通用版版高考物理二轮复习专题检测十应用动力学观点破解力学计算题含解析.doc

合集下载

高三物理二轮复习专题课件精编:专题二 第1课时 动力学观点在力学中的应用

高三物理二轮复习专题课件精编:专题二 第1课时 动力学观点在力学中的应用
课 时 栏 代入数据可得 目 32 开 关 Q′= 3 J
由串联电路的知识可知 3 Q= Q′=8 J 4
答案 (1)0.4
(2)2 C
(3)8 J
热点题型例析
专题二 第2课时
以题说法
本 课 时 栏 目 开 关
对于导体棒在磁场中动力学问题的分析要特别注
意棒中的感应电流受到的安培力一定是阻力. 一般导体棒在安 培力和其他恒力作用下做的变速运动是加速度逐渐减小的变 速运动,但在一定的条件下,也可以做匀变速直线运动.本题 中让外力均匀变化,就可以使导体棒做匀变速直线运动.
为界,下部有一垂直于斜面向下的匀强磁场, 上部有平行于斜 面向下的匀强磁场.两磁场的磁感应强度均为 B=1 T,导轨 bc 段长 L=1 m. 金属棒 EF 的电阻 R=1.2 Ω, 其余电阻不计. 金 属棒与导轨间的动摩擦因数 μ=0.4,开始时导轨 bc 边用细线 系在立柱 S 上,导轨和斜面足够长,sin 37° =0.6,g=10 m/s2. 当剪断细线后,试求:
知识方法聚焦
专题二 第2课时
第 2 课时
动力学观点在电学中的应用
本 课 时 栏 目 开 关
1.带电粒子在磁场中运动时,洛伦兹力的方向始终 垂直于 粒 子的速度方向. 2.带电粒子在电场力、重力和洛伦兹力共同作用下的直线运 动只能是 匀速直线 运动.
知识方法聚焦
专题二 第2课时
本 课 时 栏 目 开 关
速度方向
热点题型例析
专题二 第2课时
题型 1
本 课 时 栏 目 开 关
电场内动力学问题分析 质量为 m 的带电小球由空中某点 A 无初速度地自由下
例1
落,在 t 秒末加上竖直方向且范围足够大的匀强电场,再经 过 t 秒小球又回到 A 点. 整个过程中不计空气阻力且小球从 未落地,则 A.匀强电场方向竖直向上 B.小球受到的电场力大小是 4mg t C.从加电场开始到小球运动到最低点历时 秒 4 2 22 D.从 A 点到最低点的过程中,小球重力势能变化了 mg t 3 ( )

高考物理-用动力学和能量观点解决多过程问题(解析版)

高考物理-用动力学和能量观点解决多过程问题(解析版)

2020年高考物理备考微专题精准突破 专题3.8 用动力学和能量观点解决多过程问题【专题诠释】1.本专题是力学两大观点在多运动过程问题、传送带问题和滑块—木板问题三类问题中的综合应用,高考常以计算题压轴题的形式命题.2.学好本专题,可以极大地培养同学们的审题能力、推理能力和规范表达能力,针对性的专题强化,可以提升同学们解决压轴题的信心.3.用到的知识有:动力学方法观点(牛顿运动定律、运动学基本规律),能量观点(动能定理、机械能守恒定律、能量守恒定律). 【高考领航】【2019·浙江选考】如图所示为某一游戏的局部简化示意图。

D 为弹射装置,AB 是长为21 m 的水平轨道, 倾斜直轨道BC 固定在竖直放置的半径为R =10 m 的圆形支架上,B 为圆形的最低点,轨道AB 与BC 平滑连 接,且在同一竖直平面内。

某次游戏中,无动力小车在弹射装置D 的作用下,以v 0=10 m/s 的速度滑上轨道 AB ,并恰好能冲到轨道BC 的最高点。

已知小车在轨道AB 上受到的摩擦力为其重量的0.2倍,轨道BC 光 滑,则小车从A 到C 的运动时间是( )A .5 sB .4.8 sC .4.4 sD .3 s 【答案】A【解析】设小车的质量为m ,小车在AB 段所匀减速直线运动,加速度210.20.22m/s f mga g m m====,在AB 段,根据动能定理可得2201122AB B fx mv mv -=-,解得4m/s B v =,故1104s 3s 2t -==;小车在BC段,根据机械能守恒可得212B CD mv mgh =,解得0.8m CD h =,过圆形支架的圆心O 点作BC 的垂线,根据几何知识可得12BCBC CD x R x h =,解得4m BC x =,1sin 5CD BC h x θ==,故小车在BC 上运动的加速度为22sin 2m/s a g θ==,故小车在BC 段的运动时间为224s 2s 2B v t a ===,所以小车运动的总时间为125st t t=+=,A正确。

用动力学和能量观点解决多过程问题(解析版)-2023年高考物理压轴题专项训练(新高考专用)

用动力学和能量观点解决多过程问题(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题03用动力学和能量观点解决多过程问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一传送带模型中的动力学和能量问题..............................................................................................1热点题型二用动力学和能量观点解决直线+圆周+平抛组合多过程问题.....................................................5热点题型三综合能量与动力学观点分析含有弹簧模型的多过程问题.......................................................10热点题型四综合能量与动力学观点分析板块模型. (13)三.压轴题速练..........................................................................................................................................................18一,考向分析1.本专题是力学两大观点在多运动过程问题、传送带问题和滑块—木板问题三类问题中的综合应用,高考常以计算题压轴题的形式命题。

2.学好本专题,可以极大地培养同学们的审题能力、推理能力和规范表达能力,针对性的专题强化,可以提升同学们解决压轴题的信心。

3.用到的知识有:动力学方法观点(牛顿运动定律、运动学基本规律),能量观点(动能定理、机械能守恒定律、能量守恒定律)。

二.题型及要领归纳热点题型一传送带模型中的动力学和能量问题1.解决传送带问题的关键点(1)摩擦力的方向及存在阶段的判断.(2)物体能否达到与传送带共速的判断.(3)弄清能量转化关系:传送带因传送物体多消耗的能量等于物体增加的机械能与产生的内能之和.2.应用动能定理时,摩擦力对物体做功W f =F f ·x (x 为对地位移);系统产生的热量等于摩擦力对系统做功,W f =F f ·s (s 为相对路程).【例1】(2023春·湖北荆州·统考期中)如图所示,荆州沙市飞机场有一倾斜放置的长度5m L =的传送带,与水平面的夹角37θ=︒,传送带一直保持匀速运动,速度2m/s v =。

秘籍9 带电粒子在电场、磁场中的动力学问题-2024年高考物理压轴题专项通关秘籍(全国通用)(原卷版

秘籍9 带电粒子在电场、磁场中的动力学问题-2024年高考物理压轴题专项通关秘籍(全国通用)(原卷版

秘籍9 带电粒子在电场、磁场中的动力学问题1.本专题主要讲解带电粒子(带电体)在电场、磁场中运动时动力学和能量观点的综合运用,高考常以计算题出现。

2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。

3.用到的知识:受力分析、动力学分析、能量。

题型一 优化场区分布创新考察电、磁偏转(计算题)题型二 利用交变电场考带电粒子在运动的多过程问题(计算题)题型三 借助电子仪器考带电粒子运动的应用问题(计算题)1、带电粒子在电场中的偏转Ⅰ、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场.(2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动.(4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧ a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t = 2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧ 加速度:a =F m =qE m =qU md 离开电场时的偏移量:y =12at 2=qUl 22mdv20离开电场时的偏转角:tan θ=v yv 0=qUl mdv 20Ⅱ、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 20 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 20 得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O到偏转电场边缘的距离为l 2. Ⅲ、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.2、带电粒子在电场中运动问题的两种求解思路(1)运动学与动力学观点①运动学观点是指用匀变速运动的公式来解决实际问题,一般有两种情况: a .带电粒子初速度方向与电场线共线,则粒子做匀变速直线运动;b .带电粒子的初速度方向垂直电场线,则粒子做匀变速曲线运动(类平抛运动). ②当带电粒子在电场中做匀变速曲线运动时,一般要采取类似平抛运动的解决方法.(2)功能观点:首先对带电粒子受力分析,再分析运动形式,然后根据具体情况选用公式计算. ①若选用动能定理,则要分清有多少个力做功,是恒力做功还是变力做功,同时要明确初、末状态及运动过程中的动能的增量.②若选用能量守恒定律,则要分清带电粒子在运动中共有多少种能量参与转化,哪些能量是增加的,哪些能量是减少的.3、带电粒子做圆周运动的分析思路Ⅰ、匀速圆周运动的规律若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.Ⅱ、圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图3甲所示,P为入射点,M为出射点).图3(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).Ⅲ、半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.Ⅳ、运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为t=θ2πT(或t=θRv).1.(2024•重庆开学)一束电子从静止开始经加速电压U1=U0加速后,水平射入水平放置的两平行金属板中间,如图所示。

