函数的概念和性质
函数的概念与性质
函数的概念与性质函数是数学中常见的一个概念,它在许多领域中都有广泛的应用。
本文将围绕函数的概念和性质展开详细的讨论,并对其应用进行简要说明。
一、函数的概念函数是一种数学关系,它将一个集合中的每个元素映射到另一个集合中的一个元素。
通常,我们用f(x)表示函数,其中x是定义域中的元素,而f(x)是值域中对应的元素。
函数的定义域是所有能够输入到函数中的值的集合,而值域则是函数的输出值所组成的集合。
函数可以通过不同的方式来表示,比如通过数学公式、图形、表格等。
无论如何表示,函数都遵循相同的规则,即每个输入值都对应唯一一个输出值。
这种一对一的对应关系是函数的基本特性,也是函数与其他关系的区别之一。
二、函数的性质1. 定义域和值域函数的定义域和值域是函数的两个重要性质。
定义域是所有能够输入到函数中的值的集合,而值域则是函数的输出值所组成的集合。
函数的定义域和值域可以有不同的性质,比如可以是有限集合、无限集合或者实数集。
2. 单调性函数的单调性描述了函数图像在定义域上的变化趋势。
函数可以是递增的,即随着自变量的增大,函数值也增大;也可以是递减的,即随着自变量的增大,函数值减小。
此外,函数还可以是严格递增或者严格递减的,即在定义域上不存在相等的函数值。
3. 奇偶性函数的奇偶性描述了函数图像的对称性。
如果对于定义域上的任意x值,有f(-x) = f(x),则函数是偶函数;如果对于定义域上的任意x值,有f(-x) = -f(x),则函数是奇函数。
4. 周期性周期函数是一种具有重复模式的函数,其图像在定义域上以一定的周期重复出现。
周期函数可以表示许多周期性现象,比如正弦函数和余弦函数等。
5. 极限极限是函数的重要性质之一,它描述了函数在某个点上的“趋近”状态。
如果函数f(x)当x无限接近某个值a时,它的函数值也无限接近某个常数L,则称L为函数f(x)在x趋近于a时的极限,记作lim[x→a]f(x) = L。
三、函数的应用函数在数学中有广泛的应用,同时也在许多其他领域中发挥着重要的作用。
函数的概念与性质
函数的概念与性质函数是数学中一种重要的概念,它在各个领域都有着广泛的应用。
本文将介绍函数的基本概念和性质,以帮助读者更好地理解和应用函数。
一、函数的概念函数是一个自变量和因变量之间的对应关系。
它将一个变量的值映射到另一个变量的值,通常表示为f(x),其中x为自变量,f(x)为因变量。
函数可以用图像、表格或公式的形式来表示。
函数的定义域是指自变量的所有可能取值的集合,值域是指函数对应的因变量的所有可能取值的集合。
一个函数可以在定义域内对每个自变量的取值,唯一地确定一个因变量的取值。
二、函数的性质1. 单调性:函数可以具有单调递增或单调递减的性质。
当自变量增大时,如果对应的因变量也增大,则函数为单调递增;当自变量增大时,如果对应的因变量减小,则函数为单调递减。
2. 奇偶性:函数可以具有奇函数或偶函数的性质。
当自变量取负值时,如果对应的因变量取相反数,则函数为奇函数;当自变量取负值时,如果对应的因变量不变,则函数为偶函数。
3. 零点:函数的零点是指使函数等于零的自变量的值。
如果函数的零点存在,可以用解方程的方法来求解。
4. 极值:函数的极值是指函数在其定义域上取得的最大值或最小值。
可以通过求导数或使用判别式的方法来确定函数的极值。
5. 逆函数:函数的逆函数是指满足条件f(f^(-1)(x)) = x和f^(-1)(f(x)) = x的函数。
逆函数可以将原函数的自变量与因变量互相转换。
6. 复合函数:复合函数是指函数嵌套在另一个函数中的情况。
例如f(g(x))表示将g(x)的结果作为自变量代入函数f中。
7. 函数图像:函数的图像是通过绘制自变量和因变量之间的对应关系得到的。
函数图像可以反映函数的性质和变化趋势。
8. 函数关系:函数的关系可以是线性的、二次的、指数的或对数的等。
不同的函数关系对应着不同的函数图像和性质。
总结:函数是数学中的重要概念,它描述了自变量和因变量之间的对应关系。
函数的概念和性质如零点、极值、逆函数等对于解题和理解数学问题都具有重要的意义。
函数的基本概念和性质
函数的基本概念和性质函数是数学中的一种基本概念,广泛应用于各个领域。
它可以描述两个集合之间的某种对应关系,将一个集合中的元素映射到另一个集合中的元素。
本文将介绍函数的基本概念、性质以及一些常见的函数类型。
一、函数的基本概念函数是一种数学上的关系,其定义如下:定义1:设A、B是两个非空集合,若存在一个规则F,使得对于A中的任意元素x,都有唯一的元素y在B中与之对应,即F(x)=y,那么规则F就是从A到B的一个函数。
其中,A称为函数的定义域,B 称为函数的值域。
例如,考虑定义在实数集上的一个函数f(x)=x^2,其中定义域为实数集,值域为非负实数集。
对于定义域中的任意实数x,都有唯一的非负实数y与之对应,即对于任意的x∈R,都有f(x)=x^2≥0。
二、函数的性质函数具有一些重要的性质,如下所述:1. 定义域和值域:函数的定义域指的是该函数的自变量可取值的范围,值域则是函数的因变量的所有可能取值。
函数的定义域和值域通常由函数表达式的性质决定。
2. 单射:如果对于函数的值域中的每一个元素y,都存在唯一的定义域中的元素x与之对应,那么该函数被称为单射函数。
换句话说,如果函数的两个不同的自变量不能映射到同一个因变量,那么该函数就是单射函数。
3. 满射:如果对于函数的值域中的每一个元素y,都存在定义域中的元素x与之对应,那么该函数被称为满射函数。
换句话说,如果函数的所有因变量都能找到至少一个自变量与之对应,那么该函数就是满射函数。
4. 双射:如果一个函数既是单射又是满射,那么该函数被称为双射函数。
换句话说,对于函数的值域中的每一个元素y,都存在唯一的定义域中的元素x与之对应,并且函数的定义域和值域有相同的基数。
三、常见的函数类型函数的类型根据定义域和值域的不同可以分为多种形式,常见的函数类型包括:1. 实函数:定义域和值域都是实数集的函数称为实函数。
例如,f(x)=sin(x)就是一个实函数,其定义域和值域都是实数集。
函数的概念与基本性质
函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。
本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。
一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。
函数在定义域内的每个自变量都对应一个唯一的因变量。
二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。
定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。
在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。
2. 对应关系:函数的一个重要性质是具有确定的对应关系。
即在定义域内的每个自变量都对应唯一的因变量。
这种一一对应的关系使得函数具有明确的输入和输出。
