2013中考数学方程与方程组复习训练试题(附答案)
2013年中考数学精选——一元二次方程精题及答案
中考数学压轴题专集——一元二次方程1.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.(1)当k为何值时,△ABC是以BC为斜边的直角三角形;(2)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.解:(1)∵AB、AC方程x2-(2k+3)x+k2+3k+2=0的两个实数根∴AB+AC=2k+3,AB·AC=k2+3k+2∵△ABC是以BC为斜边的直角三角形,且BC=5∴AB2+AC2=BC2,(AB+AC)-2AB·AC=25即(2k+3)2-2(k2+3k+2)=25∴k2+3k-10=0,∴k1=-5,k,2=2当k=-5时,方程为x2+7x+12=0,解得x1=-3,x2=-4(均不合题意,舍去)当k=2时,方程为x2-7x+12=0,解得x1=3,x2=4∴当k=2时,△ABC是以BC为斜边的直角三角形(2)若△ABC是等腰三角形,则有①AB=AC;②AB=BC;③AC=BC三种情况∵△=(2k+3)2-4(k2+3k+2)=1>0∴AB≠AC,故第①种情况不成立∴当AB=BC或AC=BC时,5是方程x2-(2k+3)x+k2+3k+2=0的根∴52-5(2k+3)+k2+3k+2=0即k2-7k+12=0,解得k1=3,k2=4当k=3时,方程为x2-9x+20=0,解得x1=4,x2=5此时△ABC的三边长分别为5、5、4,周长为14当k=4时,方程为x2-11x+30=0,解得x1=5,x2=6此时△ABC的三边长分别为5、5、6,周长为162.已知△ABC的三边长为a、b、c,关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根,又sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根.(1)求m的值;(2)若△ABC的外接圆面积为25π,求△ABC的内接正方形的边长.解:(1)∵关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根∴△=4(a+b)2-4(c2+2ab)=0,即a2+b2=c2∴△ABC是直角三角形∵sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根∴sin A+sin B=2m-5m+5,sin A·sin B=m-8m+5∵在Rt△ABC中,sin2A+sin2B=sin2A+cos2A=1 ∴(sin A+sin B)2-2sin A·sin B=1即(2m-5m+5)2-2×m-8m+5=1∴m2-24m+80=0,解得m1=4,m2=20当m=4时,方程为9x2-3x-4=0,解得x1=3+15318,x2=3-15318<0∵在Rt△ABC中,sin A>0,sin B>0 ∴m=4不合题意,舍去当m=20时,方程为25x2-35x+12=0,解得x1=35,x2=45,符合题意∴m=20(2)∵△ABC的外接圆面积为25π∴外接圆半径为5,∴c=10由(1)知,sin A=35或sin A=45∴△ABC的两条直角边长分别为6,8 设△ABC的内接正方形的边长为t①若正方形的两边在△ABC的两直角边上,则8-t8=t6解得t=24 7②若正方形的一条边在△ABC的斜边上,易得斜边上的高为245,则t10=245-t245解得t=120 373.已知关于x的方程x2-(m+n+1)x+m=0(n≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示m和n;(2)求证:α≤1≤β;(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(12,1),C(1,1),问是否存在点P,使m+n=54?若存在,求出点P的坐标;若不存在,请说明理由.ABCttA BCttt(1)解:∵α、β为方程x2-(m +n +1)x +m =0(n ≥0)的两个实数根∴△=(m +n +1)2-4m =(m +n -1)2+4n ≥0,且α+β=m +n +1,αβ=m∴m =αβ,n =α+β-m -1=α+β-αβ-1 ··················································· 2分(2)证明:∵(1-α)(1-β)=1-(α+β)+αβ=-n ≤0(n ≥0),又α≤β∴α≤1≤β ································································································ 4分(3)解:要使m +n =54成立,只需α+β=m +n +1=94①当点P (α,β)在BC 边上运动时由B (1 2,1),C (1,1),得12α≤1,β=1而α=94-β=9 4-1=54>1 ∴在BC 边上不存在满足条件的点 ···························································· 6分 ②当点P (α,β)在AC 边上运动时 由A (1,2),C (1,1),得α=1,1≤β≤2 此时β=94-α=9 4-1=5 4,又∵1<54<2 ∴在AC 边上存在满足条件的点,其坐标为(1,54)································· 8分③当点P (α,β)在AB 边上运动时由A (1,2),B (1 2,1),得12≤α≤1,1≤β≤2由对应线段成比例得1-α1-1 2=2-β2-1β=2α 由 ⎩⎪⎨⎪⎧α+β=9 4β=2α解得α= 3 4 ,β=3 2又∵1 2<3 4<1,1<3 2<2∴在AB 边上存在满足条件的点,其坐标为(3 4,3 2)综上所述,当点点P (α,β)在△ABC 的三条边上运动时,存在点(1,54)和点(3 4,3 2 ),使m +n =5 4成立 ·······························································10分4.请阅读下列材料:问题:已知方程x 2+x -1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:___________________;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.解:(1)y2-y-2=0 ··································································································· 2分(2)设所求方程的根为y,则y=1x(x≠0),于是x=1y(y≠0) ····················· 3分把x=1y代入方程ax2+bx+c=0,得a(1y)2+b·1y+c=0 ·························· 4分去分母,得a+b y+c y2=0 ········································································ 5分若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意∴c≠0,故所求方程为c y2+b y+a=0(c≠0)··········································· 6分5.