高考物理二轮复习 专题检测(八)巧用“能量观点”解决

高考物理二轮复习 专题检测(八)巧用“能量观点”解决

专题检测(八) 巧用“能量观点”解决力学选择题1.如图所示,质量、初速度大小都相同的A 、B 、C 三个小球,在同一水平面上,A 球竖直上抛,B 球以倾斜角θ斜向上抛,空气阻力不计,C 球沿倾角为θ的光滑斜面上滑,它们上升的最大高度分别为h A 、h B 、h C ,则( )A .h A =hB =hC B .h A =h B <h C C .h A =h B >h CD .h A =h C >h B解析:选D A 球和C 球上升到最高点时速度均为零,而B 球上升到最高点时仍有水平方向的速度,即仍有动能。

对A 、C 球由机械能守恒得mgh =12mv 02,得h =v 022g 。

对B 球由机械能守恒得mgh ′+12mv t 2=12mv 02,且v t ′≠0,所以h A =h C >h B ,故D 正确。

2.(2018届高三·河北五校联考)取水平地面为重力势能零点。

一物块从某一高度水平抛出,在抛出点其动能为重力势能的3倍。

不计空气阻力。

该物块落地时的速度方向与水平方向的夹角为( )A.π8 B.π6C.π4D.π3解析:选B 平抛运动过程中,物体的机械能守恒,初始状态时动能为势能的3倍,而落地时势能全部转化成动能,可以知道平抛运动过程初动能与落地瞬间动能之比为3∶4,那么落地时,水平速度与落地速度的比值为3∶2,那么落地时速度与水平方向的夹角为π6,A 、C 、D 错,B 对。

3.如图所示,在轻弹簧的下端悬挂一个质量为m 的小球A ,若将小球A 从弹簧原长位置由静止释放。

小球A 能够下降的最大高度为h 。

若将小球A 换为质量为2m 的小球B ,仍从弹簧原长位置由静止释放,则小球B 下降h 时的速度为(已知重力加速度为g ,且不计空气阻力)( )A.2ghB.ghC.gh2D .0解析:选B 质量为m 的小球A ,下降到最大高度h 时,速度为零,重力势能转化为弹簧弹性势能,即E p =mgh ,质量为2m 的小球下降h 时,根据功能关系有2mgh -E p =12(2m )v 2,解得v =gh ,选项B 正确。

高考物理二轮复习专题静电场讲含解析

高考物理二轮复习专题静电场讲含解析

静电场考点要求 专家解读物质的电构造、电荷守恒 Ⅰ从历年高考试题来看,对电场知识的观察主要集中在以下几个方面:(1)多个电荷库仑力的均衡和场强叠加问题。

(2)利用电场线和等势面确立场强的大小和方向,判断电势高低、电场力变化、电场力做功和电势能的变化等。

(3)带电体在匀强电场中的均衡问题及其余变速运动的动力学识题。

(4)对平行板电容器电容决定要素的理解,解决两类有关动向变化的问题。

(5)剖析带电粒子在电场中的加快和偏转问题。

(6)示波管、静电除尘等在平时生活和科学技术中的应用。

静电现象的解说 Ⅰ 点电荷 Ⅰ 库仑定律 Ⅱ 静电场Ⅰ 电场强度、点电荷的场强 Ⅱ 电场线 Ⅰ 电势能、电势 Ⅰ 电势差Ⅱ 匀强电场中电势差与电场强度的关系 Ⅰ 带电粒子在匀强电场中的运动 Ⅱ 示波管 Ⅰ 常用的电容器Ⅰ电容器的电压、电荷量和电容的关系 Ⅰ纵观近几年高考试题,展望2019年物理高考试题还会考:1.本章基本看法的命题频次较高,主要波及电场的力的性质(电场、电场力)及能的性质(电势、电势能) 、平行板电容器,一般多以选择题出现.2.带电粒子在电场中的运动,是近几年高考取命题频次较高、难度较大的知识点之一,带电粒子在电场中的运动,一般波及办理带电粒子(一般不计重力)和带电体(一般要考虑重力)在电场中的加快与偏转问题或许做匀速圆周运动等,运用的规律是把电场力、能量公式与牛顿运动定律、功能原理以及磁场等内容联系起来命题,对考生综合剖析能力有较好的测试作用考向01 电场力的性质(1)考大纲求认识静电现象的有关解说,能利用电荷守恒定律进行有关判断;会解决库仑力参加的均衡及动力学识题;.理解电场强度的定义、意义及表示方法;娴熟掌握各样电场的电场线散布,并能利用它们剖析解决问题.3.会剖析、计算在电场力作用下的电荷的均衡及运动问题。

(2)小球受mg、绳的拉力T和电场力F作用途于均衡状态,如下图依据几何关系有,得m=4.0×10–4 kg【考点定位】电场强度,电场线,电势,电势能,曲线运动,带电粒子在电场中的运动【名师点睛】本题观察的知识点许多,应从曲线运动的特色和规律出发判断出电子的受力方向,再利用有关电场和带电粒子在电场中的运动规律解决问题。

高考物理二轮复习第部分专项三大技巧破解计算题技巧用心析题做到一明二画三析学案

高考物理二轮复习第部分专项三大技巧破解计算题技巧用心析题做到一明二画三析学案

用心析题,做到一“明”二“画”三“析”1.明过程“明过程”就是建立物理模型的过程,在审题获取一定信息的基础上,要对研究对象的各个运动过程进行剖析,建立起清晰的物理图景,确定每一个过程对应的物理模型、规律及各过程间的联系.2.画草图“画草图”就是根据题中各已知量的数量关系充分想象、分析、判断,在草稿纸上或答题纸上画出草图(如运动轨迹图、受力分析图、等效图等)以展示题述物理情境、物理模型,使物理过程更加直观、物理特征更加明显,进而方便确立题给条件、物理量与物理过程的对应关系.3.析规律“析规律”就是指在解答物理计算题时,在透彻分析题给物理情境的基础上,灵活选用规律.如力学计算题可用力的观点,即牛顿运动定律与运动学公式联立求解,也可用能量观点,即功能关系、机械能守恒定律和能量守恒定律联立求解.[例2] (2016·枣庄一模)如图2所示,A、B间存在与竖直方向成45°角斜向上的匀强电场E1,B、C间存在竖直向上的匀强电场E2,A、B的间距为1.25 m,B、C的间距为3 m,C为荧光屏.一质量m=1.0×10-3kg、电荷量q=+1.0×10-2C的带电粒子由a点静止释放,恰好沿水平方向经过b点到达荧光屏上的O点.若在B、C间再加方向垂直于纸面向外且大小B=0.1 T的匀强磁场,粒子经b点偏转到达荧光屏的O′点(图中未画出).g 取10 m/s2.求:图2(1)E1的大小;(2)加上磁场后,粒子由b点到O′点电势能的变化量及偏转角度.[教你审题]【解析】 (1)粒子在A 、B 间做匀加速直线运动,竖直方向受力平衡,则有qE 1cos 45°-mg =0①解得E 1= 2 N/C =1.4 N/C.(2)粒子从a 到b 的过程中,由动能定理得: qE 1d AB sin 45°=12mv 2b②解得v b =5 m/s 加磁场前粒子在B 、C 间做匀速直线运动,则有:qE 2=mg ③加磁场后粒子在B 、C 间做匀速圆周运动,如图所示:由牛顿第二定律得:qv b B =m v 2b R④ 解得R =5 m由几何关系得:R 2=d 2BC +(R -y )2 ⑤解得y =1.0 m 粒子在B 、C 间运动时电场力做的功为:W =-qE 2y =-mgy =-1.0×10-2 J⑥由功能关系知,粒子的电势能增加了1.0×10-2J设偏转角度为θ,则sin θ=d BC R=0.6⑦ 解得:θ=37°. 【答案】 (1)1.4 N/C (2)1.0×10-2J 37°。

