长江水质的评价和预测模型

合集下载

长江水质的评价和预测

长江水质的评价和预测

长江水质的评价和预测本文利用长江流域近两年多主要城市水质检测数据,通过对原始数据进行归一化综合处理,确定了水质新的综合评判指标函数ψ。

在对整个长江流域所有观测站的位置关系作一定的简化假设后,得到长江综合评定函数值ψ=0.4331,水质为良好。

主要污染物为氨氮。

通过建立污染浓度的反应扩散方程,本文用三种方法反演出未知的污染源强迫函数f(x,t),并对,(x,t)的三种数据加以综合分析,分别给出了高锰酸钾盐和氨氮污染源的主要分布地区。

为了对长江未来水质污染发展趋势进行预测,本文建立了回归分析模型并对回归系数进行了F检验,结果是如果不采取有效的治理措施。

长江可饮用水将逐年下降,且10年后可饮用水所占长江水总量的比例将不到50%。

根据这一预测结果,我们进而使用二元线性回归模型。

通过对各种不可饮用水进行综合考虑,得到如下结果:要在未来10年内使长江干流的不可饮用水(IV类和V类水)的比例控制在20%以内,且没有劣V 类水,那么每年污水处理量至少为75.195亿吨长江水质的评价和预测.pdf (370.52 KB)水质的评价和预测模型本文首先考虑到水质类别的差异和相同类别水质在数量上的差异对综合评价的影响。

构造“S”形的变权函数,对属于不同水质类别的同种污染指标进行“动态加权”,建立基于逼近理想点排序法的评价模型和利用灰色关联度的分析方法。

对长江水质状况做出了综合评价:其次,根据7个观测站的位置将干流分成8段,把每段河道内所有污染源都等效为一个段中央的连续稳定源,分别利用稳态条件下的一维水质模型及质量守恒定律。

得出中间6段每个月的排污量,综合比较各河段一年多来的总排污量得到主要污染源的分布区域:然后,用每年不可饮用类水的百分比之和刻画水质状况。

综合利用灰色GM(1,1)模型和时间序列分析方法,对变化趋势进行了预测:最后,建立不可饮用类水的百分比与长江水总流量和废水排放量的线性回归模型,计算在满足约束条件下排污量的极限值,用排污量的预测值减去极限值,得到未来10年的污水处理量水质的评价和预测模型.pdf (283.07 KB)长江水质的评价预测模型..本问题是一个对长江的水质进行综合评价、预测和控制的问题。

长江水质的评价和预测

长江水质的评价和预测

《数学模型》作业 NO:01 信息工程学院 08级通信2班刘一欣 200800800153长江水质的评价和预测摘要本文首先对附件3、4中的数据进行分析汇总。

通过对高锰酸盐指数和氨氮这两个指标,以及各个观测点在这28个月中水质类型的分布情况的分析,得出了近两年多长江水质的综合评价:虽然江水中污染物的浓度上升不明显,氨氮浓度甚至略微下降,但是Ⅲ类以下水质的比例明显上升。

所以,与03年相比,04年的污染范围扩大了,污染物质的总量也有所增加。

上游排出污染物必然会对下游造成影响,所以在讨论某地区水质状况时,不能只看当地的污染情况,还要考虑上游污染物到达本地后对它的影响。

由于河流本身具有自净能力,上游排放的一部分污染物在向下游流动过程中得到了一定程度的净化。

为了体现这一思想,我们引入了忽略弥散的一维稳态单组份水质模型[1],将上游污染物对下游的影响和下游本身排污相分离,确定了两种污染物的主要分布区域。

得出结论:长江干流近一年多来,高锰酸盐的污染源集中在攀枝花龙洞以及宜昌南津关至岳阳城陵矶地区;而氨氮污染源集中在攀枝花龙洞至重庆朱沱段以及宜昌南津关至岳阳城陵矶段。

在问题三中,为了预测未来10年水质污染发展趋势,我们使用简单指数增长预测模型以及指数平滑预测模型两种方法,对过去10年的数据进行拟合,得到排污量和各类水质所占比例的预测值(由于篇幅有限,此处仅列出排污量预测):Ⅴ类水。

所以根据公式:4,56*(max(0,20%))n m q q =-+,并利用问题三中由指数平滑结合各地实际情况,给出了我们认为可行的意见和建议。

问题重述水既是人类赖以生存的宝贵资源,也是组成生态系统的要素,被列为当今可持续发展的最优先领域。

作为中国第一、世界第三的长江,流域内淡水资源量占中国总量的百分之三十五,面积达一百八十万平方公里,人口占中国总量的三分之一;在中国国土开发、生产力布局和社会经济方面,具有重要的战略地位。

然而某些地方的某些企业,为追求经济效益,置环境于不顾,直接向江内排放污水,导致长江水质的污染程度日趋严重。

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型长江水质评价和预测的数学模型摘要:长江是中国最长的河流,其水质对于保护生态环境和人类健康至关重要。

因此,对长江水质进行评价和预测具有重要的研究价值。

本文综述了现有关于长江水质评价和预测的数学模型,并探讨了这些模型的优劣以及未来的发展方向。

通过这些数学模型,我们可以更好地了解长江水质的变化趋势,为水资源管理者提供科学依据,保护和恢复长江的水质。

1. 引言长江是中国最大的河流,流经11个省市,对于中国的经济和生态起到了重要的作用。

然而,由于人类活动、城市化进程和工业化的快速发展,长江的水质受到了严重的污染。

因此,对长江水质进行评价和预测成为了重要的研究课题。

2. 长江水质评价模型2.1 污染指数模型污染指数模型是较早被采用的水质评价模型之一。

该模型通过对水样中各种污染物浓度的测定,并结合环境质量标准,计算出一个综合的污染指数值,从而评价水质好坏。

然而,该模型没有考虑到污染物之间的相互关系和水文地质条件的影响,因此在实际应用中有一定的局限性。

2.2 灰色关联度模型灰色关联度模型是一种能够综合各种因素的水质评价模型。

该模型通过建立灰色关联度函数,将不确定因素纳入考虑,并计算出与水质相关的关联度值。

然后,通过对各因素进行权重分配,得到最终的水质评价结果。

该模型相比于污染指数模型具有更强的综合能力。

3. 长江水质预测模型3.1 神经网络模型神经网络模型是一种通过模拟人脑的神经网络来进行水质预测的模型。

该模型通过对历史数据的学习和分析,建立相应的神经网络结构,并利用该结构对未来的水质进行预测。

神经网络模型具有较强的非线性拟合能力,能够较好地捕捉水质变化的规律。

3.2 支持向量机模型支持向量机模型是一种基于统计学习理论的水质预测模型。

该模型通过建立超平面,并考虑到各个样本点与超平面的距离,确定最佳的超平面划分水质数据。

支持向量机模型具有较强的泛化能力和鲁棒性,可以有效地对长江水质进行预测。

长江水质的评价与预测_2005年甲组全国一等奖(江帆、纪诚、雷春财)

长江水质的评价与预测_2005年甲组全国一等奖(江帆、纪诚、雷春财)

长江水质的评价与预测摘要:文章对长江水质进行了评价和预测,具体包括以下四个方面:(一) 由附件3中的数据得到每个地区28个月的时间内4个主要项目指标的平均值、方差和置信区间,结合质量标准确定每个地区水质的类别(水质类别的确定:各项指标中类别最高(也即该项指标最差)作为水质最后的综合评价类别);得到各个水质类别依此给出长江整体水质评判为Ⅱ类。

(二)长江干流某一个地区污染物的浓度(总量)取决于上游下来的污染物的浓度(总量)、长江干流自然净化能力以及本地区排放的污染物的浓度(总量)。

考虑一年多来的情况可以得到某一个地区13个月排放的污染物的浓度(总量),对得到的13个值求均值、置信区间,然后对长江干流7个观测站污染物的浓度(总量)排序、比较得出高锰酸盐和氨氮的污染源在:湖北宜昌、湖南岳阳、江西九江。

(三)考虑到这是一个短期的、少数据量的时间序列,本文首先采用了灰色预测的方法,以某类水质河长占统计河长的百分比为对象,分三个时期(枯水期、丰水期、水文年),预测长江未来十年全流域、干流与支流的水质状况。