已知关于x的一元二次方程x2-2x-a2-a=0(a>0).(1)证明这个方程的一个根比2大,另一个根比2小;(2)如果当a=1,2,3,…,2011时,对应的一元二次方程的两个根分别为α1、β1,α2、β2,α3、β3,…,α2011、β2011,求1α 1+1β 1+1α2+1β 2+1α3+1β 3+…+1α2011+1β2011的值.6.已知关于x的一元二次方程x2-(a+b+c)x+ab+bc+ca=0,且a>b>c>0.(1)若方程有实数根,求证:a,b,c不能构成一个三角形的三边长;(2)若方程有实数根x0,求证:b+c<x0<a;(3)若方程的实数根为6和9,求正整数a,b,c的值.解:(1)∵方程有实数根,∴△=(a+b+c)2-4(ab+bc+ca)≥0∴a2+b2+c2-2ab -2bc -2ca ≥0∴a (a -b -c )-b (a +c -b )-c (a +b -c )≥0∴0≤a (a -b -c )-b (a +c -b )-c (a +b -c )<a (a -b -c ) ∵a >0,∴a -b -c >0,即a >b +c∴a ,b ,c 不能构成一个三角形的三边长 ·············································· 4分 (2)设y =x2-(a +b +c )x +ab +bc +ca则当x =b +c 时,y =bc >0;当x =a 时,y =bc >0函数y =x2-(a +b +c )x +ab +bc +ca 图象的顶点坐标为(a +b +c 2,-△ 4当x =a +b +c 2 时,y =-△4≤0 由(1)知a >b +c ,∴b +c <a +b +c2<a ∴方程的实数根在b +c 与a 之间,即b +c <x 0<a ································ 7分 (3)∵方程x2-(a +b +c )x +ab +bc +ca =0的实数根为6和9∴a +b +c =6+9=15,ab +bc +ca =6×9=54∴a2+b2+c2=(a +b +c )2-2(ab +bc +ca )=152-2×54=117<112由(2)知a >9,∴92<a2<112∵a 为正整数,∴a =10 ········································································ 8分 ∴b +c =5,∴10b +bc +10c =54 ∴bc =54-10(b +c )=54-10×5=4由b +c =5,bc =4及b >c ,解得b =4,c =1 ······································10分7.已知方程x 2+2ax +a -4=0有两个不同的实数根,方程x 2+2ax +k =0也有两个不同的实数根,且其两根介于方程x 2+2ax +a -4=0的两根之间,求k 的取值范围.解:∵方程x2+2ax +a -4=0有两个不同的实数根∴△1>0,而△1=4a2-4(a -4)=4(a -1 2)2+15≥15 ···································· 1分又∵方程x2+2ax +k =0也有两个不同的实数根∴△2=4a2-4k >0,即k<a2······································································ 3分对于二次函数y 1=x2+2ax +a -4和y 2=x2+2ax +k ,它们的对称轴相同,且与x轴都有两个不同的交点∵y 2与x 轴的两个交点都在y 1与x 轴的两个交点之间∴y 2与y 轴的交点在y 1与y 轴的交点上方,如图 ········································· 4分 ∴k>a -4 ···································································································· 5分∴k 的取值范围是:a -4<k<a2·································································· 6分8.已知关于x 的方程x 2-4|x |+3=k .(1)当k 为何值时,方程有4个互不相等的实数根?(2)当k 为何值时,方程有3个互不相等的实数根? (3)当k 为何值时,方程有2个互不相等的实数根?(4)是否存在实数k ,使得方程只有1个实数根?若存在,求k 的值和方程的根;若不存在,请说明理由.解:(1)令t =|x |,则原方程化为:t2-4t +3-k =0△=(-4)2-4(3-k )=4k +4 ·································································· 1分 要使原方程有四个互不相等的实数根,则方程t2-4t +3-k =0必须有两个不相等的实数根∴4k +4>0,∴k>-1 ·········································································· 2分同时t 1·t 2=3-k>0,∴k<3 ································································ 3分∴当-1<k<3时,原方程有4个互不相等的实数根 ····························· 4分(2)要使原方程有3个互不相等的实数根,则方程t2-4t +3-k =0必须有一个零根和一个正根∴4k +4>0,∴k>-1 ·········································································· 5分同时t 1·t 2=3-k =0,∴k =3 ································································· 6分 ∴当k =3时,原方程有3个互不相等的实数根 ····································· 7分 (3)要使原方程有2个互不相等的实数根,则方程t2-4t +3-k =0必须只有一个非零根∴4k +4=0,∴k =-1 ··········································································· 8分 且当x =0时,3-k ≠0,即k ≠3 ··························································· 9分 ∴当k =-1时,原方程有2个互不相等的实数根 ·································10分(0(4)要使原方程只有1个实数根,则方程t2-4t +3-k =0必须有两个零根∴4k +4=0,∴k =-1 ·········································································· 11分 同时t 1·t 2=3-k =0,∴k =3 ································································12分 ∴不存在符合条件的k 值 ·····································································13分9.