2018届高考物理二轮复习重难专题强化练“活用三大观点破解力学计算题”课后冲关

2018届高考物理二轮复习重难专题强化练“活用三大观点破解力学计算题”课后冲关

“活用三大观点破解力学计算题”1.(2017·枣庄期末)如图甲所示,电动机通过绕过光滑定滑轮的细绳与放在倾角为30°的光滑斜面上的物体相连,启动电动机后物体沿斜面上升;在0~3 s 时间内物体运动的v ­t 图像如图乙所示,其中除1~2 s 时间段图像为曲线外,其余时间段图像均为直线,1 s 后电动机的输出功率保持不变;已知物体的质量为2 kg ,重力加速度g =10 m/s 2。

求:(1)1 s 后电动机的输出功率P ; (2)物体运动的最大速度v m ; (3)在0~3 s 内电动机所做的功。

解析:(1)设物体的质量为m ,由题图乙可知,在时间t 1=1 s 内,物体做匀加速直线运动的加速度大小为a =5 m/s 2,1 s 末物体的速度大小达到v 1=5 m/s ,此过程中,设细绳拉力的大小为F 1,则根据运动学公式和牛顿第二定律可得:v 1=at 1F 1-mg sin 30°=ma设在1 s 末电动机的输出功率为P , 由功率公式可得:P =F 1v 1 联立解得:P =100 W 。

(2)当物体达到最大速度v m 后,设细绳的拉力大小为F 2,由牛顿第二定律和功率的公式可得:F 2-mg sin 30°=0 P =F 2v m联立解得:v m =10 m/s 。

(3)设在时间t 1=1 s 内,物体的位移为x ,电动机做的功为W 1,则由运动公式及动能定理:x =12at 12W 1-mgx sin 30°=12mv 12设在时间t =3 s 内电动机做的功为W ,则:W =W 1+P (t -t 1)联立解得:W =250 J 。

答案:(1)100 W (2)10 m/s (3)250 J2.(2017·天津高考)如图所示,物块A 和B 通过一根轻质不可伸长的细绳相连,跨放在质量不计的光滑定滑轮两侧,质量分别为m A =2 kg 、m B =1 kg 。