鉴于灰色预测方法的应用前提是数据序列符合或基本符合指数规律变化,序列波动小且变化速度慢,同时考虑到对长江水质污染起主要作用的是Ⅳ、Ⅴ、和劣Ⅴ类水,本文将Ⅰ、Ⅱ、Ⅲ类水的百分比求和作为一个整体取对数变换后进行预测。

由于三类水百分比相加后使得数据序列更平滑,预测得到的结果更加合理。

对Ⅳ、Ⅴ、和劣Ⅴ类,采取间接预测:如对Ⅳ类水质,由于Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、和劣Ⅴ类水的百分比总和为1,本文不直接以Ⅳ类的百分比为对象预测,而是以Ⅰ、Ⅱ、Ⅲ、Ⅴ、和劣Ⅴ类水的百分比的和为对象,取对数后预测,再由预测结果还原得到劣Ⅴ类水的预测值,由于Ⅰ、Ⅱ、Ⅲ、Ⅴ、和劣Ⅴ类水百分比和相对波动小,预测得到的结果比较合理。

然后,本文采用了线性回归模型对灰色预测模型进行比较与验证。

(四)本文假定长江干流的污水主要来自长江支流,并且排放的废水中主要包括Ⅳ、Ⅴ、和劣Ⅴ类水,首先预测未来十年内长江支流的年废水排放量,然后利用(三)中的预测数据(未来十年Ⅳ、Ⅴ、和劣Ⅴ类水的百分比)得到每年排放的废水中这三类水质的总量,引入长江干流水的总量这一个参量(实际的计算中不需要),结合具体的要求得到每年需要处理的污水总量。

长江水质的评价和预测

长江水质的评价和预测

长江水质的评价和预测的数学模型摘要:本文通过对水质污染项目标准限值、站点距离、水流量以及水流速的分析,讨论了长江水质的评价和预测问题。

问题一:我们首先运用层次分析法建立了分析各地区水质污染状况的数学模型(问题一及问题三)然后采用以因子实测法与标准值为双重判定依据的赋权方法——超标倍[1]问题二:我们通过对长江干流上7个观测点近一年多的基本数据(站点距离、水流量和水流速)以及降解系数等的分析讨论得到了长江干流近一年多主要污染物(CoDMn)和(NH3—N)的污染源主要在哪些地区及其排序,请见表(2.3)以及表(2.4 )。

问题三:我们利用三次指数平滑预测模型,依照过去十年的主要统计数据,对长江未来水质污染的发展趋势做出了预测分析,并得到了若不采取有效措施未来10年长江问题四:根据我们的预测分析如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类问题五:我们的建议和意见:1.强化法制管理,严格控制污水入江。

2.加强污染源治理,建立长江污染源综合治理系统。

3.推行节约用水和污水再利用。

4.有条件时通过排污交易保持排污总量不增大。

关键词:层次分析法降解系数三次指数平滑水流量污染一、问题的重述我国大江大河水资源的保护和治理应是环境治保护的重中之重。

长江是我国第一大河流。

近年来,长江水质的污染程度日趋严重。

针对长江水质的污染情况,题目给出了其沿线17个观测站近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据。

题目也给出了“1995~2004年长江流域水质报告”的主要统计数据。

下面的附表是国标(GB3838-2002)给出的《地表水环境质量标准》中4个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。

要求用以上提供的资料对长江进行以下研究:(1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。

(2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区。

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型长江水质评价和预测的数学模型随着经济的快速发展和人口的增加,水资源的保护和水环境的管理变得越来越重要。

长江作为中国重要的河流之一,其水质评价和预测对于保护水资源、改善水环境至关重要。

通过建立数学模型,可以更好地评价长江水质状况,并预测未来的发展趋势,为水资源管理部门提供科学依据。

数学模型是将现实问题建模为数学问题,并通过数学方法对其进行求解的一种方法。

在长江水质评价和预测中,可以利用数学模型对多种变量进行分析,包括水质指标、水质污染源、气象参数等。

下面我们以长江水质中主要污染物总氮为例,来介绍一种常用的数学模型。

总氮是长江水质评价中常用的指标之一,其来源主要包括工业废水、农业面源污染等。

首先,我们需要收集一定时期内的总氮浓度数据,建立时间序列模型。

时间序列模型是一种将数据按时间顺序排列,并分析其随时间变化的规律的方法。

通过对时间序列数据的分析,我们可以更好地了解总氮浓度的变化趋势和周期性。

在时间序列分析中,最常用的方法是ARIMA模型。

ARIMA模型是一种自回归滑动平均模型,通过对时间序列的平稳化、分解和模型拟合来预测未来的走势。

对于长江总氮浓度数据,我们可以首先对其进行平稳性检验,确定是否需要进行差分操作来使数据平稳化。

然后,根据平稳化后的数据,通过自相关函数和偏自相关函数的分析,确定ARIMA模型的阶数。

在获得ARIMA模型阶数之后,我们可以进行模型的拟合和检验。

通过将拟合结果与原始数据进行比较,可以评估模型的准确性和预测能力。

如果模型合适,并通过误差分析和稳定性检验的验证,我们可以利用该模型对未来一段时间内的总氮浓度进行预测。

除了时间序列模型,还可以利用多元回归模型来评价长江水质中总氮的变化趋势。

多元回归模型是一种通过对多个自变量和因变量之间的线性关系进行建模的方法。

在长江总氮的研究中,我们可以考虑多个因素,如流域面积、降雨量、人口密度等,作为自变量,总氮浓度作为因变量进行建模。

长江水源调查报告-长江水质的评价和预测

长江水源调查报告-长江水质的评价和预测

长江水源调查报告-长江水质的评价和预测

7.5
(或饱和率90%)
6
5
3
2
2
高锰酸盐指数(coDmn)≤
2
4
6
10
15

3
氨氮(Nh3-N)≤
0.15
0.5
1.0
1.5
2.0

4
ph值(无量纲)
6---9
二、模型假设
1)长江干流的自然净化能力可以认为是近似均匀的。

2)要污染物高锰酸盐指数和氨氮的降解系数取0.2。

3)不考虑由于自然灾害所引起的特殊值。

4)假设各物质间没有化学反应。

5)假设长江水的密度均为1g/cm 。

6)不考虑人为因素在水体自净过程中的作用,污染物除流出外不因腐烂沉积或其他任何方式从江中消失。

7)假设长江主干流上的主要城市以外排入的污水的量少,可忽略不记。

8)流入江中的污染物能以很快的速度与江中的水均匀。

长江水质的评价和预测6

长江水质的评价和预测6

长江水质的评价和预测模型祁大江,于强,陈攀指导教师数模指导组摘要根据长江最近十年的水质质量报告,我们得到如下结果:对长江水质的综合评价,我们采用量纲分析法[4],将报告中的四种指标无量纲化得到一个无量纲的水的洁净指数WQ。

根据国家标准[GB3838—2002]对水质给出的四个主要评价指标,得到水的基本分类(见表1),根据这个标准得到大部分城市的水质处于第二类水平,仅江西南昌的水质是第四类。

为了确定长江干流近一年多主要污染物高锰酸盐和氨氮的污染源,在不考虑流量的情况下,在干流上的城市的污染物浓度等于上游流进的减去自然降解的,得到宜昌,岳阳两地污染的综合指标最高。

由附件3,4知,越到下游,流量就越大,而浓度是随着流量的增大而减小,所以我们在模型中将各地支流流量看作本地流量减去上一观测点的流量。

我们假设支流的水直接流入下游经历的时间忽略不计,由此建立零维水质模型[1]。

因为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水,本地区的排污是一个重要的污染因素,本地区排出的污水流量很小,但污染物浓度很高,而零维水质模型没有考虑这方面的因素。

所以我们再次对此模型进行改进,计算出各城市的排污量,依此判断出宜昌,岳阳是主要污染源。

通过对六类水近十年的统计分析,我们采用数据拟合的方法得到水质变化的方程,预测未来十年在不采取更有效治理措施的情况下的长江流域的水质将不断恶化,四、五类劣质水将显著增加。

未来每年各类水占河长的百分比之和都几乎为1。

我们根据前十年的污水排放数据,拟合确定线形回归方程预测今后十年每年排放的污水总量,求出每年须处理的污水量, 结果为后十年每年每年要处理的污水量依次增加到约三百亿吨。

