&in5telidVEnt+intelligently\adv.聪明地&+intensive\adj.强烈的, 精深的, 透彻的, [语法]加强语气的\n.加强器&in5tensiv+interact\vi.互相作用, 互相影响&7intEr5Akt+interaction\n.交互作用, 交感&7intEr5AkFEn+interactive\adj.交互式的&7intEr5Aktiv+interchangeable\adj.可互换的&IntE5tFeIndVEb(E)l+interchangeably\adv.可交地, 可替交地&+interconnect\vt.使互相连接&7intE(:)kE5nekt+internal\adj.内在的, 国内的&in5tE:nl+Intranet\企业内部互联网&IntrE5net+introduction\n.介绍, 传入, 初步, 导言, 绪论, 入门&7intrE5dQkFEn+intrude\vi.闯入, 侵入\vt.强挤入, 把(自己的思想)强加于人&in5tru:d+intrusion\n.闯入, 侵扰&in5tru:VEn+inventory\n.详细目录, 存货, 财产清册, 总量&5invEntri+invest\v.投(资), 购买(有用之物)~, 授予, 投资&in5vest+investment\n.投资, 可获利的东西&in5vestmEnt+investor\n.投资者&in5vestE+invoice\n.发票, 发货单, 货物\v.开发票, 记清单&5invCis+involve\vt.包括, 笼罩, 潜心于, 使陷于&in5vClv+isolation\n.隔绝, 孤立, 隔离, 绝缘, 离析&7aisEu5leiFEn+issue\n.出版, 发行, (报刊等)期、号, 论点, 问题,结果, (水, 血等的)流出\vi.发行, 流出, 造成...结果, 进行辩护, 传下\vt.使流出, 放出, 发行(钞票等), 发布(命令), 出版(书等)发给\[律]子女, 后嗣&5isju:+item\n.(可分类或列举的)项目, 条款, (消息、情报等的)一则, 一条&5aitem, 5aitEm+justify\v.证明...是正当的&5dVQstifai+kitten\n.小猫, 小动物&5kitn+label\n.标签, 签条, 商标, 标志\vt.贴标签于, 指...为, 分类, 标注\[计] 加上或修改磁盘的标签&5leibl+landscape\n.风景, 山水画, 地形, 前景\v.美化&5lAndskeip+largely\adv.主要地, 大量地, 很大程度上&5lB:dVli+latitude\n.纬度, 范围, (用复数)地区, 行动或言论的自由(范围)C.des&5lAtitju:d+legacy\n.遗赠(物), 遗产(祖先传下来)erWord 2005\Dicts\PWQEC.des&5le^Esi+legal\adj.法律的, 法定的, 合法&5li:^El+legislation\n.立法, 法律的制定(或通过)owerWord 2005\Dicts\PWQEC.des&7ledVis5leiFEn +likely\adj.很可能的, 合适的, 可靠的, 有希望的\adv.或许, 很可能&5laikli+link\n.链环, 连结物, 火把, 链接\vt.连结, 联合, 挽\vi.连接起来&liNk+local\adj.地方的, 当地的, 局部的, 乡土的\n.当地居民, 本地新闻, 慢车, 局部&5lEukEl+location\n.位置, 场所, 特定区域,<美>[电影]外景拍摄场地&lEu5keiFEn+logic\n.逻辑, 逻辑学, 逻辑性&5lCdVik+logistics\n.后勤学, 后勤&lE5dVIstIks+loop\n.环, 线(绳)圈, 弯曲部分, 回路, 回线, (铁路)让车道, (飞机)翻圈飞行\vt.使成环, 以圈结, 以环连结\vi.打环, 翻筋斗\n.循环&lu:p+loyalty\n.忠诚, 忠心&5lCIEltI+maintain\vt.维持, 维修, 继续, 供养, 主张&men5tein+maintenance\n.维护, 保持, 生活费用, 扶养&5meintinEns+mall\n.购物商场, 商业街, 林荫路&mC:l+management\n.经营, 管理, 处理, 操纵, 驾驶, 手段&5mAnidVmEnt+manufacturer\n.制造业者, 厂商&7mAnju5fAktFErE+margin\n.页边的空白, (湖、池等的)边缘, 极限, 利润, 差数, (时间、金额等的)富余\vt.加边于, 加旁注于&5mB:dVin+marketplace\n.集会场所, 市场\商场&5mB:kit5pleis+measurement\n.测量法, 度量, (量得的)尺寸, 度量单位制&5meVEmEnt+mechanism\n.机械装置, 机构, 机制&5mekEnizEm+media\n.媒体&5mi:djE+medium\n.媒体, 方法, 媒介\adj.中间的, 中等的, 半生熟的&5mi:djEm+meline\adj.[动]獾的\獾样的&`mi:lIn, -laIn+mention\vt.提及, 说起\n.提及, 说起\v.论及, 提及&5menFEn+merchandise\n.商品, 货物&5mE:tFEndaiz+merchant\n.商人, 批发商, 贸易商, 店主\adj.商业的, 商人的&5mE:tFEnt+metric\adj.米制的, 公制的&5metrIk+middleman\n.中间人&5mId(E)lmAn+middleware\n.[计]中间设备,中间件&`mIdlweE(r)备,中间件+mission\n.使命, 任务, 使团, 代表团&5miFEn+module\n.模数, 模块, 登月舱, 指令舱&5mCdju:l+monitor\n.班长, 监听器, 监视器, 监控器\vt.监控\v.监控&5mCnitE+mortar\n.臼, 研钵, 灰泥, 迫击炮\vt.用灰泥涂抹, 用灰泥结合&5mC:tE+mortgage\n.抵押\v.抵押&5mC:^idV+multimedia\n.多媒体, 多媒体的采用&5mQlti5mi:djE+multiple\adj.多样的, 多重的\n.倍数, 若干\v.成倍增加&5mQltipl+negative\n.否定, 负数, 底片\adj.否定的, 消极的, 负的, 阴性的\vt.否定, 拒绝(接受)ord\NewWord\NewWord.dic&5ne^Etiv+network\n.网络, 网状物, 广播网&5netwE:k+niche\n.小生境&nitF+notify\v.通报&5nEutifai+objective\n.目标, 目的, (显微镜的)(接)物镜, [语法]宾格\adj.客观的, [语法]宾格的&Eb5dVektiv+obtain\vt.获得, 得到&Eb5tein+offering\n.提供, 奉献物, 献礼, 祭品&5CfEriN+offline\adj.未连线的, 未联机的, 脱机的, 离线的\adv.未连线地, 未联机地, 脱机地, 离线地&+opportunity\n.机会, 时机&7CpE5tju:niti+oppose\vt.反对, 使对立, 使对抗, 抗争\vi.反对&E5pEuz+option\n.选项, 选择权, [经]买卖的特权&5CpFEn+organization\n.组织, 机构, 团体&7C:^Enai5zeiFEn+organizational\adj.组织的&7C^Enai5zeiFEnEl+organize\vt.组织, 使有机化, 给予生机\vi.组织起来&5C:^Enaiz+outline\n.大纲, 轮廓, 略图, 外形, 要点, 概要\vt.描画轮廓, 略述&5Eutlain +outstanding\adj.突出的, 显著的&aut5stAndiN+overall\adj.全部的, 全面的&5EuvErC:l+overinflated\adj.过于膨胀的,特大的&5EuvErin5fleitid+overnight\n.头天晚上\adj.通宵的, 晚上的, 前夜的\adv.在前一夜, 整夜, 昨晚一晚上&5EuvE5nait+overrun\n.泛滥成灾, 超出限度\vt.蹂躏, 超过, 泛滥\vi.泛滥, 蔓延&7EuvE5rQn+oversell\vt.销售过多, 卖空\vi.卖空, 吹嘘过度&5EuvE5sel+pace\n.(一)步, 速度, 步调, 步法, 步态\vi.踱步, 缓慢的走\vt.用步测, 踱步于, (马)溜花蹄&peis+package\n.包裹, 包&5pAkidV+participate\vi.参与, 参加, 分享, 分担&pB:5tisipeit+partner\n.合伙人, 股东, 舞伴, 伴侣\vt.与...合伙, 组成一对\vi.做伙伴, 当助手&5pB:tnE+partnership\n.合伙, 合股, 合伙企业, 合伙契约, [体]队友关系, (双人项目的)配对&5pB:tnEFip+payment\n.付款, 支付, 报酬, 偿还, 报应, 惩罚&5peimEnt+peer\n.同等的人, 贵族\vi.凝视, 窥视\vt.与...同等, 封为贵族&piE+per\prep.每, 每一, 由, 经&pE:, pE+performance\n.履行, 执行, 成绩, 性能, 表演, 演奏&pE5fC:mEns+permit\n.通行证, 许可证, 执照\v.许可, 允许, 准许&pE(:)5mit+personalize\v.使成私人的, 人格化&5pE:sEnElaiz+personnel\n.人员, 职员&7pE:sE5nel+perspective\n.透视画法, 透视图, 远景, 前途, 观点, 看法, 观点, 观察&pE5spektiv+pertinent\adj.有关的, 相干的, 中肯的&5pE:tinEnt+physical\adj.身体的, 物质的, 自然的, 物理的\n.体格检查&5fizikEl+policy\n.政策, 方针&5pClisi+portal\n.入口&5pC:tEl+potential\adj.潜在的, 可能的, 势的, 位的\n.