高考物理复习两类动力学问题专题练习(含解析)-最新教学文档

高考物理复习两类动力学问题专题练习(含解析)-最新教学文档

高考物理复习两类动力学问题专题练习(含解析)动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。

查字典物理网整理了两类动力学问题专题练习,请大家练习。

一、选择题(在题后给的选项中,第1~4题只有一项符合题目要求,第5~9题有多项符合题目要求.)1.(2019年广州调研)静止在光滑水平面上O点的物体,从t=0时刻开始受到水平力作用,设向右为F的正方向,则物体()A.一直向左运动B.一直向右运动C.一直匀加速运动D.在O点附近左右运动【答案】B【解析】设物体质量为m,由图象可知,0~1 s内物体向右做匀加速直线运动,1 s末的速度v1=;1~2 s内物体以初速度v1=向右做匀减速直线运动,2 s末的速度v2=v1-=0;综上可知,物体会一直向右运动.选项B正确.2.质量为 2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律.重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为()图K3-2-2A.18 mB.54 mC.72 mD.198 m【答案】B【解析】滑动摩擦力大小Fmg=4 N,则0~3 s物体静止,6~9 s物体做匀速直线运动,3~6 s和9~12 s做加速度相等的匀加速直线运动,加速度a=m/s2=2 m/s2.6 s末的速度v1=23 m/s=6 m/s,12 s末的速度v2=6 m/s+23 m/s=12 m/s.3~6 s发生的位移大小x1=3 m=9 m,6~9 s 发生的位移大小x2=63 m=18 m,9~12 s发生的位移大小x3=3 m=27 m,则0~12 s发生的位移大小x=x1+x2+x3=54 m,故选项B正确. 3.(2019年江苏卷)将一个皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a与时间t的图象,可能正确的是() A B C D【答案】C【解析】对皮球进行受力分析,受到竖直向下的重力、阻力作用,根据牛顿第二定律,知皮球在上升过程中的加速度大小a=,因皮球上升过程中速度v减小,加速度减小,当v=0时,加速度最终趋近一条平行于t轴的直线,选项C正确,A、B、D错误.4. (2019年河南模拟)2019年8月14日,中国乒乓球公开赛在苏州市体育中心体育馆拉开战幕,吸引了上千市民前往观看.假设运动员在训练中手持乒乓球拍托球沿水平面做匀加速运动,球拍与球保持相对静止且球拍平面和水平面之间的夹角为.设球拍和球质量分别为M、m,不计球拍和球之间的摩擦,不计空气阻力,则()A.运动员的加速度大小为gsinB.球拍对球的作用力大小为mgcosC.运动员对球拍的作用力大小为D.运动员对地面的作用力方向竖直向下【答案】C【解析】以乒乓球为研究对象,球受重力和球拍的支持力,不难求出球受到的合力为mgtan ,其加速度为gtan ,受到球拍的支持力为mg/cos ,由于运动员、球拍和球的加速度相等,选项A、B错误;同理运动员对球拍的作用力大小为(M+m)g/cos ,选项C正确;将运动员看做质点,由上述分析知道运动员在重力和地面的作用力的合力作用下产生水平方向的加速度,地面对运动员的作用力应该斜向上,由牛顿第三定律知道,运动员对地面的作用力方向斜向下,选项D 错误.5.(2019年黑龙江模拟)A、B两物块的质量分别为2 m和m, 静止叠放在水平地面上. A、B间的动摩擦因数为,B与地面间的动摩擦因数为.最大静摩擦力等于滑动摩擦力,重力加速度为 g.现对A施加一水平拉力F,则()图K3-2-4A.当 F mg时,A、B都相对地面静止B.当 F=mg时,A的加速度为gC.当 Fmg时,A相对B滑动D.无论F为何值,B的加速度不会超过g【答案】BCD【解析】当A、B刚要发生相对滑动时,A、B间的摩擦力达到最大静摩擦力,即f=2mg ,隔离B分析,根据牛顿第二定律得,23mg=ma,解得a=g.对整体分析,根据牛顿第二定律有:F-3mg=3ma,解得F=3mg.故当Fmg时,A、B发生相对滑动,故C正确;通过隔离B分析,知B的加速度不会超过g,故D正确;当F=mg时,A、B保持相对静止,对整体分析,加速度a===g,故B正确;当Fmg,知小于A、B之间的最大静摩擦力,则A、B不发生相对滑动,对整体分析,由于整体受到地面的最大静摩擦力fm=3mg=mg,知A、B不能相对地面静止,故A错误.6.(2019年潮州模拟)如图K3-2-5所示,一小车放在水平地面上,小车的底板上放一光滑小球,小球通过两根轻弹簧与小车两壁相连.当小车匀速运动时,两弹簧L1、L2恰处于自然状态.当发现L1变长、L2变短时,下列判断正确的是() 图K3-2-5A.小车可能正在向右做匀加速运动B.小车可能正在向右做匀减速运动C.小车可能正在向左做匀加速运动D.小车可能正在向左做匀减速运动【答案】BC【解析】L1变长,L2变短,小球受到L1向左的拉力和L2向左的弹力,合力方向向左,则加速度方向向左,选项B、C 正确.7.如图K3-2-6所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端的距离为L,稳定时绳与水平方向的夹角为,当传送带分别以v1、v2的速度做逆时针转动时(v1图K3-2-6A.F1C.t1一定大于t2D.t1可能等于t2【答案】BD【解析】皮带以不同的速度运动,物体所受的滑动摩擦力相等,物体仍处于静止状态,故F1=F2;物体在两种不同速度下运动时有可能先加速再匀速,也可能一直加速,故t1可能等于t2.8甲、乙两图都在光滑的水平面上,小车的质量都是M,人的质量都是m,甲图人推车、乙图人拉绳子(绳与轮的质量和摩擦均不计)的力都是F,对于甲、乙两车的加速度大小,下列说法正确的是()图K3-2-7A.甲车的加速度大小为B.甲车的加速度大小为0C.乙车的加速度大小为D.乙车的加速度大小为0【答案】BC【解析】对于甲,以人、车整体为研究对象,水平方向合力为零,由牛顿第二定律,得a甲=0;对于乙,水平方向整体受力为2F,再由牛顿第二定律,得a乙=,所以选项B、C正确.9.(2019年全国卷Ⅰ)2019年11月,歼15舰载机在辽宁号航空母舰上着舰成功.图K3-2-8(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止.某次降落,以飞机着舰为计时零点,飞机在t=0.4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度时间图线如图K3-2-8(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为1 000 m.已知航母始终静止,重力加速度的大小为g.则()图K3-2-8A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B.在0.4~2.5 s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4~2.5 s时间内,阻拦系统对飞机做功的功率几乎不变【答案】AC【解析】速度时间图象中,图线与坐标轴所围图形的面积为物体的位移,所以可以计算飞机受阻拦时运动的位移约为x=700.4 m+(3.0-0.4)70 m=119 m,A正确;0.4 s到2.5 s时间内,速度时间图象的斜率不变,说明两条绳索张力的合力不变,但是两力的夹角不断变小,所以绳索的张力不断变小,B错;0.4 s到2.5 s时间内平均加速度约为a= m/s2=26.7 m/s2;C正确;0.4 s到2.5 s时间内,阻拦系统对飞机的作用力不变,飞机的速度逐渐减小,由P=Fv可知,阻拦系统对飞机做功的功率逐渐减小,D错.二、非选择题10.(2019年汕头模拟)一质量m=2.0 kg的小物块以一定的初速度冲上一倾角为37、足够长的斜面,某同学利用传感器测出小物块从一开始冲上斜面到往后上滑过程中多个时刻的瞬时速度,并用计算机作出了小物块上滑过程的速度-时间图象,如图K3-2-9所示,求:(已知sin 37=0.6,cos 37=0.8,g取10 m/s2)图K3-2-9(1)小物块冲上斜面过程中加速度的大小;(2)小物块与斜面间的动摩擦因数;(3)小物块所到达斜面最高点与斜面底端的距离.【答案】(1)8 m/s2 (2)0.25 (3)4.0 m【解析】(1)由小物块上滑过程的速度时间图象,可得小物块冲上斜面过程中的加速度a==m/s2=-8 m/s2,加速度大小为8 m/s2.(2)对小物块进行受力分析如图所示,有mgsin 37+f=ma,FN-mgcos 37=0,f=FN.代入数据,得=0.25.(3)由图象知距离s=t=1.0 m=4.0 m.11.消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60 kg、训练有素的消防队员从7楼(即离地面18 m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200 kg,消防队员着地的速度不能大于6 m/s,手和腿对杆的最大压力为1 800 N,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g=10 m/s2.假设杆是固定在地面上的,杆在水平方向不移动.试求:(1)消防队员下滑过程中的最大速度;(2)消防队员下滑过程中杆对地面的最大压力;(3)消防队员下滑的最短时间.【答案】(1)12 m/s (2)2 900 N (3)2.4 s【解析】(1)消防队员开始阶段自由下落的末速度即为下滑过程的最大速度vm,有2gh1=v.消防队员受到的滑动摩擦力Ff=FN1=0.51 800 N=900 N.减速阶段的加速度大小a2==5 m/s2,减速过程的位移为h2,由v-v2=2a2h2,又h=h1+h2,以上各式联立,可得vm=12 m/s.(2)以杆为研究对象,得FN2=Mg+Ff=2 900 N.根据牛顿第三定律,得杆对地面的最大压力为2 900 N. (3)最短时间tmin=+=2.4 s.12.(2019年中山模拟)如图K3-2-10所示,一光滑斜面固定在水平地面上,质量m=1 kg的物体在平行于斜面向上的恒力F作用下,从A点由静止开始运动,到达B点时立即撤去拉力F.此后,物体到达C点时速度为零.每隔0.2 s通过速度传感器测得物体的瞬时速度,下表给出了部分测量数据. 图K3-2-10t/s 0.0 0.2 0.4 2.2 2.4 v/(ms-1) 0.0 1.0 2.0 3.3 2.1 试求:(1)斜面的倾角(2)恒力F的大小;(3)t=1.6 s时物体的瞬时速度.【答案】(1)37 (2)11 N (3)6.9 m/s【解析】(1)物体从A到B做匀加速运动,设加速度为a1. 则a1= m/s2=5 m/s2,若物体加速了2.2 s,则2.2 s末速度为11 m/s,由表格数据知2.2 s末的速度为3.3 m/s,故当t=2.2 s时,物体已通过B点.因此减速过程加速度大小a2= m/s2=6 m/s2,mgsin =ma2,解得=37.(2)由(1)知a1=5 m/s2,F-mgsin =ma1,解得F=11 N.(3)设第一阶段运动的时间为t1,在B点时有5t1=2.1+6(2.4-t1),t1=1.5 s.可见,t=1.6 s的时刻处在第二运动阶段,由逆向思维可得v=2.1 m/s+6(2.4-1.6) m/s=6.9 m/s.两类动力学问题专题练习及答案的内容就是这些,查字典物理网预祝考生取得更好的成绩。

有关牛顿第二定律的动力学问题(解析版)-2023年高考物理压轴题专项训练(全国通用)

有关牛顿第二定律的动力学问题(解析版)-2023年高考物理压轴题专项训练(全国通用)

压轴题01有关牛顿第二定律的动力学问题考向一/选择题:有关牛顿第二定律的连接体问题考向二/选择题:有关牛顿第二定律的动力学图像问题考向二/选择题:有关牛顿第二定律的临界极值问题考向一:有关牛顿第二定律的连接体问题1.处理连接体问题的方法:①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。

②当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。

2.处理连接体问题的步骤:3.特例:加速度不同的连接体的处理方法:①方法一(常用方法):可以采用隔离法,对隔离对象分别做受力分析、列方程。

②方法二(少用方法):可以采用整体法,具体做法如下:此时牛顿第二定律的形式:+++=x x x x a m a m a m F 332211合;+++=y y y y a m a m a m F 332211合说明:①F 合x 、F 合y 指的是整体在x 轴、y 轴所受的合外力,系统内力不能计算在内;②a 1x 、a 2x 、a 3x 、……和a 1y 、a 2y 、a 3y 、……指的是系统内每个物体在x 轴和y 轴上相对地面的加速度。