3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。
如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。
反之,如果 f(x1) > f(x2),则称该函数是单调递减的。
4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。
如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。
而如果有 f(-x) = f(x),则称函数是偶函数。
5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。
如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。
三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。
在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。
在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。
函数的基本概念和性质
函数的基本概念和性质函数在数学里是一种非常重要的数学对象,被广泛应用于各个领域。
它具有一些基本的概念和性质,下面将介绍它们。
一、函数的基本概念函数是一种对应关系,它将一个集合的每个元素都映射到另一个集合的唯一元素上。
一般来说,设A和B是两个非空集合,如果对于A中的每个元素a都有唯一确定的元素b与之对应,那么我们就说存在一个从A到B的函数。
通常用f表示这个函数,可以写作f:A→B。
其中,A称为函数的定义域,B称为函数的值域。
二、函数的性质1. 定义域和值域:函数的定义域和值域是定义函数的两个重要方面。
函数的定义域指的是所有输入的可能值,而值域则是所有可能的输出值。
2. 单射、满射和双射:函数的性质可以根据其映射关系来分类。
如果一个函数每个不同的输入值都有不同的输出值,那么它是一个单射函数,也被称为一一对应函数。
如果一个函数的值域与其值域相等,即每个值域中的元素都有对应的定义域元素,那么它是一个满射函数。
而如果一个函数既是单射又是满射,那么它被称为双射函数,也叫做一一映射函数。
3. 复合函数:复合函数是指由一个函数作为另一个函数的输入而得到的函数。
假设有两个函数f:A→B和g:B→C,那么它们的复合函数是指另一个函数h:A→C,其中 h(x) = g(f(x))。
4. 反函数:有些函数存在反函数,反函数是指与原函数的映射关系相反的另一个函数。
如果一个函数f:A→B存在反函数,那么它的反函数可以表示为f^(-1):B→A。
5. 奇偶函数:如果一个函数f(-x) = f(x)对于任意x成立,那么它被称为偶函数。
如果一个函数f(-x) = -f(x)对于任意x成立,那么它被称为奇函数。
有些函数既不是奇函数也不是偶函数,这类函数被称为既非奇也非偶的函数。
6. 周期函数:如果一个函数f(x + T) = f(x)对于任意x成立,其中T是一个常数,那么函数f是一个周期函数,周期为T。
7. 上下界和最值:函数的上下界是指函数在定义域上能够取到的最大值和最小值。
函数的定义与性质
函数的定义与性质函数是数学中一个重要的概念,常用于描述两个数集之间的关系。
本文将介绍函数的定义及其一些性质,以及函数在数学中的应用。
一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
设有两个非空的集合A和B,若对于A中的每一个元素a,都有一个唯一的元素b与之对应,即a与b之间存在一个关系f,且该关系满足“对于A中的每个元素a,都存在一个唯一的b,使得(a,b)∈f”这一条件,则我们称f为从A到B的一个函数。
二、函数的性质1. 定义域和值域函数的定义域是指所有输入的可能取值的集合,而值域是指所有可能的输出值的集合。
在给定函数的定义时,需要明确指出其定义域和值域。
2. 单射、满射和双射一个函数可以具有不同的性质,如单射、满射和双射。
若函数f中的每一个输出值对应于不同的输入值,则该函数是单射。
若函数f中的每一个输出值都能在输入值集合A中找到对应的元素,则该函数是满射。
若一个函数同时是单射和满射,则它被称为双射。
3. 复合函数复合函数是指将两个函数进行组合得到的新函数。
设有函数f和g,其中f的值域是g的定义域,那么复合函数(g∘f)(x)就是对于集合A中的每一个元素x,首先使用f进行映射得到一个值,再将该值作为g的输入进行映射,从而得到最终的输出。
4. 反函数若函数f是一个双射,则它存在一个反函数f^(-1),满足f(f^(-1)(x))=x和f^(-1)(f(x))=x。
反函数是函数中非常重要且有用的概念。
三、函数的应用函数在数学中有着广泛的应用。
它可以用于描述实际问题中的关系,例如速度与时间的关系、温度与时间的关系等。
函数还可以用于建模和解决各种实际问题,如经济学中的需求函数和供给函数、物理学中的力学函数等。
函数的定义与性质不仅在数学中有重要意义,也在其他学科和领域中有广泛的应用。
理解函数的定义和性质有助于我们更好地理解和应用数学知识。
总结:本文介绍了函数的定义及其性质。
函数的概念与性质
函数的概念与性质函数是数学中关键的概念之一,广泛应用于各个学科领域。
本文将就函数的基本概念、性质以及应用进行论述,重点探讨函数在数学和实际问题中的重要性。
一、函数的基本概念函数是两个数集之间的一种对应关系。
通俗地说,函数可以理解为一种规则,使得对于集合A中的任意一个元素,都有一个唯一的元素与之对应在集合B中。
如果把集合A中的元素称为自变量,集合B中的元素称为因变量,那么函数就是自变量与因变量之间的确定关系。
函数一般用f(x)或者y来表示,其中x为自变量,f(x)或y为因变量。
例如,f(x) = x^2表示一个函数,它的自变量x的平方为因变量。
二、函数的性质1. 定义域与值域:函数的定义域是指能使函数有意义的自变量的取值范围,而值域是函数对应的因变量的所有可能取值。
函数的定义域和值域是函数的重要性质,也是确定函数性质的基础。
2. 单调性:函数的单调性是指函数在定义域内的取值变化的趋势。
函数可以分为递增和递减两种单调性,当函数对于任意的x1和x2,当x1小于x2时,如果f(x1)小于f(x2),则函数为递增函数;反之,如果f(x1)大于f(x2),则函数为递减函数。
3. 奇偶性:奇函数是指当自变量为正负相等的两个数时,函数值互为相反数;偶函数是指当自变量为相反数时,函数值相等。
例如,奇函数f(x) = x^3满足f(-x) = -f(x),偶函数f(x) = x^2满足f(-x) = f(x)。
4. 对称轴:对称轴是指函数图像与某条直线的位置关系。
对于奇函数来说,对称轴为原点;而对于偶函数来说,对称轴为y轴。
这种对称性质有助于简化函数的研究和图像的绘制。
三、函数的应用函数的概念和性质在数学和实际问题中都有广泛的应用。
1. 数学中的应用:函数被广泛应用于代数、解析几何、微积分等数学学科中。
