10427-数学建模-动态规划的原理及应用

合集下载

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。

动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。

它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。

1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。

2.定义状态:确定存储子问题解的状态变量和状态方程。

3.确定边界条件:确定初始子问题的解,也称为边界状态。

4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。

5.求解最优解:通过遍历状态变量找到最优解。

1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。

可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。

2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。

给定一个序列,找到其中最长的递增子序列。

可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。

3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。

给定一系列矩阵,求解它们相乘的最小计算次数。

可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。

4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。

可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。

动态规划算法的实现及其应用

动态规划算法的实现及其应用

动态规划算法的实现及其应用动态规划,英文缩写为 DP,是一种算法设计技术,通常用于求解最优化问题。

动态规划是解决一类特殊问题的有效方法。

它通过将原问题转化为若干个子问题的方式,逐个求解这些子问题,最终得到原问题的解。

这种方式具有很强的适用性,能够解决很多实际问题。

动态规划的实现动态规划算法的实现基本上可以分为以下两个步骤:1. 确定状态:将原问题转化为若干个子问题,定义合适的状态量来表示子问题。

状态的定义应该满足无后效性,即状态一旦确定,之后的状态转移不会再受之前的状态影响。

2. 确定状态转移方程:定义状态转移方程,通过状态之间的转移来逐步求解原问题。

状态转移方程可以通过一些简单的规律得到,也可以通过数学方法进行求解。

动态规划的应用动态规划算法有很多应用,下面列举一些常见的应用场景。

1. 最长公共子序列问题:给定两个字符串,求出它们的最长公共子序列,即在两个字符串中都出现的、长度最长的子序列。

这个问题可以用动态规划算法求解,状态可以定义为在两个字符串的某段位置上的最长公共子序列的长度,状态转移方程比较简单。

2. 背包问题:有一个容量为 V 的背包和 n 种物品,每种物品的重量为 wi,价值为 vi,现在要用这些物品装满背包,使得背包中所装物品的总价值最大。

这个问题可以用动态规划算法求解,状态可以定义为在前 i 件物品中,体积为 j 的情况下能获得的最大价值,状态转移方程也比较简单。

3. 最短路问题:给定一个带权图,求出其中从起点到终点的最短路径。

这个问题可以用动态规划算法求解,状态可以定义为从起点到某个点的最短路径,状态转移方程可以通过分阶段来进行求解。

4. 求解最大子段和问题:给定一个序列,求出其中连续子段的和的最大值。

这个问题也可以用动态规划算法求解,状态可以定义为以某个位置为结尾的最大子段和,状态转移方程与之前的问题类似。

动态规划算法虽然能够解决很多问题,但是它也存在一些限制。

动态规划算法的计算复杂度较高,需要占用大量的内存空间。

动态规划原理

动态规划原理

动态规划原理动态规划(Dynamic Programming)是一种在数学、计算机科学和经济学等领域中使用的优化方法。

它是一种将复杂问题分解成更小的子问题来解决的方法,通过将问题分解成相互重叠的子问题,动态规划可以大大简化问题的解决过程,提高算法的效率。

在本文中,我们将介绍动态规划的原理及其应用。

动态规划的基本原理是将原问题分解成相互重叠的子问题,通过解决子问题来解决原问题。

在动态规划中,我们通常使用一个表格来存储子问题的解,以便在解决更大的问题时能够重复利用已经计算过的结果。

动态规划通常用于解决具有重叠子问题和最优子结构性质的问题,这些问题可以被分解成相互重叠的子问题,并且最优解可以通过子问题的最优解来计算得到。

动态规划的关键步骤包括定义子问题、构建状态转移方程、初始化边界条件和计算最优解。

首先,我们需要定义子问题,即将原问题分解成更小的子问题。

然后,我们需要构建状态转移方程,即找到子问题之间的递推关系,以便能够通过子问题的解来计算更大的问题的解。

接下来,我们需要初始化边界条件,即确定最小的子问题的解。

最后,我们可以通过自底向上或自顶向下的方式计算最优解。

动态规划的应用非常广泛,包括但不限于最短路径问题、背包问题、编辑距离、最长公共子序列、最大子数组和斐波那契数列等。

这些问题都具有重叠子问题和最优子结构性质,因此可以通过动态规划来解决。

动态规划在实际应用中往往能够大大提高算法的效率,因此受到了广泛的关注和应用。

总之,动态规划是一种将复杂问题分解成更小的子问题来解决的优化方法。

通过定义子问题、构建状态转移方程、初始化边界条件和计算最优解,动态规划可以大大简化问题的解决过程,提高算法的效率。

它在各个领域都有着广泛的应用,是一种非常重要的算法设计思想。

希望本文能够帮助读者更好地理解动态规划的原理及其应用。

以上就是关于动态规划原理的介绍,希望对您有所帮助。

动态规划算法原理和实现

动态规划算法原理和实现

动态规划算法原理和实现动态规划是解决某些优化问题的一种算法思想,它主要针对的是那些可以分解成子问题的大问题,因此也被称作分治法。

动态规划算法的核心思想是将大问题分解成一个个小问题,然后逐步求解这些小问题并将它们组合成原问题的解。

本文将简单介绍动态规划算法的原理和实现。

一、动态规划算法的原理为了更好地理解动态规划算法的原理,我们可以以一个实例为例:假设有一个背包,它最多能装W重量的物品,现在有n种不同的物品,每种物品都有自己的重量w和价值v。