已知x 1,x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,则x 1与x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由.解:∵关于x 的一元二次方程4x2+4(m -1)x +m2=0有两个非零实数根∴△=[4(m -1)]2-4×4m2=-32m +16≥0∴m ≤12又x 1+x 2=1-m ,x 1x 2=14m2 当x +3=0时,-m =0,m =0假设x 1,x 2能同号,则有以下两种可能: ①若x 1>0,x 2>0,则:⎩⎪⎨⎪⎧x 1+x 2>0x 1x 2>0 即⎩⎪⎨⎪⎧1-m >01 4m2>0 解得m <1且m ≠0 此时m 的取值范围是m ≤12且m ≠0②若x 1<0,x 2<0,则:⎩⎪⎨⎪⎧x 1+x 2<0x 1x 2>0 即⎩⎪⎨⎪⎧1-m <01 4m2>0解得m >1(不合题意,舍去) 故当m ≤12且m ≠0时,方程的两个实数根同号10.已知α、β为关于x 的方程x 2-2mx +3m =0的两个实数根,且(α-β)2=16,如果关于x 的另一个方程x 2-2mx +6m -9=0的两个实数根都在α和β之间,求m 的值.解:∵α、β为方程x2-2mx +3m =0的两个实数根∴α+β=2m ,αβ=3m∵(α-β)2=16,∴(α+β)2-4αβ=16 ∴4m2-12m =16,解得m 1=-1,m 2=4方法一:①当m 1=-1时方程x2-2mx +3m =0化为:x2+2x -3=0,解得:α=-3,β=1方程x2-2mx +6m -9=0化为:x2+2x -15=0,解得:x 1=-5,x 2=3∵-5和3都不在-3和1之间,∴m =-1不合题意,舍去 ②当m =4时方程x2-2mx +3m =0化为:x2-8x +12=0,解得:α=2,β=6方程x2-2mx +6m -9=0化为:x2-8x +15=0,解得:x 1=3,x 2=5∵3和5都在2和6之间,∴m =4 综合①②可得m =4 方法二:设y =x2-2mx +6m -9,则该函数的图象为开口向上的抛物线∵方程x2-2mx +6m -9=0的两个实数根都在α和β之间∴⎩⎨⎧α2-2m α+6m -9>0β2-2m β+6m -9>0两式相加得α2+β2-2m (α+β)+12m -18>0 即(α+β)2-2αβ-2m (α+β)+12m -18>0 ∴4m2-6m -4m2+12m -18>0,∴m >3∴m =411.已知a 为实数,且关于x 的二次方程ax 2+(a 2+1)x -a =0的两个实数根都小于1,求这两个实数根的最大值.解:∵a 为实数,∴关于a 的二次方程xa2+(x2-1)a +x =0有实数根∴△=(x2-1)2-4x2≥0,即x4-6x2+1≥0解得x2≤3-22或x2≥3+2 2由x2≤3-22得1-2≤x ≤2-1∵2-1<1,∴1-2≤x ≤2-1 由x2≥3+22得x ≤-2-1或x ≥2+1∵2+1>1,∴x ≥2+1不合题意,舍去 综上所述,这两个实数根的最大值为2-112.求实数a 的取值范围,使关于x 的方程x 2+2(a -1)x +2a +6=0 (1)有两个实根x 1、x 2,且满足0<x 1<1<x 2<4; (2)至少有一个正根.解:(1)设y =x2+2(a -1)x +2a +6∵0<x 1<1<x 2<4∴△=4(a -1)2-4(2a +6)>0,∴a <-1或a >5且当x =0时,y >0,即2a +6>0,∴a >-3当x =1时,y <0,即1+2(a -1)+2a +6<0,∴a <-54当x =4时,y >0,即16+8(a -1)+2a +6>0,∴a >-75综上,-7 5 <a <-54············································································· 5分(2)∵x2+2(a -1)x +2a +6=0∴x 1+x 2=2(1-a ),x 1x 2=2a +6△=4(a -1)2-4(2a +6)≥0,∴a ≤-1或a ≥5若方程有一个正根,则2a +6≤0,∴a ≤-3 若方程有两个正根,则⎩⎪⎨⎪⎧2(1-a )>02a +6>0,∴-3<a <1综上,a ≤-110分13.已知x 1、x 2是方程x 2-mx -1=0的两个实数根,满足x 1<x 2,且x 2≥2.(1)求m 的取值范围;(2)若 x 2+m x 1-m + x 1+mx 2-m=2,求m 的值.解:(1)∵x2-mx -1=0的两个实数根满足x 1<x 2∴x 1=m -m2+4 2,x 2=m +m2+42∵x 2≥2,∴m +m2+42≥2解得m ≥32··························································································· 4分(2)∵x2-mx -1=0,∴x 1+x 2=m ,x 1x 2=-1∵x 2+mx 1-m+x 1+mx 2-m=x 12+x 22-2m 2x 1x 2-m (x 1+x 2)+m2(x 1+x 2)2-2x 1x 2-2m2x 1x 2-m (x 1+x 2)+m2=m2+2-2m2-1-m2+m2 =m2-2x 2+mx 1-m+x 1+mx 2-m=2 ∴m2-2=2,∴m =±2 ········································································· 8分14.已知关于x 的方程x 2-(m -2)x -m24=0(m ≠0)(1)求证:这个方程总有两个异号实根;(2)若这个方程的两个实根x 1、x 2满足| x 2|=| x 1|+2,求m 的值及相应的x 1、x 2.(1)证明:∵△=(m -2)2-4×(-m24)=(m -2)2+m2>0∴原方程总有两个不相等的实根 又∵x 1x 2=-m24,m ≠0,∴x 1x 2<0,∴x 1、x 2异号∴原方程总有两个异号实根 ······························································· 3分(2)解:∵x 1、x 2异号,若x 1<0<x 2则由已知|x 2|=|x 1|+2,得x 2=-x 1+2∴x 1+x 2=2,即m -2=2 ∴m =4将m =4代入原方程并整理,得x2-2x -4=0解得x 1=1-5,x 2=1+5若x 2<0<x 1,则由已知|x 2|=|x 1|+2,得-x 2=x 1+2∴x 1+x 2=-2,即m -2=-2 ∴m =0(与题设m ≠0矛盾,舍去)综上所述,m =4,x 1=1-5,x 2=1+5 ········································10分15.