潜能, 潜力, 电压&pE5tenF(E)l +predict\v.预知, 预言, 预报&pri5dikt+preexist\v.先前存在&5pri:i^5zist+premium\n.额外费用, 奖金, 奖赏, 保险费, (货币兑现的)贴水&5primjEm+preprint\adj.预先印好的\v.预印&5pri:5print+presence\n.出席, 到场, 存在&5prezns+pressure\n.压, 压力, 电压, 压迫, 强制, 紧迫&`preFE(r), 电压, 压迫, 强制, 紧迫+previous\adj.在前的, 早先的\adv.在...以前\返回上一级菜单&5pri:vjEs+primary\adj.第一位的, 主要的, 初步的, 初级的, 原来的, 根源的&5praimEri+privacy\n.独处而不受干扰, 秘密&5praivEsi+private\adj.私人的, 私有的, 私营的, 秘密的\n.士兵&5praivit+pro forma\adj.形式上的,预计的&prEu5fC:mE+proceed\vi.进行, 继续下去, 发生&prE5si:d+process\n.过程, 作用, 方法, 程序, 步骤, 进行, 推移\vt.加工, 处理&prE5ses+procurement\n.获得, 取得&prE5kjuEmEnt+product\n.产品, 产物, 乘积&5prCdEkt+productive\adj.生产性的, 生产的, 能产的, 多产的&prE5dQktiv+profile\n.剖面, 侧面, 外形, 轮廓&5prEufail+profit\n.利润, 益处, 得益\vi.得益, 利用\vt.有益于, 有利于&5prCfit+profitability\n.收益性, 利益率&7prCfitE5biliti+profitable\adj.有利可图的&+project\n.计划, 方案, 事业, 企业, 工程\v.设计, 计划, 投射, 放映, 射出, 发射(导弹等), 凸出&5prCdVekt+projection\n.发射&prE5dVekFEn+proposal\n.提议, 建议&prE5pEuzEl+propose\vt.计划, 建议, 向...提议, 求(婚)\vi.打算, 求婚&prE5pEuz+prospect\n.景色, 前景, 前途, 期望\vi.寻找, 勘探&5prCspekt+prosperity\n.繁荣&prCs5periti+protocol\n.草案, 协议&5prEutEkCl+purchase\vt.买, 购买\n.买, 购买&5pE:tFEs+quadrant\n.象限, 四分仪\信号区&5kwCdrEnt+quantitative\adj.数量的, 定量的&5kwCntitEtiv+range\n.山脉, 行列, 范围, 射程\vt.排列, 归类于, 使并列, 放牧\vi.平行, 延伸, 漫游&reindV+rate\n.比率, 速度, 等级, 价格, 费用\vt.估价, 认为, 鉴定等级, 责骂\vi.被评价, 责骂&reit+reaction\n.反应, 反作用, 反动(力)\PowerWord 2005\Dicts\PWQEC.des&ri(:)5AkFEn+realistic\adj.现实(主义)的&riE5listik+reality\n.真实, 事实, 本体, 逼真&ri(:)5Aliti+reasonably\adv.适度地, 相当地&5ri:zEnEblI+recruit\n.新兵, 新分子, 新会员\vt.使恢复, 补充, 征募\vi.征募新兵, 复原&ri5kru:t+reduce\vt.减少, 缩小, 简化, 还原&ri5dju:s+reengineer\vt.再设计,重新建造, 再设法处理&9ri:endVI`nIE(r)? 再设法处理+reference\n.提及, 涉及, 参考, 参考书目, 证明书(人), 介绍信(人)des&5refrEns+reflect\v.反射, 反映, 表现, 反省, 细想&ri5flekt+regarding\prep.关于&ri5^B:diN+regardless\adj.不管, 不顾, 不注意&ri5^B:dlis+reinforce\vt.加强, 增援, 补充, 增加...的数量, 修补, 加固\vi.求援, 得到增援\n.加固物&7ri:in5fC:s+relationship\n.关系, 关联&ri5leiFEnFip+relevant\adj.有关的, 相应的&5relivEnt+replenishment\n.补给, 补充&+represent\vt.表现, 描绘, 声称, 象征, 扮演, 回忆, 再赠送, 再上演\vi.提出异议&7ri:pri5zent+representative\n.代表\adj.典型的, 有代表性的&7repri5zentEtiv+requirement\n.需求, 要求, 必要条件, 需要的东西, 要求必备的条件&ri5kwaiEmEnt+resolution\n.坚定, 决心, 决定, 决议&7rezE5lju:FEn+resolve\n.决心\v.决心, 决定, 决心要, (使)分解, 溶解, 解决\vt.解决&ri5zClv+resource\n.资源, 财力, 办法, 智谋&ri5sC:s+respond\v.回答, 响应, 作出反应\vi.有反应&ris5pCnd+response\n.回答, 响应, 反应&ris5pCns+responsible\adj.有责任的, 可靠的, 可依赖的, 负责的&ris5pCnsEbl+responsive\adj.响应的, 作出响应的&ris5pCnsiv+restructure\vt.更改结构, 重建构造, 调整, 改组&ri5strQktFE+retail\n.零售\adj.零售的\vt.零售, 转述\vi.零售\adv.以零售方式&5ri:teil+retailer\n.零售商人, 传播的人&ri:5teilE+rethink\v.再想, 重想&ri5WiNk+revenue\n.收入, 国家的收入, 税收&5revinju:+reverse\n.相反, 背面, 反面, 倒退\adj.相反的, 倒转的, 颠倒的\vt.颠倒, 倒转&ri5vE:s+revise\vt.修订, 校订, 修正, 修改&ri5vaiz+risk\vt.冒...的危险\n.冒险, 风险&risk+route\n.路线, 路程, 通道\v.发送&ru:t+ruthless\adj.无情的, 残忍的&5ru:WlIs+salespeople\n.售货员,店员&`seIlz9pi:pl+scalable\adj.可攀登的\可升级的&5skeilEbl+scenario\n.想定\游戏的关,或是某一特定情节&si5nB:riEu+scratch\n.乱写, 刮擦声, 抓痕, 擦伤\vt.乱涂, 勾抹掉, 擦, 刮, 搔, 抓, 挖出\vi.发刮擦声, 搔, 抓\adj.打草稿用的, 凑合的&skrAtF+seamless\adj.无缝合线的, 无伤痕的&`si:mlIs +section\n.部分, 断片, 部件, 节, 项, 区, 地域, 截面&5sekFEn+secure\adj.安全的, 可靠的, 放心的, 无虑的\v.保护&si5kjuE+security\n.安全&si5kjuEriti+segment\n.段, 节, 片断\v.分割&5se^mEnt+segmentation\n.分割&7 se^mEn5teiFEn+selection\n.选择, 挑选, 选集, 精选品&si5lekFEn+server\n.服务器&5sE:vE+significant\adj.有意义的, 重大的, 重要的&si^5nifikEnt+significantly\adv.意味深长地, 值得注目地&+software\n.软件&5sCftwZE+solution\n.解答, 解决办法, 溶解, 溶液\解决方案&sE5lju:FEn+sophisticated\adj.诡辩的, 久经世故的&sE5fistikeitid+source\n.来源, 水源, 消息来源, 原始资料, 发起者\源,源极&sC:s+specific\n.特效药, 细节\adj.详细而精确的, 明确的, 特殊的, 特效的, [生物]种的&spi5sifik+specifically\adv.特定的, 明确的&spI5sIfIkElI+speed\n.迅速, 速度, 速率\v.加快, 速飞, 飞跑&spi:d+speedy\adj.快的, 迅速的&5spi:di+spin\v.旋转, 纺, 纺纱\n.旋转&spin+statement\n.声明, 陈述, 综述&5steitmEnt+stem\n.茎, 干, 词干, 茎干\v.滋生, 阻止&stem+stick\n.棍, 棒, 手杖\v.粘住, 粘贴\vt.刺, 戳&stik+stickiness\n.粘性, 胶粘&+sticky\adj.粘的, 粘性的&5stiki+strategic\adj.战略的, 战略上的&strE5ti:dVik+strategy\n.策略, 军略&5strAtidVi +streamline\adj.流线型的&5stri:mlain+strengthen\v.加强, 巩固&5streNWEn+structure\n.结构, 构造, 建筑物\vt.建筑, 构成, 组织&5strQktFE+submission\n.屈服, 降服, 服从, 谦恭, 投降&sEb5miFEn+submit\v.(使)服从, (使)顺从\vt.提交, 递交&sEb5mit+substantial\adj.坚固的, 实质的, 真实的, 充实的&sEb5stAnFEl+suffice\vi.足够, 有能力\vt.使满足&sE5fais+sufficient\adj.充分的, 足够的&sE5fiFEnt+sufficiently\adv.十分地, 充分地&sE5fIFEntlI+suicide\n.自杀, 自毁, 给自己带来伤害或损失的行为&5sjuisaid+suite\n.(一批)随员, (一套)家具, 套房, 套, 组, 组曲&swi:t+summary\n.摘要, 概要&5sQmEri+supplier\n.供应者, 补充者, 厂商, 供给者&sE5plaiE。