在代数中,函数是多项式、指数函数、对数函数和三角函数的重要组成部分,通过函数的运算与组合,可以推导出很多重要的数学结论。
函数的概念及性质
函数的概念及性质函数是数学中的重要概念之一,它在数学领域和其他学科中都有着广泛的应用。
函数的概念是描述一个变量与另一个变量之间关系的数学工具。
本文将对函数的概念及其基本性质进行探讨,从而帮助读者更好地理解和应用函数。
一、函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
通常用f(x)来表示函数,其中x是函数的自变量,f(x)是函数的因变量。
例如,我们可以定义一个函数f(x)=2x,其中x是实数集合中的任意一个数,f(x)表示x的两倍。
这个函数可以描述一个数与它的两倍之间的关系。
二、函数的性质1. 定义域和值域:函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。
函数的定义域和值域取决于函数的性质和条件。
例如,对于函数f(x)=2x,定义域是实数集合,值域也是实数集合。
2. 单调性:函数的单调性是指函数在定义域内的变化趋势。
函数可以是递增的(单调递增)或递减的(单调递减)。
例如,函数f(x)=2x 是递增函数,而函数g(x)=2-x是递减函数。
3. 奇偶性:函数的奇偶性是指函数关于y轴(x=0)的对称性。
如果对于定义域内的任意x,有f(-x)=f(x),则函数是偶函数;如果对于定义域内的任意x,有f(-x)=-f(x),则函数是奇函数。
例如,函数f(x)=x^2是偶函数,函数g(x)=x^3是奇函数。
4. 周期性:函数的周期性是指函数在定义域内以一定的间隔重复的特性。
如果存在一个正数T,使得对于定义域内的任意x,有f(x+T)=f(x),则函数具有周期性。
例如,正弦函数sin(x)和余弦函数cos(x)都是周期为2π的函数。
5. 反函数:如果存在一个函数g,使得对于定义域内的任意x,有g(f(x))=x,且f(g(x))=x,则g称为f的反函数。
反函数可以将函数的输入与输出进行互换。
例如,函数f(x)=2x的反函数为g(x)=x/2。
三、函数的应用函数在数学、物理、经济学等学科中都有着重要的应用。
函数的概念和性质
函数的概念和性质函数是数学中一个非常重要的概念,它在数学的各个领域都有广泛的应用。
作为一位初中数学特级教师,我将在本文中详细介绍函数的概念和性质,并举例说明其在实际生活中的应用。
1. 函数的概念函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
简单来说,函数就是一种对应关系,它将自变量的取值映射到因变量的取值上。
例如,我们可以定义一个函数f(x),表示一个人在不同时间下的体重变化。
这里,x表示时间,f(x)表示对应时间下的体重。
函数f(x)将时间映射到体重上,每个时间对应一个唯一的体重值。
2. 函数的性质函数有一些重要的性质,我们需要了解并掌握它们。
2.1 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
在函数中,自变量的取值必须属于定义域,而函数的值则属于值域。
举个例子,如果我们定义一个函数f(x),表示一个人的年龄与身高的关系。
那么定义域就是人的年龄范围,而值域则是人的身高范围。
2.2 单调性函数的单调性描述了函数图像的变化趋势。
一个函数可以是递增的、递减的或者既递增又递减的。
例如,我们可以定义一个函数g(x),表示一个人在不同年龄下的学习成绩。
如果学习成绩随着年龄的增长而增加,那么函数g(x)就是递增的。
2.3 奇偶性函数的奇偶性描述了函数图像的对称性。
一个函数可以是奇函数、偶函数或者既不是奇函数也不是偶函数。
举个例子,我们可以定义一个函数h(x),表示一个人的收入与工作时间的关系。
如果收入随着工作时间的增加而增加,并且关于原点对称,那么函数h(x)就是偶函数。
3. 函数在实际生活中的应用函数在实际生活中有着广泛的应用,我们可以通过一些例子来说明。
3.1 距离与时间的关系假设一个人以固定的速度行走,我们可以定义一个函数d(t),表示行走的距离与时间的关系。
这个函数是一个线性函数,斜率表示行走的速度。
通过这个函数,我们可以计算出不同时间下的行走距离,从而帮助我们规划行程或者估算到达目的地所需的时间。
函数的概念与性质
函数一、函数的有关概念 1、 函数的定义:设A 、B 为非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A B →为从集合A 到集合B 的一个函数,记作:y=f(x),x A ∈其中x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(叫做函数的值域。
2、分段函数:如果一个函数在定义域的不同子集上因对应法则不同而用几个不同的式子来表示,这样的函数叫做分段函数。
注:分段函数的求法是分别求出各个区间上的函数关系,再组合在一起,但要注意各区间之间的点要不重不漏。
3、 复合函数:如果y=f(u)的定义域与y=g(x)的值域有交集,那么函数y=f(g(x))叫做复合函数,其中y=f(u)叫做外层函数,u=g(x)叫做内层函数。
4、 (1)映射:设A 、B 是两个集合,如果按照某种确定的对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作:A B → (2)象、原象设给定一个集合A 到集合B 的映射,且a B b A ∈∈且,如果元素a 和元素b 对应,元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 满射、单设、一一映射注:设集合A 有n 个元素,集合B 有m 个元素,则从A 到B 的映射有nm 个. 注:1) 函数的三要素:定义域,值域,对应法则; 2)两个函数是同一函数的条件:三要素相同。
函数的概念【例题1】下列各组函数中,表示同一函数的是( )A.f(x)=x ,g(x)=2x B. f(x)=2x ,g(x)=2)(xC.f(x)=112--x x ,g(x)=x+1 D.f(x)=11-⋅+x x ,g(x)=12-x【练习】存在函数f(x)满足,对于任意x ∈R 都有A. f(sin2x)=sinxB. f(sin2x)=x 2+xC. f(x 2+1)=1x +D. f(x 2+2x)= 1x + 分段函数【例题】函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10))=A.lg101B.2C.1D.0【练习】⎩⎨⎧≥<+-=0,0,3)(x a x a x x f x(a>0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A.(0,1) B.[31,1) C.(0, 31] D.(0, 32]【例题】设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x f xx ,则满足f(x)≤2的x 的取值范围是( ) A.[-1,2] B.[0,2] C.[1,+∞) D.[0,+∞)【练习】若函数⎩⎨⎧>+≤+-=2,log 32,6(x x x x f xa ),(a>0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )。