最后,我们对结果进行了进一步的分析,确认它的合理性,由此对长江的治理提出了一系列可行方案,例如加强水质监测把污染杜绝在污染源等。

关键词:量纲分析法回归方程零维水质模型1.问题背景。

作为世界第三大河流的长江,面临着前所未有的六大危机:森林覆盖率严重下降,泥沙含量增加,生态环境急剧恶化;枯水期不断提前,长江断流日益逼近;水质严重恶化,危及沿江许多城市的饮用水,癌症肆虐沿江城乡;物种受到威胁,珍稀水生物日益灭绝;固体废物污染严重,威胁水闸与电厂;湿地面积日益缩减,水的天然自洁功能日益丧失。

长江水质的评价和预测

长江水质的评价和预测

长江水质的评价和预测长江是中国的母亲河,也是世界第三大河流。

它承载着近一半的中国人口和许多重要城市的生活用水,扮演着重要的经济、文化和生态功能。

随着工业化和城市化的加速发展,长江的水质面临着严峻的挑战。

本文将对长江水质进行评价和预测,并探讨长江水质改善的路径和措施。

对长江水质进行评价。

长江流域的主要水质问题包括有机污染物、重金属污染、营养盐过剩和化学品污染等。

根据相关数据显示,长江水质整体上呈现出海域污染较重、重金属超标、有机物污染等情况。

上游的水质相对较好,而下游城市的排污负荷极重,导致水质恶劣。

水体的理化指标和生物学指标均明显超标,水体富营养化加剧,水生态系统受到严重影响。

对长江水质进行预测。

随着中国大力推进生态文明建设和水污染防治工作,长江水质有望逐步改善。

政府将进一步加大水污染治理力度,推动工业企业实施清洁生产,严格水质排放标准和口径管理,严厉打击非法排污行为,加强水环境执法检查,健全长江流域水环境警示监测网络,形成源头控制、终端治理和严格监管相结合的长江水质保护体系。

推进生态修复。

长江流域水土保持、生态修复和环境治理成为当前重点工程,全力推进湿地保护及生态修复项目,加强污染物治理处理、水功能区和水源保护区规划建设,实施“河长制”,推动城乡水系修复,努力提高水生态系统的稳固性和承载力。

加强水资源管理。

长江流域生态环境综合治理规划和水资源保护规划正在编制实施,以最严格的岸线保护制度和河流管理制度为保障,大力开展江河整治工程,做好水资源核查和监管。

加强工农业和生活用水的减排治理,严格控制污染物排放总量,坚持水资源高效利用和节约用水。

加强科技支撑。

利用大数据、人工智能、信息技术、遥感技术和高端装备技术来加强长江水质监测、评估和预警,提高水污染防治技术水平。

加强长江流域环境保护科研,强化污染物溯源和追踪技术研究,提出切实可行的长江水质综合治理方案。

长江水质的改善需要政府、企业和社会各界的共同努力。

长江水质评价及预测模型

长江水质评价及预测模型

Pj Dj Czj Nzj Cgj Ngj
五、模型的建立与求解
5.1 长江水质的综合评价 5.1.1 模糊综合评判模型[2] 根据水域情况的质量标准我们把水污染监测浓度看成是一个离散的随机变量,用概 率统计方法进行统计可以得到水域属于某个标准的概率,因为可以拟定不同的水域标 准,评价参数集为 U={u1,u2,u3},水质分级集为{v1,v2,v3,v4,v5,v6},其中 u1,u2,u3 分别表 示为溶解氧,高锰酸盐指数,氨氮(NH3-N) ,因为 PH 值对水域影响不大,所以对其不
ri,1,1=0
zi,1=0
而 i=1 时对于溶解氧的隶属度的求法与上面方法相反 对于评价参数的权重的确定: 对于溶解氧权重按如下确定 w1 =(x0-x1 )/(x0-s1 ), 而高锰酸盐指数,氨氮的权重分别 为 wi=xi/si ,其中 xi---第 i 种污染物的实测浓度算术平均值,x0---溶解氧在某条件下 的饱和浓度(标准浓度) ,si---第 i 种污染物各级标准的算术平均值。对其进行归一 化处理得到 ai= wi/∑wi(i=1,2,3) 3 个参数构成权重矩阵即为 A=(a1,a2,a3) 三个指标的权重(见表 1) :
三、模型的假设
(1)假设溶解氧(DO)浓度越高水质越好,不考虑过含氧情况。 (2)假设各监测指标之间无相互作用。 (3)假设我们研究的长江是一条平直的河流。 (4)假设所给数据真实可靠。 (5)假设水质状况只与题目给我们的 4 个项目有关,不考虑其他项目
2
四、 号的定义与说明
4.1 模糊评判模型符号定义 符号 Aij Xi,k li,j Li Zi,j ri,j,j wi pi,j ai qi,j qj 符号说明 第 i 个参数在第 j 级别上的标准值 第 i 个参数在某一级别上的监测值的第 k 个 i 参数监测值介于 Ai,j-1 到 Ai,j 之间的个数 第 i 个参数污染物监测值的个数 i 参数污染物监测值介于 Ai,j-1 到 Ai,j 之间的 li,j 个 监测值的平均值 zi,j 对第 j 级水质的隶属度 计算得到的 i 参数的权重 i 参数而言, 介于 Ai,j-1 到 Ai,j 之间的监测值发生在 j 水质下的概率 归一化处理后 i 参数的权重 i 参数发在 j 水质下的模糊概率 水域水体出现 j 级水质的模糊综合概率

长江水源调查报告长江水质的评价和预测

长江水源调查报告长江水质的评价和预测
划定水源保护区
对长江干流及主要支流的水源地进行划定,设立水源保护区,严 格控制水源地周边的人类活动,防止污染。
加强水质监测
增加水质监测站点,提高监测频次和精度,实时掌握水质状况,及 时发现污染源,为采取相应的保护措施提供依据。
建立预警系统
建立水源地水质预警系统,设定水质指标阈值,当水质指标超过阈 值时,立即启动应急处理措施,保障供水安全。
神经网络模型等。
参数确定
根据模型特点,确定关键参数,如 回归模型的自变量、神经网络的层 数和节点数等。
数据准备
收集历史水质数据,进行数据清洗 和预处理,确保数据质量和准确性 。
预测模型验证与结果分析
1 2
模型验证
通过交叉验证、Bootstrap等方法,对预测模型 进行验证,评估模型的准确性和稳定性。
调查目的
通过对长江水源的调查,了解其 水质状况,为保护和管理长江水 源提供科学依据。
调查范围与方法
调查范围
本次调查范围包括长江干流及主要支 流的水源地、沿岸工业企业和城市污 水处理厂等。
调查方法
采用现场采样、实验室分析和数据统 计等方法,对长江水源的水质、水量 、水生态等方面进行全面调查。
02
长江水源现状分析
加强公众宣传教育,提高公众环保意识
加强公众宣传教育
通过媒体、公益活动等多种渠道,加强对公众的环保宣传教育,提 高公众对长江水源保护的认知和意识。
提高公众参与度
鼓励公众参与长江水源保护活动,设立环保热线和投诉平台,方便 公众反映环保问题,提高公众的参与度和积极性。
培养环保意识
在学校、社区等场所开展环保教育,培养公众的环保意识和责任感, 推动形成人人关注、人人参与长江水源保护的良好氛围。

本科毕业设计论文--长江水质的评价和预测

本科毕业设计论文--长江水质的评价和预测

长江水质的评价和预测摘要本问题属于河流水质分析问题。

我们从微观、宏观两个层面对长江水质进行分析、评价。

微观层面,在BOD-DO (S-P)模型的基础上,通过查阅大量支流数据资料,充分考虑到支流对干流的影响,提出虚拟节点的概念,将原长江流域图抽象为一个加权有向图,并考虑河段中的隐性污染源,以及时间轴上的变化,得到改进型BOD-DO方法(S-P)。

通过改进型BOD-DO方法对溶氧量、高锰酸盐指数、氮氨含量的内在关系进行研究,利用反馈迭代的方法逐步逼近得到江水中各类污染物的含量,并以此反演出长江主要污染源的分布——主要集中于长江下游的南京、岳阳、宜昌等地,完成了第二问的解答。

宏观层面,我们以中国环境监测局的评价标准为基础建立了以不同水质等级比例为依据的模糊综合评价和动态评价函数,并通过论证得到该函数良好的评价效果从而为第三第四问服务,然后用这两个函数分析了两年以来长江的综合水质和各地区污染状况的动态变化。