我们需要选择哪些物品放入背包中,以使得背包中物品的总价值最大。

这是一个典型的动态规划问题。

首先,我们可以把问题分解成子问题:设f(i,j)表示前i种物品放入一个容量为j的背包可以获得的最大价值。

因此,我们可以得到以下状态方程式:f(i,j) = max{f(i-1,j), f(i-1,j-w[i])+v[i]} (1≤i≤n,1≤j≤W)其中,f(i-1,j)表示不放第i种物品的最大价值,f(i-1,j-w[i])+v[i]表示放入第i种物品的最大价值。

因此,当我们计算出f(i,j)时,我们就得到了「前i种物品放入容量为j的背包的最大价值」,这也就是原问题的解。

这样,我们就可以使用动态规划算法来计算出最优解。

具体来说,我们从0开始,逐个计算出f(i,j)的值,直到计算出f(n,W)为止。

此外,我们还需要注意以下几点:1. 在计算f(i,j)的时候,我们需要使用到f(i-1,j)和f(i-1,j-w[i])这两个状态,因此我们需要先计算出f(1,j),在此基础上计算f(2,j),以此类推。

2. 对于一些特殊的情况,我们需要单独处理。

比如当背包容量小于某种物品重量时,我们就无法放入该物品。

3. 我们在计算f(i,j)时,有许多状态是可以复用的。

比如,当我们计算出f(i-1,j)后,我们就可以直接使用这个值来计算f(i,j),而无需重新计算。

二、动态规划算法的实现上面我们已经介绍了动态规划算法的核心思想和实现原理,下面我们来看看具体的实现过程。

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

动态规划及其在数学模型中的应用最新教育文档

动态规划及其在数学模型中的应用最新教育文档

动态规划及其在数学模型中的应用1动态规划的起源与发展动态规划是解决多阶段决策过程最优化的一种方法,大约产生于20世纪50年代。

1951年,美国数学家理查德?贝尔曼根据一类多阶段决策问题的特点,把多阶段决策问题表示为一系列单阶段问题,即把一个N-变量问题作为一系列的N个问题而逐个加以解决,提出了解决这类问题的“最优化原理”,并将其应用于很多实际问题的研究,从而建立了运筹学的一个分支-动态规划。

1957年理查德?贝尔曼在美国普林斯顿大学发表了第一本正式的著作。

随后理查德?贝尔曼及其他科学工作者发表了一些列动态规划应用的著作,包括动态规划在最佳控制论、资源理论、工业工程、经济学、管理科学、变分法和马尔柯夫过程中的应用。

动态规划的发展始终伴随着它的广泛应用而不断臻善的。

2动态规划的优点与局限动态规划的核心思想是贝尔曼提出的最优化原理,这个原理导致了分阶段决策的方法。

分阶段决策的方法是建立在整体最优化的基础上的,在寻求某一阶段的决策时,不仅要考虑局部的利益,而且应考虑总体的最优。

动态规划通过将一个N维变量的复杂问题进行分阶段处理,把N维变量问题变成求解N个单变量问题,大大简化求解过程,节省巨大的计算量,这是经典的求解极值方法所做不到的。

动态规划几乎超越了所有现在的计算方法,特别是经典最优化方法,它能确定出绝对(全局)极大或极小,而不是相对(局部)的极值,使得我们不再需要关心伤脑筋的局部极大或极小问题。

