走向春季高考——山东省春季高考数学试题变迁
(完整版)山东省春季高考数学试题及答案
山东省 2019 年一般高校招生(春天)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试同意使用函数型计算器,凡使用计算器的题目,除题目有详细要求外,最后结果精准到。
卷一(选择题共60 分)一、选择题(本大题 20 个小题,每题 3 分,共 60 分。
在每题列出的四个选项中,只有一项切合题目要求,请将切合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知会合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 知足 ab>0 , a+b>0 ,则以下选项正确的选项是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如下图,则以下关系式正确的选项是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如下图,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于随意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件8. l⊥ OP ,则直线 l 的方程是(y如下图,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项睁开式中,若全部项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y对于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不可以排在前两位,且乙同学一定排在甲同学前方(相邻或不相邻均可),则不一样排法的种树是()A. 360B. 336C. 312D. 24012. 设会合 M={-2 , 0 , 2 , 4} ,则以下命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416.如下图,点E、F、 G、 H 分别是正方体四条棱的中点,则直线EF 与 GH 的地点关系是()A. 平行B. 订交C.异面D. 重合FGHE第16 题图x y 2 ≥017.如下图,若x,y知足线性拘束条件x ≤0,y≥1则线性目标函数z=2x-y获得最小值时的最优解是()A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰巧获得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的极点在座标原点,对称轴为坐标轴,若该抛物线经过点 M( -2 ,4 ),则其标准方程是()A. y 2=-8xB. y 2= - 8x 或 x2=yC. x 2=yD. y 2=8x 或 x2 = - y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC ,向量 m = ( a, 3b) , 向量 n =( - cosA , sinB) ,且 m ∥ n ,则V ABC 的面积是()A. 18 3B. 9 3C. 3 3D. 3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每题 4 分,共 20 分。
2024年山东春季高考数学考纲
2024年山东春季高考数学科目考试旨在测试中等职业学校学生的数学基础知识、基本技能、基本方法、运算能力、逻辑思维能力、空间想象能力,以及运用所学的数学知识、思想及方法分析问题和解决问题的能力。
考试范围和要求如下:
1. 代数:
* 集合:集合的概念,集合的表示方法,集合之间的关系,集合的基本运算,充分、必要条件。
* 方程与不等式:一元二次方程的解法,实数的基本性质和运算。
2. 几何:
* 平面几何:三角形、四边形、圆的性质和定理。
* 立体几何:空间几何体的性质和定理。
3. 概率与统计:
* 概率初步知识:随机事件、概率、期望值等基本概念。
* 统计初步知识:数据的收集、整理、描述和分析。
考试形式为闭卷、笔试,考试时间为90分钟,满分150分。
考试题型包括选择题、填空题和解答题,其中选择题和填空题分值为70分,解答题分值为80分。
以上信息仅供参考,具体考试内容和要求应以官方发布的考试大
纲为准。
走向春季高考――山东省春季高考数学试题变迁-精选教育文档
走向春季高考――山东省春季高考数学试题变迁2012年以前,山东省“对口高职考试”考试科目中数学为100分。
2012年山东省“对口高职考试”更名为“春季高考”,2012、2013年春季高考考试科目中数学为150分,2014年春季高考考试科目调整为“知识”+“技能”模式。
“知识”部分考试为语文120分、数学120分、英语80分、专业知识200分。
“技能”部分考试是专业技能操作230分。
数学在2012年由100分改为150分,2014年又改为120分,这几年的变化较大,试卷有较大调整,题量有较大变化。
但命题保持了传统的风格,立意于能力,注重考查考生的基础知识、基本技能和基本数学素养,保持了一定的稳定性,难易适中,兼顾中职教学实际,既重视考查职中数学基础知识掌握程度,又注重考查进入高校继续学习的潜能。
就考查知识而言,主干知识地位突出,重点内容仍重点考查。
以重点知识构建试题的主体,选材寓于教材又高于教材,立意创新又朴实无华。
一、2014年与2013年考试说明的变化。
对比2014与2013年的数学考试说明,2014数学考试说明在2013年的基础上变化不大。
修改类型大致如下:(一)描述更准确如:2013年:以现行的山东省职业教育教材审定委员会审定的中等职业教育规划教材《数学》为考试范围,2014年:以现行的山东省职业教育教材审定委员会审定的中等职业教育规划教材《数学》为参考教材,(二)考查内容增加如:2013年第三部分平面解析几何了解直线的倾斜角和斜率的概念,掌握直线方程的点斜式及斜截式。
理解直线的一般式方程。
2014年第三部分平面解析几何了解直线的倾斜角和斜率的概念,会求直线的斜率,掌握直线方程的点斜式及斜截式。
理解直线的一般式方程。
(四)考查内容描述变化如:1、 2013第一部分代数2、方程与不等式(4)会解一元一次不等式(组),会用区间表示不等式的解集(6)会解一元二次不等式。
2014第一部分代数2、方程与不等式(4)会解一元一次不等式(组)。
2020山东省春季高考数学试卷真题及答案详解(精校版)
山东省2020年普通高校招生(春季)考试数学试题一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a c C .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD AC ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题(本大题5个小题,共40分)26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A + ,求直线l 的方程.1.C 【分析】利用补集概念求解即可.【详解】{},U M b d =ð.故选:C 2.B 【分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ .故选:B 3.C 【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C 4.A 【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A 5.A 【分析】求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-,所以()198812256a q a ==⨯-=,故选:A.6.D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.7.B 【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.8.C 【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C 9.A 【分析】本题可通过二项式系数的定义得出结果.【详解】第4项的二项式系数为388765632C ⨯⨯==⨯,故选:A.10.D 【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.11.A 【分析】根据充分条件和必要条件的定义即可求解.【详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.12.A 【分析】本题可根据图像得出结果.【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-,故选:A.13.B 【分析】根据偶函数,指数函数的知识确定正确选项.【详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增.注意到01a =,所以B 选项符合.故选:B 14.D 【分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误;B 项:根据12<、45<易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确,故选:D.15.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得.【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥ ,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--= ,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C .16.B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有5232=种方法,其中恰好全都进入同一间教室,共有2种方法,所以213216P ==.故选:B17.B【分析】根据椭圆中,,a b c 的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以210a =,28c =,可得5a =,4c =,所以22225169b a c =-=-=,可得3b =,所以该椭圆的短轴长26b =,故选:B.18.C【分析】作出目标函数对应的直线,平移该直线可得最大值和最小值,从而得范围.【详解】如图,作出直线:230l x y +=,向上平移直线l ,l 最先过可行域中的点A ,此时2204z =⨯+=,最后过可行域中的点(2,2)B ,此时223210=⨯+⨯=,所以z 的取值范围是[4,10].故选:C .19.D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】A.11//AA BB ,1BB 与1BD 相交,所以1BD 与1AA 异面,故A 错误;B.1BD 与平面11ADD A 相交,且11D A D ∉,所以1BD 与1A D 异面,故B 错误;C.四边形11A BCD 是矩形,不是菱形,所以对角线1BD 与1AC 不垂直,故C 错误;D.连结11B D ,1111B D A C ⊥,111BB A C ⊥,1111B D BB B ⋂=,所以11A C ⊥平面11BB D ,所以111A C BD ⊥,故D 正确.故选:D20.A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin 22A CB +=⇒,最后利用两角和的正切公式,即可得到答案;【详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>,2sin sin sin a b c R A B C=== ,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=,tan 1B ∴=,∴tan tan tan tan()31tan tan B C A B C B C+=-+=-=-⋅,故选:A.21.53π180【分析】根据反三角函数的定义即可求解.【详解】因为sin 0.8α=,ππ,22α⎡⎤∈-⎢⎥⎣⎦,所以453πarcsin 53rad 5180α=== ,故答案为:53π180.22.14【分析】根据对数运算化简为2log 2x =-,求解x 的值.【详解】21222log log 40log log 40x x -=⇔+=,即2log 2x =-,解得:14x =.故答案为:1423.43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π24.469【分析】先求得编号间隔为16以及样本容量,再由样本中所有数据编号为()005+161k -求解.【详解】间隔为021-005=16,则样本容量为480=3016,样本中所有数据编号为()005+161k -,所以样本中的最后一个个体的编号为()005+16301469-=,故答案为:469251+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解.【详解】由题意知:,2,2p c p c -=-∴=∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b∴-=2224224,60c a c a c a b =-∴-+= 23e ∴=±,又()1,e ∈+∞, 1.e ∴+126.(1)3;(2)35a -<<.【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥,则()1215f a a -=--,因为()13f a -<,所以2153a --<,即14a -<,解得35a -<<.27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同,所以该男子这9天中每天走的路程数构成等差数列,设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d ,则91260S =,147390a a a ++=.因为1(1)2n n n S na d -=+,1(1)n a a n d =+-,所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=,所以该男子第5天走140里.28.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-.【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsin φ16骣琪+=琪桫,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤,因此,当11236x ππ+=时,即34x π=时,32y =-,当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值是3,最小值是32-.29.(1)证明见解析;(2【分析】(1)要证明线面平行,可转化为证明面面平行;(2)根据面面垂直的性质定理,可知CF ⊥平面ABFE ,再结合线面角的定义,可得得到直线AC 与平面ABFE 所成角的正弦值.【详解】证明:(1)连接AF ,设点O 为AF 的中点,连接GO ,OH ,在ACF △中,又因为点G 为AC 中点,所以//OG CF .同理可证得//OH AB ,又因为E ,F 分别为正方形ABCD 的边AD ,BC 的中点,故//EF AB ,所以//OH EF .又因为OH OG O ⋂=,所以平面//GOH 平面EFCD .又因为GH Ì平面GOH ,所以//GH 平面EFCD .(2)因为ABCD 为正方形,E ,F 分别是AD ,BC 的中点,所以四边形EFCD 为矩形,则CF EF ⊥.又因为二面角C EF B --为直二面角,平面EFCD 平面ABFE EF =,CF ⊂平面EFCD ,所以CF ⊥平面ABFE ,则AF 为直线AC 在平面ABFE 内的射影,因为CAF ∠为直线AC 与平面ABFE 所成的角.不妨设正方形边长为a ,则2a CF BF ==,在Rt ABF 中,AF ===因为CF ⊥平面ABFE ,AF ⊂平面ABFE ,所以CF AF ⊥,在Rt AFC △中,AC =2sin a CF CAF AC ∠==即为直线AC 与平面ABFE 所成角的正弦值.30.(1)28y x =;(2))240x y --+.【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线l 的方程为()2y k x =+,与抛物线方程联立,并利用韦达定理表示OM ON + ,并利用()12//OM ON B A + ,求直线的斜率,验证后,即可得到直线方程.【详解】解:(1)由椭圆2214x y +=可知24a =,21b =,所以2a =,1b =,则()22,0A ,因为抛物线的焦点为2A ,可设抛物线方程为22(0)y px p =>,所以22p =,即4p =.所以抛物线的标准方程为28y x =.(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,若直线l 无斜率,则其方程为2x =-,经检验,不符合要求.所以直线l 的斜率存在,设为k ,直线l 过点()12,0A -,则直线l 的方程为()2y k x =+,设点()11,M x y ,()22,N x y ,联立方程组2(2)8y k x y x=+⎧⎨=⎩,消去y ,得()22224840k x k x k +-+=.①因为直线l 与抛物线有两个交点,所以200k ⎧≠⎨∆>⎩,即()2222048440k k k k ≠⎧⎪⎨--⨯>⎪⎩,解得11k -<<,且0k ≠.由①可知212284k x x k -+=,所以()()()21212128482244k y y k x k x k x x k k k k-+=+++=++=+=,则()212122848,,k OM ON x x y y k k ⎛⎫-+=++= ⎪⎝⎭ ,因为()12//OM ON B A + ,且12(2,0)(0,1)(2,1)B A =--= ,所以2284820k k k--⨯=,解得2k =-2k =--因为11k -<<,且0k ≠,所以2k =-所以直线l的方程为(2(2)y x =-++,即)240x y --+.。