211251894_球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响

211251894_球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响

黄浩燃,张星启,温辉翠,等. 球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响[J]. 食品工业科技,2023,44(11):211−218. doi: 10.13386/j.issn1002-0306.2022070314HUANG Haoran, ZHANG Xingqi, WEN Huicui, et al. Effect of Ball Milling on the Structure and Properties of Insoluble Dietary Fiber in Jackfruit Peel[J]. Science and Technology of Food Industry, 2023, 44(11): 211−218. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022070314· 工艺技术 ·球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响黄浩燃,张星启,温辉翠,李育瑶,黄子桐,范振梅,宋贤良*(华南农业大学食品学院,广东广州 510642)摘 要:为改善水不溶性膳食纤维(Insoluble dietary fiber ,IDF )的口感和功能特性,以菠萝蜜果皮IDF 为对象,采用行星球磨对其进行干法粉碎处理。

通过表征分析及研究其理化性质的变化,探究不同球磨时间对菠萝蜜果皮IDF 的微观形貌、化学结构、晶相结构和比表面积以及功能特性的影响。

结果表明,球磨改性使IDF 原有的纤维束状结构被破坏,粒径变小,比表面积增大,球磨时间18 h 时,IDF 的平均粒最小,比表面积最大,球磨改性不影响IDF 的化学组成和结晶结构。

随球磨时间延长,IDF 的持水力、结合水力、溶胀性和阳离子交换能力呈先增大后减小的变化趋势,持油力总体呈下降趋势。

球磨时间为18 h 时,其持水力、结合水力最高,分别为4.6和4.3 g/g ,阳离子交换能力也最强。

2019版外研社高中英语必选择性必修二Unit 5 A delicate world 单词表

2019版外研社高中英语必选择性必修二Unit 5 A delicate world 单词表
endangered*
/inˈdeindʒəd/
adj.濒临灭绝的
elsewhere
/ˈelsˈweə/
adv.在别处
invasion*
/inˈveiʒən/
n.涌入
coexist*
/ˌkəuigˈzist/
v.共存,共处
secure
/siˈkjuə/
adj.稳固的;安全的
greeting
/ˈgriːtiŋ/
session
/ˈseʃən/
n.一段时间
on behalf of代表
herbal*
/ˈhəːbəl/
adj.用香(药)草制成的
mysterious*
/misˈtiəriəs/
adj.神秘的
status*
/ˈsteitəs/
n.地位;身份
criterion
/kraiˈtiəriən/
n.标准,准则
prosper*
ecology
/iˈkɔlədʒi/
n.生态
dissolve*
/diˈzɔlv/
v. (使)溶解
nutrient
/ˈnjuːtriənt/
n.养分,营养物
worm*
/wəːm/
n.蠕虫; (昆虫的)幼虫
comparison
/kəmˈpærisn/
n.比较
visual
/ˈvizjuəl/
adj.视觉的
/diːˈkriːs/
v. (使)变小,(使)减少
trap
/træp/
n.夹子,陷阱
departure
/diˈpɑːtʃə/
n.离开
immunity*
/iˈmjuːniti/

211251893_响应面优化刺梨清汁喷雾干燥制粉工艺

211251893_响应面优化刺梨清汁喷雾干燥制粉工艺

李凯,许粟,常云鹤,等. 响应面优化刺梨清汁喷雾干燥制粉工艺[J]. 食品工业科技,2023,44(11):204−210. doi:10.13386/j.issn1002-0306.2022070313LI Kai, XU Su, CHANG Yunhe, et al. Optimization of Spray Drying Processing of Filtrable Roxburgh rose Juice by Response Surface Analysis[J]. Science and Technology of Food Industry, 2023, 44(11): 204−210. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022070313· 工艺技术 ·响应面优化刺梨清汁喷雾干燥制粉工艺李 凯1,许 粟1,2,3,常云鹤1,2,3,费建军4,岑顺友5,陈大龙6,马立志1,2,3,*(1.贵阳学院食品与制药工程学院,贵州贵阳 550005;2.贵州省果品加工工程技术研究中心,贵州贵阳 550005;3.贵州省果品加工、贮藏与安全控制协同创新中心,贵州贵阳 550005;4.贵州恒力源天然生物科技有限公司,贵州龙里县 551200;5.贵州宏财聚农投资有限责任公司,贵州六盘水 553000;6.贵州初好农业科技开发有限公司,贵州六盘水 553000)摘 要:本研究以刺梨清汁、麦芽糊精为主要原料,通过喷雾干燥技术制备刺梨粉;以刺梨粉中维生素C 含量、黄酮含量、多酚含量及感官评价综合评分为指标,通过刺梨清汁喷雾干燥单因素实验和响应面优化试验,研究刺梨清汁喷雾干燥制粉最佳工艺条件。

单因素实验结果表明:麦芽糊精最适添加量为15%、最适进风温度为165 ℃、最适进料流量为1.5 L/h 。

响应面-主成分分析法优化五花肉片真空油炸工艺研究

响应面-主成分分析法优化五花肉片真空油炸工艺研究

黄锐函,潘洪杰,杨爽,等. 响应面-主成分分析法优化五花肉片真空油炸工艺研究[J]. 食品工业科技,2023,44(18):225−234. doi:10.13386/j.issn1002-0306.2022100227HUANG Ruihan, PAN Hongjie, YANG Shuang, et al. Optimization of the Vacuum Frying Process of Pork Belly Slices by Response Surface Methodology and Principal Component Analysis[J]. Science and Technology of Food Industry, 2023, 44(18): 225−234. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100227· 工艺技术 ·响应面-主成分分析法优化五花肉片真空油炸工艺研究黄锐函1,2,潘洪杰1,杨 爽1,许青莲1,邢亚阁1,2,*(1.川渝共建特色食品重庆市重点实验室,西华大学食品与生物工程学院,四川成都 610039;2.宜宾西华大学研究院食品非热技术重点实验室,四川宜宾 644004)摘 要:为改进川菜工业化中肉制品的生产工艺,该研究以猪五花肉为原料,考察不同真空油炸温度、油炸时间及切片厚度对五花肉片水分含量、色泽、质构特性、感官评分的影响,在单因素实验的基础上,进行相关性分析,采用响应面结合主成分分析的方法优化五花肉片的真空油炸工艺条件。

结果表明,水分含量、a *值、b *值、硬度、咀嚼性与油炸温度、油炸时间、切片厚度3个因素相关性较强。

主成分分析中提取的前2个主成分累计贡献率为82.822%,在一定程度上能够评价真空油炸五花肉片的品质。

外文翻译--响应曲面法在最优化切削条件下获得最小表面粗糙度的应用英文..

外文翻译--响应曲面法在最优化切削条件下获得最小表面粗糙度的应用英文..