考向二:有关牛顿第二定律的动力学图像问题常见图像v ­t 图像、a ­t 图像、F ­t 图像、F ­a 图像三种类型(1)已知物体受到的力随时间变化的图线,求解物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图线,求解物体的受力情况。

(3)由已知条件确定某物理量的变化图像。

解题策略(1)问题实质是力与运动的关系,要注意区分是哪一种动力学图像。

(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体”间的关系,以便对有关物理问题作出准确判断。

破题关键(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图像所反映的物理过程,会分析临界点。

(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等。

高考物理力学计算题(十)含答案与解析

高考物理力学计算题(十)含答案与解析

高考物理力学计算题(十)组卷老师:莫老师一.计算题(共50小题)1.如图所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两极板间的距离为d,板长为L,t=0时,磁场的磁感应强度B从B0开始匀速增大,同时在板2的左端且非常靠近板2的位置由一质量为m、带电量为﹣q的液滴以初速度v0水平向右射入两板间,该液滴可视为质点,则要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?2.如图所示,水平面上有一质量M=18kg的木板,其右端恰好和光滑圆弧轨道AB的底端等高对接,木板右端有一质量m0=3kg的物体C(可视为质点),已知圆弧轨道半径R=0.9m.现将一质量m=6kg的小滑块P(可视为质点)由轨道顶端A点无初速释放,小滑块滑到B端后冲上木板,并与木板右端的物体C粘在一起,沿木板向左滑行,最后恰好没有从木板左端滑出.已知小滑块p与木板上表面的动摩擦因数μ1=0.25,物体c与木板上表面的动摩擦因数μ2=0.5,木板与水平面间的动摩擦因数μ3=0.1,取g=10m/s2.求:(l)小滑块到达B端时,轨道对它支持力的大小;(2)小滑块P与C碰撞结束时共同速度大小;(3)木板的长度.3.风洞是研究空气动力学的实验设备,如图所示,将刚性杆水平固定在风洞内距水平地面高度h=5m处,杆上套一质量m=2kg、可沿杆滑动的小球.将小球所受的风力调节为F=10N,方向水平向右.小球落地时离水平杆右端的水平距离x=12.5m,假设小球所受风力不变,取g=10m/s2求:(1)小球从刚离开杆到落地时所用的时间t;(2)小球离开杆右端时的速度大小v0;(3)小球从离开杆右端到动能为125J的过程中所用的时间t1.4.足球比赛中,经常使用“边路突破,下底传中”的战术,即攻方队员带球沿边线前进,到底线附近进行传中,某足球场长90m、宽60m,如图所示,攻方前锋在中线处将足球沿边线向前踢出,足球的运动可视为在地面上做初速度为8m/s的匀速直线运动,加速度大小为m/s2,试求:(1)足球从开始做匀减速直线运动到底线需要多长时间;(2)足球开始做匀减速直线运动的同时,该前锋队员在边线中点处沿边线向前追赶足球,他的启动过程可以视为从静止出发的匀加速直线运动,能达到的最大速度为6m/s,并能以最大速度匀速运动,该前锋队员要在足球越过底线前追上足球,他加速时的加速度应满足什么条件?5.如图所示,一条水平传送带两个顶点A、B之间的距离为L=10m,配有主动轮O1和从动轮O2构成整个传送装置,轮与传送带不打滑,轮半径为R=0.32m,现用此装置运送一袋面粉,已知这袋面粉与传送带之间的摩擦力因数为μ=0.5,g=10m/s2.(1)当传送带以5.0m/s的速度匀速运动时,将这袋面粉由A点轻放在传送带上后,这袋面粉由A端运B端所用时间为多少?(2)要想尽快将这袋面粉由A端运到B端(设面袋的初速度为零),主动轮O1的转速至少应为多大?(3)由于面粉的渗漏,在运送这袋面粉的过程中会在深色传送带上留下白色的面粉的痕迹,若这袋面粉在传送带上留下的痕迹布满整条传送带时(设面袋的初速度为零),则主动轮的转速应满足何种条件?6.如图所示,将质量为m的小滑块与质量为M=2m的光滑凹槽用轻质弹簧相连.现使凹槽和小滑块以共同的速度v0沿光滑水平面向左匀速滑动,弹簧处于原长,设凹槽长度足够长,且凹槽与墙壁碰撞时间极短.(1)若凹槽与墙壁发生碰撞后速度立即变为零,但与墙壁不粘连,求弹簧第一次压缩过程中的最大弹性势能E P;(2)若凹槽与墙壁发生碰撞后速度立即变为零,但与墙壁不粘连,求凹槽脱离墙壁后的运动过程中弹簧的最大弹性势能△E P;(3)若凹槽与墙壁发生碰撞后立即反弹,且反弹后凹槽滑块和弹簧组成的系统总动量恰为零,问以后凹槽与墙壁能否发生第二次碰撞?并说明理由.7.一小球从离地h=40m高处以初速度v0=24m/s竖直向上抛出,其上升过程中速度﹣时间图象如图所示.已知小球质量m=1kg,整个过程中所受的空气阻力大小不变.求:(g取10m/s2)(1)小球所受的空气阻力是多大?(2)通过计算完成2s后的速度﹣时间图象.8.如图甲所示,竖直平面内的光滑轨道由倾斜直轨道AB和圆轨道BCD组成,AB和BCD相切于B点,OB与OC夹角为37°,CD连线是圆轨道竖直方向的直径(C、D为圆轨道的最低点和最高点),可视为质点的小滑块从轨道AB上高H处的某点由静止滑下,用力传感器测出滑块经过圆轨道最低点C时对轨道的压力为F,并得到如图乙所示的压力F与高度H的关系图象,该图线截距为2N,且过(0.5m,4N)点.取g=10m/s2.求:(1)滑块的质量和圆轨道的半径;(2)若要求滑块不脱离圆轨道,则静止滑下的高度为多少;(3)是否存在某个H值,使得滑块经过最高点D飞出后落在圆心等高处的轨道上.若存在,请求出H值;若不存在,请说明理由.9.如图所示,光滑圆弧轨道与光滑斜面在B点平滑连接,圆弧半径为R=0.4m,一半径很小、质量为m=0.2kg的小球从光滑斜面上A点由静止释放,恰好能通过圆弧轨道最高点D,斜面倾角为53°,求:(1)小球最初自由释放位置A离最低点C的高度h;(2)小球运动到C点时对轨道的压力大小;(3)小球从离开D点至第一次落回到斜面上运动的时间.10.如图所示,装置左边是水平台面,一轻质弹簧左端固定,右端连接轻质挡板A,此时弹簧处于原长且在A右侧台面粗糙,长度l=1.0m,另一物块B与台面动摩擦因数μ1=0.1,中间水平传送带与平台和右端光滑曲面平滑对接,传送带始终以V0=2m/s速率逆时针转动,传送带长度l=1.0m,B与传送带动摩擦因数μ2=0.2,现将质量为1kg的物块B从半径R=2.1m的圆弧上静止释放(g=10m/s2)(1)求物块B与A第一次碰撞前的速度大小;(2)试通过计算证明物块B与A第一次碰撞后能否运动到右边的弧面上?若能回到,则其回到C点时受弧面的支持力为多大?11.某校科技节期间举办“云霄飞车”比赛,小敏同学制作的部分轨道如图(1)所示,倾角θ=37°的直轨道AB,半径R1=1m的光滑圆弧轨道BC,半径R2=0.4m 的光滑螺旋圆轨道CDC′,如图(2)所示,光滑圆轨道CE,水平直轨道FG(与圆弧轨道同心圆O1等高),其中轨道BC、C′E与圆轨道最低点平滑连接且C、C′点不重叠,∠BO1C=∠CO1E=37°.整个轨道在竖直平面内,比赛中,小敏同学让质量m=0.04kg的小球从轨道上A点静止下滑,经过BCDC′E后刚好飞跃到水平轨道F点,并沿水平轨道FG运动.直轨道AB与小球的动摩擦因数μ=0.3,小球可视为质点,sin37°=0.6,cos37°=0.8,g=10m/s2,求:(1)小球运动到F点时的速度大小;(2)小球运动至圆轨道最高点D时对轨道的作用力大小;(3)A点离水平地面的高度.12.质量为10kg的环在F=140N的恒定拉力作用下,沿粗糙直杆由静止从杆的底端开始运动,环与杆之间的动摩擦因数μ=0.5,杆与水平地面的夹角θ=37°,拉力F作用一段时间后撤去,环在杆上继续上滑了0.5s后,速度减为零,取g=10m/s2,sin37°=0.6,cos37°=0.8,杆足够长,求:(1)拉力F作用的时间;(2)环运动到杆底端时的速度大小.13.如图所示,圆筒的内壁光滑,底端固定在竖直转轴OO',圆筒可随轴转动,它与水平面的夹角始终为45°.在圆筒内有两个用轻质弹簧连接的相同小球A、B (小球的直径略小于圆筒内径),A、B质量均为m,弹簧的劲度系数为k.当圆筒静止时A、B之间的距离为L(L远大于小球直径).现让圆筒开始转动,其角速度从零开始缓慢增大,当角速度增大到ω0时保持匀速转动,此时小球B对圆筒底部的压力恰好为零.重力加速度大小为g.(1)求圆筒的角速度从零增大至ω0的过程中,弹簧弹性势能的变化量;(2)用m、g、L、k表示小球A匀速转动的动能E k.14.如图所示,光滑轨道的左端为半径为R=1.8m的圆弧形,右端为水平面,二者相切,水平面比水平地面高H=0.8m,一质量为m1=0.2kg的小球A从距离水平面高h=0.45处由静止开始滑下,与静止水平面上的质量为m2的小球B发生弹性正碰,碰后小球B做平抛运动,落地时发生的水平位移为x=1.6m,重力加速度g=10m/s2.求:(1)A球刚滑到圆弧最低点时受到轨道支持力的大小;(2)碰后瞬间B球的速度大小;(3)B球的质量.15.如图所示为常见的高速公路出口匝道,把AB段和CD段均简化为直线,汽车均做匀减速直线运动,BC段按照四分之一的水平圆周分析,汽车在此段做匀速圆周运动,圆弧段限速v0=36km/h,动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力.已知AB段和CD段长度分别为200m和100m,汽车在出口的速度为v1=108km/h.重力加速度g取l0m/s2.(1)若轿车到达B点速度刚好为36km/h,求轿车在AB下坡段加速度的大小;(2)为保证行车安全,车轮不打滑,求水平圆弧段BC半径R的最小值;(3)轿车恰好停在D点,则A点到D点的时间.16.如图所示,半径为R的光滑圆周轨道AB固定在竖直平面内,O为圆心,OA 与水平方向的夹角为30°,OB 在竖直方向.一个可视为质点的小球从O 点正上方某处以某一水平初速度向右抛出,小球恰好能无碰撞地从 A 点进入圆轨道内侧,此后沿圆轨道运动到达 B 点.已知重力加速度为g,求:(1)小球初速度的大小;(2)小球运动到 B 点时对圆轨道压力的大小.17.如图,在倾角θ=37°的粗糙斜面上距离斜面底端s=1m处,有一质量m=1kg 的物块,在竖直向下的恒力F作用下,由静止开始沿斜面下滑.到达斜面底端时立即撤去F,物块又在水平面上滑动一段距离后停止.不计物块撞击水平面时的能量损失,物块与各接触面之间的动摩擦因数相同,g取10m/s2,sin 37°=0.6,cos 37°=0.8.当F=30N时,物块运动过程中的最大速度为4m/s,求:(1)物块与接触面之间的动摩擦因数;(2)当F=0时,物块运动的总时间;(3)改变F的大小,物块沿斜面运动的加速度a随之改变.当a为何值时,物块运动的总时间最小,并求出此最小值.18.如图所示,在光滑的水平地面的左端连接一半径为R的光滑圆形固定轨道,在水平面质量为M=3m的小球Q连接着轻质弹簧,处于静止状态.现有一质量为m的小球P从B点正上方h=R高处由静止释放,求:(1)小球P到达圆形轨道最低点C时的速度大小和对轨道的压力;(2)在小球P压缩弹簧的过程中,弹簧具有的最大弹性势能;(3)若球P从B上方高H处释放,恰好使P球经弹簧反弹后能够回到B点,则高度H的大小.19.如图所示,在水平地面上固定一个倾角α=45°、高H=4m的斜面,在斜面上方固定放置一段由内壁光滑的细圆管构成的轨道ABCD,圆周部分的半径R=1m (R≥细圆管的管径),倾斜直轨道AB与圆周轨道部分相切于B点,AB长为2m,与水平方向夹角θ=53°,轨道末端竖直,已知圆周轨道最低点C、轨道末端D与斜面顶端处于同一高度。