山东春季高考数学试题及答案解析
山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 山东春季高考数学知识点讲解--不等式(一)主要知识:1.一元二次不等式、对应方程、函数之间的关系;2.分式不等式要注意大于等于或小于等于的情况中,分母要不为零;3.高次不等式要注重对重因式的处理.(二)主要方法:1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间;2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理;3.高次不等式主要利用“序轴标根法”解.(三)例题分析:例1.解下列不等式:(1)260x x --<;(2)23100x x -++<;(3)(1)(2)0(2)(1)x x x x x +-≥+-. 解:(1)23x -<<;(2) 5 2x or x ><-;(3)原不等式可化为 (1)(2)(2)(1)02 1 0 1 2(2)(1)0x x x x x x or x or x x x +-+-≥⎧⇒-<≤-≤<≥⎨+-≠⎩.例2.已知2{|320}A x x x =-+≤,2{|(1)0}B x x a x a =-++≤,山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 (1)若A B ⊂≠,求a 的取值范围;(2)若B A ⊆,求a 的取值范围.解:{|12}A x x =≤≤,当1a >时,{|1}B x x a =≤≤;当1a =时,{1}B =;当1a <时,{|1}B x a x =≤≤.(1)若A B ⊂≠,则122a a a >⎧⇒>⎨>⎩; (2)若B A ⊆,当1a =时,满足题意;当1a >时,2a ≤,此时12a <≤;当1a <时,不合题意. 所以,a 的取值范围为[1,2).例3.已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围;(2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围. 解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩, 解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-. 例4.已知不等式20ax bx c ++>的解集为{|24}x x <<,则不等式20cx bx a ++<的解集为 .解法一:∵(2)(4)0x x --<即2680x x -+->的解集为11{| }24x x or x ><,山东春季高考模拟试题---- 根据历年春季高考考试大纲出题∴不妨假设1,6,8a b c =-==-,则20cx bx a ++<即为28610x x -+-<,解得11{|}42x x <<. 解法二:由题意:00364188a cb b ac c a a c ⎧⎧<<⎪⎪⎪⎪⎪⎪-=⇒-=⎨⎨⎪⎪⎪⎪==⎪⎪⎩⎩,∴20cx bx a ++<可化为20b a x x c c ++>即231048x x -+>, 解得11{| }24x x x ><或.例5.已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立? 解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ① 又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立, ∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ② 由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-, 由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立,山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 ∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R , ∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩, ∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立.(四)巩固练习:1.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈成立,则a 的取值范围是(2,2]-.2.若关于x 的方程2210x ax a ++-=有一正根和一负根,则a ∈(1,1)-.3.关于x 的方程2(3)3m x m x -+=的解为不大于2的实数,则m 的取值范围为3(,](0,1)(1,)2-∞-+∞. 4.不等式2(1)(2)0(4)x x x x +-≥+的解集为(,4)(0,2] 1or x -∞-=-.。
山东省春季高考数学试卷(含解析)
山东省春季高考数学试卷一、选择题1已知全集U={1 , 2},集合M={1},则?U M等于( )A. ?B. {1}C. {2}D. {1,2}2 •函数■,-= -p_—的定义域是( )A. [ - 2, 2] B .( — s, —2] U [2 , +R) C. (- 2, 2) D.( — s, —2)U( 2, +3. 下列函数中,在区间(-s, 0)上为增函数的是()A. y=xB. y=1C. .D. y=|x|4. 二次函数f (x)的图象经过两点(0, 3), (2, 3)且最大值是5,则该函数的解析式是( )A. f (x) =2x2- 8x+11B. f (x) =- 2x2+8x - 1C. f (x) =2x2- 4x+3D. f ( x )=-2x2+4x+35. 等差数列{a n}中,a=- 5, a3是4与49的等比中项,且a3v 0,贝U a5等于( )A. - 18 B . - 23 C . - 24 D . - 326. 已知A ( 3, 0), B (2,1),则向量忑的单位向量的坐标是( )A. (1,-1)B. (- 1 , 1)7. “p V q为真”是“p为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D .既不充分也不必要条件&函数y=cos2x - 4cosx+1的最小值是()A.- 3B. - 2C. 5D. 69.下列说法正确的是()A. 经过三点有且只有一个平面B. 经过两条直线有且只有一个平面C. 经过平面外一点有且只有一个平面与已知平面垂直D. 经过平面外一点有且只有一条直线与已知平面垂直A. 1B. 2C. - 1D. - 214.如果-:,:::..,那么.• |等于()17.已知圆G 和C 2关于直线y= - x 对称,若圆C 的方程是 2 2 2 2 2 2 A. ( x+5) +y =2 B. x + (y+5) =4 C . (x - 5) +y =2 D . 18 .若二项式 f 三八的展开式中,只有第 4项的二项式系数最大,则展开式中的常数 项是( ) A. 20B. - 20 C . 15D. - 1519 .从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技 能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为 ( ) 成绩分析表甲 乙 丙 丁平均成绩; 96 96 85 8510 .过直线x+y+1=0与2x - y - 4=0的交点,且一个方向向量j t ::,的直线方程是( )A. 3x+y -仁0B. x+3y - 5=0C. 3x+y - 3=0D. x+3y+5=011 .文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是 A. 72B. 120C. 144D. 28812.若a , b , c 均为实数,且 a v b v 0, 则下列不等式成立的是(2 2A. a+c v b+c B . ac v beC. a v bD .呼「「“'J13.函数 f (x ) =2kx , g (x ) =log a x ,若f (- 1) =g (9),则实数k 的值是()A. — 18 B .-6 C. 0D. 1815.已知角 a 的终边落在直线 y= - 3x 上,则COS ( n +2 a )的值是(B.16 .二元一次不等式 2x - y >0表示的区域(阴影部分)是((x+5) 2+y 2=4,则圆C 2的方程是2 2x + (y - 5) =4A.C .D.2 2' -(a>0, b>0)的两个顶点,以2 1 2 1 a b20.已知A, A为双曲线AA为直径的圆与双曲线的一条渐近线交于M N两点,若△ A MN的面积为―,则该双曲线的离心率是( )2A.匚B. _C. _D.匚3 3 3 3二、填空题:21 .若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于____________ .22 .在厶ABC中,a=2, b=3,Z B=2/ A 贝U cosA= ________ .2 223 .已知F i, F2是椭圆’< =1的两个焦点,过F i的直线交椭圆于P、Q两点,则△ PQF16 36的周长等于_______ .24 .某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是_________ .■- x25 .对于实数m n,定义一种运算:,已知函数f (x) =a*a,其中0v a| n,V 1,若f (t - 1 )> f ( 4t ),则实数t的取值范围是______________ .三、解答题:26 .已知函数f (x) =log 2 (3+x)- log 2 (3 - x),(1)求函数f ( x)的定义域,并判断函数 f (x)的奇偶性;(2)已知f (sin a ) =1,求a的值.27 .某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC- ABQ的所有棱长都相等,D, E分别是AB, AQ的中点,如图所示.(1)求证:DE//平面BCCB;(2 )求DE与平面ABC所成角的正切值.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3 )用“五点法”作出该函数在长度为一个周期的闭区间上的简图.2 230.已知椭圆’的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心a2 b2率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线I ,1与椭圆的另一个交点为B,求线段AB的长.参考答案与试题解析一、选择题29.已知函数1已知全集U={1 , 2},集合M={1},则?U M等于()A. ?B. {1}C. {2}D. {1 , 2}【考1F:补集及其运算.点】【分根据补集的定义求出M补集即可.析】【解解:全集U={1, 2}, 集合M={1},则?U M={2}答】故选:C.2 •函数;.-=-p——的定义域是()A. [ - 2, 2] B . (-a, - 2] U [2 , +R) C. (- 2, 2) D.(-汽-2)U(2, + OO)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数丁二] ------ 2>0,即|x| >2,解得X V- 2或x > 2,•函数y的定义域是(-O,-2)U(2, +O).故选:D.3.下列函数中,在区间(-O,0)上为增函数的是()A. y=xB. y=1C.,-丄D. y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A函数y=x,在区间(-O, 0)上是增函数,满足题意;对于B,函数y=1,在区间(-O,0)上不是单调函数,不满足题意;对于C,函数y=—,在区间(-^, 0)上是减函数,不满足题意;x对于C,函数y=|x|,在区间(-8, 0)上是减函数,不满足题意.故选:A.4•二次函数f (x)的图象经过两点(0, 3), (2, 3)且最大值是5,则该函数的解析式是( )A. f (x) =2x2- 8x+11B. f (x) =- 2X2+8X- 1C. f (x) =2x2- 4x+3D. f ( x )=-2X2+4X+3【考点】3W二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f (x) =a (x- 1) 2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f (x)的图象经过两点(0, 3) , (2, 3),则对称轴x=1,最大值是5,可设 f (x) =a (x - 1) 2+5,于是3=a+5,解得a=- 2,故 f (x) =- 2 ( x - 1) 2+5= - 2x2+4x+3,故选:D.5.等差数列{a n}中,a1=- 5, a3是4与49的等比中项,且a3v 0,贝U a5等于( )A. - 18 B . - 23 C . - 24 D . - 32【考点】8F:等差数列的性质;84 :等差数列的通项公式.【分析】根据题意,由等比数列的性质可得( a s) 2=4X 49,结合解a s v 0可得a s的值,进而由等差数列的性质a5=2a3 - a1,计算即可得答案.【解答】解:根据题意,a a是4与49的等比中项,则(a3)2=4X 49,解可得a3=± 14,又由a3v 0,贝U a3= - 14,又由a1=- 5,则a5=2a3 —a1 = - 23,故选:B.6.