Journal of Materials Processing Technology170(2005)11–16Application of response surface methodology in the optimizationof cutting conditions for surface roughnessH.¨Oktem a,∗,T.Erzurumlu b,H.Kurtaran ba Department of Mechanical Engineering,University of Kocaeli,41420Kocaeli,Turkeyb Department of Design and Manufacturing Engineering,GIT,41400Gebze,Kocaeli,TurkeyReceived16July2004;received in revised form12March2005;accepted12April2005AbstractThis paper focuses on the development of an effective methodology to determine the optimum cutting conditions leading to minimum surface roughness in milling of mold surfaces by coupling response surface methodology(RSM)with a developed genetic algorithm(GA). RSM is utilized to create an efficient analytical model for surface roughness in terms of cutting parameters:feed,cutting speed,axial depth of cut,radial depth of cut and machining tolerance.For this purpose,a number of machining experiments based on statistical three-level full factorial design of experiments method are carried out in order to collect surface roughness values.An effective fourth order response surface (RS)model is developed utilizing experimental measurements in the mold cavity.RS model is further interfaced with the GA to optimize the cutting conditions for desired surface roughness.The GA reduces the surface roughness value in the mold cavity from0.412␮m to0.375␮m corresponding to about10%improvement.Optimum cutting condition produced from GA is verified with the experimental measurement.©2005Elsevier B.V.All rights reserved.Keywords:Milling;Cutting conditions;Surface roughness;Injection molding;Response surface methodology;Genetic algorithm1.IntroductionRecent developments in manufacturing industry have con-tributed to the importance of CNC milling operations[1,2]. Milling process is required to make mold parts used for pro-ducing plastic products.It is also preferred in machining mold parts made of Aluminum7075-T6material.Aluminum7075-T6material as chosen in this study is commonly utilized in aircraft and die/mold industries due to some advantages such as high resistance,good transmission,heat treatable and high tensile strength[3,4].The quality of plastic products manufactured by plas-tic injection molding process is highly influenced by that of mold surfaces obtained from the milling process.Sur-face quality of these products is generally associated with surface roughness and can be determined by measuring sur-face roughness[5].Surface roughness is expressed as the irregularities of material resulted from various machining ∗Corresponding author.Tel.:+902627423290;fax:+902627424091.E-mail address:**************.tr(H.¨Oktem).operations.In quantifying surface roughness,average sur-face roughness definition,which is often represented with R a symbol,is commonly used.Theoretically,R a is the arith-metic average value of departure of the profile from the mean line throughout the sampling length[6].R a is also an important factor in controlling machining performance. Surface roughness is influenced by tool geometry,feed,cut-ting conditions and the irregularities of machining operations such as tool wear,chatter,tool deflections,cuttingfluid,and workpiece properties[7,11,16].The effect of cutting con-ditions(feed,cutting speed,axial–radial depth of cut and machining tolerance)on surface roughness is discussed in this study.Several researchers have studied the effect of cutting con-ditions in milling and plastic injection molding processes such as in vacuum-sealed molding process[5].Analytical models have been created to predict surface roughness and tool life in terms of cutting speed,feed and axial depth of cut in milling steel material[8,9].An effective approach has also been presented to optimize surfacefinish in milling Inconel 718[10].0924-0136/$–see front matter©2005Elsevier B.V.All rights reserved. doi:10.1016/j.jmatprotec.2005.04.09612H.¨Oktem et al./Journal of Materials Processing Technology170(2005)11–16In this study,a fourth order response surface(RS)model for predicting surface roughness values in milling the mold surfaces made of Aluminum(7075-T6)material is devel-oped.In generating the RS model statistical response surface methodology(RSM)is utilized.The accuracy of the RS model is verified with the experimental measurement.The developed RS model is further coupled with a developed genetic algorithm(GA)tofind the optimum cutting condition leading to the least surface roughness value.Cutting condition is represented with cutting parameters of feed,cutting speed, axial–radial depth of cut and machining tolerance.The pre-dicted optimum cutting condition by GA is validated with an experimental measurement.The RS model and GA developed and utilized in this study present several advantages over other methods in the litera-ture.The RS model is a higher order and more sophisticated polynomial model with sufficient accuracy.The GA elimi-nates the difficulty of user-defined parameters of the existing GAs.Details of the RS model generation by RSM and the optimization process by GA are given in the following sec-tions.2.Experimental procedures2.1.Plan of experimentsAn important stage of RS model generation by RSM is the planning of experiments.In this study,cutting experi-ments are planned using statistical three-level full factorial experimental design.Cutting experiments are conducted con-sideringfive cutting parameters:feed(f t),cutting speed(V c), axial depth of cut(a a),radial depth of cut(a r)and machin-ing tolerance(m t).Overall35=243cutting experiments are carried out.Low–middle–high level of cutting parameters in cutting space for three-level full factorial experimental design is shown in Table1.Ranges of cutting parameters are selected based on recommendation of Sandvik Tool Catalogue[12]. Milling operations are performed at the determined cutting conditions on a DECKEL MAHO DMU60Pfive axis CNC milling machine.Surface roughness(R a)values are measured from the mold surfaces.2.2.Tool and materialCutting tool used in experiments has the diameter of 10mmflat end mill with four teeth.The material of the tool Table1Low–middle–high levels of cutting parameters in three-level full factorial design of experimentCutting parameters Three-level values Feed,f t(mm/tooth)0.08–0.105–0.13 Cutting speed,V c(m/min)100–200–300 Axial depth of cut,a r(mm)0.3–0.5–0.7 Radial depth of cut,a r(mm)1–1.5–2 Machining tolerance,m t(mm)0.001–0.0055–0.01Fig.1.Mold part.is PVD AlTiN coated with solid carbide.It has the helix angle of45◦and rake angle of10◦.Machining experiments are performed in the mold cavity on aluminum(7075-T6) block with dimensions of120mm×120mm×50mm.The chemical composition of workpiece material is given in the following specification(wt.%):1.6Cu,2.5Mg,0.23Cr,5.40 Zn.The hardness of workpiece is measured as150BHN. The mechanical properties of aluminum material are:ten-sile strength of570MPa,yield strength of505MPa,shear strength of330MPa and elongation of11%.Surface roughness is measured with Surftest301pro-filometer at traverse length of2.5mm along centerline of sam-pling.Converting the measurement into a numerical value, mathematical definition of R a is used.Since this way of con-version is common in the literature it is adopted in this study as well[7–9].Each R a measurement is repeated at least three times.Average of three R a values is saved to establish RS model.2.3.Mold partsThe mold part used in this study is utilized to produce the components of an orthose part in biomechanical appli-cations.It is shown in Fig.1.Orthose parts are generally utilized in walking apparatus that holds human legs in stable position during walking.It binds the kneecap region of leg and is equipped with cylindrical bars that are made of alu-minum material in diameter of12mm and length of300mm. Orthose part consists of three main components;one of them is employed as the working model in this study.2.4.Manufacturing the components of orthose partThree machining processes are implemented in order to manufacture each component of the orthose part in an inte-grated manner.Firstly,the selected component is machined in CNC milling machine.R a values are then taken from the sur-faces in the mold cavity.Secondly,plastic product is injectedH.¨Oktem et al./Journal of Materials Processing Technology170(2005)11–1613Fig.2.The parts obtained from three machiningprocess.Fig.3.The stages taken in creating a response surface model by RSM. in plastic injection machine produced by ARBURG.Poly-acetal(POM)C9021material is used to inject the polymer material.The properties of polymer material has the den-sity of solution1.2g/cm3,the ejected temperature of165◦C, viscosity of50Pa s and meltflow-fill rate of0.8cm3/min. Finally,net casting process is applied for producing die cast-ing part.Mold part,plastic product and die casting part are illustrated in Fig.2.3.Response surface model for surface roughnessRS model,which is an analytical function,in predicting surface roughness values is developed using RSM.RSM uses statistical design of experiment(experimental design)tech-nique and least-squarefitting method in model generation phase.It is summarized in Fig.3.RSM was originally devel-oped for the modelfitting of physical experiments by Box and Draper[13]and later adopted in otherfields.RS model is formulated as following polynomial function:f=a0+ni=1a i x i+ni=1nj=1a ij x i x j+ (1)where a0,a i and a ij are tuning parameters and n is the number of model parameters(i.e.process parameters).In this study, to create RS model,a computer program has been written in MATLAB programming language.The RS program developed has the capability of creat-ing RS polynomials up to10th order if sufficient data exist. All cross terms(i.e.interactions between parameters)in the models can be taken into account.RS models can also be generated in terms of inverse of parameters.That is,x i can be replaced as1xi(i.e.inversely)in RS model if desired,in creating the RS models,243surface roughness values deter-mined based on three-level full factorial experimental design forfive parameters(f t,V c,a a,a r and m t)are used The243 data sets for surface roughness are divided into two parts; training data set and the check(i.e.test)data set.Training data set includes236surface roughness values and is uti-lized in modelfitting procedure.Because of large number of values and to save space,training data is shown in Fig.4, rather than in a table.In Fig.4,abscissa indicates the data set number and the ordinate indicates the corresponding sur-face roughness value.Check data sets include seven surface roughness values and are used in checking the accuracy of the RS model.Check data sets are shown in Table2.They parison of experimental measurements with RS prediction for surface roughness.14H.