三大动力学观点在力学中的综合应用--2024年高考物理大题突破(解析)

三大动力学观点在力学中的综合应用--2024年高考物理大题突破(解析)

三大动力学观点在力学中的综合应用1.考查重点:动量定理、动量守恒定律与牛顿运动定律、功能关系综合解决分析多运动组合问题,有时涉及弹簧问题和传送带、板块问题。

2.考题形式:计算题。

1(2023·河南校联考模拟预测)如图所示,粗细均匀的光滑直杆竖直固定在地面上,一根轻弹簧套在杆上,下端与地面连接,上端连接带孔的质量为m 的小球B 并处信息:刚开始弹簧处于压缩状态于静止状态,质量为m 的小球A 套在杆上,在B 球上方某一高度处由静止释放,两球碰撞后粘在一起。

当A 、B 一起上升到最高点时,A 、B 的加速度大小为32g ,信息:完全非弹性碰撞信息:速度为零,弹簧形变量最大g 为重力加速度,弹簧的形变总在弹性限度内,已知弹簧的弹性势能表达式为E p =12kx 2,其中k 为弹簧的劲度系数、x 为弹簧的形变量,A 、B 两球均可视为质点。

求:(1)小球A 开始释放的位置离B 球的距离;(2)两球碰撞后,弹簧具有的最大弹性势能及两球运动过程中的最大速度;信息:释放高度相同,故与B 球碰前的速度和A 球的相同(3)若将A 球换成C 球,C 球从A 球开始静止的位置由静止释放,C 、B 发生弹性信息:弹性碰撞的特点:动量守恒,机械能守恒碰撞,碰撞后立即取走C 球,此后B 球上升的最大高度与A 、B 一起上升的最大高度相同,则C 球的质量多大。

【答案】 (1)8mg k (2)25m 2g 22k 3g m 2k (3)13m 【解析】 (1)开始时,弹簧的压缩量x 1=mg k①当A 、B 一起上升到最高点时,设弹簧的伸长量为x 2,根据牛顿第二定律kx 2+2mg =2m ·32g 解得x 2=mg k②[关键点]末状态弹簧的伸长量与初态弹簧的压缩量相同,故该过程弹性势能未变化设开始时A 、B 间的距离为h ,根据机械能守恒定律,有mgh =12mv 21③设A 、B 碰撞后一瞬间,A 、B 共同速度大小为v 2,根据动量守恒定律,有mv 1=2mv 2④从碰后一瞬间到上升到最高点,根据机械能守恒定律,有12×2mv 22=2mg (x 1+x 2)⑤解得h =8mgk 。

高考物理二轮复习专题突破—动量和能量观点的应用(含解析)