动态规划的另一特点是泛函方程的“嵌入”特性。

动态规划方法求出的不仅是对整个过程的某一特定状态的一个解,而且也是对所有后部子过程的所有可能出现状态的一族解。

动态规划方法的局限性表现有以下几个方面:第一,到目前为止,动态规划还没有一个统一的标准模型可供使用。

实际问题不同,其动态规划模型可能各异,虽然理论上说可以把其他数学规划问题化为动态规划模型求解,但是这种转化的过程对于复杂的数学规划问题将变得十分困难。

第二,构造动态规划模型时,状态变量必须满足“无后效性”条件,这是一个相当强的条件。

动态规划的原理及应用

动态规划的原理及应用

动态规划的原理及应用1. 什么是动态规划动态规划(Dynamic Programming)是解决多阶段决策问题的一种优化方法。

它通过把原问题分解为相互重叠的子问题,并保存子问题的解,以避免重复计算,从而实现对问题的高效求解。

2. 动态规划的基本思想动态规划的基本思想可以归纳为以下几步:•确定问题的状态:将原问题分解为若干子问题,确定子问题的状态。

•定义状态转移方程:根据子问题的状态,确定子问题之间的关联关系,建立状态转移方程。

•确定初始条件和边界条件:确定子问题的初始状态和界限条件。

•计算最优解:采用递推或迭代的方式计算子问题的最优解。

•构造最优解:根据最优解的状态转移路径,构造原问题的最优解。

3. 动态规划的应用场景动态规划广泛应用于以下领域:3.1 图论在图论中,动态规划可以用来解决最短路径问题、最小生成树问题等。

通过保存子问题的最优解,可以避免重复计算,提高求解效率。

3.2 数值计算在数值计算中,动态规划可以用来解决线性规划、整数规划等问题。

通过将原问题分解为子问题,并利用子问题的最优解求解原问题,可以快速求解复杂的数值计算问题。

3.3 操作研究在操作研究中,动态规划可以用来解决最优调度问题、最优分配问题等。

通过将原问题拆分为若干子问题,并保存子问题的最优解,可以找到全局最优解。

3.4 自然语言处理在自然语言处理中,动态规划可以用来解决句法分析、语义理解等问题。

通过构建动态规划表,可以有效地解析复杂的自然语言结构。

3.5 人工智能在人工智能领域,动态规划可以用来解决机器学习、强化学习等问题。

通过利用动态规划的状态转移特性,可以训练出更加高效和智能的机器学习模型。

4. 动态规划的优势和限制动态规划的优势在于可以高效地解决复杂的多阶段决策问题,通过保存子问题的最优解,避免了重复计算,提高了求解效率。

同时,动态规划提供了一种清晰的问题分解和解决思路,可以帮助人们理解和解决复杂的问题。

然而,动态规划也有其应用的限制。

动态规划算法原理及应用

动态规划算法原理及应用

动态规划算法原理及应用动态规划算法(Dynamic Programming,DP)是一种通过将问题分解为子问题来解决复杂问题的方法。

其核心思想就是将原问题分解为若干个子问题,先求解子问题,然后再根据子问题的解得出原问题的解。

1.定义子问题:将原问题分解为若干个子问题,每个子问题都是原问题的一个子集。

2.构建状态转移方程:根据子问题的关系,建立状态转移方程来描述问题的解。

3.确定边界条件:确定问题的边界条件,即当问题规模很小的时候可以直接求解的情况。

4.自底向上求解:根据状态转移方程,自底向上地求解子问题,最终得到原问题的解。

1.背包问题:给定一个背包的容量和一系列物品的重量和价值,选择若干个物品放入背包中,使得背包的总重量不超过容量,同时总价值最大化。

2.最长公共子序列(LCS)问题:给定两个字符串,求它们的最长公共子序列,即两个字符串中都出现的最长的子序列。

3.最短路径问题:给定一个有向带权图和两个顶点,求两个顶点之间的最短路径。

4.最大连续子序列和问题:给定一个整数数组,找到一个具有最大和的连续子序列。

5.斐波那契数列:求解斐波那契数列中第n个数的值。

其中,斐波那契数列的定义为:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2),n>11.避免了重复计算:动态规划算法使用备忘录或者数组来存储中间计算结果,避免了重复计算,提高了效率。

2.自底向上求解:动态规划算法从最小的子问题开始求解,逐步拓展到原问题,保证了每个子问题都是已经求解过的。

3.可通过状态压缩进行优化:动态规划算法中,可以根据具体问题的特点,通过状态压缩来减少空间复杂度。

然而,动态规划算法也有一些限制:1.无法应用于所有问题:动态规划算法要求问题满足最优子结构的性质,因此不是所有问题都可以使用动态规划算法来解决。

2.有时需要额外的空间和时间:动态规划算法可能需要使用额外的空间来存储中间结果,同时也需要额外的时间来计算和存储中间结果。

数学建模中的动态规划问题

数学建模中的动态规划问题

数学建模中的动态规划问题动态规划是一种常见且重要的数学建模技术,它在解决许多实际问题中发挥着关键作用。

本文将介绍动态规划问题的基本概念和解题方法,并通过几个实例来说明其在数学建模中的应用。

一、动态规划的基本概念动态规划是解决多阶段决策问题的一种方法。

一般来说,动态规划问题可以分为以下几个步骤:1. 确定阶段:将问题划分为若干个阶段,每个阶段对应一个决策。

2. 确定状态:将每个阶段的可能状态列出,并定义对应的决策集合。

3. 确定状态转移方程:根据当前阶段的状态和上一个阶段的决策,确定状态的转移关系。

4. 确定初始条件:确定问题的初始状态。

5. 确定决策的评价标准:根据问题的具体要求,确定决策的评价标准。

6. 使用递推或递归公式求解:根据状态转移方程,使用递推或递归公式求解问题。

二、动态规划问题的解题方法在解决动态规划问题时,一般可以使用自顶向下和自底向上两种方法。

自顶向下的方法,也称为记忆化搜索,是指从问题的最优解出发,逐步向下求解子问题的最优解。

该方法通常使用递归来实现,并通过记忆化技术来避免重复计算。

自底向上的方法,也称为动态规划的迭代求解法,是指从问题的初始状态出发,逐步向上求解各个阶段的最优解。

该方法通常使用迭代循环来实现,并通过存储中间结果来避免重复计算。

三、动态规划在数学建模中的应用1. 01背包问题:给定一组物品和一个背包,每个物品有对应的价值和重量,要求选择一些物品放入背包中,使得背包中物品的总价值最大,而且总重量不超过背包的容量。

这是一个经典的动态规划问题,在数学建模中经常遇到。

2. 最短路径问题:在给定的有向图中,求解从一个顶点到另一个顶点的最短路径。

该问题可以使用动态规划的思想对其进行求解,其中每个阶段表示到达某个顶点的最短路径。

3. 最长公共子序列问题:给定两个序列,求解它们最长的公共子序列的长度。

该问题可以使用动态规划的方法解决,其中每个阶段表示两个序列的某个子序列。

四、实例分析以01背包问题为例进行具体分析。

简述动态规划的最优性原理及应用

简述动态规划的最优性原理及应用

简述动态规划的最优性原理及应用1. 动态规划的最优性原理动态规划是一种求解最优化问题的方法,它通过将问题分解为更小的子问题,并通过保存中间结果来减少重复计算的次数。

