10427-数学建模-动态规划的原理及应用

合集下载

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

动态规划算法的实现及其应用

动态规划算法的实现及其应用

动态规划算法的实现及其应用动态规划,英文缩写为 DP,是一种算法设计技术,通常用于求解最优化问题。

动态规划是解决一类特殊问题的有效方法。

它通过将原问题转化为若干个子问题的方式,逐个求解这些子问题,最终得到原问题的解。

这种方式具有很强的适用性,能够解决很多实际问题。

动态规划的实现动态规划算法的实现基本上可以分为以下两个步骤:1. 确定状态:将原问题转化为若干个子问题,定义合适的状态量来表示子问题。

状态的定义应该满足无后效性,即状态一旦确定,之后的状态转移不会再受之前的状态影响。

2. 确定状态转移方程:定义状态转移方程,通过状态之间的转移来逐步求解原问题。

状态转移方程可以通过一些简单的规律得到,也可以通过数学方法进行求解。

动态规划的应用动态规划算法有很多应用,下面列举一些常见的应用场景。

1. 最长公共子序列问题:给定两个字符串,求出它们的最长公共子序列,即在两个字符串中都出现的、长度最长的子序列。

这个问题可以用动态规划算法求解,状态可以定义为在两个字符串的某段位置上的最长公共子序列的长度,状态转移方程比较简单。

2. 背包问题:有一个容量为 V 的背包和 n 种物品,每种物品的重量为 wi,价值为 vi,现在要用这些物品装满背包,使得背包中所装物品的总价值最大。

这个问题可以用动态规划算法求解,状态可以定义为在前 i 件物品中,体积为 j 的情况下能获得的最大价值,状态转移方程也比较简单。

3. 最短路问题:给定一个带权图,求出其中从起点到终点的最短路径。

这个问题可以用动态规划算法求解,状态可以定义为从起点到某个点的最短路径,状态转移方程可以通过分阶段来进行求解。

4. 求解最大子段和问题:给定一个序列,求出其中连续子段的和的最大值。

这个问题也可以用动态规划算法求解,状态可以定义为以某个位置为结尾的最大子段和,状态转移方程与之前的问题类似。

动态规划算法虽然能够解决很多问题,但是它也存在一些限制。

动态规划算法的计算复杂度较高,需要占用大量的内存空间。

动态规划原理

动态规划原理

动态规划原理动态规划(Dynamic Programming)是一种在数学、计算机科学和经济学等领域中使用的优化方法。

它是一种将复杂问题分解成更小的子问题来解决的方法,通过将问题分解成相互重叠的子问题,动态规划可以大大简化问题的解决过程,提高算法的效率。

在本文中,我们将介绍动态规划的原理及其应用。

动态规划的基本原理是将原问题分解成相互重叠的子问题,通过解决子问题来解决原问题。

在动态规划中,我们通常使用一个表格来存储子问题的解,以便在解决更大的问题时能够重复利用已经计算过的结果。

动态规划通常用于解决具有重叠子问题和最优子结构性质的问题,这些问题可以被分解成相互重叠的子问题,并且最优解可以通过子问题的最优解来计算得到。

动态规划的关键步骤包括定义子问题、构建状态转移方程、初始化边界条件和计算最优解。

首先,我们需要定义子问题,即将原问题分解成更小的子问题。

然后,我们需要构建状态转移方程,即找到子问题之间的递推关系,以便能够通过子问题的解来计算更大的问题的解。

接下来,我们需要初始化边界条件,即确定最小的子问题的解。

最后,我们可以通过自底向上或自顶向下的方式计算最优解。

动态规划的应用非常广泛,包括但不限于最短路径问题、背包问题、编辑距离、最长公共子序列、最大子数组和斐波那契数列等。

这些问题都具有重叠子问题和最优子结构性质,因此可以通过动态规划来解决。

动态规划在实际应用中往往能够大大提高算法的效率,因此受到了广泛的关注和应用。

总之,动态规划是一种将复杂问题分解成更小的子问题来解决的优化方法。

通过定义子问题、构建状态转移方程、初始化边界条件和计算最优解,动态规划可以大大简化问题的解决过程,提高算法的效率。

它在各个领域都有着广泛的应用,是一种非常重要的算法设计思想。

希望本文能够帮助读者更好地理解动态规划的原理及其应用。

以上就是关于动态规划原理的介绍,希望对您有所帮助。

动态规划算法原理和实现

动态规划算法原理和实现

动态规划算法原理和实现动态规划是解决某些优化问题的一种算法思想,它主要针对的是那些可以分解成子问题的大问题,因此也被称作分治法。

动态规划算法的核心思想是将大问题分解成一个个小问题,然后逐步求解这些小问题并将它们组合成原问题的解。

本文将简单介绍动态规划算法的原理和实现。

一、动态规划算法的原理为了更好地理解动态规划算法的原理,我们可以以一个实例为例:假设有一个背包,它最多能装W重量的物品,现在有n种不同的物品,每种物品都有自己的重量w和价值v。