高考物理二轮复习专题突破—动量和能量观点的应用(含解析)

高考物理二轮复习专题突破—动量和能量观点的应用1.(2021福建泉州高三月考)如图所示,建筑工地上的打桩过程可简化为重锤从空中某一固定高度由静止释放,与钢筋混凝土预制桩在极短时间内发生碰撞,并以共同速度下降一段距离后停下来。

则()A.重锤质量越大,撞预制桩前瞬间的速度越大B.重锤质量越大,预制桩被撞后瞬间的速度越大C.碰撞过程中,重锤和预制桩的总机械能保持不变D.整个过程中,重锤和预制桩的总动量保持不变2.(2021福建高三二模)如图所示,A车以某一初速度水平向右运动距离l后与静止的B 车发生正碰,碰后两车一起运动距离l后停下。

已知两车质量均为m,运动时受到的阻力为车重力的k倍,重力加速度为g,碰撞时间极短,则()A.两车碰撞后瞬间的速度大小为√kglB.两车碰撞前瞬间A车的速度大小为√2kglC.A车初速度大小为√10kglD.两车碰撞过程中的动能损失为4kmgl3.(2021辽宁丹东高三一模)2022年冬奥会将在北京举行,滑雪是冬奥会的比赛项目之一,如图所示,某运动员(视为质点)从雪坡上先后以v0和2v0沿水平方向飞出,不计空气阻力,则运动员从飞出到落到雪坡上的整个过程中()A.空中飞行的时间相同B.落在雪坡上的位置相同C.动量的变化量之比为1∶2D.动能的增加量之比为1∶24.(多选)(2021辽宁大连高三一模)在光滑水平桌面上有一个静止的木块,高速飞行的子弹水平穿过木块,若子弹穿过木块过程中受到的摩擦力大小不变,则()A.若木块固定,则子弹对木块的摩擦力的冲量为零B.若木块不固定,则子弹减小的动能大于木块增加的动能C.不论木块是否固定,两种情况下木块对子弹的摩擦力的冲量大小相等D.不论木块是否固定,两种情况下子弹与木块间因摩擦产生的热量相等5.(多选)(2021河南洛阳高三二模)如图所示,质量均为2 kg的三个物块静止在光滑水平面上,其中物块B的右侧固定一轻弹簧,物块A与弹簧接触但不连接。

牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)

牛顿运动定律的基本应用(解析版)—2025年高考物理必刷专题训练(全国通用)

牛顿运动定律的基本应用【考点一 牛顿第二定律的瞬时性问题】1.两种模型物体的加速度与其所受合力具有因果关系,物体的加速度总是随其所受合力的变化而变化,具体可简化为以下两种模型:2.求解瞬时性问题的一般思路求解瞬时性问题时应注意的一点物体的加速度能够随其所受合力的突变而突变,但物体速度的变化需要一个过程的积累,不会发生突变。

【考点二 动力学的两类基本问题】动力学的两类基本问题的解题步骤解决动力学两类基本问题的关键(1)两个分析:物体的受力情况分析和运动过程分析。

(2)两个桥梁:加速度是联系物体运动和受力的桥梁;衔接点的速度是联系相邻两个过程的桥梁。

【考点三 动力学中的图像问题】1.常见的动力学图像v­t图像、a­t图像、F­t图像、F­a图像等。

2.图像问题的类型(1)已知物体受的力随时间变化的图像,分析物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图像,分析物体的受力情况。

(3)由已知条件确定某物理量的变化图像。

3.解题策略(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确图像的物理意义。

(2)注意图像中的特殊点、斜率、面积所表示的物理意义:图线与横、纵坐标轴的交点,图线的转折点,两图线的交点,图线的斜率,图线与坐标轴或图线与图线所围面积等所表示的物理意义。

(3)明确能从图像中获得的信息:把图像与具体的题意、情境结合起来,应用物理规律列出与图像对应的函数表达式,进而明确“图像与公式”“图像与过程”间的关系,以便对有关物理问题作出准确判断。

【考点四 超重和失重的理解】1.超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变。

(2)物体超重或失重多少由物体的质量m和竖直加速度a共同决定,其大小等于ma。

(3)在完全失重的状态下,一切由重力产生的物理现象都会完全消失。

(4)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态。

2021届高考物理二轮复习专项训练卷:动力学观点在力学中的应用【含答案】

2021届高考物理二轮复习专项训练卷:动力学观点在力学中的应用【含答案】

2021届高考物理二轮复习专项训练卷:动力学观点在力学中的应用一、选择题(每小题6分,共48分)1.如图所示,足够长的传送带与水平面的夹角为θ,以速度v0逆时针匀速转动。

在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则选项图中能客观地反映小木块的速度随时间变化关系的是( )2.(2018广东四校联考)如图所示,木盒中固定一质量为m的砝码,木盒和砝码在斜面上一起以一定的初速度滑行一段距离后停止。

现拿走砝码,而持续加一个垂直于斜面向下的恒力F(F=mg cos θ),其他条件不变,则木盒滑行的距离将( )A.不变B.变小C.变大D.变大变小均有可能3.(2018内蒙古呼和浩特一调,15)甲、乙两球质量分别为m1、m2,从同一地点(足够高)同时由静止释放。

两球下落过程所受空气阻力大小f仅与球的速率v成正比,与球的质量无关,即f=kv(k为正的常量)。

两球的v-t图像如图所示。

落地前,经下落t0两球的速度都已达到各自的稳定值v1、v2。

则下列判断正确的是( )A.t0时间内两球下落的高度相等B.甲球质量大于乙球的质量C.释放瞬间甲球加速度较大D.m1m2=m2 m14.如图所示,质量为M的物块在静止的足够长的传送带上以速度v0匀速下滑时,传送带突然启动,方向如图中箭头所示,在此传送带的速度由零逐渐增加到2v0后匀速运动的过程中,以下分析正确的是( )A.物块下滑的速度不变B.物块开始在传送带上加速到2v0后向下匀速运动C.物块先向下匀速运动,后向下加速运动,最后沿传送带向下匀速运动D.物块受的摩擦力方向始终沿传送带向上5.(多选)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带。

不计定滑轮质量和摩擦,绳足够长。

正确描述小物体P速度随时间变化的图像可能是( )6.(2018辽宁鞍山一中四模,2)一条足够长的浅色水平传送带自左向右匀速运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用“动力学观点”破解力学1.如图甲所示,倾角θ=30°的光滑斜面固定在水平地面上,质量均为m 的物块A 和物块B 并排在斜面上,斜面底端固定着与斜面垂直的挡板P ,轻弹簧一端固定在挡板上,另一端与物块A 连接,A 、B 处于静止状态,若A 、B 粘连在一起,用一沿斜面向上的力F T 缓慢拉B ,当拉力F T =14mg 时,A 、B 的位移为L ;若A 、B 不粘连,用一沿斜面向上的恒力F 作用在B 上,当A 的位移为L 时,A 、B 恰好分离,重力加速度为g ,不计空气阻力。

(1)求弹簧的劲度系数和恒力F 的大小;(2)请推导F T 与A 的位移l 之间的函数关系,并在图乙中画出F T ­l 图像,计算A 缓慢移动位移L 的过程中F T 做功W F T 的大小;(3)当A 、B 不粘连时,恒力F 作用在B 上,求A 、B 刚分离时速度的大小。

解析:(1)设弹簧的劲度系数为k ,初始时A 、B 静止,弹簧的压缩量为x ,根据平衡条件可得2mg sin θ=kx当A 、B 的位移为L 时,沿斜面方向根据平衡条件可得F T +k (x -L )=2mg sin θ 解得k =mg4L当A 、B 恰好分离时二者之间的弹力为零,对A 应用牛顿第二定律可得k (x -L )-mg sin θ=ma对B 应用牛顿第二定律可得F -mg sin θ=ma 解得F =34mg 。