对于第三问预测未来10年的水质趋势,我们首先根据Douglas理论拟合了年废水量的指数增长函数,再把得到的废水量预测值和前面提到的量化评价函数进行线性回归并进行了显著性检验,成功的预测了:若不加治理,长江未来10年的水质将逐年恶化直至降至V类甚至劣V类。

若要制止这一切的发生,必须严格治理污水。

采取第三问同样的回归方法预测得到长江干流未来的污水排量,量化得今后每年治理后的排污量必须控制在215亿吨以内才能满足题干要求的水质等级比例。

最后我们根据前四问提出的宏观和微观模型,提出我们认为切实可行的治理措施,如:整治重点污染城市,重点防控下游污染,治理水土流失。

并更深一层定性和定量地分析了这些措施对模型参数的影响。

[关键词]:BOD-DO模型;虚拟节点;隐性污染源;模糊综合评价函数;指数增长预测;线性回归预测一、问题重述本题要求对长江流域水质污染现状进行分析并对发展趋势作出预测。

题目给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型阮门富、沈晓燕、郑丽心摘要本文以长江流域的水质污染状况为背景,首先通过对17个观测站点近两年多的水质状况有关数据的统计,应用概率统计分析方法,对长江水质状况作出了定量综合评价,并分析各地区水质污染情况,发现南昌水质污染较为严重。

其次,针对长江干流7个观测站近一年多的基本数据,引用了河流污染物中非守恒物质的净化过程满足的一级反应动力学规律,建立河流中污染物一维稳态衰减规律的微分方程模型,求解出了这一年多长江干流上7个观测站的排污量,分析得出高锰酸盐指数主要的污染源是在湖南岳阳、湖北宜昌、重庆朱沱、江苏南京等地,每天的高锰酸盐指数排放量分别为3974.6吨、3047.4吨、 2808.9吨、2713.3吨;氨氮排放的主要污染源为湖南岳阳、湖北宜昌、重庆朱沱、江西九江等地,每天的氨氮排放量分别为384.6309吨、275.7372吨、243.8681吨、221.1189吨。

再次,利用过去10年的主要统计数据,运用基于灰色系统的灰色预测方法,预测出未来10年长江的水质污染情况。

并通过预测到的未来10年内有关长江干流水质情况,在要求IV类和V类水的比例控制在%20以内,且没有劣V类水前提下,建立以未来10年的处理的污水总量最小为目标的规划模型,通过求解模型可得未来10年每年需要处理的污水量分别为43.4吨、56.2吨、60.28吨、70.75吨、……。

最后,对长江水质污染状况给出了解决长江水质污染问题的一些可行的建议和意见。

关键词:水质类别;灰色预测;水质污染1 问题的提出水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理是重中之重。

长江是我国第一、世界第三大的河流,长江的水质污染程度却日趋严重,已引起了相关政府部门、专家们的高度重视。

为了揭示长江的污染情况,引起人们的注意,专家们对长江沿线17个观测站(地区)近两年多主要水质指标进行了考察并给出了相关的检测数据、1995~2004年长江流域水质的主要统计数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速),和国标(GB3838-2002) 给出的《地表水环境质量标准》中4个主要项目标准限值(其中Ⅰ、Ⅱ、Ⅲ类为可饮用水),现要求对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况;进一步研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的主要污染源地区;假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况;根据预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,那么每年需要处理的污水量 ;提出自己对解决长江水质污染问题的切实可行的建议和意见。

长江水质的评价和预测

长江水质的评价和预测

长江水质的评价和预测长江水质的评价和预测一、引言长江是中国第一大河流,是我国重要的水资源和生态系统。

然而,随着经济的快速发展和人口的增加,长江的水质面临着巨大的压力和挑战。

评价和预测长江水质的变化对于保护和管理长江生态环境具有重要的意义。

本文将综合应用水质评价方法和水质预测模型,对长江水质进行全面的评价和预测。

二、长江水质的评价方法水质评价是通过对水样的采集和分析,从生态、环境和人类活动等多个维度来评估水体的质量。

在长江水质评价中,需要考虑以下因素:1. 物理指标:包括水温、溶解氧、浑浊度等。

水温能够反映水体的热平衡状态,溶解氧能够反映水体的呼吸能力,浑浊度则能够反映水体的透明度。

2. 化学指标:包括总氮、总磷、溶解性有机物等。

总氮、总磷是水体营养盐的主要成分,溶解性有机物则能够反映水体的有机物污染情况。

3. 生物指标:包括浮游植物、浮游动物、底栖动物等。

这些生物指标能够反映水体的生态平衡状态。

评价长江水质的方法主要包括水样采集、实验分析和数据处理,如采用主成分分析、聚类分析等多种数学方法对大量数据进行处理和解释。

三、长江水质的预测模型水质预测模型是利用历史数据和现有信息来预测未来一段时间内水质的变化。

长江水质预测模型的建立需要考虑以下因素:1. 时间因素:长江水质具有一定的季节性和周期性。

因此,需要基于历史数据来分析水质的季节特征和变化规律,建立时间序列模型。

2. 空间因素:长江流域的地理环境复杂多样,水质在不同区域的分布存在差异。

因此,需要基于地理信息系统 (GIS) 技术,结合水质监测站点数据和地理因素,建立空间预测模型。

3. 影响因素:长江流域的水质受到多种因素的影响,包括气候、人口密度、工业废水排放等。

因此,需要收集和整理相关数据,构建多元回归模型来分析水质与这些因素之间的关系。

水质预测模型可以采用统计分析方法,如回归分析、时序分析等,也可以采用人工智能算法,如神经网络、遗传算法等。

四、长江水质评价与预测的应用长江水质的评价和预测在水环境管理和保护中具有重要的应用价值。

长江水质的评价与预测模型

长江水质的评价与预测模型
3. 2 长江干流污染源的主要分布地区
根据观测点之间的距离及水流速度得到流程时间 t, 然后再利用自降解系数 Κ与时间 t 之间的乘积关系, 得到上一站 到下一站中自净化量, 从而得到该地区的净排污量. 通过对各地区的净排污量进行比较和趋势分析得出长江干流污染源 的主要分布地区. 首先求出水流时间 tn
1 2 Α n tn 2 从而可以得到相邻观测站间的自然净化量 x n
s= v n tn + x n = Κ tn
该站点的 = 的排污量 观测值 n- 1 bn = rn q v n - ( rq v n- 1 - Κ tn ) 根据
各个站点
前一站点 的观测值
-
观测站相邻间 自然净化量
可知:
∑I
W j =
k= 1
n
jk
n
n
× I jk (m ax )
j
∑W
W = 和标准值.
k= 1
m
× W j (m ax )
其中 I jk ,W 分别表示第 j 类水质第k 种污染物的指数, 水质污染指数, C jk , S j jk , 分别表示第 j 种水质第k 种污染物的测定值
3. 1. 2 水质污染的状况分析
摘 要: 讨论了长江水质的评价与预测问题. 利用多指标模糊概率综合评价和水质指数 (W Q I) 综合评价 等方法分别对长江近两年多的水质状况进行对比, 分析, 检验与定量综合评价. 建立相应的线性规划与线性回 归模型, 找出主要污染物高锰酸盐和氨氮的分布地区. 并对长江未来 10 年的水质污染趋势进行了预测分析, 统计了每年最少处理的污水量. 关键词: 水质状况; 线性规划; 线性回归; 污水处理 中图分类号O 221 文献标识码: A 文章编号: 1671- 1785 ( 2006) 04- 0081- 04

长江水质的评价和预测模型

长江水质的评价和预测模型

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载长江水质的评价和预测模型地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容长江水质的评价和预测模型论文摘要水质评价和预测是实施水污染控制的重要基础,是社会发展和经济发展的重要物质基础,是人民生活的重要保障,是社会可持续发展的重要支持之一。

在水资源污染日趋严重的今天,对水质进行综合评价及预测研究,分析水质污染现状和发展趋势,可以为政府水环境质量管理目标的实现提出管理工具和决策支持。

本文以长江流域的水质为研究对象,首先在模糊数学理论[1]的基础上,通过对长江近两年多的水质情况分析,引入模糊数学理论中的隶属函数和隶属度来刻画环境质量分级界限,根据各污染因子对水质的影响差异确定其权重,采用最大隶属度和加权平均相结合的原则,运用矩阵分析的方法建立了水质模糊综合评价模型从而进行了水质多指标的综合评价,确定水质级别:长江水质大多属于轻度污染,但污染日趋严重,NH3-N的污染占主导地位,其次是CODMn、DO的污染。