我们需要选择哪些物品放入背包中,以使得背包中物品的总价值最大。

这是一个典型的动态规划问题。

首先,我们可以把问题分解成子问题:设f(i,j)表示前i种物品放入一个容量为j的背包可以获得的最大价值。

因此,我们可以得到以下状态方程式:f(i,j) = max{f(i-1,j), f(i-1,j-w[i])+v[i]} (1≤i≤n,1≤j≤W)其中,f(i-1,j)表示不放第i种物品的最大价值,f(i-1,j-w[i])+v[i]表示放入第i种物品的最大价值。

因此,当我们计算出f(i,j)时,我们就得到了「前i种物品放入容量为j的背包的最大价值」,这也就是原问题的解。

这样,我们就可以使用动态规划算法来计算出最优解。

具体来说,我们从0开始,逐个计算出f(i,j)的值,直到计算出f(n,W)为止。

此外,我们还需要注意以下几点:1. 在计算f(i,j)的时候,我们需要使用到f(i-1,j)和f(i-1,j-w[i])这两个状态,因此我们需要先计算出f(1,j),在此基础上计算f(2,j),以此类推。

2. 对于一些特殊的情况,我们需要单独处理。

比如当背包容量小于某种物品重量时,我们就无法放入该物品。

3. 我们在计算f(i,j)时,有许多状态是可以复用的。

比如,当我们计算出f(i-1,j)后,我们就可以直接使用这个值来计算f(i,j),而无需重新计算。

二、动态规划算法的实现上面我们已经介绍了动态规划算法的核心思想和实现原理,下面我们来看看具体的实现过程。

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

动态规划及其在数学模型中的应用最新教育文档

动态规划及其在数学模型中的应用最新教育文档

动态规划及其在数学模型中的应用1动态规划的起源与发展动态规划是解决多阶段决策过程最优化的一种方法,大约产生于20世纪50年代。

1951年,美国数学家理查德?贝尔曼根据一类多阶段决策问题的特点,把多阶段决策问题表示为一系列单阶段问题,即把一个N-变量问题作为一系列的N个问题而逐个加以解决,提出了解决这类问题的“最优化原理”,并将其应用于很多实际问题的研究,从而建立了运筹学的一个分支-动态规划。

1957年理查德?贝尔曼在美国普林斯顿大学发表了第一本正式的著作。

随后理查德?贝尔曼及其他科学工作者发表了一些列动态规划应用的著作,包括动态规划在最佳控制论、资源理论、工业工程、经济学、管理科学、变分法和马尔柯夫过程中的应用。

动态规划的发展始终伴随着它的广泛应用而不断臻善的。

2动态规划的优点与局限动态规划的核心思想是贝尔曼提出的最优化原理,这个原理导致了分阶段决策的方法。

分阶段决策的方法是建立在整体最优化的基础上的,在寻求某一阶段的决策时,不仅要考虑局部的利益,而且应考虑总体的最优。

动态规划通过将一个N维变量的复杂问题进行分阶段处理,把N维变量问题变成求解N个单变量问题,大大简化求解过程,节省巨大的计算量,这是经典的求解极值方法所做不到的。

动态规划几乎超越了所有现在的计算方法,特别是经典最优化方法,它能确定出绝对(全局)极大或极小,而不是相对(局部)的极值,使得我们不再需要关心伤脑筋的局部极大或极小问题。