已知A ( 3, 0), B (2, 1),则向量爲的单位向量的坐标是( )【考点】95:单位向量.【分析】先求出'.:;=(-1, 1),由此能求出向量:的单位向量的坐标. 【解答】解:••• A ( 3, 0) , B (2 , 1), •••:.;=(- 1, 1), •••丨:.;|=-,•••向量丁啲单位向量的坐标为( ―,丄一),即(-二,—).|AB I |AB I 2 2故选:C.7•“p V q 为真”是“p 为真”的( ) A.充分不必要条件B.必要不充分条件C. 充要条件D .既不充分也不必要条件【考点】2L :必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“ p V q 为真命题”则p 或q 为真命题,故由充要条件定义知 为真”是“p 为真”必要不充分条件【解答】解:“ p V q 为真命题”则p 或q 为真命题,所以“p V q 为真”推不出“p 为真”,但“p 为真” 一定能推出“ p V q 为真”, 故“p V q 为真”是“p 为真”的必要不充分条件, 故选:B.&函数y=cosx - 4cosx+1的最小值是( )A.- 3B. - 2C. 5D. 6【考点】HW 三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y 的最小值.【解答】 解:T 函数 y=cos 2x - 4cosx+1= (cox - 2) 2- 3,且 cosx € [ - 1, 1],故当 时,函数y 取得最小值为-2, 故选:B.A. ( 1, -1)B •(— 1 , 1)cosx=1 D.9. 下列说法正确的是( )A. 经过三点有且只有一个平面B. 经过两条直线有且只有一个平面C. 经过平面外一点有且只有一个平面与已知平面垂直D. 经过平面外一点有且只有一条直线与已知平面垂直 【考点】LJ :平面的基本性质及推论.【分析】在A 中,经过共线的三点有无数个平面; 在B 中,两条异面直线不能确定一个平面; 在C 中,经过平面外一点无数个平面与已知平面垂直; 在D 中,由线面垂直的性质得经过平 面外一点有且只有一条直线与已知平面垂直.【解答】在A 中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故 A错误;在B 中,两条相交线能确定一个平面, 两条平行线能确定一个平面, 两条异面直线不能确定 一个平面,故B 错误;在C 中,经过平面外一点无数个平面与已知平面垂直,故C 错误;在D 中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直, 故D 正确.故选:D.10.过直线x+y+1=0与2x - y - 4=0的交点,且一个方向向量:1. 的直线方程是( )A. 3x+y -仁0B. x+3y - 5=0C. 3x+y - 3=0D. x+3y+5=0【考点】IB :直线的点斜式方程.【分析】 求出交点坐标,代入点斜式方程整理即可.由方向向量. ■得: 直线的斜率k= - 3, 故直线方程是:y+2= - 3 (x - 1), 整理得:3x+y -仁0, 故选:A.11 •文艺演出中要求语言类节目不能相邻, 现有4个歌舞类节目和2个语言类节目,若从中【解答】解:由2x-y-4=0解得:X=1y=-2,任意选出4个排成节目单,则能排出不同节目单的数量最多是()A. 72B. 120C. 144D. 288【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的 4 个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21G3=8种取法,将4个节目全排列,有A/=24种可能,则以排出8X 24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有G2G2=6种取法,将2个歌舞类节目全排列,有A2=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A2=6种情况,此时有6 X 2X 6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12. 若a, b, c均为实数,且a v b v 0,则下列不等式成立的是()A, a+c v b+c B . ac v be C. a2v b2 D.;.【考点】R3:不等式的基本性质.【分析】A由a v b v 0,可得a+c v b+c;B, c的符号不定,则ac, bc大小关系不定;C, 由a v b v 0,可得a2> b2;D, 由a v b v 0,可得-a>- b? .' I ;【解答】解:对于A由a v b v 0,可得a+c v b+c,故正确;对于B, c 的符号不定,则 ac , be 大小关系不定,故错;2 2对于C,由a v b v 0,可得a > b ,故错; 对于 D,由 a v b v 0,可得-a >- b? 一_ “ _i ,故错; 故选:A13.函数 f (x ) =2kx , g (x ) =log a x ,若 f (- 1) =g (9),则实数 k 的值是( )A. 1B. 2C. - 1D.- 2【考点】4H:对数的运算性质.【分析】由g (9) =log a 9=2=f (- 1) =2- k ,解得即可. 【解答】 解:g (9) =log a 9=2=f (- 1) =2-k , 解得k= - 1, 故选:C14•如果 ||_5 :,那么 * ]等于()A.- 18 B . - 6 C. 0D. 18【考点】9R 平面向量数量积的运算.【分析】由已知求出 「|及[与一的夹角,代入数量积公式得答案. 【解答】解: ••• _::二 _;,且V 皿]:::> =n .则一-j= 1=3 X 6X(- 1) = - 18.故选:A.15 .已知角a 的终边落在直线 y= - 3x 上,贝U COS ( n +2 a )的值是(【考点】GO 运用诱导公式化简求值; G9任意角的三角函数的定义. 【分析】由直线方程,设出直线上点的坐标,可求 COS a ,利用诱导公式,二倍角的余弦函 数公式可求COS ( n +2 a )的值.【解答】解:若角a 的终边落在直线y= - 3x 上, (1)当角a 的终边在第二象限时,不妨取x= - 1,则y=3 , r=寸.j.;ld = !:',C.A.B . 土 - D. b2 ■所以COS a = ^,可得COS ( n +2 a ) =- COS2 a =1 - 2COS a ="' ;V10 5(2)当角a的终边在第四象限时,不妨取x=1,则y= - 3,所以sin a =——,COS a =一,可得COS ( n +2 a ) = - COS2 a =1 - 2COS2% = 一‘ , V10V10 5故选:B.【考点】7B:二元一次不等式(组)与平面区域.【分析】禾U用二元一次不等式(组)与平面区域的关系,通过特殊点判断即可.【解答】解:因为(1, 0)点满足2x - y> 0,所以二元一次不等式2x - y >0表示的区域(阴影部分)是: C.故选:C.17.已知圆G和C2关于直线y= - x对称,若圆C的方程是(x+5) 2+y2=4,则圆G的方程是( )A. ( x+5) 2+y2=2B. x2+ (y+5) 2=4C. (x - 5) 2+y2=2D. x2+ (y -5) 2=4【考点】J1:圆的标准方程.【分析】由已知圆的方程求出圆心坐标和半径,求出圆G的圆心关于y= - x的对称点,再由圆的标准方程得答案.【解答】解:由圆C的方程是(x+5)2+y2=4,得圆心坐标为(-5, 0),半径为2,设点(-5, 0)关于y= - x的对称点为(x o, y o),•••圆C2的圆心坐标为(0, 5), 则圆C2的方程是x2+ (y - 5)2=4. 故选:D.18•若二项式讳勺展开式中,只有第4项的二项式系数最大,则展开式中的常数上■项是( )A. 20B. - 20 C • 15 D.- 15【考点】DB二项式系数的性质.则*,解得16.二元一次不等式2x - y >0表示的区域(阴影部分)是(【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幕指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:•二项式1’的展开式中只有第4项的二项式系数最大,•••n=6,x6—3r则展开式中的通项公式为T r+i=C6r? (- 1) r?x --------------- .令6- 3r=0,求得r=2,故展开式中的常数项为C62? (- 1) 2=15,故选:C.19•从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为( )成绩分析表A.甲B.乙C.丙D. 丁【考点】BC极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙, 由此知乙同学成绩较高,且发挥稳定,应选乙参加.故选:B.2 220.已知A, A为双曲线'(a>0, b>0)的两个顶点,以AA为直径的圆与双曲a2 b22线的一条渐近线交于M N两点,若△ A i MN 的面积为匚,则该双曲线的离心率是()2A W2B 座C -D 应~~3_ ~~3_~~3_【考点】KC 双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A i (- a , 0)到直线渐近线的距离 d ,根据三角形的面积公式,即可求得△ AMN 的面积,即可求得 a 和b 的关 系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程 y= ± x ,设以A i A 为直径的圆与双曲线的渐近线 y=^a ax 交于M N 两点,△ A i MN 的面积S= x 2a x 丄=' =',整理得:b= c ,2 c c 2 2贝H a 2=b 2 - c 2= • c 2, 即 a= c ,4 2双曲线的离心率e == _,故选B.二、填空题:21•若圆锥的底面半径为 1,母线长为3,则该圆锥的侧面积等于 3 n .【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】圆锥侧面展开图是一个扇形,半径为 I ,弧长为2n ,则圆锥侧面积 S=n rl ,由此 能求出结果.【解答】 解:圆锥侧面展开图是一个扇形,半径为 I ,弧长为2 n r •••圆锥侧面积:[二厂二 丁n r|则A i (- a , 0)到直线y=—x 的距离d= aaXO-bXa |=ab=n X 1 X 3=3 n .故答案为:3 n ./ :jT H22.在△ ABC中,a=2, b=3,/ B=2/ A 贝U cosA=_4一【考点】HR余弦定理.【分析】由二倍角的正弦函数公式,正弦定理即可计算得解. 【解答】解:•••/ B=2/ A,• sin / B=2sin / Acos Z A,又T a=2, b=3,•由正弦定理可得:2 3 sinZ^A 2sin.ZAcos.ZA-sin Z A M 0, •- cos Z A==.4故答案为:一423.已知F1, F2是椭圆=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△ PQF的周长等于24【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF 2|=2a=12 , |QF1|+|QF2|=2a=12即可求得厶PQF的周长.【解答】解:椭圆——< =1的焦点在y轴上,则a=6, b=4,设厶PQF的周长为I ,16 36则l=|PF 2|+|QF2|+|PQ| ,=(|PF i|+|PF 2| ) + (|QF i|+|QF 2| )=2a+2a,=4a=24.• △ PQF的周长24 ,故答案为:24.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是【考点】CB古典概型及其概率计算公式.本事件个数:m・,一」=4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,基本事件总数n=「| ,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m= 「4,•••其中甲、乙两名志愿者恰好同时被选中的概率是:m 4 1P= = =「故答案为:=乙两名志愿者恰好同时被选中包含的基【分析】先求出基本事件总数< 1,若f (t - 1 )> f ( 4t ),则实数t的取值范围是(-丄,2].3【考点】5B:分段函数的应用.【分析】求出f (x)的解析式,得出f (x)的单调性,根据单调性得出t - 1和4t的大小关系,从而可得t的范围.【解答】解:T 0 < a< 1,•••当x< 1 时,a x> a,当x > 1 时,a> a x,••• f (x)在(-g, 1]上单调递减,在(1, +8)上为常数函数, ••• f (t - 1)> f ( 4t),• t - 1 < 4t W 1 或t - 1 W 1 < 4t ,解得-—< t W—或厶--■ ■-:.3 4 4故答案为:(-_, 2].D1三、解答题:26. 已知函数f (x) =log 2 (3+x)- log 2 (3 - x),(1)求函数f ( x)的定义域,并判断函数 f (x)的奇偶性;(2)已知f (sin a ) =1,求a的值.【考点】4N:对数函数的图象与性质.(x) =log 2 (3+x) - log 2 (3 - x)有意义,则< 3即可,由 f (- x) =log 2 (3 - x)- log 2 (3+x) =- f (x),可判断函数 f (x)为奇函数.(2 )令f (x) =1,即一’「,解得x=1 .即sin a =1,可求得a .【解答】解:(1)要使函数f (x) =log 2 ( 3+x)- log 2 (3 - x)有意义,则 '" ? - 3 25.对于实数m n,定义一种运算:的』m,叮口已知函数(x) =a*a x,其中0< a 【分析】(1 )要使函数1 3-x>0v x v 3,•••函数f (x)的定义域为(-3, 3);T f (- x) =log 2 (3-x) - log 2 ( 3+x) =- f (x),•函数f ( x)为奇函数.(2 )令 f (x) =1,即 4 二,解得x=1 .• sin a =1,•- a=2k r } —^~,(k€ Z).27. 某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:若按方案①缴费,需缴费50X 0.9=45万元;若按方案②缴费,则每天的缴费额组成等比数列,其中玄1=石,q=2, n=20,丄门-乡1 1•••共需缴费S20= - - =,_=219- =524288 - ,_ ~ 52.4 万元,~ 2 2 2•方案①缴纳的保费较低.28. 已知直三棱柱ABC- ABQ的所有棱长都相等,D, E分别是AB, AQ的中点,如图所示(1)求证:DE//平面BCGB;(2 )求DE与平面ABC所成角的正切值.【考点】Ml:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1 )取AC的中点F,连结EF, DF,贝U EF// CG, DF// BQ故平面DEF//平面BCCB i, 于是DE//平面BCCB i.(2)在Rt△ DEF中求出tan / EDF.【解答】(1)证明:取AC的中点F,连结EF, DF,•••D, E, F分别是AB AC, AC的中点,••• EF// CC, DF// BC,又DF A EF=F, AC A CC=C,•••平面DEF// 平面BCCB i,又DE?平面DEF,•DE//平面BCCB i.(2)解:• EF// CG, CC丄平面BCCB.•EF丄平面BCCB i,•••/ EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,贝U DF= , EF=1,(1) 求该函数的最小正周期;(2) 求该函数的单调递减区间;29.已知函数y=3(sin27Txcci —cos2xsirrit7(3 )用“五点法”作出该函数在长度为一个周期的闭区间上的简图. 