初中数学-函数的概念和性质
初中数学-函数的概念和性质函数是初中数学中的重要概念之一,它是现代数学的基础。
掌握函数的概念和性质,可以帮助学生更好地理解数学知识,提高数学思维能力。
本文将为您介绍初中数学中关于函数的概念和性质。
1. 函数的定义函数是指一种特殊的关系,它将一个集合中的每一个元素映射到另一个集合中的唯一元素。
简单来说,函数是一种输入和输出之间的关系。
2. 函数的符号表示函数可以用各种符号表示,其中最常见的是y=f(x),其中y表示函数的输出值,x表示函数的输入值,f表示函数本身。
例如,当x=2时,函数f(x)=x^2的输出值为4。
3. 函数的性质(1)单调性:函数是单调递增的,当输入值增加时,输出值也随之增加;或者函数是单调递减的,当输入值增加时,输出值随之减少。
(2)奇偶性:如果函数满足f(-x)=-f(x),则称该函数具有奇性;如果函数满足f(-x)=f(x),则称该函数具有偶性。
(3)周期性:如果函数满足f(x+T)=f(x),其中T为常数,则称该函数具有周期性。
(4)对称性:如果函数的图像关于某一条直线对称,称该函数具有对称性。
4. 函数的图像函数的图像是指输入和输出之间的关系在平面直角坐标系上的表现。
一个函数的图像可以通过计算一些特定点的输出值,然后将这些点连成一条曲线来绘制。
例如,函数y=x^2的图像如下图所示:5. 函数的应用函数在现实生活中有广泛的应用。
例如,函数可以用于建模和预测问题,如使用函数来预测未来的人口增长率或股票价格。
函数还可以用于计算和优化问题,如使用函数来优化车辆的燃油效率。
练习题:1. 已知函数f(x)=2x-1,求f(3)的值。
2. 已知函数g(x)=x^2-2x+1,求g(0)的值。
3. 已知函数h(x)=3x^3,求h(2)的值。
4. 已知函数f(x)=2x+3,求f(-1)的值。
5. 已知函数g(x)=x^3-3x,求g(1)的值。
6. 求函数y=2x+1的图像。
7. 求函数y=x^2的图像。
函数的概念和性质
函数的概念和性质函数是数学中一种重要的概念,为描述数值之间的依赖关系提供了一种有效的方式。
在本文中,我们将探讨函数的概念和性质,以及它在数学中的应用和重要性。
一、函数的概念函数可以理解为一种特殊的关系,它将一个集合中的元素映射到另一个集合中的元素,且每个输入元素对应唯一的输出元素。
通常用符号表示为:f: X → Y,其中X为输入集合,Y为输出集合。
例如,f(x) = x^2就是一个函数,它将输入的实数x映射到其平方的输出。
在函数中,输入集合X也被称为定义域,输出集合Y也被称为值域。
函数的定义域和值域可以是实数集、整数集、自然数集等。
函数在实际问题中的应用非常广泛,如在物理学、经济学、工程学等各个领域中都有应用。
二、函数的性质函数具有许多重要的性质,以下是其中的几个:1. 定义域和值域:在函数定义中,定义域和值域是函数的两个重要概念。
定义域是指函数的输入范围,即所有满足函数定义的元素的集合;而值域则是函数的输出范围,即所有可能的输出元素的集合。
2. 单调性:函数的单调性描述了函数值的增减规律。
一个函数可以是递增的(在定义域中,随着输入值的增加,函数值也随之增加)或递减的(随着输入值的增加,函数值减少)。
3. 奇偶性:奇偶性是指函数的对称性质。
如果对于所有x在定义域中,有f(-x) = -f(x),则函数为奇函数;如果对于所有x在定义域中,有f(-x) = f(x),则函数为偶函数。
例如,f(x) = sin(x)是奇函数,而f(x) = x^2是偶函数。
4. 周期性:周期性是指函数在一定范围内重复的性质。
如果存在一个正数T,对于所有x在定义域中,有f(x+T) = f(x),则函数为周期函数。
例如,f(x) = sin(x)是周期为2π的函数。
5. 极限:函数的极限描述了函数在某一点附近的趋势。
如果当x趋近于某个特定值时,函数的值也趋近于一个特定的常数,我们称该常数为函数在此点的极限。
极限在微积分中有着重要的应用。
函数的概念与性质
函数的概念与性质函数是数学中的一个重要概念,广泛应用于各个领域。
它是将一个集合中的每个元素都对应到另一个集合中的唯一元素的规则。
函数在实际问题中的应用十分广泛,涵盖了数学、物理、经济等多个领域。
本文将介绍函数的概念以及其性质。
一、函数的定义函数在数学中被定义为一种特殊的对应关系,其中每个输入值都有唯一的输出值。
具体而言,设A和B为两个非空集合,记作f:A→B。
其中,A为自变量的集合,B为因变量的集合,f为A到B的映射关系。
在函数的定义中,我们可以将自变量理解为输入值,因变量理解为输出值。
通过函数,我们可以通过给定的自变量的值,得到一个对应的因变量的值。
例如,设A为人的身高集合,B为人的体重集合,而f表示人的身高与体重之间的函数关系。
当给定一个人的身高值时,通过函数关系f,我们可以得到对应的体重值。
二、函数的图像与性质函数的图像是函数关系的一种图示表示。
在直角坐标系中,我们可以用一系列坐标点来表示函数的图像。
设f:A→B是一个函数,其图像表示为一组有序对 (x, y),其中 x∈A,y∈B。
根据函数的定义以及图像的特点,我们可以得出以下性质:1. 唯一性:函数中的每个输入值对应唯一的输出值,即对于自变量x1和x2,若x1≠x2,则f(x1)≠f(x2)。
2. 定义域与值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
对于函数f:A→B,A为定义域,B为值域。
在图像中,定义域对应x轴,值域对应y轴。
3. 单调性:函数在定义域内的增减关系。
如果对于自变量x1和x2,当x1<x2时,有f(x1)≤f(x2),则函数为增函数;如果f(x1)≥f(x2),则函数为减函数。
4. 奇偶性:函数的奇偶性描述了函数图像关于坐标轴的对称性。
如果对于所有x∈A,有f(-x)=-f(x),则函数为奇函数;如果f(-x)=f(x),则函数为偶函数。
5. 奇点与极限:奇点是函数定义域内使函数无定义的点。
极限是函数在一点附近趋于的值。
函数的概念与性质
函数的概念与性质函数是数学中一个重要的概念,它是数学中研究变量之间关系的工具之一。
本文将从函数的概念、函数的性质以及函数应用等方面进行探讨。
一、函数的概念函数是数学中的一种关系,它揭示了自变量与因变量之间的对应关系。
具体而言,对于一个函数来说,每个自变量只对应一个确定的因变量。
函数常用符号表示为 f(x),其中 x 表示自变量,f(x) 表示因变量。
函数可以用图像、表格或符号等形式进行表示。
在坐标平面上,函数的图像由一系列有序的点组成,其中每个点的横坐标对应自变量,纵坐标对应因变量。
函数也可以通过表格的方式进行表示,列出自变量与因变量的对应关系。
二、函数的性质1. 定义域和值域:函数的定义域是指自变量可能取值的范围,而值域则是函数对应的因变量的取值范围。
函数的定义域和值域可以是实数集、自然数集等。
2. 单调性:函数的单调性描述了函数图像的变化趋势。