(2)当A 的位移为l 时,根据平衡条件有:F T +k (x -l )=2mg sin θ解得F T =mg4Ll画出F T ­l 图像如图所示,A 缓慢移动位移L ,图线与横坐标轴所围成的面积等于F T 做功大小,即W F T =18mgL 。

(3)设A 通过位移L 的过程中弹力做功W ,分别对两个过程应用动能定理可得:W F T -2mgL sin θ+W =0-0W F -2mgL sin θ+W =12×2mv 2-0又W F =FL ,解得v =1410gL 。

答案:(1)mg 4L 34mg (2)F T =mg 4L l 见解析图 18mgL (3)1410gL2.(2019届高三·天津五校联考)如图甲所示,光滑平台右侧与一长为L =2.5 m 的水平木板相接,木板固定在地面上,现有一滑块以初速度v 0=5 m/s 滑上木板,滑到木板右端时恰好停止。

现让木板右端抬高,如图乙所示,使木板与水平地面的夹角θ=37°,让滑块以相同的初速度滑上木板,不计滑块滑上木板时的能量损失,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8。

求:(1)滑块与木板之间的动摩擦因数μ;(2)滑块从滑上倾斜木板到滑回木板底端所用的时间t 。

解析:(1)设滑块质量为m ,木板水平时滑块加速度大小为a ,则对滑块有μmg =ma 滑块滑到木板右端时恰好停止,有0-v 02=-2aL 解得μ=12。

(2)当木板倾斜,设滑块上滑时的加速度大小为a 1,最大距离为s ,上滑的时间为t 1,有mg sin θ+μmg cos θ=ma 10-v 02=-2a 1s 0=v 0-a 1t 1解得s =54 m ,t 1=12s设滑块下滑时的加速度大小为a 2,下滑的时间为t 2,有mg sin θ-μmg cos θ=ma 2 s =12a 2t 22解得t 2=52 s 滑块从滑上倾斜木板到滑回木板底端所用的时间t =t 1+t 2=1+52s 。

答案:(1)12 (2)1+52 s3.(2018·南昌模拟)在倾角θ=37°的粗糙斜面上有一质量m =2 kg 的物块,物块受如图甲所示的水平恒力F 的作用。

t =0时刻物块以某一速度从斜面上A 点沿斜面下滑,在t =4 s 时滑到水平面上,此时撤去F ,在这以后的一段时间内物块运动的速度随时间变化的关系如图乙所示。

已知A 点到斜面底端的距离x =18 m ,物块与各接触面之间的动摩擦因数均相同,不考虑转角处的机械能损失,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8。

求:(1)物块在A 点的速度大小; (2)水平恒力F 的大小。

解析:(1)物块在斜面上做匀变速直线运动,则x =v0+v2t解得v 0=5 m/s 。

(2)由(1)知,物块在斜面上做匀减速直线运动,设物块在斜面上运动的加速度大小为a 1,方向沿斜面向上,则x =v 0t -12a 1t 2解得a 1=0.25 m/s 2设物块与接触面间的动摩擦因数为μ,物块在水平面上运动时加速度大小为a 2,有 μmg =ma 2由题图乙中图线可知a 2=2 m/s 2解得μ=0.2物块在斜面上运动时,设所受的摩擦力为F f ,则F cos θ-mg sin θ+F f =ma 1 F f =μF NF N =mg cos θ+F sin θ解得F ≈10.1 N。

答案:(1)5 m/s (2)10.1 N4.(2018·全国卷Ⅲ)如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35。

一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用。

已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零。

重力加速度大小为g 。

求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间。

解析:(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F ,由力的合成法则有F 0=mg tan α=34mg F =mg cos α=54mg设小球到达C 点时的速度大小为v ,由牛顿第二定律得F =m v2R解得v =5gR 2。

(2)设小球到达A 点时速度大小为v1,作CD ⊥PA ,交PA 于D 点,如图所示,由几何关系得DA =R sin α CD =R (1+cos α)小球由A 到C 的过程中,由动能定理有 -mg ·CD -F 0·DA =12mv 2-12mv 12解得v 1=23gR 2所以小球在A 点的动量大小为p =mv 1=m 23gR2。

(3)小球离开C 点后在竖直方向上做初速度v y =v sin α、加速度为g 的匀加速直线运动,CD =v y t +12gt 2解得t =355R g。

答案:(1)34mg5gR 2 (2)m 23gR 2 (3)355Rg5.如图所示,传送带长6 m ,与水平方向的夹角为37°,以5 m/s的恒定速度沿顺时针方向运转。

一个质量为2 kg 的物块(可视为质点),沿平行于传送带方向以10 m/s 的速度滑上传送带,已知物块与传送带之间的动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2。

求:(1)物块刚滑上传送带时的加速度大小; (2)物块到达传送带顶端时的速度大小。

解析:(1)物块刚滑上传送带时,设物块的加速度大小为a 1, 由牛顿第二定律有:mg sin 37°+μmg cos 37°=ma 1 解得:a 1=10 m/s 2。

(2)设物块速度减为5 m/s 所用时间为t 1, 则v 0-v =a 1t 1,解得:t 1=0.5 s 通过的位移:x 1=v +v02t 1=10+52×0.5 m=3.75 m<6 m 因μ<tan 37°,此后物块继续减速上滑,设其加速度大小为a 2, 则:mg sin 37°-μmg cos 37°=ma 2 解得:a 2=2 m/s 2设物块到达传送带顶端时的速度为v 1, 则:v 2-v 12=2a 2x 2x 2=l -x 1=2.25 m解得:v 1=4 m/s 。

答案:(1)10 m/s 2(2)4 m/s6.滑雪度假村某段雪地赛道可等效为长L =36 m 、倾角为θ=37°的斜坡。

已知赛道的积雪与不同滑板之间的动摩擦因数不同,现假定甲滑下去时滑板与赛道间的动摩擦因数 μ1=0.5,乙滑下时滑板与赛道间的动摩擦因数μ2=0.25,g 取10 m/s 2。

已知甲和乙均可看成质点,且滑行方向平行,相遇时不会相撞,sin 37°=0.6,cos 37°=0.8。

(1)求甲从坡顶由静止自由滑下时到达坡底的速度大小;(2)若乙比甲晚出发Δt =2 s ,为追上甲,有人从后面给乙一个瞬时作用力使乙获得一定的初速度,在此后的运动中,甲、乙之间的最大距离为5 m 。

则乙的初速度为多大?并判断乙能否追上甲,写出判断过程。

解析:(1)设甲的质量为m 1,对甲在赛道上的运动,由牛顿第二定律有m 1g sin θ-μ1m 1g cos θ=m 1a 甲代入数据解得a 甲=2 m/s 2设甲从坡顶自由滑下时到达坡底的速度大小为v 1 则有2a 甲L =v 12代入数据解得v 1=12 m/s 。

(2)设乙的质量为m 2,对乙有m 2g sin θ-μ2m 2g cos θ=m 2a 乙代入数据解得a 乙=4 m/s 2设甲出发后经时间t 1,乙与甲达到共同速度v ,则v =a 甲t 1=v 0+a 乙(t 1-Δt ) x 甲=12a 甲t 12x 乙=v 0(t 1-Δt )+12a 乙(t 1-Δt )2Δx =x 甲-x 乙=5 m代入数据解得t 1=3 s 或t 1=1 s(舍去)v 0=2 m/s甲到达坡底的时间t 甲=v1a 甲=6 s设乙到达坡底所用时间为t 乙L =v 0t 乙+12a 乙t 乙2代入数据解得t 乙=73-12s<4 s t 乙+Δt <t 甲,故可以追上。

答案:(1)12 m/s (2)2 m/s 可以追上,判断过程见解析。

相关文档
最新文档