已知△ABC 的一边长为5,另两边长恰是方程2x 2-12x +m =0的两个根,求m 的取值范围.解:设△ABC 的三边分别为a ,b ,c ,且a =5∵另两边长恰是方程2x2-12x +m =0的两个根∴△=144-8m ≥0,得m ≤18由根与系数的关系,得b +c =6>a ,bc =m2>0,即m >0 由三角形三边关系,得b -c <a ∴(b -c )2<a2,即(b +c )2-4bc <a2∴36-2m <25,得m >112综上,112<m ≤1816.已知:α,β(α>β)是一元二次方程x 2-x -1=0的两个实数根,设s 1=α+β,s 2=α 2+β 2,…,s n =α n +β n .根据根的定义,有α 2-α-1=0,β 2-β-1=0,将两式相加,得(α 2+β 2)-(α+β)-2=0,于是,得s 2-s 1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s1,s2的值;(2)猜想:当n≥3时,s n,s n-1,s n-2之间满足的数量关系,并证明你的猜想的正确性;(3)根据(2)中的猜想,求(1+52)8+(1-52)8的值.解:(1)移项,得x2-x=1配方,得x2-2×x×12+(12)2=1+(12)2即(x-12)2=54开平方,得x-12=±52,即x=1±52∵α>β,∴α=1+52,β=1-52·························································· 3分于是s1=α+β=1,s2=s1+2=3 ······························································ 5分(2)猜想:s n=s n-1+s n-2················································································· 6分证明:根据根的定义,有α2-α-1=0两边都乘以αn-2,得αn-αn-1-αn-2=0 ①同理,βn-βn-1-βn-2=0 ②①+②,得(αn+βn)-(αn-1+βn-1)-(αn-2+βn-2)=0∵s n=αn+βn,s n-1=αn-1+βn-1,s n-2=αn-2+βn-2∴s n-s n-1-s n-2=0,即s n=s n-1+s n-2 ························································10分(3)由(1)知,s1=1,s2=3由(2)中的关系式可得:s3=s2+s1=4,s4=s3+s2=7,s5=s4+s3=11,s6=s5+s4=18s7=s6+s5=29,s8=s7+s6=47即(1+52)8+(1-52)8=47 ································································12分17.已知方程(x-1)(x2-2x+m)=0的三个实数根恰好构成△ABC的三条边长.(1)求实数m的取值范围;(2)当△ABC为直角三角形时,求m的值和△ABC的面积.解:(1)由已知x1=1,设另两根为x2,x3,且x2≤x3则x2+x3=2,x2x3=m∵x3-x2<x1,∴(x3-x2)2=(x3+x2)2-4x2x3=4-4m<1解得m>3 4又∵△=(-2)2-4m ≥0,∴m ≤1∴34<m ≤1 ··························································································· 4分 (2)若Rt △ABC 的一条直角边长为1则x 22+1=x 32,即x 32-x 22=1,∴(x 3+x 2)(x 3-x 2)=1 ∴24-4m =1,∴m =1516····································································· 6分 由x2-2x +1516=0,解得x 2=34,x 3=54∴S △ABC=12×1×x 2=12 m =34······························································ 7分 若Rt △ABC 的斜边长为1则x 22+x 32=1,即(x 2+x 3)2-2x 2x 3=1 ∴22-2m =1,∴m =32(不合题意,舍去) ············································ 8分 所以当△ABC 为直角三角形时,m =1516,△ABC 的面积为34。
中考数学总复习《方程与不等式》专项检测卷(带答案)
中考数学总复习《方程与不等式》专项检测卷(带答案)学校:___________姓名:___________班级:___________考号:___________一、解一元一次方程 1.解方程:(1)3(x +1)+2(x −4)=10 (2)x +x+35=2−1−x 22.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程互为“阳光方程”.例如:2x =2的解为x =1,x +1=1的解为x =0,所以这两个方程互为“阳光方程”. (1)若关于x 的一元一次方程x +2m =0与3x −2=−x 是“阳光方程”,则m =______. (2)已知两个一元一次方程互为“阳光方程”,且这两个“阳光方程”的解的差为5.若其中一个方程的解为x =k ,求k 的值.(3)①已知关于x 的一元一次方程x2023+a =2023x 的解是x =2024,请写出解是y =2023的关于y 的一元一次方程:()2023x +2023=______−a .(只需要补充含有y 的代数式). ②若关于x 的一元一次方程12023x −1=0和12023x −5=2x +a 互为“阳光方程”,则关于y的一元一次方程y2023−9−a =2y −22023的解为______.二、解二元一次方程组3.已知y =kx +b ,当x =0时y =1;当x =1时y =4,求k 和b 的值.4.关于x ,y 的二元一次方程组{3x +y =1+3a x +3y =1−a 的解满足不等式x +y >−2,求a 的取值范围.5.已知关于x ,y 的方程组{2x −3y =3ax +2by =4 和{2ax +3by =33x +2y =11的解相同,求(3a +b)2024的值.6.阅读探索:知识累计:解方程组{(a −1)+2(b+2)=62(a −1)+(b+2)=6.解:设a −1=x,b +2=y ,原方程组可变为{x+2y =62x+y =6.