¨Oktem et al./Journal of Materials Processing Technology 170(2005)11–16Table 2The data set used for checking the accuracy of RS model Set numberCutting conditions R a (␮m)f tV c a a a r m t Measurement results RSM model Maximum test error (%)10.1052000.710.0010.5910.589 2.0520.1052000.7 1.50.0010.6290.62730.1052000.310.00550.7810.77540.082000.7 1.50.00550.8990.89550.081000.720.00550.9780.99660.082000.3 1.50.01 1.674 1.70670.1052000.520.011.8561.893Table 3The accuracy error of several RS models Reciprocal flag First order Second order Third order Fourth order [00000]277 4.8 2.7[00100]25.97.28 5.8 2.95[00001]52.410.9 4.0 2.99[11000]27.2 6.63 4.8 2.05[01100]25.97.0 5.5 2.55[00011]54.910.5 3.7 2.7[11100]25.87.03 5.7 2.5[01110]27.57.0 5.9 2.8[11111]53.0310.54.72.7are selected from 243data sets to show a good distribution in the cutting parameters’space and thereby to have a good check on the accuracy of the RS model.In this study,RS models of varying orders from first order to fourth order are created and tested with the developed program.Several RS model created are demonstrated along with their accuracy errors in Table 3.In reciprocal section in Table 3,0indicates a parameter (x i ),1indicates the inverse ofa parameter (1x i ).The full fourth order polynomial function of the form:R a =a 0+a 11f t +a 21V c +a 3a a +a 4a r +a 5m t +···+a n 1f t 1V ca a a r m t 4+···+a m (m t )4(2)fits best (with minimum fitting error)to the training data set.The accuracy of the RS model was checked using the check data set.The maximum accuracy error is found to be about 2.05%.This indicates that RS model generated has sufficient accuracy in predicting surface roughness within the range of cutting parameters.4.Optimization of cutting conditions for surface roughness4.1.Optimization problem formulationSince it is indicator of surface quality in milling of mold surfaces,surface roughness value is desired to be as low as possible.Low surface roughness values can be achieved effi-ciently by adjusting cutting conditions with the help of an appropriate numerical optimization method.For this,mini-mization of surface roughness problem must be formulated in the standard mathematical format as below:Find :f t ,V c ,a a ,a r ,m t(3a)Minimize :R a (f t ,V c ,a a ,a r ,m t )(3b)Subjected to constraints :R a ≤0.412␮m (3c)Within ranges :0.08mm ≤f t ≤0.13mm 100mm ≤V c ≤300mm 0.3mm ≤a a ≤0.7mm 1mm ≤a r ≤2mm 0.001mm ≤m t ≤0.01mm .In Eq.(3),R a is the RS model developed in Section 3.f t ,V c ,a a ,a r and m t are the cutting parameters.In the opti-mization problem definition above,a better solution is also forced through the constraint definition.Constraint definition searches a surface roughness value (R a ),which is less than the lowest value in 243data set if possible.Minimum surface roughness value in 243data set is 0.412␮m.The ranges of cutting parameters in optimization have been selected based on the recommendation of Sandvik Tool Catalogue.4.2.Optimization problem solutionThe optimization problem expressed in Eq.(3)is solved by coupling the developed RS model with the developed genetic algorithm as shown in Fig.5.The genetic algorithm [14]solves optimization problem iteratively based oh biological evolution process in nature (Darwin’s theory of survival of the fittest).In the solution pro-cedure,a set of parameter values is randomly selected.Set is ranked bashed on their surface roughness values (i.e.fitnessFig.5.Interaction of experimental measurements,RS model and GA during surface roughness optimization.H.¨Oktem et al./Journal of Materials Processing Technology170(2005)11–1615Table4GA parametersSubject Values Population size50 Crossover rate 1.0 Mutation rate0.1 Number of bit16 Number of generations540values in the GA literature).Best combination of parameters leading to minimum surface roughness is determined.New combination of parameters is generated from the best com-bination by simulating biological mechanisms of offspring, crossover and mutation.This process is repeated until sur-face roughness value with new combination of parameters cannot be further reduced anymore.Thefinal combination of parameters is considered as the optimum solution.The criti-cal parameters in GAs are the size of the population,mutation rate,number of iterations(i.e.generations),etc.and their val-ues are given in Table4.The GA written in MATLAB programming language selects chromosomes based on the objective value and the level of constraint violation.Fitness values of the popula-tion are biased towards the minimum objective value and the least infeasible sets in offspring phase.Most of GAs in the literature converts the constrained optimization problem into an unconstrained optimization problem through penalty function before the solution.This brings the difficulty of appropriate selection of problem dependent penalty coeffi-cient which requires user experience.In the program used in this study,this difficulty is avoided since no problem depen-dent coefficient is needed[15].4.3.Optimization results and discussionBy solving the optimization problem,the GA reduces the surface roughness of mold surfaces from0.412␮m to 0.375␮m by about10%compared to the initial cutting con-dition.The best(optimum)cutting condition leading to the minimum surface roughness is shown in Table5.The pre-dicted optimum cutting condition by GA is further validated with a physical measurement.Predicted surface roughness value is compared with the measurement in Fig.6.From Table5The best cutting conditionParameters After optimization Cutting conditionf t(m/tooth)0.083V c(m/min)200a a(mm)0.302a r(mm) 1.002m t(mm)0.002R a(␮m)Measurement0.370GA0.375Fig.6.Surface roughness measurement.Fig.6it is seen that GA result agrees very well with the measurement.5.ConclusionsIn this study,a fourth order RS model for predicting sur-face roughness values in milling mold surfaces made of Aluminum(7075-T6)material was developed.In generat-ing the RS model statistical RSM was utilized.The accuracy of the RS model was verified with the experimental mea-surement.The accuracy error was found to be insignificant(2.05%).The developed RS model was further coupled witha developed GA tofind the optimum cutting condition lead-ing to the least surface roughness value.Surface roughness of the mold surfaces,which was0.412␮m before optimization, was reduced to0.375␮m after optimization.GA improved the surface roughness by about10%.The predicted optimum cutting condition was validated with an experimental mea-surement.It was found that GA prediction correlates very well with the experiment.Difference was found to be less than1.4%.This indicates that the optimization methodology proposed in this study by coupling the developed RS model and the developed GA is effective and can be utilized in other machining problems such as tool life,dimensional errors,etc. as well.AcknowledgementsThe authors acknowledge Dr.Mustafa COL for contribu-tions in making this project at Kocaeli University and Dr. Fehmi ERZINCANLI for supplying a CNC milling machine at Gebze Institute of Technology(GIT).References[1]G.Boothroyd,W.A.Knight,Fundamentals of machining andmachine tools,Marcel Dekker Inc.,New York,1989.16H.¨Oktem et al./Journal of Materials Processing Technology170(2005)11–16[2]W.B.Sai,N.B.Salah,J.L.Lebrun,Influence of machining byfin-ishing milling on surface characteristics,Int.J.Mach.Tool Manuf.41(2001)443–450.[3]J.E.Hatch,Aluminum:Properties and Physical Metallurgy,AmericanSociety for Metals,Ohio,1999.[4]J.P.Urbanski,P.Koshy,R.C.Dewes,D.K.Aspinwall,High speedmachining of mold and dies for net shape manufacture,Mater.Des.21(2000)395–402.[5]P.Kumar,N.Singh,P.Goel,A multi-objective framework for designof vacuum-sealed molding process,Robotics Comp.Integ.Manuf.15(1999)413–422.[6]M.Sander,A Practical Guide to the Assessment of Surface Texture,Gottingeti,Germany,1991.[7]M.Y.Wang,H.Y.Chang,Experimental study of surface rough-ness in slot end milling,Int.J.Mach.Tool Manuf.44(2004)51–57.[8]A.Mansour,H.Abdalla,Surface roughness model for endmilling:a semi-free cutting carbon casehardening steel(EN32) in dry condition,J.Mater.Process.Technol.124(2002)183–191.[9]M.Alauddin,M.A.El Baradie,M.S.J.Hashmi,Prediction of tool lifein end milling by response surface methodology,J.Mater.Process.Technol.71(1997)456–465.[10]M.Alauddin,M.A.El Baradie,M.S.J.Hashmi,Optimization of sur-facefinish in end milling Inconel718,J.Mater.Process.Technol.56(1996)54–65.[11]P.V.S.Suresh,P.V.Rao,S.G.Deshmukh,A genetic algorithmicapproach for optimization of surface roughness prediction model, Int.J.Mach.Tool Manuf.42(2002)675–680.[12]S.Coromant,New tools from Sandvik Coromant,Tool Catalogue,AB Sandvik Coromant,Sweden,2003.[13]G.E.P.Box,N.R.Draper,Empirical Model-Building and ResponseSurface,John Wiley and Sons,Inc.,New York,USA,1987. [14]G.David,Genetic Algorithms in Search,Optimization and MachineLearning,Addison-Wesley Publishing Company,Inc.,1989. [15]Matlab User Manual,Version6.5Release13,The MathWorks,Inc.,2002.[16]H.Oktem,T.Erzurumlu,F.Erzincanli,Prediction of minimum sur-face roughness in end milling mold parts using neural network and genetic algorithm,Mater.Des.,in press.。