【考点】HI :五点法作函数 y=Asin (3 x+$ )的图象;H2:正弦函数的图象. 【分析】(1)由已知利用两角差的正弦函数公式可得 y=3sin (2x-—),利用周期公式即6可得解.(2) 令 2k n + W 2x - W 2k n + ------------- , k € Z ,解得:k n +W x W k n +, k € Z ,可2 6 2 36得函数的单调递减区间.(3 )根据五点法作图的方法先取值,然后描点即可得到图象. TT ItIT【解答】解: (..一 . ' =3sin (2x - ^―),•••函数的最小正周期 T= =n .2x 兀71 T1257T 6 13K 122x -匹 60 7T Tn3H 22n y0 3-3(2)7t2k n + W 2x兀3兀 ”W 2k n + 一 , k € Z ,解得: 0 £.n+ . W x W k nk € Z ,•函数的单调递减区间为:[k 兀Tt +57T],k € Z ,描点、连线如图所示:30.已知椭圆. 的右焦点与抛物线y 2=4x 的焦点F 重合,且椭圆的离心a 2b 2率是',如图所示.2(1) 求椭圆的标准方程; (2)抛物线的准线与椭圆在第二象限相交于点 A ,过点A 作抛物线的切线I ,1与椭圆的另一个交点为B ,求线段AB 的长.【考点】KL :直线与椭圆的位置关系.【分析】(1)根据题意得F (1, 0),即c=1,再通过e=l 及c 2=a 2 - b 2计算可得椭圆的方程;(2)将准线方程代入椭圆方程,求得 A 点坐标,求得抛物线的切线方程,由△ =0,求得k 的值,分别代入椭圆方程,求得 B 点坐标,利用两点之间的距离公式,即可求得线段 AB 的长.【解答】解:(1)根据题意,得F (1 , 0), ••• c=1, 又 e 「, • a=2,「. b 2=a 2 - c 2=3, 2 2故椭圆的标准方程为::'一•=—_:4 33由A 位于第二象限,则 A (- 1,),3冥 + (—1 )过点A 作抛物线的切线I 的方程为:*r'由* /异,解得- 3,----- F --- -1U 3(2)抛物线的准线方程为x=- 1垃二T2 2即直线I : 4x - 3y - 4=0214x-3y-4=02整理得4 ' -=1整理得:ky2- 4y+4k+6=0 ,3当k=0,解得:y<_,不符合题意,当k=时,直线2[2 2x丄y ,直线与椭圆只有一个交点,不符合题意,当k z 0,由直线与抛物线相切,则△=0,(4k+6) =0,解得:k=「或k= - 2,当k= - 2时,直线I的方程为3y- I:= -2 (x+1),2 24‘,整理得:y-y=-2(s+l)则y1=,『2=--三,由以上可知点A (- 1 , ), B (―,- •),u 1 勺>0 W•••丨AB 丨= I 「: . 1:~ = ,V L19 wr 3呂!2 ' 19由-11192--19x +8x - 11=0,解得:X i=- 1 , X2= ,19(x+1),,整理得:(x+1)2=0,22。
山东春季高考数学试题及详解答案
山东省2015年普通高校招生(春季)考试数学试题注意事项:1 •本试卷分第I卷(选择题)和第H卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2 •本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第I卷(选择题,共60 分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母选出,填涂在答题卡上)1.若集合A= {1,2,3},B= {1,3},贝U A AB 等于()(A) {1,2, 3} ( B) {1,3} (C) {1,2} ( D) {2}2.|x- 1|v 5的解集是( )(A ) (—6,4) (B) (— 4,6)(C) ( —a , — 6) U (4, +s ) (D) ( — a , — 4 )U( 6,+a )____ 13.函数y= x+1 +一的定义域为()X(A) {x| x>—1 且X M 0} (B) {x|x>—1}(C) {x x>—1 且X M 0} (D) {x|x>—1}4•“圆心到直线的距离等于圆的半径”是“直线与圆相切”的(A)充分不必要条件(B )必要不充分条件(C)充要条件(D )既不充分也不必要条件5.在等比数列{a n}中,a2= 1,a4= 3,则a6等于()(A) -5 (B) 5 (C) -9 (D) 96•如图所示,M 是线段0B 的中点,设向量"O A =^a , OB =^b ,则ElM 可以表示为()T1"" 1" (A ) a + 2 b (B )— a + 2 b " 1" " 1" (C ) a — 2 b(D )— a — - b7•终边在y 轴的正半轴上的角的集合是()TTTT(A ) {x|x = 2 + 2k 二,k. Z } (B ) {x|x = 2+(C ) {x|x =— 2 + 2k 二,k 三Z }(D ) {x|x = —亍 + k 二,kw Z }&关于函数y =— X 2+2X ,下列叙述错误的是()(A )函数的最大值是 1(B )函数图象的对称轴是直线x=1(C )函数的单调递减区间是 [—1 ,+^ ) ( D )函数图象过点(2, 0)9 •某值日小组共有 5名同学,若任意安排 3名同学负责教室内的地面卫生,其余负责教室外的走廊卫生,则不同的安排方法种数是(12.已知函数f (x)是奇函数,当x >0时,f (x)= x 2 + 2,则f (— 1)的值是( )13.已知点P (m ,—2)在函数y = log ] x 的图象上,点3A 的坐标是(4, 3),贝,AP的值是()(A ) ■ 10(B ) 2 ,10(C ) 6 2(D ) 5.22名同学(A) 10 (B) 20 (C) 6010•如图所示,直线I 的方程是((B ) 3x — 2y — 3= 0(C ) 3x — 3y — 1 = 0(D ) x — 3y — 1 = 011 •对于命题p , q ,若 p A q 为假命题”, (A ) p , q 都是真命题(B) p , q 都是假命题 (C ) p , q 一个是真命题一个是假命题(D )无法判断(A )— 3(B)— 1 ( C) 1 ( D) 3M且pV q 为真命题,则(14. 关于x,y 的方程x 2+m y 2= 1,给出下列命题:①当m v 0时,方程表示双曲线;②当 m = 0时,方程表示抛物线;③当 Ov mv 1时,方程表示椭圆;④当 m = 1时,方程表示等轴双曲线;⑤当 m > 1时,方程表示椭圆。
2020年山东省春季高考数学试卷真题及答案详解(精编打印版)
山东省2020年普通高校招生(春季)考试数学试题一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a c C .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD AC ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题(本大题5个小题,共40分)26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A + ,求直线l 的方程.1.C 【分析】利用补集概念求解即可.【详解】{},U M b d =ð.故选:C 2.B 【分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ .故选:B 3.C 【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C 4.A 【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A 5.A 【分析】求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-,所以()198812256a q a ==⨯-=,故选:A.6.D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.7.B 【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.8.C 【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C 9.A 【分析】本题可通过二项式系数的定义得出结果.【详解】第4项的二项式系数为388765632C ⨯⨯==⨯,故选:A.10.D 【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.11.A 【分析】根据充分条件和必要条件的定义即可求解.【详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.12.A 【分析】本题可根据图像得出结果.【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-,故选:A.13.B 【分析】根据偶函数,指数函数的知识确定正确选项.【详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增.注意到01a =,所以B 选项符合.故选:B 14.D 【分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误;B 项:根据12<、45<易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确,故选:D.15.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得.【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥ ,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--= ,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C .16.B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有5232=种方法,其中恰好全都进入同一间教室,共有2种方法,所以213216P ==.故选:B17.B【分析】根据椭圆中,,a b c 的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以210a =,28c =,可得5a =,4c =,所以22225169b a c =-=-=,可得3b =,所以该椭圆的短轴长26b =,故选:B.18.C【分析】作出目标函数对应的直线,平移该直线可得最大值和最小值,从而得范围.【详解】如图,作出直线:230l x y +=,向上平移直线l ,l 最先过可行域中的点A ,此时2204z =⨯+=,最后过可行域中的点(2,2)B ,此时223210=⨯+⨯=,所以z 的取值范围是[4,10].故选:C .19.D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】A.11//AA BB ,1BB 与1BD 相交,所以1BD 与1AA 异面,故A 错误;B.1BD 与平面11ADD A 相交,且11D A D ∉,所以1BD 与1A D 异面,故B 错误;C.四边形11A BCD 是矩形,不是菱形,所以对角线1BD 与1AC 不垂直,故C 错误;D.连结11B D ,1111B D A C ⊥,111BB A C ⊥,1111B D BB B ⋂=,所以11A C ⊥平面11BB D ,所以111A C BD ⊥,故D 正确.故选:D20.A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin 22A CB +=⇒,最后利用两角和的正切公式,即可得到答案;【详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>,2sin sin sin a b c R A B C=== ,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=,tan 1B ∴=,∴tan tan tan tan()31tan tan B C A B C B C+=-+=-=-⋅,故选:A.21.53π180【分析】根据反三角函数的定义即可求解.【详解】因为sin 0.8α=,ππ,22α⎡⎤∈-⎢⎥⎣⎦,所以453πarcsin 53rad 5180α=== ,故答案为:53π180.22.14【分析】根据对数运算化简为2log 2x =-,求解x 的值.【详解】21222log log 40log log 40x x -=⇔+=,即2log 2x =-,解得:14x =.故答案为:1423.43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π24.469【分析】先求得编号间隔为16以及样本容量,再由样本中所有数据编号为()005+161k -求解.【详解】间隔为021-005=16,则样本容量为480=3016,样本中所有数据编号为()005+161k -,所以样本中的最后一个个体的编号为()005+16301469-=,故答案为:469251+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解.【详解】由题意知:,2,2p c p c -=-∴=∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b∴-=2224224,60c a c a c a b =-∴-+= 23e ∴=±,又()1,e ∈+∞, 1.e ∴+126.(1)3;(2)35a -<<.【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥,则()1215f a a -=--,因为()13f a -<,所以2153a --<,即14a -<,解得35a -<<.27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同,所以该男子这9天中每天走的路程数构成等差数列,设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d ,则91260S =,147390a a a ++=.因为1(1)2n n n S na d -=+,1(1)n a a n d =+-,所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=,所以该男子第5天走140里.28.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-.【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsin φ16骣琪+=琪桫,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤,因此,当11236x ππ+=时,即34x π=时,32y =-,当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值是3,最小值是32-.29.(1)证明见解析;(2【分析】(1)要证明线面平行,可转化为证明面面平行;(2)根据面面垂直的性质定理,可知CF ⊥平面ABFE ,再结合线面角的定义,可得得到直线AC 与平面ABFE 所成角的正弦值.【详解】证明:(1)连接AF ,设点O 为AF 的中点,连接GO ,OH ,在ACF △中,又因为点G 为AC 中点,所以//OG CF .同理可证得//OH AB ,又因为E ,F 分别为正方形ABCD 的边AD ,BC 的中点,故//EF AB ,所以//OH EF .又因为OH OG O ⋂=,所以平面//GOH 平面EFCD .又因为GH Ì平面GOH ,所以//GH 平面EFCD .(2)因为ABCD 为正方形,E ,F 分别是AD ,BC 的中点,所以四边形EFCD 为矩形,则CF EF ⊥.