解方程组得:{x =2y =2 ,即{a −1=2b+2=2 ,解得{a =3b =0.所以此种解方程组的方法叫换元法.(1)拓展提高:运用上述方法解下列方程组:{(a3−1)+2(b5+2)=42(a3−1)+(b5+2)=5;(2)能力运用:已知关于x,y的方程组{a1x+b1y=c1a2x+b2y=c2的解为{x=5y=3,求出关于m,n的方程组{a1(m+3)+b1(n−2)=c1a2(m+3)+b2(n−2)=c2的解.三、解分式方程7.计算:(1)1x +2x−1=2x2−x;(2)2x+93x−9=4x−7x−3−1.8.关于x的分式方程:mxx2−4−2x−2=3x+2,若这个关于x的分式方程会产生增根,试求m的值.9.若数a使关于x的分式方程x+2x−1+a1−x=3的解为非负数,求a的取值范围.10.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+bk,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k之称心点”.例如:P(1,4)的“2之称心点”为P′(1+42,2×1+4),即P′(3,6).(1)①点P(−1,−2)的“2之称心点”P′的坐标为________;②若点P的“k之称心点” P′的坐标为(3,3),请写出一个符合条件的点P的坐标______;(2)若点P在y轴的正半轴上,点P的“k之称心点”为P′点,且△OPP′为等腰直角三角形,则k的值为______;(3)在(2)的条件下,若关于x的分式方程2x+5x−3+2−mx3−x=k无解,求m的值.11.关于x的方程:x+−1x =c+−1c的解为x=c,x=−1c;x+1x =c+1c的解为x=c或x=1c;x+2x =c+2c的解为x=c,x=2c;x+3x =c+3c的解为x=c,x=3c;…根据材料解决下列问题:(1)方程x+1x =52的解是___________;(2)猜想方程x+mx =c+mc(m≠0)的解,并将所得的解代入方程中检验;(3)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只有把其中的未知数换成某个常数,那么这样的方程可以直接得解.请用这个结论解关于x的方程:x+2x−1=a+2a−1.四、解一元二次方程12.解下列一元二次方程:(1)−2x2+6x−3=0(2)(2x+3)2=(3x+2)2.13.关于x的一元二次方程x2−(2k−1)x+k2−2=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m−1)x2+x+m−3=0与方程x2−(2k−1)x+k2−2=0有一个相同的根,求此时m的值.14.关于x的一元二次方程a(1−x2)−2√2bx+c(1+x2)=0中a b c是Rt△ABC 的三条边其中∠C=90°.(1)求证此方程有两个不相等的实数根;(2)若方程的两个根是x1x2且x12+x22=12求a:b:c.15.已知关于x的一元二次方程x2+(m−4)x=4m.(1)证明:无论m取何值此方程必有实数根;(2)若Rt△ABC的两直角边AC BC的长恰好是该方程的两个实数根且斜边AB的长为5 求m的值;(3)若等腰三角形ABC的一边AB长为6 另两边长BC,AC恰好是这个方程的两个根求△ABC的周长.16.已知关于x的方程x2−2(k−3)x+k2−4k−1=0.(1)若这个方程有实数根求k的取值范围;(2)若这个方程有一个根为1 求k的值;(3)若以方程x2−2(k−3)x+k2−4k−1=0的两个根为横坐标、纵坐标的点恰在反比例函数y=mx的图象上求满足条件的m的最小值.五、解不等式与不等式组17.解不等式x+13−x−16≥x−12并在数轴上表示其解集.18.解不等式组{4x−3<2(x+2)①52x+3≤72x+6②并把解集在数轴上表示出来.19.已知关于x,y 的方程组{x −2y =m 2x +3y =2m +4的解满足不等式组{3x +y ≤0x +5y >0 求满足条件的m 的整数值.20.先阅读下面是的解题过程 然后回答下列问题. 例:解绝对值方程:|3x |=1.解:分情况讨论:①当x ≥0时原方程可化为3x =1 解得x =13; ②当x <0时原方程可化为−3x =1 解得x =−13.所以原方程的解为x =13或x =−13.根据材料 解下列绝对值方程: (1)理解应用:|2x +1|=3;(2)拓展应用:不等式|x −1|>4的解集为______.参考答案1.(1)解:3(x +1)+2(x −4)=10 去括号得:3x +3+2x −8=10 移项得:3x +2x =10+8−3 合并同类项得:5x =15 系数化为1得:x =3; (2)解;x +x+35=2−1−x 2去分母得:10x +2(x +3)=20−5(1−x ) 去括号得:10x +2x +6=20−5+5x 移项得:10x +2x −5x =20−5−6 合并同类项得;7x =9 系数化为1得:x =97.2.(1)解x +2m =0 得x =−2m ; 解3x −2=−x 得x =12;∵关于x 的一元一次方程x +2m =0与3x −2=−x 是“阳光方程”∵−2m +12=1解得m =−14;(2)∵“阳光方程”的一个解为x =k 则另一个解为1−k ∵这两个“阳光方程”的解的差为5 则k −(1−k )=5或(1−k )−k =5 解得k =3或k =−2. 故k 的值为3或−2;(3)①∵关于x 的一元一次方程x 2023+a =2023x 的解是x =2024∵x2023+2023×(−x )=−a 的解是x =2024∵y =2023 则y +1=2024=x则y+12023+2023×[−(y +1)]=−a 的解是y =2023 即:y+12023+2023×(−y −1)=−a 的解是y =2023故答案为:y +1 −y −1; ②方程12023x −1=0的解为:x =2023∵关于x 方程12023x −1=0与12023x −5=2x +a 互为“阳光方程”∵方程12023x −5=2x +a 的解为:x =1−2023=−2022.∵关于y 的方程y2023−9−a =2y −22023就是:y+22023−5=2(y +2)+a∵y +2=−2022 ∵y =−2024. ∵关于y 的方程y 2023−9−a =2y −22023的解为:y =−2024.故答案为:y =−2024.3.解:∵在y =kx +b 当x =0时y =1;当x =1时y =4 ∵{k +b =4b =1∵{k =3b =1. 4.解:将两方程相加可得4x +4y =2+2a∴x +y =a+12由x +y >−2可得a+12>−2解得a >−5所以a 的取值范围为:a >−5.5.解:由题意可得:方程组{2x −3y =33x +2y =11 和方程组{ax +2by =42ax +3by =3的解相同解方程组{2x −3y =33x +2y =11可得:{x =3y =1将{x =3y =1 代入{ax +2by =42ax +3by =3 可得:{3a +2b =46a +3b =3解得:{a =−2b =5将{a =−2b =5 代入(3a +b )2024可得 原式=(−6+5)2024=1即(3a +b )2024的值1.6.