如果函数在定义域内递增,称为递增函数;如果函数在定义域内递减,称为递减函数。
3. 奇偶性:函数的奇偶性与函数在图像中关于原点(0,0)的对称性相关。
如果对于任意 x,有 f(-x) = -f(x),则称该函数为奇函数;如果对于任意 x,有 f(-x) = f(x),则称该函数为偶函数。
4. 零点:函数的零点是指使函数取值为零的自变量的值。
零点对应于函数图像与 x 轴的交点。
5. 极值:函数在定义域内取得的最大值和最小值称为极值。
极大值对应于函数图像的局部最高点,极小值对应于函数图像的局部最低点。
三、函数的应用函数在数学和实际生活中有广泛的应用。
在数学中,函数用于描述数学对象之间的关系,例如线性函数、指数函数和对数函数等,这些函数被广泛应用于代数、几何和概率等数学分支中。
在实际生活中,函数用于描述各种自然现象和社会现象。
例如,经济学中的需求函数和供给函数描述了商品价格与需求量和供给量之间的关系;物理学中的运动函数描述了物体在不同时间和空间位置的变化规律。
函数的概念与性质
函数的概念与性质函数是数学中一个重要的概念,它在数学的各个领域中都有广泛的应用。
本文将就函数的概念、性质以及其在不同数学分支中的应用进行探讨。
一、函数的概念函数是数学中一个非常基础的概念,它描述了两个数集之间的关系。
一般来说,我们将函数定义为一个变量集合到另一个变量集合的映射。
具体地说,如果对于每一个自变量的取值,都能够唯一地确定一个因变量的取值,那么我们就可以说这是一个函数。
函数通常用f(x)的形式来表示,其中x代表自变量,f(x)代表函数对应的因变量。
例如,我们可以定义一个简单的函数f(x),使得f(x)等于x的平方。
在这个例子中,x是自变量,而f(x)是因变量。
二、函数的性质函数具有许多重要的性质,这些性质能够帮助我们更好地理解和应用函数。
1. 定义域与值域:函数的定义域是所有可能作为自变量的取值的集合,而值域则是所有可能作为因变量的取值的集合。
函数的定义域和值域可以帮助我们确定函数的范围和特性。
2. 单调性:函数可以是单调递增的,也可以是单调递减的。
如果对于定义域中的任意两个不同的自变量x₁和x₂,有f(x₁) ≤ f(x₂)成立,那么我们就可以说函数是单调递增的;如果对于定义域中的任意两个不同的自变量x₁和x₂,有f(x₁) ≥ f(x₂)成立,那么我们就可以说函数是单调递减的。
3. 奇偶性:函数可以是奇函数或者偶函数。
如果对于任何自变量x,有f(-x) = -f(x)成立,那么我们就可以说函数是奇函数;如果对于任何自变量x,有f(-x) = f(x)成立,那么我们就可以说函数是偶函数。
4. 极值与最值:函数可以有极大值和极小值,我们将极大值和极小值统称为极值。
最大值和最小值则是函数在定义域内的最大和最小的因变量值。
三、函数的应用函数在数学的各个领域中具有广泛的应用。
1. 微积分:函数在微积分中扮演着重要的角色,通过对函数的求导和积分,我们可以进行函数曲线的研究,得到函数的斜率、最值等重要信息。
函数的概念和性质
函数的概念和性质函数的概念和性质是数学中一个重要的概念和内容。
函数是描述两个集合之间的一种对应关系的数学工具,它在数学和科学中有着广泛的应用。
本文旨在介绍函数的概念、性质以及相关的应用示例,以帮助读者更好地理解和掌握函数的基本概念。
一、函数的概念函数是数学中的一种基本概念,它描述了一个集合中的每个元素与另一个集合中的元素之间的对应关系。
通常,我们用字母表示函数,并用两个集合来表示函数的定义域和值域。
函数的定义域是指函数的输入值所在的集合,而值域则是指函数的输出值所在的集合。
在数学上,函数可以用各种形式进行表示。
最常见的方式是用函数表达式来表示一个函数关系,例如:f(x) = 2x + 1这个函数表达式表示了一个以x为输入值,以2x+1为输出值的函数。
其中,f(x)表示函数名,2x+1表示函数关系,x表示输入值。
通过这个函数,我们可以计算出任意一个输入值x对应的输出值。
二、函数的性质1. 定义域和值域:函数的定义域和值域是函数的两个重要性质。
定义域是函数所有可能的输入值构成的集合,值域是函数所有可能的输出值构成的集合。
函数的定义域和值域可以是实数集、整数集、有理数集等,具体取决于函数本身的性质。
2. 单调性:函数的单调性描述了函数在定义域内的增减规律。
一个函数可以是递增的、递减的或者既递增又递减的。
如果函数在定义域内随着x的增大而增大,我们称该函数为递增函数;如果函数在定义域内随着x的增大而减小,我们称该函数为递减函数。
3. 奇偶性:函数的奇偶性描述了函数的对称性。
一个函数可以是奇函数、偶函数或者既不是奇函数也不是偶函数。
如果对于函数中的任意一个x,都有f(-x) = -f(x),我们称该函数为奇函数;如果对于函数中的任意一个x,都有f(-x) = f(x),我们称该函数为偶函数。
4. 极值:函数的极值描述了函数在定义域内的最大值和最小值。
函数的极值可能存在于定义域的边界处,或者函数的导数为零的点上。
函数概念与性质
函数概念与性质函数是数学中一个非常重要的概念,广泛应用于数学、物理、计算机科学等领域。
本文将围绕函数的概念和性质展开论述。
一、函数的概念函数是一个映射关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
在数学上,函数常常用符号表示,如f(x)或y =f(x)。
其中,x被称为自变量,y被称为因变量。
函数可以理解为数学世界中的“机器”,将给定的输入映射为唯一的输出。
二、函数的性质1. 定义域和值域:函数的定义域是输入的所有可能取值的集合,而值域是输出的所有可能取值的集合。
函数的定义域和值域决定了函数的有效输入和输出范围。
2. 单调性:函数的单调性描述了函数值随自变量的增减而变化的趋势。
如果函数随着自变量的增加而递增,则称其为递增函数;如果函数随着自变量的减少而递增,则称其为递减函数。
3. 奇偶性:函数的奇偶性指函数在定义域内的变化情况。
如果函数满足f(-x) = -f(x),则函数为奇函数;如果函数满足f(-x) = f(x),则函数为偶函数。
4. 对称轴:偶函数的对称轴为y轴,即函数图像关于y轴对称;奇函数没有对称轴。
5. 极值与最值:在函数连续的情况下,极值是指函数在一定区间内取得的最大值或最小值;最值是指函数在整个定义域内取得的最大值或最小值。
6. 零点:函数在定义域内使得f(x) = 0的点称为函数的零点或根。
零点是函数图像与x轴的交点。
三、函数的图像特征函数的图像是通过绘制自变量和因变量的关系得到的。
通过观察函数图像,可以了解函数的基本特征。
1. 函数图像的凹凸性:如果函数在某一区间内的图像是向上凹的,则称函数在该区间具有上凹性;如果函数在某一区间内的图像是向下凹的,则称函数在该区间具有下凹性。
2. 零点图像:零点是函数与x轴的交点,绘制函数图像时,零点对应的点会与x轴相交。
3. 驻点与拐点:函数图像上的驻点是函数在某一点上的导数为零的点;拐点则是函数图像上出现凹凸变化的点。
四、实例分析以一元二次函数为例,分析函数概念和性质的具体应用。
高等数学11 第一节 函数的概念和性质
ቤተ መጻሕፍቲ ባይዱ
2.函数的周期性