又因为二面角C EF B --为直二面角,平面EFCD 平面ABFE EF =,CF ⊂平面EFCD ,所以CF ⊥平面ABFE ,则AF 为直线AC 在平面ABFE 内的射影,因为CAF ∠为直线AC 与平面ABFE 所成的角.不妨设正方形边长为a ,则2a CF BF ==,在Rt ABF 中,AF ===因为CF ⊥平面ABFE ,AF ⊂平面ABFE ,所以CF AF ⊥,在Rt AFC △中,AC =2sin a CF CAF AC ∠==即为直线AC 与平面ABFE 所成角的正弦值.30.(1)28y x =;(2))240x y --+.【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线l 的方程为()2y k x =+,与抛物线方程联立,并利用韦达定理表示OM ON + ,并利用()12//OM ON B A + ,求直线的斜率,验证后,即可得到直线方程.【详解】解:(1)由椭圆2214x y +=可知24a =,21b =,所以2a =,1b =,则()22,0A ,因为抛物线的焦点为2A ,可设抛物线方程为22(0)y px p =>,所以22p =,即4p =.所以抛物线的标准方程为28y x =.(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,若直线l 无斜率,则其方程为2x =-,经检验,不符合要求.所以直线l 的斜率存在,设为k ,直线l 过点()12,0A -,则直线l 的方程为()2y k x =+,设点()11,M x y ,()22,N x y ,联立方程组2(2)8y k x y x=+⎧⎨=⎩,消去y ,得()22224840k x k x k +-+=.①因为直线l 与抛物线有两个交点,所以200k ⎧≠⎨∆>⎩,即()2222048440k k k k ≠⎧⎪⎨--⨯>⎪⎩,解得11k -<<,且0k ≠.由①可知212284k x x k -+=,所以()()()21212128482244k y y k x k x k x x k k k k-+=+++=++=+=,则()212122848,,k OM ON x x y y k k ⎛⎫-+=++= ⎪⎝⎭ ,因为()12//OM ON B A + ,且12(2,0)(0,1)(2,1)B A =--= ,所以2284820k k k--⨯=,解得2k =-2k =--因为11k -<<,且0k ≠,所以2k =-所以直线l的方程为(2(2)y x =-++,即)240x y --+.。
2022年山东省春季高考数学试题及答案
山东省2022年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟。
考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。
卷一(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知集合M={1,2},N={2,3,x},若M N,则实数x的值是().A.1B.2C.3D.42.已知a>b,则下列不等式成立的是().A.a+b>0B.ab>0C.|a|>|b|D.3+a>3+b3.已知向量a与向量b的方向相反,|a|=4,|b|=3,则a⋅b等于().A.-6B.6C.-12D.124.在等差数列{a n}中,已知a1=2,a2+a3=10,则该数列的公差是().A.1B.2C.3D.45.已知函数f (x)=(a-5)x2+sin x是奇函数,则实数a的值是().A.3B.4C.5D.66.如图所示,上下两个正四棱柱的底面边长之比是1 : 2,则该组合体三视图中的俯视图是().(第6题图)A.B.C.D.7.已知直线过点(0,2),且倾斜角为135°,则该直线的方程是().A.x-y-2=0 B.x-y+2=0 C.x+y+2=0 D.x+y-2=08.已知p 是假命题,q 是真命题,则下列命题为真命题的是( ). A .⌝qB .⌝p ∧qC .⌝(p ∨q )D .p ∧q9.如图所示,△ABC 中,D 是BC 的中点,设→AB =a ,→AD =b ,则→AC 等于( ). A .a -2 b B .a +2 b C .-a +2 b D .-a -2 b 10.圆x 2+y 2-4x +6y -3=0的圆心坐标是( ).A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3)11.已知tan(π-α)=3,且α是第二象限角,则sin α等于( ).A .1010B .-1010C .31010D .-3101012.在(x -2)6的二项展开式中,二项式系数最大的项是( ).A .160 x 3B .-160 x 3C .60 x 4D .-60 x 413.如图所示的圆柱形容器,其底面半径为1m ,高为3m (不计厚度).设容器内液面高度为x (m ),液体的体积为V (m 3),把V 表示为x 的函数,则该函数的图像大致是( ).A .B .C .D .14.某职业学校计划举行合唱、舞蹈、书画三项活动,若甲、乙两名同学每人从这三项活动中任选一项,则恰好都选择舞蹈的概率是( ). A .16B .19C .29D .1315.已知函数f (x )=x 2+bx 图像的对称轴为x =1,则不等式f (x )<0的解集是( ).A .(-2,0)B .(-∞,-2)∪(0,+∞)C .(0,2)D .(-∞,0)∪(2,+∞)16.已知点A (cos α,sin α),B (cos β,sin β),若β-α=π3,则|→AB |等于( ).A .1B .2C .3D .2ACBD(第9题图)x (m) O V (m 3)3 x (m) O V (m 3)3 x (m)O V (m 3)3 x (m) O V (m 3)3 (第13题图)x (m)17.对于a ∈Z ,0≤b <1,给出运算法则:【a +b 】=a -2,则【-1.414】的值等于( ).A .1B .0C .-3D .-418.下列约束条件中,可以表示如图所示区域(阴影部分)的是( ).A .⎩⎨⎧y -2≥0x -y +2<0B .⎩⎨⎧y -2≤0x -y +2<0C .⎩⎨⎧y -2≥0x -y +2>0D .⎩⎨⎧y -2≤0x -y +2>019.有三张卡片,第一张卡片的正反两面分别写有数字1,3,第二张卡片的正反两面分别写有数字2,4,第三张卡片的正反两面分别写有数字5,7.现从这三张卡片中任取两张并排放在桌面上,两张卡片朝上一面的数字组成一个两位数,则所有不同两位数的个数是( ). A .8B .12C .18D .2420.已知双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的左右焦点分别是F 1,F 2,O 是坐标原点,过点F 2作双曲线一条渐近线的垂线,垂足为P . 若|PF 1|=3|OP |,则双曲线的离心率是( ). A .6B .5C .3D .2卷二(非选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21.抛物线x 2=2y 的焦点坐标是 .22.若底面边长为4的正四棱锥与棱长为2的正方体体积相等,则正四棱锥的高等于 . 23.在△ABC 中,已知AC =6,∠A =30°,∠B =45°,则BC =____________.24.某企业操作岗位、技术岗位和管理岗位的人数分别是700,210,140.为了解该企业不同岗位员工的健康状况,采用分层抽样的方法,从这三个岗位的所有员工中随机抽取300人进行体检,则抽取操作岗位的人数是 . 25.已知a >0且a ≠1,若函数f (x )=()()[)1522+xa x x a x ⎧-+∈-∞⎪⎨∈∞⎪⎩,,,,在(-∞,+∞)上具有单调性,则实数a 的取值范围是 .y -2=0xyOx -y+2=0(第18题图)三、解答题(本大题5个小题,共40分.请写出文字说明、证明过程或演算步骤) 26.(7分)已知函数f (x )=kx ,且f (2)=1.(1)求实数k 的值;(2)证明函数f (x )在(0,+∞)上是减函数.27.(8分)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点P 是棱BB 1上的点,求证: (1)AC ∥平面A 1PC 1; (2)AC ⊥D 1P .28.(8分)如图所示,已知等边△ABC 的边长为6,顺次连接△ABC 各边的中点,构成△A 1B 1C 1,再顺次连接△A 1B 1C 1各边的中点,构成△A 2B 2C 2,依此进行下去,直至构成△A n B n C n ,这n 个新构成的三角形的边长依次记做a 1,a 2,…,a n . (1)求a 1,a 2,a 3的值;(2)若△A n B n C n 的边长小于0.01,求n 的最小值.29.(8分)已知函数f (x )=23sin x cos x -2cos 2x +m 的图像过点(0,-1). (1)求函数f (x )的最大值;(2)若α∈ (0,π2),且f (α)=1,求α的值.30.(9分)如图所示,已知椭圆 x 2a 2+y 2b2=1(a >b >0)的右顶点是A ,左右焦点分别是F 1,F 2,且|AF 1|=2+1,|AF 2|=2-1. (1)求椭圆的标准方程;(2)设直线l :x -2y +m =0交椭圆于点M ,N , 以线段F 2M ,F 2N 为邻边作平行四边形F 2MPN , 若点P 在椭圆上,求实数m 的值.(第30题图)xyOF 1PAF 2N Ml AB CD A 1B 1C 1D 1P(第27题图)A BCA 1B 1C 1 B 2A 2 C 2 … (第28题图)山东省2022年普通高校招生(春季)考试数学试题答案卷一(选择题 共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)【附解析】1.A (提示:因为M ⊆ N ,所以集合M 中的元素都是集合N 中的元素,则x =1)2.D (提示:本题可以从选项入手,采用反例法逐一验证.如当a =3,b =-3时,选项A 、B 、C 都错误;而D 选项,根据不等式的性质,在不等式的两边同时加上3,不等号的方向保持不变)3.C (提示:因为向量a 与向量b 的方向相反,则<a ,b >=180︒,所以a ⋅b =|a ||b |cos <a ,b >=4×3×cos180︒=-12)4.B (提示:因为数列{a n }是等差数列,a 1=2,所以a 2=a 1+d ,a 3=a 1+2d .因为a 2+a 3=10,所以2×2+3d =10,解得d =2)5.C (提示:因为函数f (x )是奇函数,所以f (-x )=-f (x ),则由f (x )的解析式可得, (a -5)(-x )2+sin(-x )=-[(a -5)x 2+sin x ],即(a -5)x 2-sin x =-(a -5)x 2-sin x ,2(a -5)x 2=0,a =5.本题亦可采用赋值法求解,如f (-1)=-f (1) )6.A (提示:根据俯视图的定义,该几何体的俯视图是两个正方形,其边长之比为1:2,且小正方形位于大正方形的右上角)7.D (提示:斜率k =tan135°=-1,又因为直线过(0,2),所以其纵截距为2,则直线方程为y =-x +2,即x +y -2=0)8.B (提示:q 是真命题,⌝ q 为假命题,A 错误;p 是假命题,⌝ p 为真命题,⌝ p ∧q 为真命题,B 正确;(p ∧q )为真,⌝(p ∧q )是假命题,C 错误;p ∧q 为假命题,D 错误) 9.C (提示:由→AD =12(→AB +→AC ),得→AC =2→AD -→AB =2b -a =-a +2b )10.B (提示:配方得,(x -2)2+(y +3)2=16,则圆心为(2,-3),半径为r =4)11.C (提示:由tan(π-α)=-tan α=3,得tan α=-3,由⎩⎪⎨⎪⎧sin αcos α =-3 sin 2α+cos 2α=1,得sin 2α=910,又α是第二象限角,则sin α=31010)12.B (提示:展开式共有7项,中间一项的二项式系数最大,即T 4=C 36x 3(-2)3=-160x 3)13.A (提示:因为V =Sh =πx ,x ∈[0,3],所以V 是关于x 的正比例函数,且在区间[0,3]上单调递增,其图像是一条自左而右逐渐上升的直线)14.B (提示:甲乙两名同学每人从这三项活动中任选一项,一共有n =3×3=9个基本事件,随机事件A “恰好都选择舞蹈”的基本事件个数为m =1,所以概率是P (A )=m n =19)15.C (提示:由对称轴x =-b2=1,得b =-2,解不等式x 2-2x <0,得0<x <2)16.A (提示:|→AB |=(cos β-cos α)2+(sin β-sin α)2 =2-2cos βcos α-2sin βsin α =2-2(cos βcos α+sin βsin α) =2-2cos(β-α)=2-2cos π3=1)17.D (提示:【-1.414】=【-2+0.586】=-2-2=-4)18.B (提示:阴影区域在直线 y -2=0的下方与直线x -y +2=0的左侧公共部分,根据系数法可知需满足x -y +2<0且y -2≤0)19.D (提示:一共6个数字,十位上的数字有6种不同的选法,个位上的数字有4种不同的选法,所以由分步计数原理可得,N =6×4=24个两位数)20.A (提示:如图所示,在Rt ∆OF 2P 中,易知OP =a ,PF 2=b ,OF 2=c ;令∠OF 2P =θ,则cos θ=F 2P OF 2=bc.又在∆PF 1F 2中,易知PF 1=3OP =3a ,PF 2=b ,F 1F 2=2c ,则由余弦定理可得,cos θ=PF 22+F 1F 22-PF 122PF 2×F 1F 2=b 2+(2c )2-(3a )2 2b ×2c =b 2+4c 2-9a 24bc ;由b c =b 2+4c 2-9a 24bc ,可得b 2+4c 2-9a 2=4b 2,即4c 2-9a 2=3b 2=3(c 2-a 2);化简得,c 2=6a 2,c =6a ,则e =ca =6)(第20题图)yOF 1F 2Pθx卷二(非选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上) 21. (0,12)22. 3223. 324. 20025. (0,1)∪[3,+∞)【附解析】21. (0,12)(提示:焦点在y 轴的正半轴上)22. 32(提示:V =13×42×h =23,解得h =32)23. 3(提示:在∆ABC 中,由BC sin A =ACsin B ,得BC =AC ×sin A sin B =6×sin30°sin45°=3) 24.200(提示:分层抽样,700×300700+210+140=700×3001050=200)25. (0,1)∪[3,+∞)(提示:分两种情况进行讨论.若函数f (x )在(-∞,+∞)上为增函数,如25题图(1)所示,可得⎩⎪⎨⎪⎧a -1>0,a >1,a 2≥2(a -1)+5,即⎩⎪⎨⎪⎧a >1,a >1,a ≤-1或a ≥3,解得a ≥3;若函数f (x )在(-∞,+∞)上为减函数,如25题图(2)所示,可得⎩⎪⎨⎪⎧a -1<0,0<a <1,a 2≤2(a -1)x +5,即⎩⎪⎨⎪⎧a <1,0<a <1,-1≤a ≤3,解得0<a <1;综上所述,实数a 的取值范围是(0,1)∪[3,+∞) )三、解答题(本大题5个小题,共40分.请写出文字说明、证明过程或演算步骤) 26.(1)解:因为函数f (x )=k x ,且f (2)=1,所以k2=1,解得k =2.(2)证明:由(1)得,f (x )=2x.设x 1,x 2∈(0,+∞),且x 1≠x 2,x2Oy第25题图(1)y =a x ,x ≥2y =(a -1) x +5,x <2x2 O y第25题图(2)y =a x ,x ≥2y =(a -1) x +5,x <2则△x =x 2-x 1,△y =y 2-y 1=f (x 2)-f (x 1)=2x 2-2x 1=2(x 1-x 2)x 1x 2,因此,△y △x =f (x 2)-f (x 1)x 2-x 1=2(x 1-x 2)x 1x 2×1x 2-x 1=-2x 1x 2,因为x 1,x 2∈(0,+∞),所以x 1x 2>0,则△y △x =-2x 1x 2<0, 所以函数f (x )在(0,+∞)上是减函数.27.