然后结合水流输入输出过程的分析,在考虑自然净化能力的情况下,建立了湖水污染浓度随时间变化的含参变量的微分方程模型[2],进而得出如下结论:污染物CODMn的主要污染源是湖南岳阳、湖北宜昌和四川攀枝花;NH3-N 的主要污染源是重庆朱沱和湖南岳阳。

在对长江水质综合评价的基础上,通过对过去10年数据的统计分析,利用灰色系统原理[3]对时间序列进行数据处理,建立灰色系统GM(1,1)预测模型,并通过精度检验后,对长江水质的未来状态做出科学的定量预测。

对于问题四中的污水处理问题,我们运用响应面分析法[4]中的rstool函数拟合出废水排放总量与时间的函数关系。

通过对水质级别重新分类,在新的标准下,运用灰色预测模型中的多数据处理方法得到江水所能容纳的废水总量,从而求出每年应处理的污水量。

长江水质评价与预测的数学模型

长江水质评价与预测的数学模型

长江水质评价与预测的数学模型摘要首先,利用附录3的数据,从时间上和空间上分析长江流域水质,得出长江水质的污染程度有所增加,但不明显.大部分污染比较严重的地区都位于支流上. 在求解主要污染物高锰酸盐指数和氨氮的污染源时先计算出单独一个河段内的排污量,进而求出一个河段内包括降解的污染物总量.计算出长江干流近一年多高锰酸盐指数和氨氮的主要污染源是位于重庆朱沱至湖北宜昌之间(每月排放约230万吨高锰酸盐和21万吨氨氮)、湖北宜昌和湖南岳阳之间(每月排放约206万吨高锰酸盐和20万吨氨氮)的工业带.然后,借鉴马氏链模型,结合过去十年水文年全流域数据,拟合出转移矩阵,预测得到未来十年各类水占河长的百分比(如2009年长江劣V类水占河段长约26.28%,2014年长江劣V类水河段占河段长约36.93%).如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,2005年~2014年每年需要处理的废水分别为(单位:亿吨):25.48,24.89,26.59,29.42,32.82,36.48,40.23,44.01,47.76,51.48.最后,针对目前长江水质污染状况,提出了切实可行的建议,具有较强的参考价值. 关键词:马氏链模型;水质评价;水质污染;数据拟合1 问题的提出水是人类赖以生存的资源,保护水资源就是保护我们自己,对于我国大江大河水资源的保护和治理应是重中之重.专家们呼吁:“以人为本,建设文明和谐社会,改善人与自然的环境,减少污染.”长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视.2004年10月,由全国政协与中国发展研究院联合组成“保护长江万里行”考察团,从长江上游宜宾到下游上海,对沿线21个重点城市做了实地考察,揭示了一幅长江污染的真实画面,其污染程度让人触目惊心.为此,专家们提出“若不及时拯救,长江生态10年内将濒临崩溃”,并发出了“拿什么拯救癌变长江”的呼唤.研究下列问题:(1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况.(2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区?(3)假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况.(4)根据预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,每年需要处理多少污水?(5)对解决长江水质污染问题切实可行的建议和意见.2 模型的假设2.1 长江干流的自然净化能力均匀;2.2水质只受高锰酸盐指数(CODMn)、氨氮(NH3-N)、溶解氧(DO) 、PH值的影响,与其它因素无关;2.3 污染源均匀分布在河岸两侧;2.4 不同水质的水随机分布在全流域上;2.5 两个监测站之间水流速均匀变化.3 符号的约定W表示第k监测站13个月的CODMn总量(包含上一个监测站对它的影响) 1kW表示第k监测站13个月NH3-N的总量(包含上一个监测站对它的影响) k2W表示第k监测站13个月CODMn的总量(不包含上一个监测站对它的影响) '1k'2k W 表示第k 监测站13个月NH3-N 的总量(不包含上一个监测站对它的影响) 0C 表示综合降解系数ijkρ 表示在第k 个监测站第i 个月第j 种污染物的浓度)(i Q o 第i 年长江废水排放总量i len 第i 个河段的长度ij v 第i 月第j 个监测点的平均水流速 ij M 第i 月第j 个监测点的平均水流量4 模型的建立与求解4.1 长江近两年多水质情况与各地区水质污染状况的定量综合评价 4.1.1 污染物含量的变化规律要看出近两年多长江水质的变化情况,我们首先要找出主要污染物的含量随时间的变化规律.由题目我们可以知道,影响水质的主要污染物有高锰酸盐指数(CODMn)、氨氮(NH3-N)、溶解氧(DO) 、PH 值.把长江全流域看成一个整体,),(j i W 为全流域第i 个月第j 种污染物的总量,ijP 为第i 个月第j 种污染物总量占28个月总污染物总量的百分比,即:)1,2,3,4j 28;,1,2,i ( ),(),(281===∑= i ij j i W j i W P ,其中∑==171*k ijk i ij V W ρ,)17,,2,1( =k ,i V 表示第i 个月的水流量,ijk ρ表示在第k 个监测站的第i 个月第j 种污染物的浓度.这里的ijP 都是百分率,数值上有良好的可比性,能很好的反映出三种污染物含量随着时间(月份)的变化规律.作出28个月长江流域四项监测项目总量所占百分比随时间的变化曲线图,如图1所示:由图1我们可以很直观地看出污染物含量的变化规律:(1) 污染物总量是以年为单位成周期性变化的,且相对总量逐年增加; (2) 污染物总量与水流量的变化趋势基本一致;由附录4我们可以知道,每年长江的枯水期为1月~4月,丰水期为5月~10月平水期为11月~12月,在丰水期,污染物的总量有明显的增长,随着枯水期的到来,污染物的总量也随之减少.(3) 四种污染物的变化趋势基本一致;(4) 主要污染物高锰酸盐和溶解氧含量都逐年增加,氨氮的含量有所下降. 4.1.2 长江整体水质情况及各地区水质的污染状况首先,把17个观测站按地理位置由西到东、由支流到干流的顺序重新排列(1、四川攀枝花龙洞 2、四川乐山岷江大桥 3、四川宜宾凉姜沟 4、四川泸州沱江二桥 5、重庆朱沱 6、湖北宜昌南津关 7、湖南长沙新港 8、湖南岳阳岳阳楼 9、湖南岳阳城陵矶 10、湖北丹江口胡家岭 11、湖北武汉宗关 12、江西南昌滁槎 13、江西九江蛤蟆石 14、江西九江河西水厂 15、安徽安庆皖河口 16、江苏南京林山 17、江苏扬州三江营),根据附录3算出各观测站28个月四种污染物的平均浓度:28),,(),(281∑==i k j i k j ρρ,)28,,2,1;17,,2,1;4,3,2,1( ===i k j图1其中),,(k j i 表示第i 个月第k 个监测站第j 种污染物的浓度.作出四种主要监测项目(pH*、DO 、CODMn 、NH3-N)的平均浓度与各观测站之间的关系图,如图2所示:由图2我们可以很直观地看出各观测站4种污染物的浓度曲线,得污染物浓度的分布情况:(1) 支流比干流污染严重,大部分重污染地区都位于支流上; (2) 四川乐山岷江大桥的氨氮和高锰酸盐的含量都很高; (3) 江西南昌滁槎的氨氮含量很高;(4) 湖北宜昌南津关、湖南岳阳岳阳楼、湖北武汉宗关的高锰酸盐含量都很高. 由于重庆观测站朱沱位于川、渝省界,尚未进入重庆,未能反映重庆河段的污染情况.综上所述,长江水质的污染程度虽有所增加,但不明显,这是由于长江水量目前还比较大,掩盖了问题的严重性.4.2研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的主要污染源 4.2.1 流过各监测点的高锰酸盐和氨氮总量由附录3的数据可以知道,2004.04~2005.04长江干流主要观测站点的平均水流量及其所对应的高锰酸盐指数和氨氮浓度,可以求出在这13个月内,每个月流过干流各图2监测点的高锰酸盐和氨氮的总量:ikijk jk M W *ρ=,)7,,2,1( =k 所以13个月流过干流监测点污染物为:∑==131i ijkkj W Q )321(含量表示含量,表示N NH j CODMn j -==.得到流经各监测点的污染物量如下表(单位:吨/月):流经4、5、6三个监测点的高锰酸盐和氨氮的总量最多,但这里没有消除上游河段的影响,jkW 是包含上游全河段污染物的总量,不利于我们分析主要污染物高锰酸盐和氨氮的污染源主要在哪些地区,因而求出各个河段单独的污染物排放量.以下我们考虑消除前面河段的影响.4.2.2 单独一个河段内的排污量由河流污染物一维稳定衰减规律的微分方程ρ0c dxdcV -=积分解得Vx c e 00-=ρρ,其中X 表示测试河段离污染源的距离,V 表示水流在该河段的平均速度,0ρ表示前一节点污染物的浓度,ρ表示前一节点对测试点的影响浓度.2004.04~2005.04长江干流7个观测站点平均水流量、不同时间的高锰酸盐指数和氨氮含量、不同时间的水流数度,可以求出在每一个月份内,在监测点上一河段内所排放的高锰酸盐和氨氮的总量: VCox i i i eW W W ---=1' ,把十三个月的总量相加:;2,17,,2,1,)(131==-=∑=-j k eW W W i VCox ikj ikj kj (程序代码见附录1)得到在长江干流不同河段近一年多主要污染物高锰酸盐和氨氮的排放总量(单位:吨/月):从表中可知重庆朱沱到湖南岳阳城陵矶之间河段排放的高锰酸盐和氨氮总量最多,其中重庆朱沱到湖北宜昌南津关之间的河段每个月排放的高锰酸盐和和氨氮分别有1.2083×10^6吨、1.0933×10^5吨,湖北宜昌南津关到湖南岳阳城陵矶之间和的河段每个月排放的高锰酸盐和氨氮分别有1.5759×10^6吨、1.5251×10^5吨.干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在重庆朱沱到湖南岳阳城陵矶之间河段. 4.2.3 每个河段的总排放量(包括降解的污染物)长江两岸工业分布呈工业带形态,这使对应的污染物排放量也呈带状,比如九江市岸边污染带约8公里长,重庆市在80年代就形成了81公里的岸边污染带,武汉几个大的排污口形成了几公里长的污染带.所以我们引进“单位长度江段污染物排放量”,即每一河段一公里排放的污染物量a .设第i 与第1+i 监测点之间的水流速是均匀变化的,得到单位长度江段水流速变化为i i i len v v )(1-=+α,第i 个河段内的有1-i len 个单位的排放量,第j 个单位河段排放的污染物经过降解流到下一个监测点“剩余”的污染物为αj v j C i ae +-0,1-i len 个单位排放量的“剩余”的总污染物为∑-=+-11i i len j j v Cojaeα.当a 表示高锰酸盐排放量时,这就是我们上面统计的'1k W ,有∑-=+-=111'i i len j j v Cojkk ea W α,解出各段对应得a 值,同理可以算出氨氮排放量b 值.如下所示(单位:吨/月):1817.8 2994.6 5252.13558.3 4229.0 3545.9 157.80 270.96508.25305.02 310.03 17.89对应的河段排放总量(单位:10^5吨/月):重庆朱沱到湖南岳阳城陵矶之间河段排放的高锰酸盐和氨氮总量都是最多的,其中重庆朱沱到湖北宜昌南津关之间的河段每个月排放的高锰酸盐和和氨氮分别有2.3268×10^6吨、2.1054×10^5吨,湖北宜昌南津关到湖南岳阳城陵矶之间河段每个月排放的高锰酸盐和氨氮分别有2.0693×10^6吨、2.0025×10^5吨.攀枝花重庆朱沱江西九江安徽安庆江苏南京湖南岳阳湖北宜昌a 值:b 值:综合5.2.2得出的数据,我们可以确定干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要集中在在重庆朱沱到湖南岳阳城陵矶之间的河段. 