设函数 y f x 的定义域为Df ,如果存在一个
常数 T 0 ,使得对任意 x Df有 x T Df ,且
f x T f x,则称函数 f x为周期函数, T 称为f x
的周期.
显然,若 是T周期函数 的f 周x期,则 也是kT f x的 周期 k 1,2,通,3, 常说的周期就是最小正周期.
I 上是单调减少的. 它们统称为单调函数.使函数 保持单调性的自变量的取值区间称为该函数的单 调区间 .
如函数 y ln x在0, 内是单调增加的,函数 y x在 ,内是单调减少的.
4.函数的有界性
设函数 y f x在区间 I上有定义,如果存在正 常数 M ,使得对于区间 I 内所有x ,恒有 f x M , 则称函数 f x在区间 I 上有界.如果这样的M 不存 在,则称f x在区间 I 上无界.
解 ⑴ f x与gx不是相同的函数,因为定义域不同. ⑵ f x与 gx是 相同的函数,因为定义域与对应
法则都相同.
注 求函数定义域时应注意的一般规律
① 开偶次方,根号内的表达式不小于零; ② 对数中的真数必须大于零; ③ 分式中的分母不能为零; ④ 反正弦和反余弦符号下的表达式的绝对值不能
大于1; ⑤ 分段函数的定义域是各段定义域的并集.
如函数y sin x 和 y cos x 都是以2 为周期的 周期函数.
3.函数的单调性
设函数 y f x在区间 I上有定义,对I 内的任 意两点 x1, x2 ,当 x1 x2时,若有f x1 f x2 ,则称f x 在 I 上是单调增加的;若有 f x1 f x2 ,则称 f x在
如函数 y sin x 在区间 ,内是有界的.
函数的概念与性质
函数的概念与性质函数是数学中一种重要的概念。
它描述了两个数集之间的一种对应关系,即每个自变量对应唯一的因变量。
在实际问题中,函数可以用来描述物理、经济、工程等领域的关系,因此理解函数的概念与性质对于深入理解数学和应用数学至关重要。
一、函数的概念函数是一个机械的规则,根据给定的自变量的值,计算出一个唯一的因变量的值。
这个规则可以用公式、图像、数据表等方式来表示。
在数学中,通常用f(x)来表示函数,其中x为自变量,f(x)为因变量。
函数的定义域是指自变量的取值范围,而值域是指因变量的取值范围。
函数的定义域和值域可以是实数集、整数集、有理数集或其他数集。
例如,对于函数f(x) = x^2,其定义域为实数集,值域为非负实数集。
二、函数的性质1. 单调性:函数可以是递增的或递减的。
如果对于任意的x1、x2(x1 < x2),有f(x1) ≤ f(x2),则函数是递增的;如果有f(x1) ≥ f(x2),则函数是递减的。
2. 奇偶性:函数可以是奇函数或偶函数。
如果对于任意的x,有f(-x) = -f(x),则函数是奇函数;如果有f(-x) = f(x),则函数是偶函数。
3. 周期性:函数可以是周期函数。
如果存在一个常数T,对于任意的x,有f(x+T) = f(x),则函数是周期函数。
常见的周期函数有正弦函数和余弦函数。
4. 对称性:函数可以是轴对称的。
如果对于任意的x,有f(x) = f(-x),则函数是轴对称的。
5. 连续性:函数可以是连续的。
如果函数在定义域的任意一点都存在极限值,并且极限值等于函数在该点的函数值,那么函数就是连续的。
6. 导数与导函数:函数的导数描述了函数曲线在某一点上的切线斜率。
函数在某一点处的导数可以用极限表示。
根据导数求解的一阶导函数可以表示函数在各点处的导数。
7. 积分与不定积分:函数的积分描述了函数曲线下方的面积。
函数在某一区间上的积分可以用极限表示。
不定积分则表示函数在某一点的积分,生成了原函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题讲座高中数学“函数的概念与性质”教学研究梁市西城区教育研修学院函数是中学数学中的重点容,它是描述变量之间依赖关系的重要数学模型.本专题容由四部分构成:关于函数容的深层理解;函数概念与性质的教学建议;学生学习中常见的错误分析与解决策略;学生学习目标检测分析.研究函数问题通常有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.一、关于函数容的深层理解(一)函数概念的发展史简述数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数是一个解析表达式[代数角度];Dirichlet,1805—1859提出是与之间的一种对应的观点[对应关系角度];Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度].Dirichlet:认为怎样去建立与之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数.”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义).Veblen,1880-1960用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的限制,变量可以是数,也可以是其它对象.(二)初高中函数概念的区别与联系1.初中函数概念:设在某个变化过程中有两个变量,如果对于在某个围的每一个值,都有唯一的值与它对应,我们就说是的函数,叫自变量,叫的函数.2.高中函数概念:(1)设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作,其中叫原象,叫象.(2)设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作.其中x叫做自变量,自变量取值的围(数集A)叫做这个函数的定义域.所有函数值构成的集合叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.(3)函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义城,值域和对应法则,其中定义域和对应法则是核心.(三)函数在整个数学知识体系中的地位及作用函数是中学数学最重要的基本概念之一,其核心涵为从非空数集到非空数集的映射;函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合知识做了巩固和发展,而且它是学好后继知识的基础和工具;函数与方程、不等式、数列、三角函数、解析几何、导数等容的联系也非常密切;函数的基础知识在现实生活、社会、经济及其它学科中有广泛的应用;函数概念及其反应的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.(四)函数的概念与性质结构框图(五)函数的概念与性质教学重点和难点教学重点:1.函数的概念2.函数的基本性质3.基本初等函数的图象和性质教学难点:1.函数概念的理解2.对函数的单调性、奇偶性、周期性实质的把握3.运用基本初等函数的图象和性质解决简单问题二、函数概念与性质的教学建议:(一)如何深入把握函数的概念?1.映射与函数的教学建议:教学中,由于映射与函数的概念比较抽象,不易把握,故本部分容宜采用教师引导,师生共同研讨的方式来学习.