证明:(1)如图所示,在正方体ABCD -A 1B 1C 1D 1中,因为AA 1∥CC 1且AA 1=CC 1,所以四边形AA 1C 1C 为平行四边形,故AC ∥A 1C 1, 因为AC ⊄平面A 1PC 1,A 1C 1 ⊂平面A 1PC 1,所以AC ∥平面A 1PC 1. (2)如图所示,连接BD ,B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以BB 1⊥AC , 因为四边形ABCD 为正方形,所以AC ⊥BD ,因为BB 1∩BD =B ,BB 1⊂平面BB 1D 1D ,BD ⊂平面BB 1D 1D ,所以AC ⊥平面BB 1D 1D , 因为D 1P ⊂平面BB 1D 1D ,所以AC ⊥D 1P . 28.解:(1)a 1=3,a 2=32,a 3=34.(2)这 n 个新构成的三角形的边长成等比数列{a n },a 1=3,q =12, 则a n =a 1 q n=3×(12)n -1.因为△A n B n C n 的边长小于0.01,所以3×(12)n -1 < 0.01,即(12)n -1 <1300 .所以n -1>log 12 1300,n >9.23,即n 的最小值为10.29.解:(1)因为函数图像过点(0,-1),所以f (0)= 2 3 sin0 cos0-2cos 20+m =-1,解得m =1.则函数f (x ) =2 3 sin x cos x -2cos 2x +1= 3 sin2x -cos2x =2 sin(2x -π6),所以函数f (x )的最大值是2.(2)因为f (α)=2sin(2α-π6)=1,即sin(2α-π6)=12,所以2α-π6=π6+2k π或者2α-π6=5π6+2k π(k ∈Z ),解得α=π6+k π或者α=π2+k π(k ∈Z ),AB CD A 1B 1C 1D 1P(第27题图)因为α∈ (0,π2),所以α=π6.30. 解:(1)因为|AF 1|=2+1,|AF 2|=2-1,即a +c =2+1,a -c =2-1, 解得a =2,c =1,则b 2=a 2-c 2=1, 所以椭圆的标准方程为x 22+y 2=1.(2)由(1)可知,F 1(-1,0),F 2(1,0),设M (x 1,y 1),N (x 2,y 2),P (x ,y ),由题意可知,→F 2M +→F 2N =→F 2P ,即(x 1-1,y 1)+(x 2-1,y 2)=(x -1,y ),可得⎩⎪⎨⎪⎧x 1-1+x 2-1=x -1y 1+y 2=y ,化简得⎩⎪⎨⎪⎧x =x 1+x 2-1 y =y 1+y 2①,联立方程组⎩⎪⎨⎪⎧x 22+y 2=1 x -2y +m =0,消去x 可得6y 2-4my +m 2-2=0.因为直线与椭圆有两个不同交点,所以Δ=(4m )2-4×6×(m 2-2)>0,解得-6<m <6, 由韦达定理得,y 1+y 2=4m 6=2m3,又由直线方程可知x =2y -m ,则x 1+x 2=2y 1-m +2y 2-m =2(y 1+y 2)-2m =2×2m 3-2m =-2m3,代入①,可得⎩⎨⎧x =-2m3-1y =2m 3,因为P 在椭圆上,所以满足椭圆方程(-2m3-1)22+(2m3)2=1,化简得4m 2+4m -3=0,解得m =12或m =-32(满足△>0),所以m 的值为12或-32.。
2024年山东春季高考数学高考题
2024年山东春季高考数学高考题2024 年山东春季高考数学高考题,紧扣时代发展脉搏,注重考查学生的基础知识、思维能力和应用能力。
从整体来看,试卷结构合理,题型分布均匀,难度适中,具有良好的区分度。
本次高考题的选择题部分,涵盖了代数、几何、概率统计等多个领域。
例如,在代数方面,考查了函数的性质、不等式的解法等;几何部分,则涉及到三角形、圆的相关知识。
这些题目既注重对基本概念的理解,又需要学生能够灵活运用所学知识进行分析和计算。
填空题中,有对数列、向量等知识点的考查。
数列填空题要求学生掌握等差数列和等比数列的通项公式及求和公式,并能熟练运用;向量填空题则侧重于向量的运算和几何意义。
解答题部分是试卷的重点和难点所在。
第一道解答题通常是关于三角函数的问题,要求学生熟练掌握三角函数的诱导公式、图像和性质,并能运用这些知识解决实际问题。
比如,给出一个三角形的边长和角度,求其他角度或边长。
第二道解答题往往是立体几何相关。
学生需要具备空间想象力,能够正确画出图形,运用线面平行、垂直的判定定理和性质定理进行证明,并计算几何体的体积和表面积。
概率统计问题在解答题中也占有重要地位。
题目可能会给出一组数据,要求学生计算平均数、方差等统计量,或者通过建立概率模型,计算事件发生的概率。
函数应用题也是常见的题型之一。
这类题目通常与实际生活紧密结合,例如成本利润问题、最优化问题等,考查学生运用函数知识解决实际问题的能力。
值得一提的是,本次高考数学题还体现了数学与其他学科的交叉融合。
例如,在一道题目中,将物理中的运动学知识与数学中的函数图像相结合,要求学生通过分析函数图像来解决物理问题。
这不仅考查了学生的跨学科思维能力,也体现了素质教育的要求。
此外,试卷中还设置了一些创新性的题目,旨在考查学生的创新思维和探究能力。
这些题目往往没有固定的解题模式,需要学生从不同的角度去思考和尝试,培养了学生的创新意识和解决问题的能力。
总的来说,2024 年山东春季高考数学高考题既注重基础知识的考查,又突出了对学生能力的培养,为高校选拔人才提供了有效的依据,也为今后的数学教学指明了方向。
2023年山东省春季高考统一考试山东省春季高考统一考试数学考试标准
数学考试标准一、考试范围和要求(一)代数1.集合集合的概念,集合元素的特性,集合的表示方法,集合之间的关系,集合的基本运算,充分、必要条件。
要求:(1)理解集合的概念,掌握集合的表示方法,掌握集合之间的关系,掌握集合的交、并、补运算。
(2)能正确地区分充分、必要、充要条件。
(3)理解符号∈、臣、=、C、2、只、2、与、民、∩、U、CoA、=、=、=的含义。
2.方程与不等式一元二次方程的解法,实数的大小,不等式的性质,区间,含有绝对值的不等式的解法,一元二次不等式的解法。
要求:(1)会解一元二次方程,会用根与系数的关系解决有关问题。
(2)理解不等式的性质,会用作差比较法证明简单不等式。
(3)会解一元一次不等式(组)。
(4)会解形如| αx+bl≥c或|ax+bI<c的含有绝对值的不等式。
(5)会解一元二次不等式,会用区间表示不等式的解集。
(6)能利用不等式的知识解决有关的实际问题。
3.函数函数的概念,函数的表示方法,函数的单调性、奇偶性。
一次函数、二次函数的图像和性质。
函数的实际应用。
要求:(1)理解函数的有关概念及其表示方法,会求一些常见函数的定义域。
(2)会由f(x)的表达式求出f(ax+b)的表达式。
(3)理解分段函数的概念。
(4)理解函数的单调性、奇偶性的定义,掌握增函数、减函数及奇函数、偶函数的图像特征,会判断函数的单调性、奇偶性。
(5)理解二次函数的概念,会求二次函数的解析式,掌握二次函数的图像和性质。
(6)能运用函数知识解决简单的实际问题。
4.指数函数与对数函数指数的概念,实数指数幂的运算法则。
指数函数的概念,指数函数的图像和性质。
对数的概念,对数的性质与运算法则。
对数函数的概念,对数函数的图像和性质。
要求:(1)掌握实数指数幂的运算法则,能利用计算器求实数指数幂的值。
(2)理解对数的概念,理解对数的性质和运算法则,能利用计算器求对数值。
(3)理解指数函数、对数函数的概念,掌握其图像和性质。
2020年山东省春季高考数学试卷真题及答案详解(精编打印版)
山东省2020年普通高校招生(春季)考试数学试题一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)1.已知全集{},,,U a b c d =,集合{},M a c =,则U M ð等于()A .∅B .{},a c C .{},b d D .{},,,a b c d 2.函数()1lg f x x=的定义域是()A .()0,∞+B .()()0,11,+∞ C .[)()0,11,+∞U D .()1,+∞3.已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是()A .奇函数B .偶函数C .增函数D .减函数4.已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB a =,AD b =,则EF等于()A .()12a b+ B .()12a b- C .()12b a- D .12a b+ 5.在等比数列{}n a 中,11a =,22a =-,则9a 等于()A .256B .-256C .512D .-5126.已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角7.已知圆心为()2,1-的圆与y 轴相切,则该圆的标准方程是()A .()()22211x y ++-=B .()()22214x y ++-=C .()()22211x y -++=D .()()22214x y -++=8.现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是()A .12B .120C .1440D .172809.在821x x ⎛⎫- ⎪⎝⎭的二项展开式中,第4项的二项式系数是()A .56B .56-C .70D .70-10.直线2360x y +-=关于点()1,2-对称的直线方程是()A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=11.已知a ∈R ,若集合{}1,M a =,{}1,0,1N =-,则“0a =”是“M N ⊆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.已知二次函数2y ax bx c =++的图像如图所示,则不等式20ax bx c ++>的解集是()A .()2,1-B .()(),21,-∞-⋃+∞C .[]2,1-D .(][),21,-∞-+∞ 13.已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01xy a a =<<,则该函数在(,0)-∞上的图像大致是()A .B .C .D .14.下列命题为真命题的是()A .10>且34>B .12>或45>C .x R ∃∈,cos 1x >D .x ∀∈R ,20x ≥15.已知点()4,3A ,()4,2B -,点P 在函数243y x x =--图象的对称轴上,若PA PB ⊥,则点P 的坐标是()A .()2,6-或()2,1B .()2,6--或()2,1-C .()2,6或()2,1-D .()2,6-或()2,1--16.现有5位老师,若每人随机进入两间教室中的任意一间听课,则恰好全都进入同一间教室的概率是()A .225B .116C .125D .13217.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A .3B .6C .8D .1218.已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是()A .[]0,6B .[]4,6C .[]4,10D .[]6,1019.已知正方体1111ABCD A B C D -(如图所示),则下列结论正确的是()A .11//BD A AB .11//BD A DC .11BD A C ⊥D .111BD AC ⊥20.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos 2c B A b =,则tan A 等于()A .3B .13-C .3或13-D .-3或13二、填空题(本大题5个小题,每小题4分,共20分.请将答案填在答题卡相应题号的横线上)21.已知ππ,22α⎡⎤∈-⎢⎥⎣⎦,若sin 0.8α=,则α=______rad .22.若212log log 40x -=,则实数x 的值是______.23.已知球的直径为2,则该球的体积是______.24.某创新企业为了解新研发的一种产品的销售情况,从编号为001,002,…480的480个专卖店销售数据中,采用系统抽样的方法抽取一个样本,若样本中的个体编号依次为005,021,…则样本中的最后一个个体编号是______.25.已知抛物线的顶点在坐标原点,焦点F 与双曲线22221(0,0)x y a b a b-=>>的左焦点重合,若两曲线相交于M ,N 两点,且线段MN 的中点是点F ,则该双曲线的离心率等于______.三、解答题(本大题5个小题,共40分)26.已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩.(1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.27.某男子擅长走路,9天共走了1260里,其中第1天、第4天、第7天所走的路程之和为390里.若从第2天起,每天比前一天多走的路程相同,问该男子第5天走多少里.这是我国古代数学专著《九章算术》中的一个问题,请尝试解决.28.小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:x6π-12π3π712π56πx ωϕ+02ππ32π2πsin()A x ωϕ+03-3根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值和最小值.29.已知点E ,F 分别是正方形ABCD 的边AD ,BC 的中点.现将四边形EFCD 沿EF 折起,使二面角C EF B --为直二面角,如图所示.(1)若点G ,H 分别是AC ,BF 的中点,求证://GH 平面EFCD ;(2)求直线AC 与平面ABFE 所成角的正弦值.30.已知抛物线的顶点在坐标原点O ,椭圆2214x y +=的顶点分别为1A ,2A ,1B ,2B ,其中点2A 为抛物线的焦点,如图所示.(1)求抛物线的标准方程;(2)若过点1A 的直线l 与抛物线交于M ,N 两点,且()12//OM ON B A + ,求直线l 的方程.1.C 【分析】利用补集概念求解即可.【详解】{},U M b d =ð.故选:C 2.B 【分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ .故选:B 3.C 【分析】利用函数单调性定义即可得到答案.【详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <.所以函数()f x 一定是增函数.故选:C 4.A 【分析】利用向量的线性运算,即可得到答案;【详解】连结AC ,则AC 为ABC 的中位线,∴111222EF AC a b ==+ ,故选:A 5.A 【分析】求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-,所以()198812256a q a ==⨯-=,故选:A.6.D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.7.B 【分析】圆的圆心为(2,1)-,半径为2,得到圆方程.【详解】根据题意知圆心为(2,1)-,半径为2,故圆方程为:22(2)(1)4x y ++-=.故选:B.8.C 【分析】首先选3名男生和2名女生,再全排列,共有3254351440C C A =种不同安排方法.【详解】首先从4名男生和3名女生中,任选3名男生和2名女生,共有3243C C 种情况,再分别担任5门不同学科的课代表,共有55A 种情况.所以共有3254351440C C A =种不同安排方法.故选:C 9.A 【分析】本题可通过二项式系数的定义得出结果.【详解】第4项的二项式系数为388765632C ⨯⨯==⨯,故选:A.10.D 【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上,所以()()223460x y --+--=即2320x y +-=.故选:D.11.A 【分析】根据充分条件和必要条件的定义即可求解.