4.3长江未来10年水质污染的发展趋势 4.3.1 模型的准备马氏链模型及其基本方程 按照系统的发展,时间离散化为 ,2,1,0=n ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以取k 个离散值k X n ,,2,1 =,且记)()(i X P n a n i ==,即状态概率,从i X n =到j X n =+1的概率记)|(1i X j X P p n n ij ===+,即转移概率.如果1+n X 的取值只取决于n X 的取值及转移概率,而与 ,,21--n n X X 的取值无关,那么这种离散状态按照离散时间的随机转移过程称为马氏链.由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为∑==+kj jij i p n a n a 1)()1( k i ,,2,1 =并且)(n a i 和ijp 应满足:()∑==ki i n a 11, ,2,1,0=n ∞≥ij p , k j i ,,2,1, =∑==kj ijp11, k i ,,2,1 =4.3.2 水质污染的发展趋势根据水环境质量的不同,把水环境分为6类(Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类、Ⅴ类、劣Ⅴ类),其中Ⅰ、Ⅱ、Ⅲ类为可饮用水.各类水质间可以相互转化,且下一个状态只取决于上一状态,与以前的状态无关,这正符合马氏链模型.把6类水质分为四种状态:Ⅰ、Ⅱ类同属于状态1;Ⅲ类属于状态2;Ⅳ、Ⅴ类同属于状态3;劣Ⅴ类属于状态4.用随机变量n X 表示第n 年的状态,1=n X 表示水质属于Ⅰ类或Ⅱ类,2=n X 表示水质属于Ⅲ类,3=n X 表示水质属于Ⅳ类或Ⅴ类,4=n X 表示水质属于劣Ⅴ类,n=0,1,2,….用)(n a i 表示第n 年处于状态i 的概率,i=1,2,3,4,即)()(i X P n a n i ==.用ijp 表示已知今年处于状态i ,来年处于状态j 的概率,i,j=1,2,3,4,即)|(1i X j X P p n n ij ===+.第n+1年的状态1+n X 只取决于第n 年的状态,n X 和转移概率ijp ,而与以前的状态 ,,21--n n X X 无关,即状态转移具有无后效性.第n+1年的状态概率可由概率公式得到:⎪⎪⎩⎪⎪⎨⎧+++=++++=++++=++++=+4443432421414434333232131342432322212124143132121111)()()()()1()()()()()1()()()()()1()()()()()1(p n a p n a p n a p n a n a p n a p n a p n a p n a n a p n a p n a p n a p n a n a p n a p n a p n a p n a n a这里的)(n a i 为第n 年处于第i 种状态的水域长度占河长的百分比.对于不同的转移矩阵P ,来年有不同的百分比,结合附录4十年不同水质变化数据,可以建立以下模型:min∑=9121i ix+∑=9122i ix+∑=9123i ix+∑=9124i ix, 其中41431321211111)()()()()1(p i a p i a p i a p i a i a x i ----+=; 42432322212122)()()()()1(p i a p i a p i a p i a i a x i ----+=; 43433323213133)()()()()1(p i a p i a p i a p i a i a x i ----+=; 44434324214144)()()()()1(p i a p i a p i a p i a i a x i ----+=;s.t.∑==411j ijp, i=1,2,3,4; ……(1) 10≤≤ij p ; (2)由模型的实际意义,不同状态水质之间的转化应满足关系: (1)向自身状态转化的概率不小于向其它状态转化的概率; (2)向相邻状态转化的概率不小于向相隔状态转化的概率;0;p -p 0;p -p 0;p -p 141313121211≥≥≥ (3)0;p -p 0;p -p 0;p -p 0;p -p 2423242123222122≥≥≥≥ (4)0;p -p 0;p -p 0;p -p 0;p -p 3433323331323134≥≥≥≥ (5)0;p -p 0;p -p 0;p -p 434442434142≥≥≥ (6)对于不同的水期,不同的流域可以求出对应的转移矩阵P ,然后再递推出长江未来十年各类水质的变化情况.现对水文年的全流域十年数据进行分析,用数学软件lingo8进行求解,得到转移矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000215.0355.0215.0215.00106.0449.0445.00098.0451.0451.0P ,其对应可以求出长江未来十年水文年的各类水质;20...11 ,*)1()(=-=i P i a i a 有:用枯水期全流域的数据求出干流未来十年水质的变化情况:用丰水期全流域的数据求出干流未来十年水质的变化情况:用水文年干流和支流的数据可以求出各自未来十年水质的变化情况(见附录2、3). 通过对5个表格的分析对比,我们可以知道长江水质变化呈现统一趋势,劣Ⅴ类水河长百分比逐年增加,支流污染比干流污染严重(如水文年劣Ⅴ类水十年变化:干流10.5%~23.6%,支流15.4%~37.6%),枯水期劣Ⅴ类水河长的变化比丰水期快(枯水期17%~45%,丰水期12.7%~28.8%).在不采取有效治理措施的情况下,劣Ⅴ类水河长百分比会以一个很快的增长速度不断增大,致使长江陷入深度危机,若不及时拯救,10年之内,长江水系生态将濒临崩溃.4.4在满足要求情况下的污水处理方法第i 年排放的污染物为 )(i Q o ,水文年干流第i 年四个状态水量百分比为)(4),(3),(2),(1i a i a i a i a ,有关系e i a d i a c i a b i a a i Q o ++++=)(4*)(3*)(2*)(1*)( 10,,2,1 =i ,其中e d c b a ,,,,为常系数.对过去十年数据,用最小二乘法拟和得到)(i Q o 和)(4),(3),(2),(1i a i a i a i a 的关系为: 104.312;+a4(i)*3.983+a3(i)*2.706+a2(i)*1.612=(i)Q 0用5.3计算得到的未来十个水文年干流四个状态水量百分比,而我们的废水处理目标要求要把0a4(i)=而且20a3(i)≤,即312.1042.0*706.2)(2*1612.1)'(0++=i a i Q 这样可以得到每年要处理的污水量为:)'()(00i Q i Q -,即(单位:亿吨):25.48,24.89,26.59,29.42,32.82,36.48,40.23,44.01,47.76,51.48 .4.5对解决长江水质污染问题的建议和意见意见:目前长江造成局部污染严重而总体水质良好的原因不在水量和水源缺乏,而在水源浪费,废水处理率低甚至出现“直排”现象,人们环保意识薄弱.建议:(1)抓好对人民环保意识的教育,进一步提高水资源保护意识,增强对水资源保护重要性、紧迫性的认识唤醒民众的环保意识.(2)强化流域水资源保护机构,制定流域管理法规,统一规划和监督管理水环境质量,防治水环境污染.(3)依据水环境功能用途要求和水体稀释自净能力,建立不同类型的保护区,优先保护好生活用水水源,使其不受污染.(4)积极引进和开发无废或少废,不用水或少用水的工业技术,研究适合流域工业特色和自然环境特点的废污水处理利用和资源化技术,加快建设城市污水处理设施和资源化工程,降低产业水耗,提高废水利用率,使有限的水资源发挥更大的经济、社会和环境效益.(5)以水环境质量目标和污染物总量控制目标为导向,合理规划工业布局和调整工业结构,严格执行环保“三同时”制度和乡镇企业污染防治法规,使新增废污水及污染物排放量得到有效控制.(6)从生态环境和社会发展对水环境的需求出发,确定社会和环境可承受的水资源开发程度,合理规划水利工程布局、调节调度水资源水量,使水资源的环境功能得以充分的发挥和利用.5 模型的评价与推广5.1 模型的评价5.1.1 模型的优点:(1)模型能抓住影响水质的主要因素(高锰酸盐指数(CODMn)、氨氮(NH3-N)、溶解氧(DO)),能正确预测长江水质变化,过程清晰明了,结果科学合理;(2)模型具有较好的通用性,实用性强,对现实有很强的指导意义;(3)在求解主要污染物高锰酸盐指数和氨氮的污染源时先计算出单独一个河段内的排污量,进而求出一个河段内包括降解的污染物总量.5.1.2 模型的不足以及需要改进的地方:(1)监测点太少,不能全面反映长江流域水质;(2)没有考虑长江沿岸地形对流速、流量的影响.5.2 模型的推广我们建立模型的方法和思想对其他类似的问题也很适用,适用于其它河流、湖泊水质的评价和预测.参考文献[1] 姜启源等,数学模型[M],北京:高等教育出版社,2004.[2] 李强等,Maple基础应用教程[M],北京:中国水利水电出版社,2004.[3] 宋兆基等,MATLAB6.5在科学计算中的应用[M]:清华大学出版社.2005.[4] 总参谋部测绘局编制,中华人民共和国地图集[M]:星球地图出版社.2000.[5] 董哲仁等.中国江河1000问[M]:黄河水利出版社.2001.附录附录1单独一个河段内的排污量da 是221*6 的矩阵,记录了题目所给附录3的04年4月~05年4月的数据v 是13*7矩阵,记录了题目所给附录3的水流量数据len=[ 0 950 1728 2123 2623 2787 3251];w_Mn=zeros(1,7); % 临时记录7个监测点的高锰酸盐含量w_NH=zeros(1,7); % 临时记录7个监测点的氨氮含量pure1=zeros(1,7); % 记录7个监测点13个月的高锰酸盐含量pure2=zeros(1,7); % 记录7个监测点13个月的氨氮含量pure1(1)=116820 ; pure2(1) =6261; % 四川攀枝花监测点为第一个河段的上点flag=0; flag2=0;for i=1:221temp=mod(i,17);if temp~=0 && temp<=7t=temp; flag=flag+1;m=mod(flag,7);if m==0m=7;endn=(flag-m)/7;w_Mn(t)=da(i,3)*V(n,m);w_NH(t)=da(i,4)*V(n,m);endif mod(i,17)==0flag2=flag2+1;w1=w_Mn;w2=w_NH;vv=v(flag2,:);for j=7:-1:2 %第j个监测点每一个月的污染物量Co=0.2; ff=1; %减去了上一河段的影响time=2*(len(j)-len(j-1))/((vv(j)+vv(j-1))*3.6*24);wo=w1(j-1); temp1=wo*exp(-Co*time);wo2=w2(j-1); temp2=wo2*exp(-Co*time);w1(j)=w1(j)-temp1; w2(j)=w2(j)-temp2;pure1(j)=pure1(j)+w1(j);pure2(j)=pure2(j)+w2(j);endendendplot(pure1,'-p')hold onplot(pure2,'-*')grid on附录2用水文年干流的数据可以求出干流未来十年水质的变化情况:附录3用水文年支流的数据可以求出支流未来十年水质的变化情况:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长江水质的评价和预测模型摘要本文对长江水质检测的数据进行了分析研究,并做出了相关的预测。