在教学中,教师可以类似举如下的例子进行剖析:例1:设集合和都是自然数集合. 映射把集合中的元素映射到集合中的元素, 则在映射作用下, 2的象是_______;20 的原象是________.分析:由已知,在映射作用下的象为.所以,2的象是;设象 20 的原象为,则的象为 20,即.由于,随着的增大而增大,又,所以20 的原象是4.这个例子要求学生理解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象. 能够有效判别学生对映射、象、原象这些概念的把握程度.同时,题目中兼顾对于函数性质的探究,具有一定的综合程度.二、函数概念与性质的教学建议:(一)如何深入把握函数的概念?1.映射与函数的教学建议:教学中,由于映射与函数的概念比较抽象,不易把握,故本部分容宜采用教师引导,师生共同研讨的方式来学习.在教学中,教师可以类似举如下的例子进行剖析:例1:设集合和都是自然数集合. 映射把集合中的元素映射到集合中的元素, 则在映射作用下, 2的象是_______;20 的原象是________.分析:由已知,在映射作用下的象为.所以,2的象是;设象 20 的原象为,则的象为 20,即.由于,随着的增大而增大,又,所以20 的原象是4.这个例子要求学生理解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象. 能够有效判别学生对映射、象、原象这些概念的把握程度.同时,题目中兼顾对于函数性质的探究,具有一定的综合程度.2.函数的定义域问题:确定函数的定义域是研究函数问题的先决条件,因此对于一个函数问题,首先要明确自变量的取值集合.教学中,教师可通过类似下述问题明确求函数定义域的几类常见问题:例2:求下列函数的定义域:(1);(2);(3);(4);解:(1)由,得,所以或,所以或.所以,所求函数的定义域为.(2)由得,或.所以,所求函数的定义域为.(3)由得,且,,所以,所求函数的定义域为(4)由得即所以.所以,所求函数定义域为.例3:如图,用长为的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为,求此框架围成的面积与的函数关系式,并指出定义域.解:根据题意,.弧长为,所以.所以,.根据问题的实际意义..解得.所以,所求函数定义域为.上述求函数定义域问题涵盖了确定函数定义域的两种类型问题.(1)给出函数解析式求定义域(如例2),这类问题就是求使解析式有意义的自变量的取值围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于 1;⑤,则.(2)在实际问题中求函数的定义域(如例 3). 在这类问题中除了考虑解析式对自变量的限制 , 还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.3.函数的对应法则问题:确定函数的对应法则(即求函数的解析式)是有关函数概念中的重要问题,教学中教师可以设置如下相关题组,和学生共同解决.例4:(1)已知,求的解析式;(2)已知,求的值;(3)如果为二次函数,,并且当时,取得最小值,求的解析式;(4)已知函数与函数的图象关于直线对称,求的解析式.分析:(1)求函数的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一:. 通过这样“凑型”的方法,我们可以明确看到法则是“原象对应于原象除以原象的平方减1”.所以,.方法二:设,则.则,所以.这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,.所以,.(3)因为为二次函数,并且当时,取得最小值,所以,可设,又,所以,所以..(4)这个问题相当于已知的图象满足一定的条件,进而求函数的解析式. 所以,可以类比解析几何中求轨迹方程的方法求的解析式.设的图象上任意一点坐标为,则关于对称点的坐标为,由已知,点在函数的图象上,所以,点的坐标满足的解析式,即,所以,.由于已知条件的不同,求函数的解析式的常见方法有像(1)(2)所用到的“凑形”及“换元”的方法;有像(3)所用到的待定系数法;也有像(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或求曲线的轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的取系.(二)教学中如何突出函数性质的本质?函数的性质主要包括函数的单调性、奇偶性、周期性与对称性等,侧重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用. 这部分容常用到数形结合的思想方法.1.关于基本概念的理解:(1)设函数的定义域为,如果对于的任意一个,都有,且,则这个函数叫做奇函数.设函数的定义域为,如果对于任意一个,都有,且,则这个函数叫做偶函数.由奇函数定义可知,对于奇函数,点与点都在其图象上.又点与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以轴为对称轴的轴对称图形.(2)一般地,设函数的定义域为,区间.如果取区间中的任意两个值,,改变量,则当时,就称函数在区间上是增函数;当时,就称函数在区间上是减函数.如果一个函数在某个区间上是增函数或是减函数,就说这个函数在这个区间上具有单调性,区间称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.(3)一般地,对于函数,如果存在一个不为零的常数,使得当取定义域中的每一个值时,都成立,那么就把函数叫做周期函数,不为零的常数叫做这个函数的周期.(4)一般地,对于函数,如果存在一个不为零的常数,使得当取定义域中的每一个值时,都成立,则函数的图象关于直线对称.这四个概念都比较抽象,建议讲述相关概念时采用数形结合的手段,不断揭示概念的几何背景,进而完善学生对概念的认识.2.关于函数的奇偶性问题:对于函数的奇偶性,要求学生会判断及简单应用.教学中可给出如下题组:例1:判断下列函数的奇偶性.(1);(2);(3);(4);(5).解:(1)解,得到函数的定义域为或,关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为,但是,由于,,即,且,所以此函数为非奇非偶函数.(3)函数的定义域为,又,所以此函数为偶函数.(4)解,得,又,所以此函数为奇函数.(5)函数的定义域为,又,所以此函数为奇函数.通过本例及函数奇偶性的定义,进一步可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②是奇函数,并且在时有定义,则必有;③既是奇函数又是偶函数的函数,其解析式一定为,等.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察与的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2:已知为奇函数,当时,,(1)求的值;(2)当时,求的解析式.