【详解】当0a =时,集合{}1,0M =,{}1,0,1N =-,可得M N ⊆,满足充分性,若M N ⊆,则0a =或1a =-,不满足必要性,所以“0a =”是“M N ⊆”的充分不必要条件,故选:A.12.A 【分析】本题可根据图像得出结果.【详解】结合图像易知,不等式20ax bx c ++>的解集()2,1-,故选:A.13.B 【分析】根据偶函数,指数函数的知识确定正确选项.【详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增.注意到01a =,所以B 选项符合.故选:B 14.D 【分析】本题可通过43>、12<、45<、cos 1≤x 、20x ≥得出结果.【详解】A 项:因为43>,所以10>且34>是假命题,A 错误;B 项:根据12<、45<易知B 错误;C 项:由余弦函数性质易知cos 1≤x ,C 错误;D 项:2x 恒大于等于0,D 正确,故选:D.15.C【分析】由二次函数对称轴设出P 点坐标,再由向量垂直的坐标表示计算可得.【详解】由题意函数243y x x =--图象的对称轴是2x =,设(2,)P y ,因为PA PB ⊥ ,所以(2,3)(6,2)12(3)(2)0PA PB y y y y ⋅=-⋅--=-+--= ,解得6y =或1y =-,所以(2,6)P 或(2,1)P -,故选:C .16.B【分析】利用古典概型概率公式,结合分步计数原理,计算结果.【详解】5位老师,每人随机进入两间教室中的任意一间听课,共有5232=种方法,其中恰好全都进入同一间教室,共有2种方法,所以213216P ==.故选:B17.B【分析】根据椭圆中,,a b c 的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以210a =,28c =,可得5a =,4c =,所以22225169b a c =-=-=,可得3b =,所以该椭圆的短轴长26b =,故选:B.18.C【分析】作出目标函数对应的直线,平移该直线可得最大值和最小值,从而得范围.【详解】如图,作出直线:230l x y +=,向上平移直线l ,l 最先过可行域中的点A ,此时2204z =⨯+=,最后过可行域中的点(2,2)B ,此时223210=⨯+⨯=,所以z 的取值范围是[4,10].故选:C .19.D【分析】根据异面直线的定义,垂直关系的转化,判断选项.【详解】A.11//AA BB ,1BB 与1BD 相交,所以1BD 与1AA 异面,故A 错误;B.1BD 与平面11ADD A 相交,且11D A D ∉,所以1BD 与1A D 异面,故B 错误;C.四边形11A BCD 是矩形,不是菱形,所以对角线1BD 与1AC 不垂直,故C 错误;D.连结11B D ,1111B D A C ⊥,111BB A C ⊥,1111B D BB B ⋂=,所以11A C ⊥平面11BB D ,所以111A C BD ⊥,故D 正确.故选:D20.A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin 22A CB +=⇒,最后利用两角和的正切公式,即可得到答案;【详解】 222sin cos tan 222a b c C C C ab +-==⇒=,4C π∴>,2sin sin sin a b c R A B C=== ,sin sin cos sin sin cos sin 2A B C C B A B ∴⋅⋅+⋅⋅=,sin()sin 22A CB ∴+=⇒=,4B π∴=,tan 1B ∴=,∴tan tan tan tan()31tan tan B C A B C B C+=-+=-=-⋅,故选:A.21.53π180【分析】根据反三角函数的定义即可求解.【详解】因为sin 0.8α=,ππ,22α⎡⎤∈-⎢⎥⎣⎦,所以453πarcsin 53rad 5180α=== ,故答案为:53π180.22.14【分析】根据对数运算化简为2log 2x =-,求解x 的值.【详解】21222log log 40log log 40x x -=⇔+=,即2log 2x =-,解得:14x =.故答案为:1423.43π【分析】根据公式即可求解.【详解】解:球的体积为:344133V ππ=⨯⨯=,故答案为:43π24.469【分析】先求得编号间隔为16以及样本容量,再由样本中所有数据编号为()005+161k -求解.【详解】间隔为021-005=16,则样本容量为480=3016,样本中所有数据编号为()005+161k -,所以样本中的最后一个个体的编号为()005+16301469-=,故答案为:469251+【分析】利用抛物线的性质,得到M 的坐标,再带入到双曲线方程中,即可求解.【详解】由题意知:,2,2p c p c -=-∴=∴抛物线方程为:224,y px cx =-=-M 在抛物线上,所以(,2),M c c -M 在双曲线上,222241,c c a b∴-=2224224,60c a c a c a b =-∴-+= 23e ∴=±,又()1,e ∈+∞, 1.e ∴+126.(1)3;(2)35a -<<.【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥,则()1215f a a -=--,因为()13f a -<,所以2153a --<,即14a -<,解得35a -<<.27.140里.【分析】由条件确定,该男子这9天中每天走的路程数构成等差数列,根据等差数列的通项公式,和前n 项和公式,列式求解.【详解】解:因为从第2天起,每天比前一天多走的路程相同,所以该男子这9天中每天走的路程数构成等差数列,设该数列为{}n a ,第1天走的路程数为首项1a ,公差为d ,则91260S =,147390a a a ++=.因为1(1)2n n n S na d -=+,1(1)n a a n d =+-,所以11119(91)91260236390a d a a d a d ⨯-⎧+=⎪⎨⎪++++=⎩,解得110010a d =⎧⎨=⎩,则514100410140a a d =+=+⨯=,所以该男子第5天走140里.28.(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-.【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =,因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsin φ16骣琪+=琪桫,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤,因此,当11236x ππ+=时,即34x π=时,32y =-,当5232x ππ+=时,即1312x π=时,3y =.所以该函数在区间35,44ππ⎡⎤⎢⎣⎦上的最大值是3,最小值是32-.29.(1)证明见解析;(2【分析】(1)要证明线面平行,可转化为证明面面平行;(2)根据面面垂直的性质定理,可知CF ⊥平面ABFE ,再结合线面角的定义,可得得到直线AC 与平面ABFE 所成角的正弦值.【详解】证明:(1)连接AF ,设点O 为AF 的中点,连接GO ,OH ,在ACF △中,又因为点G 为AC 中点,所以//OG CF .同理可证得//OH AB ,又因为E ,F 分别为正方形ABCD 的边AD ,BC 的中点,故//EF AB ,所以//OH EF .又因为OH OG O ⋂=,所以平面//GOH 平面EFCD .又因为GH Ì平面GOH ,所以//GH 平面EFCD .(2)因为ABCD 为正方形,E ,F 分别是AD ,BC 的中点,所以四边形EFCD 为矩形,则CF EF ⊥.又因为二面角C EF B --为直二面角,平面EFCD 平面ABFE EF =,CF ⊂平面EFCD ,所以CF ⊥平面ABFE ,则AF 为直线AC 在平面ABFE 内的射影,因为CAF ∠为直线AC 与平面ABFE 所成的角.不妨设正方形边长为a ,则2a CF BF ==,在Rt ABF 中,AF ===因为CF ⊥平面ABFE ,AF ⊂平面ABFE ,所以CF AF ⊥,在Rt AFC △中,AC =2sin a CF CAF AC ∠==即为直线AC 与平面ABFE 所成角的正弦值.30.(1)28y x =;(2))240x y --+.【分析】(1)根据抛物线的焦点,求抛物线方程;(2)首先设出直线l 的方程为()2y k x =+,与抛物线方程联立,并利用韦达定理表示OM ON + ,并利用()12//OM ON B A + ,求直线的斜率,验证后,即可得到直线方程.【详解】解:(1)由椭圆2214x y +=可知24a =,21b =,所以2a =,1b =,则()22,0A ,因为抛物线的焦点为2A ,可设抛物线方程为22(0)y px p =>,所以22p =,即4p =.所以抛物线的标准方程为28y x =.(2)由椭圆2214x y +=可知()12,0A -,()20,1B -,若直线l 无斜率,则其方程为2x =-,经检验,不符合要求.所以直线l 的斜率存在,设为k ,直线l 过点()12,0A -,则直线l 的方程为()2y k x =+,设点()11,M x y ,()22,N x y ,联立方程组2(2)8y k x y x=+⎧⎨=⎩,消去y ,得()22224840k x k x k +-+=.①因为直线l 与抛物线有两个交点,所以200k ⎧≠⎨∆>⎩,即()2222048440k k k k ≠⎧⎪⎨--⨯>⎪⎩,解得11k -<<,且0k ≠.由①可知212284k x x k -+=,所以()()()21212128482244k y y k x k x k x x k k k k-+=+++=++=+=,则()212122848,,k OM ON x x y y k k ⎛⎫-+=++= ⎪⎝⎭ ,因为()12//OM ON B A + ,且12(2,0)(0,1)(2,1)B A =--= ,所以2284820k k k--⨯=,解得2k =-2k =--因为11k -<<,且0k ≠,所以2k =-所以直线l的方程为(2(2)y x =-++,即)240x y --+.。
2024年山东省春季高考济南市第一次模拟考试数学试题(高频考点版)
一、单选题二、多选题1. 若“”是“函数的图像不过第三象限”的必要不充分条件,则实数的取值范围是( )A.B.C.D.2. 一组数据包括47、48、51、54、55,则这组数据的标准差为( )A.B.C .10D .503. 已知复数,则复数的模是( )A .2B.C.D .34. 设、是两条不同的直线,、是两个不同的平面,给出下列命题:①若,,则.②若,,则.③若,,则.④若,,则.其中正确命题的序号是( )A .①③④B .②③④C .①②④D .①②③5. 2017年1月我市某校高三年级1600名学生参加了2017届全市高三期末联考,已知数学考试成绩(试卷满分150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的,则此次期末联考中成绩不低于120分的学生人数约为A .120B .160C .200D .2406. 已知函数有唯一的零点,则常数( )A.B .1C.D.7. “且”是“直线过点”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件8. 已知双曲线(,),以点为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为( )A.B.C.D.9. 数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词源于希腊文,它的原意是“旋卷”或“缠卷”.小明对螺旋线有着浓厚的兴趣,连接嵌套的各个正方形的顶点就得到了近似于螺旋线的美丽图案,其具体作法是:在边长为1的正方形中,作它的内接正方形,且使得;再作正方形的内接正方形,且使得;与之类似,依次进行,就形成了阴影部分的图案,如图所示.设第个正方形的边长为(其中第1个正方形的边长为,第2个正方形的边长为,…),第个直角三角形(阴影部分)的面积为(其中第1个直角三角形的面积为,第2个直角三角形的面积为,…),则( )2024年山东省春季高考济南市第一次模拟考试数学试题(高频考点版)2024年山东省春季高考济南市第一次模拟考试数学试题(高频考点版)三、填空题四、解答题A .数列是公比为的等比数列B.C .数列是公比为的等比数列D .数列的前项和10. 如图,已知函数的图象,,则()A.B.C.D.11. 下列命题正确的有( )A .空间中两两相交的三条直线一定共面B .已知不重合的两个平面,,则存在直线,,使得,为异面直线C .过平面外一定点,有且只有一个平面与平行D .已知空间中有两个角,,若直线直线,直线直线,则或12. 已知为坐标原点,椭圆.过点作斜率分别为和的两条直线,,其中与交于两点,与交于两点,且,则( )A.的离心率为B.C.D .四点共圆13. 下列说法中正确的是______.(写出所有正确说法的序号)①两直线无公共点,则两直线平行;②两直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线,与平面内的任一直线均构成异面直线;④和两条异面直线都相交的两直线必是异面直线.14. 已知函数在上既有极大值也有极小值,则实数a 的取值范围为___________.15. 在中,角的对边分别为,且,若外接圆的半径为,则面积的最大值是______.16. 已知函数,.(1)当时,求曲线在点处的切线方程;(2)已知函数,若在上有两个零点,求实数的取值范围.17.已知函数有两个零点,,且,(1)求的取值范围;(2)证明:18. 已知函数,.(1)当时,求的最小值;(2)当时,不等式恒成立,求的取值范围.19. 如图,在四棱锥中,底面ABCD是矩形,底面ABCD,且,E是PC的中点,平面ABE与线段PD交于点F.(1)证明:F为PD的中点;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线BE与平面PAD所成角的正弦值.条件①:三角形BCF的面积为;条件②:三棱锥的体积为1.注:如果选择条件①和条件②分别解答,按第一个解答计分.20. 为了解某一地区新能源电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量(单位:万台)关于(年份)的线性回归方程,且销量的方差为,年份的方差为.(1)求与的相关系数,并据此判断电动汽车销量与年份的线性相关性的强弱.(2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:性别购买非电动汽车购买电动汽车总计男性39645女性301545总计692190依据小概率值的独立性检验,能否认为购买电动汽车与车主性别有关?(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中男性的人数为,求的分布列和数学期望.①参考数据:.②参考公式:线性回归方程为,其中;相关系数,若,则可判断与线性相关较强;,其中.附表:0.100.050.0100.0012.7063.841 6.63510.82821. 设为数列的前项和,且满足:.(1)设,证明是等比数列;(2)求.。
2021年山东省春季高考数学真题 答案