1.1 最优子结构性质动态规划的最优性原理基于最优子结构性质。

最优子结构性质指的是一个问题的最优解包含其子问题的最优解。

当一个问题满足最优子结构性质时,我们可以用递归的方式将问题分解为更小的子问题,然后通过解决这些子问题来得到原问题的最优解。

1.2 重叠子问题性质动态规划的最优性原理还依赖于重叠子问题性质。

重叠子问题性质指的是在求解一个问题时,我们会多次遇到相同的子问题。

通过保存中间结果,我们可以避免对相同的子问题重复计算,从而提高算法的效率。

2. 动态规划的应用动态规划的最优性原理可以应用于解决各种不同的问题,包括最长公共子序列、背包问题、图的最短路径等。

2.1 最长公共子序列最长公共子序列问题是指在两个序列中找到一个最长的公共子序列,该子序列不需要在原序列中是连续的。

通过动态规划的最优性原理,我们可以将最长公共子序列问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。

2.2 背包问题背包问题是指在给定的容量下,选择一些物品放入背包中,使得物品的总价值最大。

通过动态规划的最优性原理,我们可以将背包问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。

2.3 图的最短路径图的最短路径问题是指在一个带有加权边的有向图中,找到从一个节点到另一个节点的最短路径。

通过动态规划的最优性原理,我们可以将图的最短路径问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。

3. 动态规划的实现步骤使用动态规划求解问题的一般步骤如下:1.定义状态:明确问题所求解的状态是什么,一般用函数或数组表示。

2.确定状态转移方程:通过分析问题的最优子结构,构建状态转移方程,表示当前状态与前一个状态之间的关系。

3.初始化边界条件:根据问题的实际情况,初始化边界条件,来解决最小规模的子问题。

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用
7
例2 生产和存储控制问题
某工厂生产某种季节性商品,需要作下一 年度的生产计划,假定这种商品的生产周期需 要两个月,全年共有6个生产周期,需要作出 各个周期中的生产计划。
设已知各周期对该商品的需要量如下表所示: 周期 1 2 3 4 5 6
需求量 5 5 10 30 50 8
8
例2
假设这个工厂根据需要可以日夜两班生产或只是日 班生产,当开足日班时,每一个生产周期能生产商品15 个单位,每生产一个单位商品的成本为100元。当开足 夜班时,每一生产周期能生产的商品也是15个,但是由 于增加了辅助性生产设备和生产辅助费用,每生产一单 位商品的成本为120元。由于生产能力的限制,可以在 需求淡季多生产一些商品储存起来以备需求旺季使用, 但存储商品是需要存储费用的,假设每单位商品存储一 周期需要16元,已知开始时存储为零,年终也不存储商 品备下年使用,问应该如何作生产和存储计划,才能使 总的生产和存储费用最小?
5
例1
若以y与x-y分别投入生产方式A与B,在第一 阶段生产后回收的总资源为x1=ay+b(x-y),再将x1 投入生产方式A和B,则可得到收入g(y1)+h(x1-y1), 继续回收资源x2=ay1+b(x1-y1),……
若上面的过程进行n个阶段,我们希望选择n 个变量y,y1,y2,…,yn-1,使这n个阶段的总收入最大。
6
例1
因此,我们的问题就变成:求y,y1,y2,…,yn-1,以使 g(y)+h(x-y)+g(y1)+h(x1-y1)+…+g(yn-1)+h(xn-1-yn-1) 达到最大,且满足条件
x1=ay+b(x-y) x2=ay1+b(x1-y1)

动态规划算法及其应用

动态规划算法及其应用

动态规划算法及其应用动态规划是一种重要的求解优化问题的算法,在计算机科学和应用数学领域都有广泛的应用。

它的基本思想是将大问题分解成小问题,通过记录中间结果来降低计算复杂度,从而达到在合理运行时间内求解问题的目的。

本文将介绍动态规划算法的基本概念和面向实际场景的应用。

1. 动态规划算法基本概念动态规划算法简而言之,就是由小问题推导出大问题的解。

通常情况下,我们将一个大问题拆分成若干个小问题,然后对每个小问题进行求解,并进行状态记录,最后将小问题的结果组合起来,得到大问题的最优解。

动态规划算法的核心是状态转移方程。

这个方程的形式通常为:dp[i] = max(dp[i-1], nums[i])其中,dp[i]表示到第i个位置的最优解,nums[i]是输入序列的第i个元素。

对于其他问题,这个状态转移方程可能会有所不同。

2. 动态规划算法的应用2.1 背包问题背包问题是动态规划算法的经典应用之一。

假设有n个物品和一个最大容量为W的背包,每个物品有一个重量wi和一个价值vi。

我们需要选择一些物品放入背包中,使得在满足背包的最大容量限制下,能够得到最大的总价值。

这个问题可以用动态规划来解决。

假设我们用dp[i][j]表示前i 个物品能够放入容量为j的背包中的最大价值。

对于每个物品i,可以考虑两种情况:放入背包和不放入背包。

如果把第i个物品放入背包中,则dp[i][j] = dp[i-1][j-wi] + vi;如果不把第i个物品放入背包中,则dp[i][j] = dp[i-1][j]。