动态规划的另一特点是泛函方程的“嵌入”特性。

动态规划方法求出的不仅是对整个过程的某一特定状态的一个解,而且也是对所有后部子过程的所有可能出现状态的一族解。

动态规划方法的局限性表现有以下几个方面:第一,到目前为止,动态规划还没有一个统一的标准模型可供使用。

实际问题不同,其动态规划模型可能各异,虽然理论上说可以把其他数学规划问题化为动态规划模型求解,但是这种转化的过程对于复杂的数学规划问题将变得十分困难。

第二,构造动态规划模型时,状态变量必须满足“无后效性”条件,这是一个相当强的条件。

动态规划的原理及应用

动态规划的原理及应用

动态规划的原理及应用1. 什么是动态规划动态规划(Dynamic Programming)是解决多阶段决策问题的一种优化方法。

它通过把原问题分解为相互重叠的子问题,并保存子问题的解,以避免重复计算,从而实现对问题的高效求解。

2. 动态规划的基本思想动态规划的基本思想可以归纳为以下几步:•确定问题的状态:将原问题分解为若干子问题,确定子问题的状态。

•定义状态转移方程:根据子问题的状态,确定子问题之间的关联关系,建立状态转移方程。

•确定初始条件和边界条件:确定子问题的初始状态和界限条件。

•计算最优解:采用递推或迭代的方式计算子问题的最优解。

•构造最优解:根据最优解的状态转移路径,构造原问题的最优解。

3. 动态规划的应用场景动态规划广泛应用于以下领域:3.1 图论在图论中,动态规划可以用来解决最短路径问题、最小生成树问题等。

通过保存子问题的最优解,可以避免重复计算,提高求解效率。

3.2 数值计算在数值计算中,动态规划可以用来解决线性规划、整数规划等问题。

通过将原问题分解为子问题,并利用子问题的最优解求解原问题,可以快速求解复杂的数值计算问题。

3.3 操作研究在操作研究中,动态规划可以用来解决最优调度问题、最优分配问题等。

通过将原问题拆分为若干子问题,并保存子问题的最优解,可以找到全局最优解。

3.4 自然语言处理在自然语言处理中,动态规划可以用来解决句法分析、语义理解等问题。

通过构建动态规划表,可以有效地解析复杂的自然语言结构。

3.5 人工智能在人工智能领域,动态规划可以用来解决机器学习、强化学习等问题。

通过利用动态规划的状态转移特性,可以训练出更加高效和智能的机器学习模型。

4. 动态规划的优势和限制动态规划的优势在于可以高效地解决复杂的多阶段决策问题,通过保存子问题的最优解,避免了重复计算,提高了求解效率。

同时,动态规划提供了一种清晰的问题分解和解决思路,可以帮助人们理解和解决复杂的问题。

然而,动态规划也有其应用的限制。

动态规划算法原理及应用

动态规划算法原理及应用

动态规划算法原理及应用动态规划算法(Dynamic Programming,DP)是一种通过将问题分解为子问题来解决复杂问题的方法。

其核心思想就是将原问题分解为若干个子问题,先求解子问题,然后再根据子问题的解得出原问题的解。

1.定义子问题:将原问题分解为若干个子问题,每个子问题都是原问题的一个子集。

2.构建状态转移方程:根据子问题的关系,建立状态转移方程来描述问题的解。

3.确定边界条件:确定问题的边界条件,即当问题规模很小的时候可以直接求解的情况。

4.自底向上求解:根据状态转移方程,自底向上地求解子问题,最终得到原问题的解。

1.背包问题:给定一个背包的容量和一系列物品的重量和价值,选择若干个物品放入背包中,使得背包的总重量不超过容量,同时总价值最大化。

2.最长公共子序列(LCS)问题:给定两个字符串,求它们的最长公共子序列,即两个字符串中都出现的最长的子序列。

3.最短路径问题:给定一个有向带权图和两个顶点,求两个顶点之间的最短路径。

4.最大连续子序列和问题:给定一个整数数组,找到一个具有最大和的连续子序列。

5.斐波那契数列:求解斐波那契数列中第n个数的值。

其中,斐波那契数列的定义为:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2),n>11.避免了重复计算:动态规划算法使用备忘录或者数组来存储中间计算结果,避免了重复计算,提高了效率。

2.自底向上求解:动态规划算法从最小的子问题开始求解,逐步拓展到原问题,保证了每个子问题都是已经求解过的。

3.可通过状态压缩进行优化:动态规划算法中,可以根据具体问题的特点,通过状态压缩来减少空间复杂度。

然而,动态规划算法也有一些限制:1.无法应用于所有问题:动态规划算法要求问题满足最优子结构的性质,因此不是所有问题都可以使用动态规划算法来解决。

2.有时需要额外的空间和时间:动态规划算法可能需要使用额外的空间来存储中间结果,同时也需要额外的时间来计算和存储中间结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划的原理及应用动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。