山东省2021年普通高校招生(春季)考试数学试题答案及解析卷Ⅰ(选择题共60分)一、选择题(本大题20个小题,每小题3分,共60分)卷Ⅱ(非选择题共60分)二、填空题(本大题5个小题,每小题4分,共20分)21. -122. 1+√1523.√5 324.225.S=2·3m三、解答题(本大题5个小题,共40分)26(本小题7分)解:(1)当x≥0时,f(4)=8∴f(4)=16a-8=8即16a=16 ,a=1(2)设x<0∴-x>0∴f(-x)=x²+2x又∵函数是奇函数∴f(-x)=-f(-x)∴f(x)=-f (-x)=-(x²+2x)=-x²-2x27.(本小题8分)解:(1)(2)因为n2n log b a ===-n +1,∴数列为等差数列,S 90=-400528. (本小题8分) 解:作AH ⊥BC(1)∴AH =5又∵AB =25 ∴OBA ∠=45° (2)∴CH =5∴OC=OH-CH=5√3-529.(本小题8分)解:(1)解∵SA ⊥平面ABCD AB 面ABCD∴SA ⊥AB∵平面ABCD 是正方形 ∴AB ⊥AD , 又∵SA 、AD平面SAD ,SA ∩AD=A∴AB ⊥平面SAD , 又∵SD平面SAD∴AB ⊥SD(2) 取SD 中点为H 连接AH 、HF 、FE ∵HF=12DC=12BC=AE ,AF//DC ,AE//DC∴AF ⊥AE∴EF 与AD 所成的角的大小等于AH 与AD 所成夹角 又∵SA ⊥平面ABD ∴SA ⊥AD根据中线定理AH=12SD=AD所以△ADH 是等边三角形∴△HAD=60°即EF 与AD 所成的角为60° 30(本小题9分)解(1)据题意可知c=1即左焦点为F(-1.0) ∵双曲线左顶点与左焦点重合 ∴双曲线中a=1, 又∵双曲线过点P ∴b=1,∴即双曲线的标准方程为x 2-y 2=1(2)设直线l 为y=k(x+1)联立方程组{y =k (x +1)14y 5x 22=+整理得(4+5k ²)x ²+10k ²x+5k ²-20=0 由韦达定理得由双曲线的抛物线方程可知渐近线方程为y=±x ∵MN 的中点在渐近线上①当线段MN 的中点在y=x 上时②当线段MN 的中点在y=-x 上时综上,直线l 的方程为y=0或y=±45(x+1)。
2021年山东春季高考数学真题参考答案
山东省2021年普通高校招生(春季)考试数学答案及简要解析卷一(选择题 共60分)一、选择题1.B ʌ解析ɔȵ∁U N ={0,1,3},ʑM ɘ(∁U N )={1,3}.2.D ʌ解析ɔ要使函数有意义,须满足|x -1|-3ȡ0,ʑ|x -1|ȡ3,即x -1ɤ-3或x -1ȡ3,解得x ɤ-2或x ȡ4,ʑ定义域为(-ɕ,-2]ɣ[4,+ɕ).3.A ʌ解析ɔȵf (x )在(-ɕ,+ɕ)上是减函数,ʑ由函数单调性可知当x 越大,f (x )反而越小.ȵ-1<0<1,ʑf (1)<f (0)<f (-1).4.B ʌ解析ɔ由函数y =l o g a x 的图像可知a >1.对于函数y =(1-a )x 2+1来说,1-a <0,ʑ二次函数开口朝下,顶点坐标为(0,1),故选项B 正确.5.D ʌ解析ɔ零向量的方向是任意的,故选项A 错误;大小相等和方向相同的两个向量相等,ʑ两个单位向量不一定相等,故选项B 错误;方向相反且大小相同的两个向量互为相反向量,故选项C 错误.6.C ʌ解析ɔȵ角α的终边过点P (-1,2),ʑs i n α=-55,c o s α=255.由二倍角公式s i n 2α=2s i n αc o s α得s i n 2α=2ˑ-55æèçöø÷ˑ255=-45.7.A ʌ解析ɔ若角α是第一象限角,则s i n α>0,充分条件成立;反之,若s i n α>0,则角α可能为第一象限角或第二象限角或在y 轴正半轴上,必要条件不成立.8.C ʌ解析ɔȵ直线l 经过(1,2)和(3,1),ʑ直线l 的斜率k l =1-23-1=-12,ȵm ʅl ,ʑ直线m 的斜率k m =-1k l=2,又直线m 过点(3,1),由直线的点斜式可知直线m 的方程为2x -y -5=0.9.C ʌ解析ɔ安排四人进行接力赛,可根据有无甲运动员分为两类:第一类甲不参加接力赛,则安排方法有A 44=24种;第二类甲参加接力赛,则安排方法有C 34C 13A 33=72种.故不同的安排方法有96种.10.D ʌ解析ɔ根据表格中的对应关系知f (2)=5,f (5)=7,ʑf [f (2)]=7.11.A ʌ解析ɔ根据向量的运算法则知a b =-2m +3,ʑ-2m +3=5,则m =-1.12.C ʌ解析ɔ由图像可知,该函数不关于原点㊁y 轴对称,为非奇非偶函数,最大值为2.又T4=π3--2π3æèçöø÷=π,ʑ最小正周期是4π,ȵ2πω=4π,ʑω=12,令12ˑπ3+φ=0,则φ=-π6.13.B ʌ解析ɔ三件玩具分为三个小朋友,完成这件事的基本事件个数共有A 33=6个,其中都没有拿到自己玩具的这件事的基本事件个数共2个,故概率为26=13.14.A ʌ解析ɔȵ圆到圆上一点的距离为半径,圆经过原点,ʑ半径r =12+22=5,根据圆的标准方程可以得到标准方程为(x -1)2+(y -2)2=5.15.D ʌ解析ɔȵ点M 到抛物线对称轴的距离是4,ʑ点M 的纵坐标为4,ȵM 在抛物线上,ʑ横坐标为8p ,又点M 到准线的距离为5,ʑ8p +p2=5,解得p =2或p =8.16.B ʌ解析ɔ p :甲㊁乙㊁丙三名同学不都是共青团员,即至少有一名不是共青团员.17.C ʌ解析ɔ由图像可知直线为实线,且点(0,0)在区域内,代入(0,0)可得x +3y -3<0,在直线下方,符合要求.18.C ʌ解析ɔ由题意设该等差数列为{a n },则S 5=30,a 1+a 2=a 3+a 4+a 5,{解得a 1=8,d =-1,{ʑ甲所分小米的斤数是8斤.19.B ʌ解析ɔ由二项式的通项公式可知T m +1=C m n a n -m b m ,ʑ第二项的二项式系数为C 1n ,第五项的二项式系数为C 4n ,ȵC 1n =C 4n ,ʑn =5,则T 4=C 351x æèçöø÷2(-2)3,即系数为-80.20.B ʌ解析ɔ在正方体A B C D A 1B 1C 1D 1中,B D ʅA 1C ,B C 1ʅA 1C ,B D ɘB C 1=B ,且B D ,B C 1⊂平面B C 1D ,A 1C ⊄平面B C 1D ,ʑA 1C ʅ平面B C 1D ,又C 1P ⊂平面B C 1D ,ʑP C 1ʅA 1C .卷二(非选择题 共60分)二㊁填空题(本大题5个小题,每小题4分,共20分㊂请将答案填在答题卡相应题号的横线上)21.-1 ʌ解析ɔȵ-1ɤs i n x ɤ1,ʑ-5ɤ2s i n x -3ɤ-1,即函数y 的最大值是-1.22.1+15 ʌ解析ɔ正四棱锥的表面积由底面正方形和侧面四个等腰三角形构成,故S =1ˑ1+4ˑ12ˑ1ˑ152=1+15.23.53 ʌ解析ɔ由题意知2a 2b =32,则a b =32,故离心率e =1-b a æèçöø÷2=53.24.2 ʌ解析ɔȵ x =16(85+91+88+87+90+87)=88,ʑs 2=16[(85-88)2+(91-88)2++(87-88)2=4,则s =2.25.S =12㊃3m +2-3m +1+12㊃3mʌ解析ɔȵ点A ,B ,C 的横坐标成等差数列,且点A 的横坐标为m ,ʑ点B 的横坐标为m +1,同理,点C 的横坐标为m +2,即点A 为(m ,3m +1),B 为(m +1,3m +2),C 为(m +2,3m +2).利用割补法知әA B C 的面积为S =S әA C E -S әA B D -S 梯形B C E D ,其中S әA C E =12ˑ2ˑ(3m +2-3m ),S әA B D =12ˑ1ˑ(3m +1-3m ),S 梯形B C E D =12[(3m +1-3m )+(3m +2-3m )],故S =12㊃3m +2-3m +1+12㊃3m.三㊁解答题(本大题5个小题,共40分)26.解:(1)ȵf (4)=8,ʑ16a -8=8,则a =1.(2)设x <0,则-x >0,ʑf (-x )=x 2+2x .ȵf (x )是定义在R 上的奇函数,ʑ-f (x )=f (-x ),即f (x )=-f (-x )=-x 2-2x .综上所述,f (x )=-x 2-2x ,x <0,x 2-2x ,x ȡ0.{27.解:(1)ȵa n >0,a 1=1,2a n +1-a n =0,ʑa n +1a n=12,即数列{a n }是等比数列,a 1=1且q =12,ʑ通项公式为a n =12æèçöø÷n -1.(2)ȵb n =l o g 2a n =l o g 212æèçöø÷n -1=1-n ,ʑ数列{b n }是首项b 1=0,公差d =-1的等差数列.则S 90=90ˑ0+90ˑ892ˑ(-1)=-4005.28.解:(1)过点A 作垂线交O Q 于点E ,ȵøP O Q =30ʎ,且O A =10,ʑA E =5.又A B =52,ʑs i n øO B A =A E A B =22,即øO B A =45ʎ.(2)由(1)可知C E =B E =5,O E =53,ʑO C =O E -C E =53-5,ȵD 为O A 的中点,ʑO D =5,由余弦定理可知c o s øP O Q =O C 2+O D 2-C D 22㊃O C ㊃O D =12,ʑC D =2.6.29.解:(1)ȵS A ʅ平面A B C D ,ʑS A ʅA B ,又底面A B C D 是正方形,ʑA D ʅA B ,ȵA D ɘS A =A ,A D ,S A ⊂平面S A D ,A B ⊄平面S A D ,ʑA B ʅ平面S A D ,ȵS D ⊂平面S A D ,ʑA B ʅS D .(2)取S D 的中点G ,连接G F 和A G ,ȵG ,F 是中点,ʑG F ʊC D ,且G F =12C D .ȵ底面A B C D 是正方形,且E 是A B 的中点,ʑA E ʊC D ,且A E =12C D .则A E ʊG F ,且A F =G F ,ʑ四边形A E F G 是平行四边形,则A G ʊE F ,ʑ直线E F 与A D 所成的角为øG A D .ȵG 是S D 的中点,ʑA G =12S D ,则A G =G D ,即三角形A D G 为等腰三角形,又øS D A =60ʎ,ʑ三角形A D G 为等边三角形,则øG A D =60ʎ.30.解:(1)ȵ椭圆方程为x 25+y 24=1,ʑc =1,即左焦点为F (-1,0).ȵ双曲线左顶点与左焦点重合,ʑ双曲线中a =1,又双曲线过点P ,ʑb 2=1,即双曲线的标准方程为x 2-y 2=1.(2)设直线l :y =k (x +1),联立方程组y =k (x +1),x 25+y 24=1,ìîíïïï整理得(4+5k 2)x 2+10k 2x +5k 2-20=0,由韦达定理可知x 1+x 2=-10k 24+5k 2,ȵM ,N 在直线l 上,ʑy 1+y 2=k (x 1+1)+k (x 2+1),即y 1+y 2=-10k 34+5k 2+2k =8k 4+5k 2.ʑ线段MN 的中点坐标为-5k 24+5k 2,4k 4+5k 2æèçöø÷.由双曲线的抛物线方程可知渐近线方程为y =ʃx ,ȵMN 的中点在渐近线上,ʑ分为两种情况:①当线段MN 的中点在y =x 上时,则-5k 24+5k 2=4k4+5k 2,即k =0或k =-45;②当线段MN 的中点在y =-x 上时,则5k 24+5k 2=4k4+5k 2,即k =0或k =45.综上所述,直线l 的方程为y =0或y =ʃ45(x +1)(一般式为4x ʃ5y +4=0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对 比2 0 1 5 与2 0 1 4 年 的数 学考试说明 , 2 0 1 5 数 学考试说 明
在2 0 1 4 年的基础上变化很 小。修 改类型大致如下 : ( 一 )考 查内容描述变化
题保持 了传统的风格 , 立意于能力, 注重考查考生的基础知识 、 基本技 能和基 本数学素养 ,保持 了一定 的稳定性 ,难 易适 中, 兼顾 中职教 学实际,既重视 考查职 中数学基础知识掌握程度 , 又注重考查进入高校继续学 习的潜能。就考查知 识而言,主干
通过对近几年考试说明和高考题的分析希望老师和同学们对山东省春季高考近几年的发展变化有所了解对山东省春季高考数学试题近几年的发展变化有所了解从而把握每一个知识点的要求和高考命题的趋势为2015年高考打下坚实的基础为学生的梦想插上腾飞的翅膀
教育研究
课 程教 育研 究
走向春 季高考
一 一
山东省春 季 高考数 学试题 变迁
考试为语 文 1 2 0 分 、数学 1 2 0 分 、英语 8 0 分 、专业知识2 0 0 分。 “ 技 能”部分考试是专业技 能操作 2 3 0 分。 数学在 2 0 1 2 年由 1 0 0 分改为 1 5 0 分, 2 0 1 4 年 又改为 1 2 0 分, 这 几年的变化较 大,试卷有较大调整 ,题量有较 大变化 。但命 试题难 易程度比例上2 0 1 4 与2 0 1 3 年相比没有任何改变。 二 、2 0 1 5 年与 2 0 1 4 年考试说明的变化
的中等职业教育规划教材 《 数学》为参考教材。
( 二)考查内容增加 如: 2 0 1 3 年第三部分平 面解析几何 了解直线的倾斜 角和斜率的概念 ,掌握 直线方程 的点斜 式 及斜截式 。理解直线的一般式方程 。 2 0 1 4 年第三部 分平 面解析几何 了解直线的倾斜 角和斜率的概念 ,会求直线的斜率 ,掌握 直线 方程 的点斜式及斜截式 。理解直线的一般式方程 。 ( 三)考 查内容描 述变化 如 :1 、2 0 1 3 第一部分代数 2 、方程与不等式 ( 4 )会解一元 一次不等式 ( 组) ,会用 区间表示 不等 式的
直线斜率的概念 ,直线的点斜 式方程及斜截 式方程 。 直线 的 一般 式 方程 。
( 6 )会解一元二次 不等式。 2 0 1 4 第一部分代数 2 、方程 与不等式 ( 4 )会解一元一次不等式 ( 组) 。 ( 6 )会解一元二次不等式,会用 区间表 示不等式 的解集 2 、2 0 1 3 第二部 分三 角 ( 5 )掌握正 弦函数 、正 弦型 函数 的图像和性 质 ( 定 义域、值域 、周 期性、奇偶 性、单调性 ) , 会用 “ 五点法”画正弦型函数的简图。了解 余弦函数 的图像与
解 集
2 、2 0 1 4 年第一部分代数 6 向量 ( 4 )掌握 中点公 式、距 离公式。 2 0 1 5 年第一部 分代数 6 向量 ( 4 )掌握线段 中点坐标计算公 式、两点间的距 离公式 。 3 、2 0 1 4 年 第三部分解析 几何 直线 的方向向量与法向量的概念 ,直线方程 的点 向式、点
知识地位 突出,重点内容仍重点考查。以重点知 识构建试题的
1 、2 0 1 4 年第一部分代数 5 数列 ( 2 )掌握等差数 列和等差 中项的概念 ,掌握 等差数列的通 项公 式及前 n 项和公 式,并能解决简单 的实际问 题。 ( 3 )掌握等比数列和等 比中项的概念 ,掌握 等比数列的通 项公 式及前 n项和公 式,并能解决简单 的实际问题 。 2 0 1 5 年第一部分代数 5 数 列
2 0 1 2 年 以前 , 山东省 “ 对 口高职考 试 ” 考试 科 目中数 学 为1 0 0 分。2 0 1 2 年 山东省 “ 对 口高职考试 ” 更名 为“ 春季 高考 ” , 2 0 1 2 、2 0 1 3 年春季高考考试科 目中 数 学为 1 5 0 分 ,2 0 1 4 年春季 高考考试科 目调整 为 “ 知 识 ”+“ 技 能 ”模 式。“ 知识 ”部 分
张俊 松
( 烟 台信 息工程学校 山东 莱州 2 6 1 4 O 0 )
【 摘要 】 通过对2 0 1 3 年与2 0 1 4 年 ̄2 0 1 4 年与2 0 1 5 年山东省春季高考数学考试说明的对比以及对2 0 1 3 年与2 0 1 4 年山东省春季 高考数学试题的对比,分析研究考试变化,为2 0 1 5 年数学高考做准备。 【 关键词 】 2 0 1 5 年春季 高考将继续延续 2 0 1 4 年的模 式 【 中图分类号 】 ( } 6 3 3 . 6 【 文献标识码 】 A 【 文章编号 】 2 0 9 5 . 3 0 8 9( 2 0 1 5 )1 2 . 0 1 0 5 . 0 2
一
( 3 )掌握等比数 列和等 比中项的概念 ,掌握 等比数列的通
项公 式及前 n项和公 式。
、
( 4 )能利用等差数 列和等比数 列的知识 , 解 决简单的 实际
问题 。
( 一 )描 述 更准 确
如: 2 0 1 3 年 ;以现 行 的山 东省职 业教 。 2 0 1 4 年: 以现 行的 山 东 省 职业教 育教材 审定委 员会 审定
( 2 )掌握等差数 列和等差 中项的概念 ,掌握 等差数列的通
项公 式及前 n项和公 式。
主体 ,选材寓于教 材又高于教材,立意创新又朴实无 华。 2 0 1 4 年与2 0 1 3 年考试说明的变化 对 比2 0 1 4 与2 0 1 3 年 的数 学考试说 明,2 0 1 4 数 学考试说 明 在2 0 1 3 年 的基础上变化 不大。修改类型大致如下 :
法式。
直线斜率的概念 ,直线方程 的点斜式及斜截 式。 直线方程的一般 式。 ( 1 )理解直线的方向向量与法向量 的概念,掌握直线方程
的 点 向式 、点 法 式 。
2 0 1 5 年第三部 分解析几何 直线 的方向向量与法 向量的概念 ,直线的点向式方程及 点
法 式方 程 。