基于中心组合设计和响应面分析的血清替代物浓度优化

基于中心组合设计和响应面分析的血清替代物浓度优化

基于中心组合设计和响应面分析的血清替代物浓度优化陈小东;蔡海波;谭文松【期刊名称】《高校化学工程学报》【年(卷),期】2016(030)006【摘要】CIK cells (cytokine-induced killer cells) are one type of effector cells in adoptive cell immunotherapy for tumors. Serum-free media are often necessary when CIK cells are expanded in vitro. This study investigated the applicability of insulin, linolenic acid, cholesterol and ethanolamine as substitutes of serum in promoting cell proliferation. Composite combination design and response surface analysis were combined to optimize the concentration of these chemicals to obtain the maximum expansion fold of total mononuclear cells. Their final optimized concentrations are 10, 5.66 19.86, 1.22 mg L1, respectively. These four components were added at their optimized concentrations to the basic medium consists of DMEM/F12 and IMDM at volume ratio of 1:1 to prepare serum-free media named Optimizer. Umbilical cord blood mononuclear cells were cultured for 14 days in Optimizer via half amount of dilution, and RPMI 1640 with 10%FBS was used as a control. Cells composition, expansion fold of CD3+CD56+cells and killing activity onK562 cells were assessed. The results indicate that the expansion fold of total cells in Optimizer is 56.54±18.87, which is significantly higher than 5.14±1.03(p<0.05) in SFM1 and 3.59±0.56(p<0.05) in SFM2, and it issimilar to 35.24±20.92(p>0.05) in RPMI1640 with 10%FBS. CD3+cell proportion is 97.98%±1.41%in Optimizer, which is similar to94.34%±1.29%in RPMI 1640 with 10%FBS(p>0.05). CD3+CD56+cell proportion is 18.17%±7.38%and it is lower than 25.49%±3.35%(p<0.05) in RPMI 1640 with 10% FBS. However, the expansion fold of CD3+CD56+cells is 440.86±222.89 and 429.27±249.16 respectively in these two media, which shows no significant difference(p>0.05). When the ratio of effector cell and target cell is 9:1, the killing activities on K562 cells in these two media are both higher than 50%. These results provide fundamental data fo r the development of serum-free media for the expansion of CIK cells in vitro.%细胞因子诱导杀伤细胞(Cytokine-induced killer cells,CIK cells)是一类广泛应用的肿瘤过继免疫疗法的效应细胞,其体外扩增过程中常需要使用无血清培养基。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AIAA-98-4755 COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FORMULTIDISCIPLINARY DESIGN OPTIMIZATIONTimothy W. Simpson*G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta, Georgia 30332-0405, U.S.A.Timothy M. Mauery†Department of Civil and Environmental Engineering Brigham Young UniversityProvo, Utah 84602, U.S.A.John J. Korte‡Multidisciplinary Optimization BranchNASA Langley Research CenterMail Stop 159, Hampton, Virginia 23681, U.S.A.Farrokh Mistree§G. W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta, Georgia 30332-0405, U.S.A.ABSTRACTIn this paper, we compare and contrast the use of second-order response surface models and kriging models for approximating non-random, deterministic computer analyses. After reviewing the response surface method for constructing polynomial approximations, kriging is presented as an alternative approximation method for the design and analysis of computer experiments. Both methods are applied to the multidisciplinary design of an aerospike nozzle which consists of a computational fluid dynamics model and a finite-element model. Error analysis of the response surface and kriging models is performed along with a graphical comparison of the approximations, and four optimization problems are formulated and solved using both sets of approximation models. The second-order response surface models and kriging models—using a constant underlying global model and a Gaussian correlation function—yield comparable results.NOMENCLATUREβ - constant underlying global portion of kriging model βi, βij, βii, - linear, interaction, and quadratic coefficients of polynomial equation in response surface DOE - design of experimentsGLOW - gross lift off weightMSE - mean square errorns- number of sample pointsR - correlation matrix in kriging modelR(x i,x j) - correlation function between points x i and x j RS - response surfaceˆσ2 - variance estimateθk - correlation parameters in kriging modelˆy - predicted response value at untried x1 FRAME OF REFERENCE Current engineering analyses rely heavily on running expensive and complex computer codes. Despite the steady and continuing growth of computing power and speed, the complexity of these codes maintains pace with computing advances. Statistical techniques are widely used in engineering design to construct approximations of these analysis codes; these approximations are then used in place of the actual analysis codes, offering the following benefits:•They yield insight into the relationship between output responses, y, and input design variables, x.•They provide fast analysis tools for optimization and design space exploration since the inexpensive-to-run approximations are used in lieu of the expensive-to-run computer analyses.•They facilitate the integration of discipline dependent analysis codes.A common method for building approximations of computer analyses is to apply design of experiments (DOE), response surface (RS) models, and regression analysis to build polynomial approximations of the computationally expensive analyses. For example, the Robust Concept Exploration Method1 has been developed to facilitate quick evaluation of different design alternatives, identify important design drivers, and generate robust top-level design specifications using DOE, RS models, and the compromise Decision Support Problem; it has been successfully applied to the multiobjective design of a high speed civil transport,2 a family of General Aviation aircraft,3a turbine lift engine,4 and a flywheel.5 In other work, the Variable Complexity Response Surface Modeling (VCRSM) method6 uses analyses of varying fidelity to reduce the design space to the region of interest and build response surface models of increasing accuracy. The VCRSM method employs DOE and RS modeling techniques and has been successfully applied to the multidisciplinary wing design of a high speed civil transport,7 to the analysis and design of composite*NSF Graduate Research Fellow and student member AIAA.†Undergraduate Researcher and student member AIAA.‡Senior Research Engineer and senior member AIAA.§Professor and senior member AIAA. Corresponding author. Email: farrokh.mistree@.curved channel frames,8 and to reduce numerical noise in structural analyses.9,10 A recent review of several applications of response surface models in engineering design is given in Ref. 11; for applications of approximations in structural design, see Ref. 12.Since computer experiments typically lack random error, a more appropriate and perhaps more “statistically sound” method for approximating deterministic computer experiments is through the use of kriging which is also referred to as the Design and Analysis of Computer Experiments (DACE) models.13,14 The validity of the kriging model is not dependent on the existence of random error and may be better suited for applications involving computer experiments because it can either “honor the data,” providing an exact interpolation, or “smooth the data.”15Booker16 contrasts traditional DOE and RS modeling with DACE models. In the “classical” design and analysis of physical experiments, random variation is accounted for by spreading the sample points out in the design space and by taking multiple data points (replicates), see Figure 1. Sacks, et al.14 state that the “classical” notions of blocking, replication, and randomization are irrelevant when it comes to deterministic computer experiments; thus, sample points should be chosen to fill the design space.DOE/RS Modeling for PhysicalExperiments DACE/Kriging for Computer ExperimentsExperimentalDesignInput settingsat which toobtain outputAccount for Variability Space FillingModels Estimate output at untried input Least Squares Fit Maximum LikelihoodEstimateresponse values. Response surface modeling postulates a model of the form:y(x ) = f(x ) + ε(1)where y(x ) is the unknown function of interest, f(x ) is a known polynomial function of x , and ε is random error which is assumed to be normally distributed with mean zero and variance σ2. The individual errors, εi , at each observation are also assumed to be independent and identically distributed. The polynomial function, f(x ),used to approximate y(x ) is typically a low order polynomial which is assumed to be either linear, Eqn.(2), or quadratic, Eqn. (3).ˆyi i i kx =+=∑ββ01(2)ˆyi i i k ii i ij i j j iii kx x x x =+++=>=∑∑∑∑ββββ0121(3)The parameters, β0, βi , βii , and βij , of the polynomials in Eqns. (2) and (3) are determined through least squares regression which minimizes the sum of thesquares of the deviations of predicted values, ˆy(x ), from the actual values, y(x ). The coefficients of Eqns. (2)and (3) used to fit the model can be found using least squares regression given by Eqn. (4):β=[X ’X ]-1X ’y(4)where X is the design matrix of sample data points, X ’is its transpose, and y is a column vector containing the values of the response at each sample point. For more details on least squares regression or polynomial RS modeling see, e.g., Ref. 17.2.1.2 General RS Modeling Approach The general approach for building polynomial response surface models is shown in Figure 2. A three step process involving screening, model building, and model exercising is typically employed.As shown in Figure 2, the first step involves screening which may be employed if there are a large number of factors to reduce the design space to an appropriate region of interest. In the second step, the approximation models are built from sample data which is obtained from an appropriately chosen experimental design; if there are noise factors in the design,robustness models of the mean and variance of each response would also be created. If the models are sufficiently accurate, the model is exercised in the last stage of the process to search the design space and find improved or