20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。

动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。

1.动态规划的基本理论一.动态规划的术语在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。

在此先简要介绍动态规划中的常用术语。

级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。

在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n.状态(λ):用来描述、刻画级的特征。

状态可以是单变量,也可以时向量。

在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。

状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。

描述决策的变量称为决策变量。

对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。

决策变量x(λ)∈X(λ)。

变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。

T(λ,x(λ))可分为两种类型,即确定型和不确定型。

确定型的T(λ,x(λ))只含有一个元。

不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。

这时,集函数T(λ,x(λ))将包含多个元素。

当T(λ,x(λ))=0 时,过程终止。

策略:顺序排列的决策集,记为v。

所有可能的策略集构成策略空间Γ。

收益:评价给定策略的目标函数r(λ,v),它依赖于状态和策略。

总收益是集收益s(λ,v)的某个组合(通常为集收益之和)。

若T(λ,x(λ))=0,则r(λ1,v1)= s(λ1,v1);若T(λ,x(λ))= λ2,则r(λ1,v)= s(λ1,v1)+ r(λ1,v2)。

二.序贯决策过程动态规划的寻优过程可以有正序、逆序两种方式。

当初始状态给定时,用逆序方式比较好,当终止状态给定时,用正序方式较好。

采用分级的序贯决策方法,把一个含有n个变量的问题转化为求解n个单变量问题。

为了应用最优化原理,必须满足分级条件,即目标函数可分性和状态可分性。

目标函数可分性:1n j sj =∑ = 1nj sj =∑(λj, vj )状态可分性:即在n+1 级做决策x(n+1) 后,状态λ(n+1)仅取决于λ(n)和x(n+1) ,而与以前的状态无关。

也就是系统的无记忆性。

三.最优性定理和基本方程Bellman 的最优性原理指出:不管该最优策略上某状态以前的状态和决策如何,对该状态而言,余下的诸决策必构成最优子策略.由此得出最优性定理:策略v(1,n)=( λ1, λ2,…, λn)是最优子策略的充分必要条件是:对任一k(1<k<n),当初状态为x1时,有r(λ1,v*(1,n))=min r(λ1,v(1,n))=min [r(λ1,v(1,k-1))+v(λk,v(k,n))]因此,在策略集V (1,n )上求最优解,就等价于先在子策略集V (k,n )上求最优解,然后再求这些子最优解在子策略空间V (1,k-1)上的最优解。

逆序递推的基本方程:r*(λk) = min [r(λk,vk)+r*(λk+1)] 终端条件:r*(λn+1) = 0式中: λk+1 = T(λk, vk)顺序递推的基本方程:r*(λk+1) = min [r(λk+1,vk)+r*(λk)] 始端条件:r*(λ1) = 0式中: λk+1 = T(λk, vk)2.动态规划的应用举例用动态规划求解实际问题,首先要建立动态规划模型,需进行以下几方面工作:(1)正确划分阶段及选择阶段变量k。

(2)正确选择状态变量λk,状态变量应满足以下两个条件:1.能正确描述受控过程的演变特征。

2.无后效性(3)正确选择决策变量及确定个级允许决策集合。

(4)写出状态转移方程(以逆序为例)λk+1 = T(λk, vk)(5)确定阶段目标函数的形式,目标函数必须具有可分性,并满足递推关系。

(6)写出基本方程即最优值函数满足的递推方程及端点条件(以逆序极小化为例):r*(λk) = min [r(λk,vk)+r*(λk+1)] 终端条件:r*(λn+1) = 0例最短路径问题如图,给定一个运输网络,两点之间连线上的数字表示两点间的距离。

试求一条从A到E的运输路线,使总距离最短。

从图中可以看出,我们可以把从A到E的过程分成若干个阶段,这里是四个阶段。

处于每个阶段时,都要选择走哪条支路——决策,一个阶段的决策除了影响该阶段的效果之外,还影响到下一阶段的初始状态,从而也就影响到整个过程以后的进程。

因此,在进行某一阶段的决策时,就不能只从这一阶段本身考虑,而应使整体的效果最优。

我们可以从最后一个阶段开始,由终点向始点方向逐阶递推,寻找各点到终点的最短路径,当递推到始点时,即得到了从始点到终点的全过程最短路。

这种由后向前的递推方法,正是动态规划的寻优思想。

下面我们对这个问题进行求解。

把从A 到E 的全过程分为四个阶段,用k 表示阶段变量。

第一阶段,有一个初始状态A ,三条可供选择的支路1AB 、2AB 、3AB ,以此类推。

我们用k d (k x ,1k x +)表示在第k 阶段由初始状态k x 到下阶段的初始状态1k x +的支路距离。

用k f (k x )表示从第k 阶段的k x 到终点E 的最短距离。

用逆序递推的方法:1.阶段k = 4第4阶段有两个初始状态1D 和2D 。

若全过程最短路径经过1D ,则有4f (1D )= 4 ;若全过程最短路径经过2D ,则有4f (2D )= 3 。

2.阶段 k = 3假设全过程最短路径在第3阶段经过1C 点:若由11C D E →→,则有3d (1C ,1D )+4f (1D )= 4 + 4 = 8若由12C D E →→,则有3d (1C ,2D )+4f (2D )= 6 + 3 = 9因此,3f (1C )= min (8,9)= 8 ,即由1C E →的最短路径是11C D E →→,最短距离是8。