在长江水质综合评价时由于考虑因素较多,故采用多因子综合评价法来反映水体的总体质量和综合特征。

然而综合评价方法有很多,为了既权衡各污染物的平均水平,又突出个别作用,所以分别采用常用的权重法和内梅罗(Nemerow,N.L)指数法。

利用题目所给的长江流域主要城市水质检测报告中数据,同时依据《地表水环境质量标准》(GB3838-2002),对长江近两年的水质情况做出了定量的综合评价。

由结果知近两年的时间里有59.3%的时段水质处于轻污染,有11.1%处于污染,14.8%处于重度污染,以及有14.8%处于严重污染。

所以长江水质在近两年的时间里基本处于轻污染状态。

同样对各地区的水质污染状况进行了分析评价,结果显示有35.3%的地区水质是轻污染,干流和支流比例分布平均;17.6%的地区水质是污染,并且都分布在支流地区;5.88%的地区水质达到了重污染;有11.82%的地区水质处于严重污染的状况中,并集中在支流上。

根据所给的长江干流主要观测站点基本数据,以观测点的断面为着眼点建立污染物降解模型,计算出单位时间(1秒)内通过该检测断面的污染物质量,其值等于单位时间内该地区排污口的排污量与上游未降解污染物质量之和。

于是可以得到本地区排污量,从而得到长江干流近一年多主要污染物CODMn和 NH3-N的主要分布量。

经计算可知湖南岳阳城陵矶、江西九江河西水厂、湖北宜昌南津关三个地区的高锰酸盐与氨氮的排放较为严重。

水质污染的指标主要是污染物浓度,并且污染物浓度受到水流量和排污量的影响。

然而,即使同类水质所含的污染物浓度也不相同。

如果没有外在因素,水质会按特定趋势变化,且变化率是一个常数;若存在外在因素(人为影响等),水质也会具有这种趋势,不过变化率是一个和时间有关的变量。

利用这个特点建立水质预测模型,其预测结果作为水质污染指数来显示水质污染程度。

若水质的等级标准呈线性变化,则水质污染指数可以以线性关系转化成河长百分比,从而求出每年需要处理的污水量。

为了提高长江的水质质量,则需进一步唤醒与提升全民环保意识,加强法律监督力度,实施总量控制,建立科学的污水处理方案。

一、问题重述长江是我国第一、世界第三大河流,长江水质的污染程度日趋严重,已引起了相关政府部门和专家们的高度重视。

附件3给出了长江沿线17个观测站(地区)近两年多主要水质指标的检测数据,以及干流上7个观测站近一年多的基本数据(站点距离、水流量和水流速)。

通常认为一个观测站(地区)的水质污染主要来自于本地区的排污和上游的污水。

反映江河自然净化能力的指标称为降解系数。

事实上,长江干流的自然净化能力可以认为是近似均匀的,根据检测可知,主要污染物高锰酸盐指数和氨氮的降解系数通常介于0.1~0.5之间,比如可以考虑取0.2(单位:1/天)。