解:(1)因为为奇函数,所以.(2)方法一: 当时,.所以,.方法二:设是在时图象上一点,则一定在在时的图象上.所以,,.上述三个例子分别从具体函数、抽象函数、以及奇偶性的应用上加深对概念的理解. 3.关于函数的单调性问题:例3:用函数单调性定义证明,函数在区间上为增函数.证明:设,因为,所以,又因为,所以,,所以,函数在区间上为增函数.例4:设是定义域为的奇函数,且它在区间上是减函数.(1)试比较与的大小;(2)若,且,求证:.解:(1)因为是奇函数,所以,又在区间上是减函数,所以,即.(2)因为,所以异号,不妨设,因为,所以,因为,,在区间上是减函数,所以,因为是奇函数,所以,所以,即.总之,函数的单调性是我们研究的极为重要的函数性质,其与其它问题的联系、自身的应用都很广泛,在教学中要予以充分注意.(三)怎样有效提升学生对基本初等函数的图象与性质的把握?基本初等函数包括: 二次函数、指数函数、对数函数和幂函数.函数的图象上直观地反映着函数的性质, 学习函数的“捷径”是熟知函数的图象. 熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.1.关于二次函数的处理:对于二次函数,初中已有研究,但高中阶段处理二次函数的视角又和初中有所不同.例如:设是实数,证明关于的方程有两个不相等的实数解.(初中、高中的不同处理方法)教学中可以参考如下的题目:例1:(1)如果二次函数在区间上是增函数,则的取值围是________.(2)二次函数的最大值恒为负,则的取值围是_______.(3)函数对于任意均有,则,的大小关系是_____________.解:(1)由于此抛物线开口向上,且在上是增函数,画简图可知此抛物线对称轴或与直线重合,或位于直线的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数,且判别式”,即解得.(3)因为对于任意均有,所以抛物线对称轴为.又抛物线开口向上,做出函数图象简图可得.例2、已知二次函数的对称轴为,且图象在轴上的截距为,被轴截得的线段长为,求的解析式.解:解法一:设,由的对称轴为,可得;由图象在轴上的截距为,可得;由图象被轴截得的线段长为,可得均为方程的根.所以,即,所以..解法二:因为图象被轴截得的线段长为,可得均为方程的根.所以,设,又图象在轴上的截距为,即函数图象过点.即. 所以.二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式;顶点式,其中为顶点坐标;双根式,其中为函数图象与轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例1、2两个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.2.关于指数函数、对数函数和幂函数的处理:这三种基本初等函数是在研究一般函数基础上的重要模型,教学中建议采用如下问题突出相关函数性质的应用.例3、比较下列各小题中各数的大小:(1)与;(2);(3)与;(4)与;(5)与;(6).分析:(1)是减函数,.(2)函数在区间(0, +)上是增函数,所以,函数在区间(0, +)上是减函数,所以,所以.(3)由于,所以.(4)利用幂函数和指数函数单调性..(5)因为,.根据不等式的性质有.(6)因为,所以,即;比较与,只需比较与,因为是增函数,所以只需比较与的大小,因为,所以,所以,综上,.例4:已知,比较的大小.分析:方法一(作商比较法),又,所以,所以,所以.方法二(作差比较法),因为,所以,所以,即.方法三(构造函数)令,将看作是关于的一次函数,因为,所以此函数为减函数,又,,所以,即.两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较”与“作商比较”,如例4的方法一与方法二),或者利用函数的单调性来比较(如例3(1)(2)(3),例4的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例3(4)(5)(6)).三、学生学习中常见的错误分析与解决策略例1:下列四组函数中,表示同一个函数的是()(A), (B),(C), (D),易错点:①定义域;②对应法则;③函数的概念.错因分析:①忽视函数的定义域;②不清楚函数概念的实质,如(B)中表示自变量的字母不同,就误认为不会是同一个函数.解题策略:判断两个函数是否为同一函数,就是要看两个函数的定义域与对应法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看对应法则是否一致.分析:(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为及,对应法则也相同,所以选(B).这个例子可以有效检测学生对函数概念的把握,同时突出映射与函数概念的联系.例2:已知函数的定义域为,求函数及的定义域.易错点:①对应法则定义域;②定义域的概念.错因分析:①对对应法则的符号不理解;②不清楚定义域的含义.解题策略:此题的题设条件中未给出函数的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指的取值围;②受对应法则制约的量的取值围在“已知”和“求”当中是一致的 .那么由的定义域是可知法则制约的量的取值围是,而在函数中,受直接制约的是,而定义域是指的围,因此通过解不等式得,即的定义域是. 同理可得的定义域为.例3:设函数在上有定义,的值不恒为零,对于任意的,恒有成立,则函数的奇偶性为_________.易错点:①抽象函数;②对“恒成立”的理解.错因分析:①抽象函数的有关性质;②对“恒成立”的理解不清晰,不能将其转化为所需求的结构.解题策略:关于对抽象函数“”的使用一般有以下两个思路:令为某些特殊的值,如本题解法中,令得到了.当然,如果令则可以得到,等等.令具有某种特殊的关系,如本题解法中,令.得到,在某些情况下也可令,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试看的勇气.解:令,则,所以,再令,则,所以,又的值不恒为零,故是奇函数而非偶函数.例4:已知函数是定义域为的单调增函数.(1)比较与的大小;(2)若,数的取值围.易错点:①函数概念;②增函数.错因分析:①对函数概念中的对应法则的理解不清楚;②没有理解增函数概念的实质,不会将其应用于解决问题.解题策略:回顾单调增函数的定义,在,为区间任意两个值的前提下,有三个重要的问题:的符号;的符号;函数在区间上是增还是减.由定义可知:对于任取的,若,且,则函数在区间上是增函数;不仅如此,若,且函数在区间上是增函数,则;若,且函数在区间上是增函数,则;于是,我们可以清晰地看到,函数的单调性与不等式有着自然的联系,请结合例4加以体会.解:(1)因为,所以,由已知,是单调增函数,所以.(2)因为是单调增函数,且,所以,解得或.四、学生学习目标检测分析(一)课程标准中的相关要求1.函数①通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。