类似地,假设全过程最短路径经过2C 点,则有3f (2C )= min{[3d (2C ,1D )+ 4f (1D )],[3d (2C ,2D )+ 4f (2D )]} = min (7,8) = 7即由2C E →的最短路径是由21C D E →→,最短距离是7。

同理可得出:3f (3C )= min ( 6 , 6 ) = 6由3C E →的最短路径有两条31C D E →→和32C D E →→,其距离都是6。

3.阶段 k = 2类似地,可计算21()f B 、22()f B 、23()f B 如下:21()f B = min( 15 , 14 , 14 ) = 1422()f B = min(11, 12 , 12 ) = 1123()f B = min(14 , 15 , 13 ) = 13因此,由1B E →的最短路径有三条121B C D E →→→、131B C D E →→→、132B C D E →→→,最短距离都是14;由2B E →的最短路径是211B C D E →→→,距离是11;由3B E →的最短路径有两条:331B C D E →→→和332B C D E →→→,距离是13。

4.阶段 k = 11()f A = min ( 16 , 15 , 16 ) = 15因此,由A E →的全过程最短路径是211A B C D E →→→→,最短距离是15。

从以上过程可以看出,每个阶段中,都求出本阶段的各个初始状态到终点E 的最短路径和最短距离,当逆序递推到过程始点A 时,便得到全过程的最短路径及其最短距离,同时得到一族最优结果(即各阶段的各状态到终点E 的最优结果)。

和穷举法相比,逆叙递推方法大大减少了计算量,且大大丰富了计算结果。

此题也可以用顺序递推的方法求解,解法过程相似,在此就不赘述了。

例 多阶段资产投资的动态规划决策模型1. 多阶段资产投资的决策问题设某资产市场中共有n 种资产可供投资者进行选择,某一投资者要在该市场中进行m(m >1)阶段的投资,在每一阶段中该投资者都可在这n 种资产中选择投资。

设该投资者可预测到从开始到第m 个投资阶段中各个阶段单位资产投资的平均收益与风险。

不妨设,在第j(i =l ,…,m)个阶段初购买第j(i =l ,…,n)种资产,到该阶段末时的平均收益率为j i r ,平均风险损失率为j i q ;而且,若第j—l 阶段末已持有一部分资产,则在第j(j =2,…,m)个阶段初,可以决定这些资产是继续持有、还是出售,而出售资产所得的资金可用于该阶段的资产购买。

根据实际情况,每个阶段中每一种资产的买卖均需按交易的金额交纳一定比例的交易费,不妨假设在第j(j =l ,…,m)个阶段中买卖第i(i =1,…,n)种资产的交易费率为jp。

i多阶段资产投资的决策问题就是要求设计该投资者的一种资产投资组合方案,使得在投资总风险低于一定风险上限要求的前提下,到第m个阶段末时该投资者的投资总收益(即m个阶段的投资收益总和)尽可能大。

为简化问题的考虑,建立以下四点假设:1.投资者只在投资开始时(即第1阶段初)向资产市场投入一定数额的自由资金,在其后的m—1个阶段中不再增加对该资产市场的资金投入;同时,也不把已获得的收益资金从资产市场中抽出。

也就是说,投资者的最终持有的资产和资金只是由最初的自由资金进行了M次投资后获得的。

2.在资产投资中,不允许卖空行为,即投资者出售的资产量不允许超过其当时的实际资产持有量。

3,考虑到投资超分散,投资风险就越小,我们确定投资总风险用各阶段中所投资的各种资产风险中最大的一个来衡量。

而且,投资者的投资风险要求不能高于一个固定的风险上限。

4,投资是持续的,在相邻两阶段间没有其他投资行为。

这样,任一阶段未时投资者的资产及自由资金情况与下一阶段初时的情况相同。

多阶段资产投资决策的动态规划模型为叙述方便,我们引入以下一些记号:js——第j阶段初,投资者拥有的第i种资产的金额(j=1,…,m ; i = 1 , …,in);jt——第j阶段韧,投资者拥有的自由资金的金额(j=1,…,m );j i x ——第j 阶段初,投资者对第i 种资产的交易金额(j =1,…,m ; i = 1 , …,n);其中:j i x <0表示投资者出售第i 种资产;j i x >0表示投资者购买第j 种资产。

相关文档
最新文档