附件4是“1995~2004年长江流域水质报告”给出的主要统计数据。

下面的附表是国标(GB3838-2002)给出的《地表水环境质量标准》中4个主要项目标准限值,其中Ⅰ、Ⅱ、Ⅲ类为可饮用水。

请你们研究下列问题:(1)对长江近两年多的水质情况做出定量的综合评价,并分析各地区水质的污染状况。

(2)研究、分析长江干流近一年多主要污染物高锰酸盐指数和氨氮的污染源主要在哪些地区?(3)假如不采取更有效的治理措施,依照过去10年的主要统计数据,对长江未来水质污染的发展趋势做出预测分析,比如研究未来10年的情况。

(4)根据你的预测分析,如果未来10年内每年都要求长江干流的Ⅳ类和Ⅴ类水的比例控制在20%以内,且没有劣Ⅴ类水,那么每年需要处理多少污水?(5)你对解决长江水质污染问题有什么切实可行的建议和意见。

二、问题分析(1)对长江水质进行综合评价。

影响长江水质的影响很多,如果要对其进行做出定量的综合评价,要考虑各个污染因子对长江水质的影响程度。

同时一年中不同时间段污染状况不同,各个检测点的污染程度以及主要污染物也不同。

因此,依据题目所给的长江流域主要城市水质检测报告中的数据,采用计权的方法来综合得出一个综合指数,这样基本可以得到一个评价依据。

随后利用内梅罗指数法计算出一个较为准确的综合评价指数。

从而进一步对长江近两年的水质进行综合评价。

首先对附件3中的水质检测报告中17个观测站的4项数据看成是每个面目的17检测值,并进行单因子评价处理,再求出各因子的内梅罗值,最后对近两年的内梅罗值求平均值。

其结果与内梅罗指数污染等级划分表进行等级划分。

(2)针对第二问,若能够求出每一间测点排放的污染物质量,即可判断主要污染源的位置。

检测点可测出该点的流量、水速及污染物浓度,因此可确定单位时间流经该检测断面的污染物质量。

此质量为该检测点处断面排污质量与上一检测点未降解污染物断面质量之和。

由于降解系数已知,所以上一检测点未降解污染物断面质量也可以求出,于是每一检测点排放的污染物断面质量可知。

(3)根据表4的数据:各类污染的比例;总水量;总排污水,来预测未来长江污染情况。

总水量是受降雨量和干旱程度影响,从短时间来看总水量是常数。

总排污水是呈现逐年上升趋势,可是,如果和水质类别联系起来,由于同种水质类别的污水所含的污染物浓度不同和水质类别间的标准污染物浓度无法确定,因此,我们选择各类污染的比例进行预测分析。

如果没有外界因素,水质污染将呈现一定变化趋势,且变化率是一常数。

若有外界因素作用,我们认为这种变化趋势是存在的,不过,变化率是一随时间变化的变量。

在模型中,不考虑类别间的影响,原始量是历史数据的算术平均值,上一年对这一年的影响是主要作用。

三、模型假设(1)所给的4项检测值能够代表长江水质的污染情况,(2)各个支流可看成一个排污口,并是连续有组织的排放, (3)水的降解能力是一定的,不因污染物的浓度而改变, (4)在水质预测时,不发生重大的自然灾害,(5)污染物在观测点处均匀排放,支流地区的流量是稳定的,污染物浓度变化不大, (6)两个观测站间的江水每个月流速相同。

四、符号说明j G : 第j 个月综合指数,(1,2,27j = ); i w :第i 类水质的权重值,(1,2,6i = );,i j g : 第j 个月第i 类水质的个数,(1,2,6i = 1,2,27j = );,i j C :第i 个地区第j 个检测项目的实测值,(单位:mg L /,1,2,3,17i =1,2,3,4j =);,i j S :第i 个地区第j 个检测项目的评价标准值,(单位:mg L /,1,2,3,17i =1,2,3,4j =);()C T : 温度T (C )时的饱和溶解氧浓度值(单位:mg L /);min pH : 评价标准中规定的pH 下限值; max pH : 评价标准中规定的pH 上限值;i pH : 第i 个检测项目的值pH ,(1,2,3,4i =); ,i j p : 第i 个地区第j 个检测项目的单因子评价指数,(1,2,3,17i = 1,2,3,4j =); j P :第个j 检测项目的内梅罗指数,(1,2,3,4j =);,max i j p : 第i 个地区第j 个检测项目的单因子评价指数最大值,(1,2,3,17i =1,2,3,4j =); P :4个检测项目水质的内梅罗指数均值,即为综合污染指数; m :每个检测项目的检测个数; n : 水质检测的项目个数;j d : 从第j 个观测点到第1+j 个观测点的距离,(62,1 =j ); ij v :第i 个月第j 个观测点的水速,(1,2,13 1,26i j == ); ij ρ :第i 个月第j 个观测点的污染物浓度,(1,2,7j = ); ij l 第i 个月第j 个观测点的水流量,(1,2,7j = );ij t第i 个月从第j 个观测点到第1+j 个观测点所需的时间,(1,2,6j = ); 'ij ρ 第i 个月第j 个观测点的污染物降解后的浓度; ij W每秒流经检测断面的污染物重量,(1,2,7j = ); 'ij W降解后每秒流经检测断面的污染物重量,(1,2,6j = ); ij q第i 个月第j 个观测点的排污质量,(1,2,7j = );五、模型分析(一)长江水质的综合评价 方法1:为了建立模型,我们再补充两条假设 (1)水质类别能够反映一定时期内水质情况。

(2)长江同类水质质量相同,且不同类别的水质呈现线性变化。

将水质类别用权重的方法进行综合分析,其综合指数6,161i i ji j ii w gG w===∑∑ (1,26i = 1,2,27j = ) (1)所得结果见附表1,并做出图来定性分析,见图1。

图1. 综合指数与时间关系图由图可以看出,峰值出现在04年2月,即此时的长江水质最差。

最低值出现在04年9月,此时的水质比较好。

从整体变化趋势来看,长江水质综合指数稍有下降,水质有所转好。

这也与实际符合,2月份处于枯水期,污染物检测值较高,而9月份处于丰水期,污染物检测值相对较低,体现出水质状况良好。

同时,近两年政府对于长江沿岸的排污量实施了新的管理办法,进行总量控制,从而使得长江水质有所改善,但趋势不大。

因为权重模型对于权重因子的要求比较高,它需要根据有关专门研究或专家咨询来确定。

然而模型1中的权重因子可以休现出不同类质的水对长江水质的影响,但只能定性分析。

要定量分析还要找一个精确的计算公式。

方法2:根据国家《地表水环境质量标准》(GB3838-2002)水质评价标准,采用内梅罗指数法[1]来进行定量的综合分析。

模型建立如下:单因子评价指数的计算:,,,/i j i j i j p C S =(2) DO 值的单因子指数计算:,,,f i j i j f i jC C p C S -=- ,,()i j i j C S ≥ (3),,,109i j i j i jC p S =-⨯ ,,()i j i j C S ≤ (4)468()31.6f C C T T=≅+ (5)pH 值的单因子评价的计算:,max7.07.0i j i pH p pH -=- (7)i pH ≤ (6),min 7.07.0i j i pH p pH -=- (7)i pH ≥ (7)内梅罗值的计算:j p =(8) 411j j P p n ==∑ (9)表1. 内梅罗水质指数污染等级划分标准表3、表4的评价分析表。

表2. 03年水质综合污染评价月份水质达到三级标准,4个月份达到四级标准,4个月份达到五级标准。

也就是说在这近两年的时间里有59.3%的时段水质处于轻污染,有11.1%处于污染,14.8%处于重度污染,以及有14.8%处于严重污染。

相关文档
最新文档