robust solutions; the reader is referred to,e.g., Ref. 17 for more information on response surface modeling.ScreeningModel BuildingModel(improved or robust)Given:Figure 2. General RS Modeling Approach 112.2 Overview of Kriging 2.2.1 Mathematics of Kriging Kriging postulates a combination of a global model plus departures:y(x ) = f(x ) + Z(x )(5)where y(x ) is the unknown function of interest, f(x ) is a known (usually polynomial) function of x , and Z(x ) is the realization of a stochastic process with mean zero,variance σ2, and non-zero covariance. The f(x ) term in Eqn. (5) is similar to the polynomial model in a response surface and provides a “global” model of the design space. In many cases f(x ) is simply taken to be a constant term β (see, e.g., Refs. 13, 14, 18); we use a constant term for f(x ) in the example in Section 4.While f(x ) “globally” approximates the design space, Z(x ) creates “localized” deviations so that the kriging model interpolates the n s sampled data points.The covariance matrix of Z(x ) is given by Eqn. (6).Cov[Z(x i ),Z(x j )] = σ2 R ([R(x i ,x j )](6)In Eqn. (6), R is the correlation matrix, and R(x i ,x j ) is the correlation function between any two of the n s sampled data points x i and x j . R is a (n s x n s )symmetric matrix with ones along the diagonal. The correlation function R(x i ,x j ) is specified by the user;Sacks, et al.14 and Koehler and Owen 13 discuss several correlation functions which may be used. In this work,we employ a Gaussian correlation function of the form:R x x i j k ki k jk ndv (,)exp[]x x =−−=∑θ21(7)where n dv is the number of design variables, θk are the unknown correlation parameters used to fit the model,and the x k i and x k j are the k th components of sample points x i and x j . In some cases using a single correlation parameter gives sufficiently good results (see, e.g., Refs. 19, 20, and 14).Predicted estimates, ˆy(x ), of the response y(x ) at untried values of x are given by:ˆˆˆ()()yT =+−−ββr x R y f 1(8)where y is the column vector of length n s which contains the sample values of the response, and f is a column vector of length n s which is filled with ones when f(x ) is taken as a constant. In Eqn. (8), r T (x ) is the correlation vector of length n s between an untried x and the sampled data points {x 1, ..., x n s }:r T (x ) = [R(x ,x 1), R(x ,x 2), ..., R(x ,x n s )]T .(9)In Eqn. (8), ˆβis estimated using Eqn. (10).ˆ()β=−−−f R f f R y T 11T 1(10)The estimate of the variance, ˆσ2, between the underlying global model ˆβand y , is estimated as:ˆˆˆ()()σββ21=−−−y f R y f T sn (11)where f(x ) is assumed to be the constant ˆβ. The maximum likelihood estimates (i.e., “best guesses”) for the θk in Eqn. (7) used to fit the model are found by maximizing Eqn. (12) over θk > 0 (see, e.g., Ref. 19).−+[ln()ln ||]ˆn s σ22R (12)Both ˆσ2 and |R | are functions of θk . While any values for the θk create an interpolative model, the “best”kriging model is found by solving the k-dimensional unconstrained non-linear optimization problem given by Eqn. (12).2.2.2 Engineering Applications of Kriging DACE and kriging models have found limited use in engineering design applications since its introduction into the literature by Sacks, et al.14 Giunta 21 performs a preliminary investigation into the use of DACE modeling for the multidisciplinary design optimization of a High Speed Civil Transport aircraft. He explores a 5 and a 10 variable design problem, observing that the DACE and response surface modeling approaches yield similar results due to the quadratic trend of the responses. Booker, et al.22 solve a 31 variable helicopter rotor structural design problem; Booker 16expands the problem to include 56 variables to examine the aeroelastic and dynamic response of the rotor. Osioand Amon 20 use a multistage DACE modeling strategyto design an embedded electronic package which has 5design variables. Finally, some researchers have employed DACE modeling strategies specifically for numerical optimization (see, e.g., Refs. 23 and 24).3 AEROSPIKE NOZZLE EXAMPLE The multidisciplinary design of an aerospike nozzle has been selected as the test problem for comparing the predictive capability of RS and kriging models. The linear aerospike rocket engine is the propulsion system proposed for the VentureStar 25 Reusable Launch Vehicle (RLV) which is illustrated in Figure 3.Figure 3. VentureStar RLV with LinearAerospike Propulsion System 26The aerospike rocket engine consists of a rocket thruster, cowl, aerospike nozzle, and plug base regions as shown in Figure 4. The aerospike nozzle is a truncated spike or plug nozzle that adjusts to the ambient pressure and integrates well with launch vehicles.27 The flow field structure changes dramatically from low altitude to high altitude on the spike surface and in the base flow region.28-30 Additional flow is injected in the base region to create an aerodynamic spike 31 which gives the aerospike nozzle its name and increases the base pressure and contribution of the base region to the aerospike thrust.Figure 4. Aerospike Components and FlowField Characteristics 26The analysis of the aerospike nozzle involves two disciplines: aerodynamics and structures; there is an interaction between the structural displacements of the nozzle surface and the pressures caused by the varying aerodynamic effects. Thrust and nozzle wall pressure calculations are made using computational fluid dynamics analysis and are linked to a structural finite-element analysis model for determining nozzle weight and structural integrity. A mission average engine specific impulse and engine thrust/weight ratio are calculated and used to estimate vehicle gross-lift-off-weight (GLOW). The corresponding multidisciplinary domain decomposition is illustrated in Figure 5. Korte, et al.26 provide additional details on the aerodynamic and structural analyses for the aerospike nozzle.Figure 5. Multidisciplinary DomainDecomposition26For this study, we consider three design variables for the multidisciplinary design of the aerospike nozzle: (starting) thruster angle, (exit) height, and length as shown in Figure 6.The thruster angle is the entrance angle of the gas from the combustion chamber onto the nozzle surface; the height and length refer to the solid portion of the nozzle itself. A quadratic curve defines the aerospike nozzle surface profile based on the values of thrusterangle, height, and length.Bounds for the design variables are set to produce viable nozzle profiles from the quadratic model based onall combinations of thruster angle, height, and length within the design space. Second-order response surface models and kriging models are developed for each response (thrust, weight, and GLOW) in the next section; optimization of the aerospike nozzle using the RS and kriging models for different objective functions is performed in Section 5.4 APPROXIMATIONS FOR THEAEROSPIKE NOZZLE PROBLEMThe data used to fit the RS and kriging models is obtained from a 25 point random orthogonal array;32 The use of these orthogonal arrays is based, in part, on the work in Ref. 19 and the discussion in Ref. 33. The sample points are illustrated in Figure 7 and are scaled to fit the design space defined by the bounds on the thruster angle (a) , height (h), and length (l).Figure 7. Orthogonal Array Sample PointsIn Section 4.1 we discuss the RS models which are fit to the data and in Section 4.2, the kriging models. Error analysis of the RS and kriging models is discussed in Section 4.3, and a graphical comparison of the approximations is given in Section 4.4.4.1 Response Surface ModelsSecond-order RS models for weight, thrust, and GLOW are obtained using ordinary least squares regression techniques.34 The corresponding RS models are given in the Eqns. (13)-(15). The equations have been scaled against the baseline design to protect the proprietary nature of some of the data.Weight = 0.810 - 0.116a + 0.121h (13)+ 0.152l + 0.065a2 - 0.025ah + 0.0013h2- 0.0539al - 0.0131hl + 0.0301l2Thrust = 0.9968 + 0.00031a + 0.0019h (14) + 0.0060l - 0.00175a2 + 0.00125ah - 0.0011h2+ 0.00125al - 0.00198hl - 0.00165l2GLOW = 0.9930 - 0.0270a + 0.0065h (15) - 0.0265l + 0.0307a2 - 0.0163ah + 0.0100h2- 0.0226al + 0.0151hl + 0.0195l2The resulting R2, R2adj, and root MSE values for each RS model are given in Table 2. The root MSE is:root MSEyni iiny=−=∑()ˆ21(16)where n is the number of sample points, yiis the actualvalue of the response, and ˆyiis the predicted value. Asevidenced by the high R2 and R2adjvalues and low root MSE values, the second-order RS models appear to capture a large portion of the observed variance.Table 2. Model Diagnostics of RS Models4.2 Kriging Models for the Aerospike Nozzle ProblemKriging models are built from the same 25 sample points used to fit the response surface models in Section 4.1. We chose to model the data using a constant term for the global model and a Gaussian correlation function, Eqn. (7), for the local departures determined by the correlation matrix, R.Initial investigations revealed that a single θparameter was insufficient to accurately model the data due to scaling of the design variables (a similar problem is discussed in Ref. 21). Therefore, an exhaustive grid search with a refinable step size was used to find the maximum likelihood estimates for the three θparameters needed to obtain the “best” kriging model. The resulting maximum likelihood estimates for three θparameters for the weight, thrust, and GLOW models are summarized in Table 3; these values are for the scaled sample points.Table 3. θ Parameters for Kriging Modelsθangle =θheight =θlength =With these parameters for the Gaussian correlation function and the 25 sample data points, the kriging models are fully specified. A new point is predicted using these values in combination with Eqns. (8)-(10).4.3 Error Analysis of Response Surface and Kriging ModelsAn additional 25 randomly selected validation points are used to verify the accuracy of the RS and kriging models. Error is defined as the