(1)解:设a3−1=x b5+2=y 原方程组可变为:{x +2y =42x +y =5解得:{x =2y =1;即{a 3−1=2b5+2=1解得:{a =9b =−5;(2)设{m +3=x n −2=y由题意 得{m +3=5n −2=3解得:{m =2n =5.7.(1)解:1x +2x−1=2x 2−xx −1+2x =2解得:x =1检验:当x =1 x −1=0 则x =1是原方程的增根 所以原方程无解.(2)解:2x+93x−9=4x−7x−3−12x+9=3(4x−7)−(3x−9)解得:x=3检验:当x=3x−3=0则x=3是原方程的增根所以原方程无解.8.解:mxx2−4−2x−2=3x+2方程两边同时乘以(x+2)(x−2)去分母得去括号得移项得合并同类项得(m−5)x=−2∵关于x的分式方程会产生增根即(x+2)(x−2)=0∵x=±2当x=−2时−2(m−5)=−2解得m=6;当x=2时2(m−5)=−2解得m=4;综上所述m的值为6或4.9.解:x+2x−1−ax−1=3去分母得:x+2−a=3(x−1)即x−3x=a−2−3解得:x=5−a2∵关于x的分式方程x+2x−1+a1−x=3的解为非负数∴5−a2≥0且5−a2≠1解得:a≤5且a≠3.10.(1)解:①当a=−1b=−2k=2时−1+−22=−22×(−1)+(−2)=−4∴点P(−1,−2)的“2之称心点”P′的坐标为(−2,−4)故答案为:(−2,−4);②∵点P的“k之称心点”P′的坐标为(3,3)∴a+bk=3ka+b=3解得k=1a+b=3当a=1时b=2∴符合条件的点P的坐标可以是(1,2)故答案为:(1,2);(2)解:∵点P在y轴的正半轴上∴a=0b>0.∴点P的坐标为(0,b)∵点P的“k之称心点”为P′点∴点P′的坐标为(bk,b)∴PP′⊥OP ∵△OPP′为等腰直角三角形∴OP=PP′∴bk=±b∵b>0∴k=±1.故答案为:±1;(3)解:当k=1时去分母整理得:(m+1)x=−6∵原方程无解∴①m+1=0即m=−1②x−3=0即x=3则m=−3;当k=−1时去分母整理得:(m+3)x=0∵原方程无解∴①m=−3②x=3则m=−3;综上所述m=−1或m=−3.11.(1)解:由x+1x =52可得x+1x=2+12∵该方程的解为:x=2或x=12;(2)方程x+mx =c+mc(m≠0)的解为:x=c或x=mc检验:当x=c时左边=c+mc=右边故x=c是方程的解当x=mc 时左边=mc+m mc=mc+c=右边故x=mc也是方程的解;(3)原方程x+2x−1=a+2a−1可化为:x−1+2x−1=a−1+2a−1所以x−1=a−1或x−1=2a−1解得:x=a或x=a+1a−1经检验x=a或x=a+1a−1是原方程的解故答案为:x=a或x=a+1a−1.12.(1)解:∵−2x2+6x−3=0∵a=−2,b=6,c=−3∵Δ=62−4×(−2)×(−3)=12>0∵x=−b±√b2−4ac2a =−6±2√3−4解得x1=3+√32,x2=3−√32;(2)解:∵(2x+3)2=(3x+2)2∵(2x+3)2−(3x+2)2=0∵(2x+3+3x+2)(2x+3−3x−2)=0即(5x+5)(1−x)=0∵5x+5=0或1−x=0解得x1=−1,x2=1.13.(1)解:由题意可得Δ=[−(2k−1)]2−4×1×(k2−2)=−4k+9≥0∵k≤94;(2)解:∵k≤94k是符合条件的最大整数∵k=2∵方程x2−(2k−1)x+k2−2=0为x2−3x+2=0解得x1=1x2=2∵一元二次方程(m−1)x2+x+m−3=0与方程x2−(2k−1)x+k2−2=0有一个相同的根当x=1时m−1+1+m−3=0解得m=32;当x=2时4(m−1)+2+m−3=0解得m=1∵m−1≠0∵m≠1∵m=1舍去;∵m=32.14.(1)证明:化简一元二次方程得(c−a)x2−2√2bx+a+c=0Δ=(−2√2b)2−4(c−a)(a+c)=4(2b2+a2−c2)∵a b c是Rt△ABC的三条边∴c2=a2+b2b>0∴Δ=4[(2b2+a2−(a2+b2)]=4b2>0∴此方程有两个不相等的实数根;(2)∵方程的两个根是x1x2∴x1+x2=2√2bc−a x1x2=a+cc−a∵x12+x22=12∴(x1+x2)2−2x1x2=12即(2√2bc−a )2−2(a+c)c−a=12∴8b2(c−a)2−2(a+c)c−a=12∵b2=c2−a2∴8(c2−a2)(c−a)2−2(a+c)c−a=12化简得c=3a∴b2=(3a)2−a2=8a2∴b=2√2a∴a:b:c=1:2√2:3.15.(1)证明:x2+(m−4)x−4m=0a=1b=m−4c=−4mΔ=b2−4ac=(m−4)2−4×1×(−4m)=(m−4)2+16m=m2−8m+16+16m=m2+8m+16=(m+4)2≥0∵方程必有实数根.(2)解:设AC=x1BC=x2由根与系数的关系得:x1+x2=−ba =4−m x1x2=ca=−4m.由Rt△ABC斜边AB的长为5 结合勾股定理得:x12+x22=52∵x12+x22=(x1+x2)−2x1x2=(4−m)2−2×(−4m)=16−8m+m2+8m=m2+16=25∵m2=9∵m1=3m2=−3.当m=3时x1=4x2=−3;当m=−3时x1=3x2=4.∵x1>0x2>0∵m=−3.(3)解:①若AB为底边则BC=AC即方程由两个相等的实数根即Δ=(m+4)2=0解得:m=−4把m=−4代入方程得:x2−8x+16=0解得:x1=x2=4即BC=AC=4.∵C△ABC=AB+BC+AC=6+4+4=14.②若AB为腰则BC=6或AC=6把x=6代入方程得:36+6(m−4)=4m解得:m=−6当m=−6时方程为:x2−10x+24=0解得:x1=4x2=6.∵C△ABC=AB+BC+AC=6+6+4=16.综上:△ABC的周长为14或16.16.(1)解:由题意得:Δ=[−2(k−3)]2−4×(k2−4k−1)≥0化简得:−2k+10≥0解得:k≤5;(2)解:将x=1代入方程x2−2(k−3)x+k2−4k−1=0得:1−2(k−3)+k2−4k−1=0整理得:k2−6k+6=0解得:k1=3−√3,k2=3+√3;(3)解:设方程x2−2(k−3)x+k2−4k−1=0的两个根为x1,x2∴x1x2=k2−4k−1∵以x1,x2为横坐标、纵坐标的点恰在反比例函数y=mx的图象上∴x1x2=m∴m=k2−4k−1=(k−2)2−5∴当k=2时m取得最小值−5.17.解:x+13−x−16≥x−12解:去分母得:2(x+1)−(x−1)≥3(x−1)去括号得:2x+2−x+1≥3x−3移项合并同类项得:−2x≥−6同时除以−2得:x≤3.故而求得此不等式的解集为:x≤3.在数轴上表示此解集如下图:18.解:{4x−3<2(x+2)①52x+3≤72x+6②解①得x<72解②得x≥−3∵−3≤x<72.如图19.解:解方程组{x −2y =m,①2x +3y =2m +4,② ①+② 得3x +y =3m +4. ②-① 得x +5y =m +4. 由{3x +y ≤0,x +5y >0, 得{3m +4≤0,m +4>0,解不等式组 得−4<m ≤−43 ∴满足条件的m 的整数值为−3,−2.20.(1)解:分情况讨论:①当2x +1≥0时原方程可化为2x +1=3 解得x =1; ②当2x +1<0时原方程可化为:−2x −1=3解得:x =−2所以原方程的解为x =1或x =−2;(2)解:分情况讨论:①当x −1>4时解得:x >5;②当x −1<−4时解得:x <−3所以不等式解集为x >5或x <−3.。