状态转移方程为:dp[i][j] = max(dp[i-1][j-wi] + vi, dp[i-1][j])最终的最优解为dp[n][W]。

2.2 编辑距离问题编辑距离应用广泛,它可以度量字符串之间的差异性,用于拼写检查、语音识别、人工智能等领域。

编辑距离问题的目标是,给定两个字符串s和t,通过增加、删除、替换操作,将s转换成t,使得转换的代价最小。

动态规划算法详解及应用实例

动态规划算法详解及应用实例

动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。

它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。

本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。

一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。

其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。

由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。

状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。

通过不断迭代求解状态转移方程,我们可以得到最优解。

二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。

2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。

因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。

3、动态规划通常包含两个要素:最优子结构和重叠子问题。

最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。

4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。

三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。

对于此类问题,可以采用动态规划算法进行求解。

首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。

动态规划的基本原理与应用

动态规划的基本原理与应用

动态规划的基本原理与应用动态规划是一种解决复杂问题的方法,它通过将问题分解为较小的子问题,并记录子问题的解来解决原问题。

动态规划的基本原理是通过递归和存储中间结果来优化问题求解的效率。

在本文中,我们将讨论动态规划的基本原理以及它在不同领域的应用。

一、基本原理动态规划的基本原理可以简单概括为以下几个步骤:1. 定义问题的状态:将原问题拆解为若干个子问题,每个子问题对应一个状态。

2. 确定问题的状态转移方程:确定每个状态之间的关系,通过状态转移方程将问题的解表示为子问题的解。

3. 初始化边界条件:确定初始状态的值。

4. 通过自底向上的方式计算问题的解:根据状态转移方程,从初始状态开始计算每个状态的值,直到达到目标状态。

5. 根据需要,进行结果的回溯:如果需要得到问题的具体解,可以根据已计算的值和状态转移方程,回溯得到解。

二、应用领域动态规划作为一种高效解决问题的方法,广泛应用于以下几个领域:1. 最优化问题:动态规划可以解决许多最优化问题,如最大子序列和、最长公共子序列、背包问题等。

通过将问题分解为子问题,并记录子问题的最优解,可以得到整个问题的最优解。

2. 计算机算法设计:在算法设计中,动态规划常常用于解决搜索问题、图问题和字符串问题。

通过将问题分解为子问题,并利用子问题的解来优化算法的运行时间。

3. 经济学和金融学:动态规划在经济学和金融学中有广泛的应用。

例如,它可以用于决策问题、风险分析和投资组合优化等。

4. 生物学:在生物学中,动态规划可以用于序列比对、DNA重组和蛋白质结构预测等问题。

5. 自然语言处理:动态规划在自然语言处理中也有一定的应用。

例如,它可以用于句法解析、机器翻译和词性标注等任务。

三、总结动态规划作为一种高效解决问题的方法,通过将问题分解为子问题,并记录子问题的解来优化问题求解的效率。

它的基本原理是通过递归和存储中间结果来计算问题的解。

动态规划在最优化问题、计算机算法设计、经济学和金融学、生物学以及自然语言处理等领域都有广泛的应用。

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用

动态规划的基本原理和基本应用
一、动态规划的基本原理
动态规划(Dynamic Programming)是一种运用在运筹学中的一种数
学规划方法。

它的基本思路是:将一个复杂的求解问题分解成若干个更简
单的子问题,再从这些子问题出发,求出各子问题的解,回溯到原问题求
出原问题的解,通常情况下,动态规划的核心是对于每一个子问题只求解
一次,存储子问题的解,避免了重复求解子问题。

1.最优子结构性质:具有最优子结构性质的问题可以用动态规划求解,即如果一些问题的求解最优解由其子问题的最优解组合而成,那么该问题
也是最优的;
2.重复子问题性质:具有重复子问题性质的问题可以用动态规划求解,即一些问题的解可以由重复的子问题的解组合而成;
3.边界条件:求解动态规划的问题要求有边界条件,即知道求解问题
的初始和终止条件;
4.最优化原理:即求解问题的全局最优解可以由求子问题的最优解组
合而成,求解问题从最优解的最终状态开始,逐渐迭代至初始状态;
5.无后效性:即状态仅取决于其之前的几个状态,不受其之后状态的
影响。

二、动态规划的基本应用
1.适用于短路径问题:在交通运输、通信网络中。

动态规划算法的原理及应用

动态规划算法的原理及应用

动态规划算法的原理及应用1. 动态规划算法的原理动态规划是一种将复杂问题分解为更小、更简单子问题的优化技术。

它通常应用于需要求解最优解的问题,并通过将问题分解为子问题,并且利用子问题的最优解来求解整个问题。

动态规划算法的基本思想是自底向上求解子问题,然后将子问题的解合并为原问题的解。

这种方法避免了重复计算子问题,减少了时间复杂度。

动态规划算法一般需要满足以下两个条件: * 子问题的最优解能够组成原问题的最优解; * 子问题之间不存在重叠。

2. 动态规划算法的应用2.1 背包问题背包问题是指给定一个背包的容量,一系列物品的重量和价值,如何选择将哪些物品放入背包中以使得背包内物品的总价值最大化的问题。