difference between the actual response from the computer analysis and the predicted value from the RS or kriging model. The maximum absolute error, the average absolute error, and the root MSE—from Eqn. (16) where n (= 25) is thenumber of validation points—for the 25 randomly selected validation points are summarized in Table 4. Table 4. Error Analysis of ApproximationsFor the weight and GLOW responses, the kriging models have lower maximum absolute errors and lower root MSEs than the RS models; however, the average absolute error is slightly larger for the kriging models. As for thrust, the RS models are slightly better than the kriging models according to the values in the table; the maximum absolute error and root MSE are slightly less while the average absolute errors are essentially the same. It is not surprising that the RS model predicts thrust better; it has a very high R2 value (0.998) and low root MSE (0.01%). It is reassuring to note, however, that the kriging model, despite using a constant term and a Gaussian correlation function, is only slightly less accurate than the corresponding RS model. In summary, it appears that both models predict well with the kriging models having a slight advantage in accuracy because of the lower root MSE values.4.4 Graphical Comparison of RS andKriging ModelsIn addition to the error analysis of Section 4.3, a graphical comparison of the RS and kriging models is performed to visualize differences in the two approximations. In Figures 8-11, three-dimensional contour plots of thrust, weight, and GLOW as a function of angle, length, and base height are given. In each figure, the same contour levels are used for the RS and kriging models so that the shapes of the contours can be compared directly.Figure 8. Thrust Approximation Contours In Figure 8, the contours of thrust for the RS and kriging models are very similar. As evidenced by the high R2 and low root MSE values, we expect the RS models to fit the data quite well. It is again reassuring to note that the kriging models resemble the RS models even through the underlying global model for the kriging models is just a constant term.Figure 10. GLOW Approximation Contours The general shape of the GLOW contours is the same in Figure 10; however, the size and shape of the different contours, particularly along the length axis, are quite different. The end view along the length axis in Figure 11 further highlights the differences between the two models. Notice also in Figure 11 that the kriging model predicts a minimum GLOW located within the design space centered around Height = -0.8, Angle = 0, along the axis defined by 0.2 ≤ Length ≤ 0.8; this minimum was verified through additional experiments.5 OPTIMIZATION USING RESPONSESURFACE AND KRIGING MODELSIt is paramount that any approximations used in optimization are reasonably accurate, lest they lead the optimization algorithm into regions of bad designs. Trust Region approaches (see, e.g., Ref. 35) and the Model Management framework (see e.g., Refs. 36 and 37) are being developed to ensure that optimization algorithms are not led astray by inaccurate approximations. In this work the focus has been on developing the approximation models, particularly the kriging models, and not on the optimization itself.We formulate and solve four different optimization problems to compare the accuracy of the RS and kriging models: (1) maximize thrust, (2) minimize weight, (3) minimize GLOW, and (4) maximize thrust/weight ratio. The first two objective functions represent traditional single objective, single discipline optimization problems. The second two objective functions are more characteristic of multidisciplinary optimization; minimizing GLOW or maximizing the thrust/weight ratio requires trade-offs between the aerodynamics and structures disciplines. For each objective function,constraint limits are placed on the remaining responses; for instance, constraints are placed on the maximum allowable weight and GLOW and the minimum allowable thrust/weight ratio when maximizing thrust. However, none of the constraints are active in any of the final results. The optimization results are summarized in Table 5.As shown in Table 5, each optimization problem is solved using: (a) the RS model approximations and (b) the kriging model approximations for thrust, weight, and GLOW. The optimization is performed using the Generalized Reduced Gradient (GRG) algorithm in OptdesX.38 Three different starting points are used for each objective function (the lower, middle, and upper bounds of the design variables) to assess the average number of analysis and gradient calls to the approximations that is necessary to obtain the optimum design within the given design space. The same parameters (i.e., step size, constraint violation, etc.) are used within the GRG algorithm for each optimization. Design variable and response values have been scaled as a percentage of the baseline design to protect the proprietary nature of some of the data.Table 5. Optimization Results using Response Surface and Kriging Models#A (+) error term indicates that the model is over-predicting; a (-) indicates under-predicting.The following observations are made based on the data in Table 5.•Average number of analysis and gradient calls:In general, the optimization requires fewer analysis and gradient calls to the RS models than the kriging models. This can be attributed to the fact that the RS models are simple second-order polynomials whereas the kriging models are more complex, non-linear functions.•Convergence rates: Although not shown in the table, optimization using the RS models tends to converge more quickly than when using kriging models. This can be inferred from the number of gradient calls which is one to three calls fewer for the RS models than the kriging models.•Optimum designs: The optimum designs obtained from the RS and kriging models are essentially the same for each objective function. The largest discrepancy is the length when minimizing GLOW; RS models predict the optimum GLOW occurs at the upper bound on length (+1) while the kriging models yield 0.676. This difference is evident in Figures 10 and 11.•Predicted optima and prediction errors: To check the accuracy of the predicted optima, the optimum design values for angle, height, and length are used as inputs into the original analysis codes and the percentage difference between the actual and predicted values is computed. The prediction error is less than 5% for all cases and is 0.5% or less in three quarters of the results.In summary, the RS and kriging approximations yield comparable results with minimal difference in predictive capability. It is worth noting that the kriging models perform as well as the second-order RS models even though the global portion of the kriging model is only a constant. Ongoing work to further improve the accuracy of the kriging models is discussed next.6 CLOSING REMARKSThis simple, yet realistic, engineering example of the design of an aerospike nozzle has been utilized to demonstrate the use of kriging models as an alternative approximation technique to second-order response surface models for multidisciplinary design optimization. There are several research issues to address for the application of kriging to other (and larger) engineering design problems.•Selecting a kriging model: In this example, we use a constant for the global portion of the kriging model. However, using a global, low-order polynomial model for f(x) in Eqn. (5) may further improve the accuracy of the kriging model. Giunta21 performs apreliminary investigation of such an approach; his results indicate that minimal improvement in model accuracy is obtained.•Fitting a kriging model: For small problems with relatively few sample points, fitting a kriging model by optimizing Eqn. (12) is rather trivial. However, as the size of the problem increases and the number of sample points increases, the added effort needed to obtain the “best” kriging model may begin to outweigh the benefit of building the approximation.•Predicting with a kriging model: Unlike RS model prediction, prediction with a kriging model requires the inversion and multiplication of several matrices which grow with the number of sample points. Hence, for large problems prediction with a kriging model may become computationally expensive as well. The kriging software we are developing will facilitate fitting, building, and validating kriging models, increasing their attractiveness for engineering applications.•Validating a kriging model: Since kriging models interpolate the data, R2 values and residual plots cannot be used to assess model accuracy. In this example we use an additional 25 random validation points to check model accuracy; however, other approaches exist. Yesilyurt and Patera39 and Otto, et al.40 have developed a Bayesian-validated surrogate approach which systematically uses additional validation points to make quantitative assessments of the quality of the approximation model and provide theoretical bounds on the largest discrepancy between the model and the actual computer analysis. An alternative method which does not require additional points is leave-one-out cross validation,41 but it is uncertain how well this measure correlates with model accuracy.•Design of experiments for building kriging models: As discussed in Section 1, “space filling”experimental designs may be better suited for computer experiments. In this example, we use orthogonal arrays, but several other experimental designs exist. Koehler and Owen13 discuss a wide variety of designs including Latin hypercubes, minimax/maximin designs and orthogonal arrays.Future work on the aerospike nozzle design problem includes adding more design variables and responses and investigating the impact of decomposing the problem into its disciplines by building separate approximations of each discipline and examining the effects of different multidisciplinary design formulations on the solution.。

相关文档
最新文档