中考数学方程与不等式(组)复习专题训练精选试题及答案
一次方程及方程组专题训练一、填空题:(每题 3 分,共 36 分) 1、方程 2x -3=1 的解是____。
2、已知 2x -y =1,用含 x 的代数式表示 y =____。
3、“某数与 6 的和的一半等于 12”,设某数为 x ,则可列方程______。
4、方程 2x +y =5 的所有正整数解为______。
5、若x =1y =2是方程 3ax -2y =2 的解,则 a =____。
6、当 x =____时,代数式 3x +2 与 6-5x 的值相等。
7、试写出一个解为 x =-18、方程组 x +y =32x -3y =-4的解是______。
9、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要____场比赛,则 5 名同学一共需要____比赛。
10、如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。
11长为 12cm ,那么小矩形的周长为____cm 。
12、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。
二、选择题:(每题 4 分,共 24 分)1、下列方程中,属于一元一次方程的是( )A 、x =y +1B 、1x=1 C 、x 2=x -1 D 、x =12、已知 3-x +2y =0,则 2x -4y -3 的值为( )A 、-3B 、3C 、1D 、03、用“加减法”将方程组2x -3y =92x +4y =-1中的 x 消去后得到的方程是( )A 、y =8B 、7y =10C 、-7y =8D 、-7y =104、某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为( )A 、280 元B 、300 元C 、320 元D 、200 元5、小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法( )A 、一种B 、两种C 、三种D 、四种 6、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树 1 亩需资金 200 元,种草 1 亩需资金 100 元,某组农民计划在一年内完成 2400 亩绿化任务,在实施中由于实际情况所限,植树完成 了计划的 90%,但种草超额完成了计划的 20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树 x 亩,种草 y 亩,则可列方程组为()A、x+y=2400x-90%+y (1-20%)=2400B、x+y=2400(1-90%) x+(1+20%) y=2400C、x+y=2400(1+90%) x+(1+20%) y=2400D、x+y=240090%x+(1+20%) y=2400三、解下列方程(组):(每题 6 分,共 36 分)1、12x-1=13(x-2) 2、x-30.2-x+40.1=5 3、72[53(65x-3)-1]=10x 4、3x+y=25x-y=65、x-3y=52x+5y=-126、x+23+y-12=3x+23+1-y2=1四、解答题:(每题 8 分,共 32 分)1、当 x 为何值时,代数式x+12的值比5-x3的值大 1。
2013年中考数学总复习专题测试试卷(三)(方程与不等式)有答案
年中考数学总复习专题测试试卷((方程与不等式)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.点(412)A m m --,在第三象限,那么m 值是( )。
A.12m > B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>ax x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B .a =3 C.a >3 D.a <33.方程2x x 2-4 -1=1x +2的解是( )。
A.-1 B .2或-1 C.-2或3 D.34.方程2-x 3 - x-14= 5的解是( )。
A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。
A .x 1=1,x 2=-3B .x 1=1,x 2=3C .x 1=-1,x 2=3D .x 1=-1,x 2=-36.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A.1-B.1m - C.0 D.1 7. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。
A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )。
A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
2013年中考方程、方程组考题精选
2013年中考方程、方程组考题精选分式方程1、(2013年黄石)分式方程3121x x =-的解为 A.1x = B. 2x = C. 4x = D. 3x =2、(德阳市2013年)已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是____3、(2013•绥化)若关于x 的方程=+1无解,则a 的值是 .4.关于x 的分式方程mx -5=1,下列说法正确的是( )A .方程的解是x =m +5B .m >-5时,方程的解是正数C .m <-5时,方程的解为负数D .无法确定 5、(2013•泰州)解方程:.6、(2013•宁夏)解方程:.7、(绵阳市2013年)解方程:23112x x x x -=-+-一元二次方程1、(2013年潍坊市)已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解4、(2013•咸宁)关于x 的一元二次方程(a ﹣1)x ﹣2x+3=0有实数根,则整6、(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )7、(2013•烟台)已知实数a ,b 分别满足a ﹣6a+4=0,b ﹣6b+4=0,且a ≠b ,则的值是( )8、(2013•滨州)对于任意实数k,关于x 的方程x ﹣2(k+1)x ﹣k +2k ﹣1=09、(2013年广州市)若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( )A 没有实数根B 有两个相等的实数根C 有两个不相等的实数根D 无法判断11、(2013•铁岭)如果三角形的两边长分别是方程x ﹣8x+15=0的两个根,那13、(2013台湾、26)若一元二次方程式a (x ﹣b )2=7的两根为±,其中a 、b 为两数,则a+b 之值为何?