动态规划可用于解决背包问题。

具体方法是创建一个二维数组,横轴表示物品的可选数量,纵轴表示背包的容量。

通过填表格的方式,逐步计算出不同容量下放入不同物品的最大价值。

最后得出背包的最大价值。

2.2 最长公共子序列问题最长公共子序列问题是指给定两个序列,如何找到它们最长的公共子序列的问题。

动态规划可用于解决最长公共子序列问题。

具体方法是创建一个矩阵,矩阵的行表示第一个序列的元素,列表示第二个序列的元素。

通过填表格的方式,逐步计算出不同元素位置下的最长公共子序列的长度。

最后得出最长公共子序列的长度。

2.3 最短路径问题最短路径问题是指在一个带有权值的图中,如何找到两个顶点之间最短的路径的问题。

动态规划可用于解决最短路径问题。

一种常见的动态规划算法是Floyd-Warshall算法,它通过创建一个矩阵,矩阵的元素表示两个顶点之间的最短路径长度。

通过逐步更新矩阵的值,求解出所有顶点之间的最短路径。

2.4 斐波那契数列问题斐波那契数列问题是指给定一个整数n,如何求解斐波那契数列的第n个数的问题。

动态规划可用于解决斐波那契数列问题。

具体方法是创建一个数组,通过填表格的方式,逐步计算出斐波那契数列的每个数。

最后得出斐波那契数列的第n个数。

动态规划算法详解和应用

动态规划算法详解和应用

动态规划算法详解和应用动态规划(Dynamic Programming)算法是从多个阶段中逐步逼近最优解的一种算法。

它的主要思想是将原问题拆分成若干个子问题,并使用已解决的子问题的解来推导还未解决的子问题。

在处理每个子问题时,都会保存之前已经部分解决过的子问题的结果。

借助这些结果来解决更复杂的问题。

动态规划算法因此得名。

本文将详细介绍动态规划算法的基本思想、步骤和应用。

动态规划算法的基本思想:当解决一个问题时,将其分解成若干个子问题并求解。

每个子问题的解只会记录一次,以避免重复求解。

因此,动态规划算法重复使用以前的子问题的解来解决当前的子问题。

在计算机编程中,动态规划通常需要做出一种递归解法,以解决问题的所有可能情况。

如果递归解法的效率太低,可以让它转化为带有动态规划思想的算法,其根据已经解决的子问题计算其它子问题。

动态规划算法的基本步骤:1. 定义状态: 状态是决定某个时刻或某个条件的变量(或变量集合)。

它反映了解决一个问题需要的参数信息。

例如,对于求解最长公共子序列问题来说,状态就是两个字符串的下标。

2. 定义转移:对于当前状态,转移就是从上一状态到达当前状态所要执行的操作(比如以左上角有没有两个字符为例,若匹配则加上当前结果,否则不加)3. 初始化状态:通常在定义状态时,会初始化状态。

在问题开始时,只需要初始化状态就可以得出问题的部分或全部答案。

4. 通常使用一维或多维数组存储状态。

状态也可以是其他容器,如哈希表、树和堆等。

5. 最后得到问题的最终答案。

动态规划算法的应用:1. 寻找最长/最短路径问题(例如:Dijkstra算法和Floyd算法);2. 寻找最优二叉树(例如:Huffman编码算法);3. 求解最大子数列问题(例如:Kadane算法);4. 求解最长公共子序列问题(例如:LCS算法);5. 求解最长回文子串(例如:Manacher算法);6. 求解背包问题(例如:01背包、完全背包)。

动态规划原理及应用

动态规划原理及应用

动态规划原理及应用动态规划是一种在数学、计算机科学和经济学等领域中广泛应用的算法思想。

它通过将原问题分解为相对简单的子问题来解决复杂的问题,从而大大提高了问题的求解效率。

动态规划算法的核心思想是将原问题拆解为若干个子问题,并且这些子问题之间存在重叠,通过存储子问题的解来避免重复计算,从而实现对原问题的高效求解。

动态规划的基本原理是最优子结构和重叠子问题。

最优子结构指的是原问题的最优解可以通过子问题的最优解来求解,而重叠子问题则是指在问题求解过程中存在重复计算的子问题。

动态规划算法正是利用这两个特点,通过存储子问题的解来避免重复计算,从而实现对原问题的高效求解。

动态规划算法的应用非常广泛,其中最典型的应用之一就是在路径规划问题中。

例如,在寻找两个城市之间的最短路径或者最优路径时,动态规划算法可以帮助我们高效地求解这一问题。

另外,在资源分配、生产调度、金融风险管理等领域,动态规划算法也有着重要的应用价值。

动态规划算法的实现通常有两种方式,一种是自顶向下的记忆化搜索,另一种是自底向上的递推求解。

自顶向下的记忆化搜索是通过递归的方式来求解问题,并且在求解过程中利用数组等数据结构来存储子问题的解,从而避免重复计算。

而自底向上的递推求解则是从子问题开始逐步求解原问题,通过迭代的方式逐步求解出原问题的解。

总的来说,动态规划算法是一种非常重要的算法思想,它可以帮助我们高效地解决各种复杂的问题。

通过将原问题拆解为相对简单的子问题,并且利用最优子结构和重叠子问题的特点,动态规划算法可以大大提高问题的求解效率。

在实际应用中,我们可以根据具体的问题特点选择合适的动态规划算法实现方式,从而更好地解决实际问题。

在实际应用中,动态规划算法需要根据具体问题特点选择合适的状态转移方程,通过状态转移方程来描述问题的最优解,然后利用递归或者迭代的方式求解出最优解。

同时,动态规划算法还需要考虑问题的边界条件,以及如何存储子问题的解,从而避免重复计算,提高算法的效率。

10427-数学建模-动态规划的原理及应用

10427-数学建模-动态规划的原理及应用

动态规划的原理及应用动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。

20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。

动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。

1.动态规划的基本理论一.动态规划的术语在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。

在此先简要介绍动态规划中的常用术语。

级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。

在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n.状态(λ):用来描述、刻画级的特征。

状态可以是单变量,也可以时向量。

在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。

状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。

描述决策的变量称为决策变量。

对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。

决策变量x(λ)∈X(λ)。

变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。

T(λ,x(λ))可分为两种类型,即确定型和不确定型。

确定型的T(λ,x(λ))只含有一个元。

不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。

这时,集函数T(λ,x(λ))将包含多个元素。

当T(λ,x(λ))=0 时,过程终止。

策略:顺序排列的决策集,记为v。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划的原理及应用动态规划是运筹学的一个分支,是求解多阶段决策过程的最优化数学方法。

20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类问题的新方法——动态规划。

动态规划主要用于以时间划分阶段的动态过程优化问题,但一些与时间无关的静态规划如线性规划或非线性规划,人为引进时间因素后,把它们看成多阶段过程,也可用动态规划求解。

1.动态规划的基本理论一.动态规划的术语在研究现实的系统时,我们必须将系统具体的术语抽象为数学统一的术语。

在此先简要介绍动态规划中的常用术语。

级:我们把系统顺序地向前发展划分为若干个阶段,称这些阶段为“级”。

在离散动态规划中,“级”顺序的用自然整数编号,即1,2,…,n.状态(λ):用来描述、刻画级的特征。

状态可以是单变量,也可以时向量。

在此,我们假设研究的状态具有“无记忆性”,即当前与未来的收益仅决定于当前的状态,并不依赖于过去的状态和决策的历史。

状态空间(Λ):由全部系统可能存在的状态变量所组成。

决策:在每一级,当状态给定后,往往可以做出不同的决定,从而确定下一级的状态,这种决定称为决策。

描述决策的变量称为决策变量。

对每个状态λ∈Λ,有一非空集X(λ)称为λ的决策集。

决策变量x(λ)∈X(λ)。

变换:若过程在状态λ,选择决策x(λ),可确定一个状态集T(λ,x(λ)),过程将从λ移动到其中某个状态.T(λ,x(λ))称为变换函数,它确定过程从一个状态到另一个状态的演变。

T(λ,x(λ))可分为两种类型,即确定型和不确定型。

确定型的T(λ,x(λ))只含有一个元。

不确定型指我们不能确切知道决策的结果,但作为某已知概率分布支配的变换结果,在每级状态和决策是确定的。

这时,集函数T(λ,x(λ))将包含多个元素。

当T(λ,x(λ))=0 时,过程终止。

策略:顺序排列的决策集,记为v。

所有可能的策略集构成策略空间Γ。

收益:评价给定策略的目标函数r(λ,v),它依赖于状态和策略。

总收益是集收益s(λ,v)的某个组合(通常为集收益之和)。

若T(λ,x(λ))=0,则r(λ1,v1)= s(λ1,v1);若T(λ,x(λ))= λ2,则r(λ1,v)= s(λ1,v1)+ r(λ1,v2)。

二.序贯决策过程动态规划的寻优过程可以有正序、逆序两种方式。

当初始状态给定时,用逆序方式比较好,当终止状态给定时,用正序方式较好。

采用分级的序贯决策方法,把一个含有n个变量的问题转化为求解n个单变量问题。

为了应用最优化原理,必须满足分级条件,即目标函数可分性和状态可分性。

目标函数可分性:1n j sj =∑ = 1nj sj =∑(λj, vj )状态可分性:即在n+1 级做决策x(n+1) 后,状态λ(n+1)仅取决于λ(n)和x(n+1) ,而与以前的状态无关。

也就是系统的无记忆性。

三.最优性定理和基本方程Bellman 的最优性原理指出:不管该最优策略上某状态以前的状态和决策如何,对该状态而言,余下的诸决策必构成最优子策略.由此得出最优性定理:策略v(1,n)=( λ1, λ2,…, λn)是最优子策略的充分必要条件是:对任一k(1<k<n),当初状态为x1时,有r(λ1,v*(1,n))=min r(λ1,v(1,n))=min [r(λ1,v(1,k-1))+v(λk,v(k,n))]因此,在策略集V (1,n )上求最优解,就等价于先在子策略集V (k,n )上求最优解,然后再求这些子最优解在子策略空间V (1,k-1)上的最优解。

逆序递推的基本方程:r*(λk) = min [r(λk,vk)+r*(λk+1)] 终端条件:r*(λn+1) = 0式中: λk+1 = T(λk, vk)顺序递推的基本方程:r*(λk+1) = min [r(λk+1,vk)+r*(λk)] 始端条件:r*(λ1) = 0式中: λk+1 = T(λk, vk)2.动态规划的应用举例用动态规划求解实际问题,首先要建立动态规划模型,需进行以下几方面工作:(1)正确划分阶段及选择阶段变量k。

(2)正确选择状态变量λk,状态变量应满足以下两个条件:1.能正确描述受控过程的演变特征。

2.无后效性(3)正确选择决策变量及确定个级允许决策集合。

(4)写出状态转移方程(以逆序为例)λk+1 = T(λk, vk)(5)确定阶段目标函数的形式,目标函数必须具有可分性,并满足递推关系。

(6)写出基本方程即最优值函数满足的递推方程及端点条件(以逆序极小化为例):r*(λk) = min [r(λk,vk)+r*(λk+1)] 终端条件:r*(λn+1) = 0例最短路径问题如图,给定一个运输网络,两点之间连线上的数字表示两点间的距离。

试求一条从A到E的运输路线,使总距离最短。

从图中可以看出,我们可以把从A到E的过程分成若干个阶段,这里是四个阶段。

处于每个阶段时,都要选择走哪条支路——决策,一个阶段的决策除了影响该阶段的效果之外,还影响到下一阶段的初始状态,从而也就影响到整个过程以后的进程。

因此,在进行某一阶段的决策时,就不能只从这一阶段本身考虑,而应使整体的效果最优。

我们可以从最后一个阶段开始,由终点向始点方向逐阶递推,寻找各点到终点的最短路径,当递推到始点时,即得到了从始点到终点的全过程最短路。

这种由后向前的递推方法,正是动态规划的寻优思想。

下面我们对这个问题进行求解。

把从A 到E 的全过程分为四个阶段,用k 表示阶段变量。

第一阶段,有一个初始状态A ,三条可供选择的支路1AB 、2AB 、3AB ,以此类推。

我们用k d (k x ,1k x +)表示在第k 阶段由初始状态k x 到下阶段的初始状态1k x +的支路距离。

用k f (k x )表示从第k 阶段的k x 到终点E 的最短距离。

用逆序递推的方法:1.阶段k = 4第4阶段有两个初始状态1D 和2D 。

若全过程最短路径经过1D ,则有4f (1D )= 4 ;若全过程最短路径经过2D ,则有4f (2D )= 3 。

2.阶段 k = 3假设全过程最短路径在第3阶段经过1C 点:若由11C D E →→,则有3d (1C ,1D )+4f (1D )= 4 + 4 = 8若由12C D E →→,则有3d (1C ,2D )+4f (2D )= 6 + 3 = 9因此,3f (1C )= min (8,9)= 8 ,即由1C E →的最短路径是11C D E →→,最短距离是8。

类似地,假设全过程最短路径经过2C 点,则有3f (2C )= min{[3d (2C ,1D )+ 4f (1D )],[3d (2C ,2D )+ 4f (2D )]} = min (7,8) = 7即由2C E →的最短路径是由21C D E →→,最短距离是7。

同理可得出:3f (3C )= min ( 6 , 6 ) = 6由3C E →的最短路径有两条31C D E →→和32C D E →→,其距离都是6。

3.阶段 k = 2类似地,可计算21()f B 、22()f B 、23()f B 如下:21()f B = min( 15 , 14 , 14 ) = 1422()f B = min(11, 12 , 12 ) = 1123()f B = min(14 , 15 , 13 ) = 13因此,由1B E →的最短路径有三条121B C D E →→→、131B C D E →→→、132B C D E →→→,最短距离都是14;由2B E →的最短路径是211B C D E →→→,距离是11;由3B E →的最短路径有两条:331B C D E →→→和332B C D E →→→,距离是13。

4.阶段 k = 11()f A = min ( 16 , 15 , 16 ) = 15因此,由A E →的全过程最短路径是211A B C D E →→→→,最短距离是15。

从以上过程可以看出,每个阶段中,都求出本阶段的各个初始状态到终点E 的最短路径和最短距离,当逆序递推到过程始点A 时,便得到全过程的最短路径及其最短距离,同时得到一族最优结果(即各阶段的各状态到终点E 的最优结果)。

和穷举法相比,逆叙递推方法大大减少了计算量,且大大丰富了计算结果。

此题也可以用顺序递推的方法求解,解法过程相似,在此就不赘述了。

例 多阶段资产投资的动态规划决策模型1. 多阶段资产投资的决策问题设某资产市场中共有n 种资产可供投资者进行选择,某一投资者要在该市场中进行m(m >1)阶段的投资,在每一阶段中该投资者都可在这n 种资产中选择投资。

设该投资者可预测到从开始到第m 个投资阶段中各个阶段单位资产投资的平均收益与风险。

不妨设,在第j(i =l ,…,m)个阶段初购买第j(i =l ,…,n)种资产,到该阶段末时的平均收益率为j i r ,平均风险损失率为j i q ;而且,若第j—l 阶段末已持有一部分资产,则在第j(j =2,…,m)个阶段初,可以决定这些资产是继续持有、还是出售,而出售资产所得的资金可用于该阶段的资产购买。

根据实际情况,每个阶段中每一种资产的买卖均需按交易的金额交纳一定比例的交易费,不妨假设在第j(j =l ,…,m)个阶段中买卖第i(i =1,…,n)种资产的交易费率为jp。

i多阶段资产投资的决策问题就是要求设计该投资者的一种资产投资组合方案,使得在投资总风险低于一定风险上限要求的前提下,到第m个阶段末时该投资者的投资总收益(即m个阶段的投资收益总和)尽可能大。

为简化问题的考虑,建立以下四点假设:1.投资者只在投资开始时(即第1阶段初)向资产市场投入一定数额的自由资金,在其后的m—1个阶段中不再增加对该资产市场的资金投入;同时,也不把已获得的收益资金从资产市场中抽出。

也就是说,投资者的最终持有的资产和资金只是由最初的自由资金进行了M次投资后获得的。

2.在资产投资中,不允许卖空行为,即投资者出售的资产量不允许超过其当时的实际资产持有量。

3,考虑到投资超分散,投资风险就越小,我们确定投资总风险用各阶段中所投资的各种资产风险中最大的一个来衡量。

而且,投资者的投资风险要求不能高于一个固定的风险上限。

4,投资是持续的,在相邻两阶段间没有其他投资行为。

这样,任一阶段未时投资者的资产及自由资金情况与下一阶段初时的情况相同。

多阶段资产投资决策的动态规划模型为叙述方便,我们引入以下一些记号:js——第j阶段初,投资者拥有的第i种资产的金额(j=1,…,m ; i = 1 , …,in);jt——第j阶段韧,投资者拥有的自由资金的金额(j=1,…,m );j i x ——第j 阶段初,投资者对第i 种资产的交易金额(j =1,…,m ; i = 1 , …,n);其中:j i x <0表示投资者出售第i 种资产;j i x >0表示投资者购买第j 种资产。

相关文档
最新文档