( ) A .B .C .3D .514、(2013年江西省)若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个..符合题意的一元二次方程 . 15、方程x 2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为 .16、(2013•常州)已知x=﹣1是关于x 的方程2x 2+ax ﹣a 2=0的一个根,则a=.17、(2013•自贡)已知关于x 的方程x 2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18、(2013•荆门)设x 1,x 2是方程x 2﹣x ﹣2013=0的两实数根,则= .19、(2013•白银)现定义运算“★”,对于任意实数a 、b ,都有a ★b=a 2﹣3a+b ,如:3★5=32﹣3×3+5,若x ★2=6,则实数x 的值是 .20、(2013•黔东南州)若两个不等实数m 、n 满足条件:m 2﹣2m ﹣1=0,n 2﹣2n ﹣1=0,则m 2+n 2的值是 . 21、(2013济宁)已知关于x 的方程﹣=0无解,方程x 2+kx+6=0的一个根是m . (1)求m 和k 的值;(2)求方程x 2+kx+6=0的另一个根.22、(2013•玉林)已知关于x 的方程x 2+x+n=0有两个实数根﹣2,m .求m ,n 的值.23、(2013年黄石)解方程:2212223x y x ⎧-=-⎪⎨⎪-=⎩24、(2013•孝感)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+2k=0有两个实数根x 1,x 2. (1)求实数k 的取值范围; (2)是否存在实数k 使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.25、(2013菏泽)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0 (k 是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2﹣x1,判断y 是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.26、(2013四川南充,20,8分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0 (1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?27.(2013杭州)当x 满足条件时,求出方程x2﹣2x﹣4=0的根.应用题1.某市在端午节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上的人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为______.2、(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A .B .C .D .3.(2013•铁岭)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为4、(2013•钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为5、(2013年深圳市)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他。
2013年中考数学复习习题集答案
习题集部分第一部分 数与代数 第一章 数与式 第1讲 实数1.B 2.A 3.D 4.D 5.B 6.D 7.3 8.<9.C 解析:0.000 021=2.1×10-5. 10.解:原式=5-1+(2-3)+1=4.11.C 解析:根据数轴表示数的方法得到a <0<b ,数a 表示的点比数b 表示的点离原点远,则-a >-b ,b -a >0,|a |>|b |.∴选项A 、B 、D 正确,选项C 不正确.故选C.12.1.6×10-6 13.2 314.解:原式=3 3-2×32-14+1=2 3+34.15.解:原式=-4+3-2×12+3=1.16.517.解:(1)19×11 12×11911⎛⎫- ⎪⎝⎭(2)1(2n -1)×(2n +1) 12×112121n n ⎛⎫- ⎪-+⎝⎭(3)a 1+a 2+a 3+a 4+…+a 100=12×113⎛⎫- ⎪⎝⎭+12×1135⎛⎫- ⎪⎝⎭+12×1157⎛⎫- ⎪⎝⎭+…+12×11199201⎛⎫- ⎪⎝⎭=12×1111111133557199201⎛⎫-+-+-- ⎪⎝⎭…+ =12×11201⎛⎫- ⎪⎝⎭=12×200201=100201. 18.2(a +b )ab 解析:∵1⊕2=2⊕1=3=2×1+2×21×2,(-3)⊕(-4)=(-4)⊕(-3)=-76=2×(-3)+2×(-4)(-3)×(-4),(-3)⊕5=5⊕(-3)=-415=2×5+2×()-35×(-3),…∴a ⊕b =2(a +b )ab.第2讲 代数式1.B 2.D 3.B 4.A5.A 解析:根据题意,x -2+(y +1)2=0,两个非负数的和为0,必须这两个数同时为0,所以得:x -2=0,y +1=0,解得x =2,y =-1,所以x -y =3.6.1 7.1.25b +a 8.5 9.n -m 10.解:由2x -1=3得,x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.11.B 解析:a 2-b 2=(a -b )·(a +b ),得到14=12·(a +b ),即可得到:(a +b )=12,所以选择B答案.12.m +43 1 解:m 2-163m -12=()m +4()m -43()m -4=m +43;当m =-1时,原式=-1+43=1.13.B 14.A15.解:A 2-B 2=(2x +y )2-(2x -y )2 =4x ·2y =8xy .16.A 解析:∵3x =4,9y =7,∴3x -2y=3x 32y =3x 9y =47.17.(-1)n a 3n -1n18.解:原式=x -y x ÷x 2-2xy +y 2x =x -y x ·x (x -y )2=1x -y .当x =2 009,y =2 010时,原式=12 009-2 010=-1.19.C 解析:根据题意得出矩形的面积是(a +1)2-(a -1)2,求出即可.矩形的面积是(a +1)2-(a -1)2=a 2+2a +1-(a 2-2a +1)=4a (cm 2).第3讲 整式与分式 第1课时 整式1.A 2.B 3.D 4.D 5.D 6.D 7.D 8.C9.(1)2 (2)2a 3 (3)-12a 4+2a10.解:原式=a 2+2ab +b 2+a 2-2ab =2a 2+b 2. 11.A 12.D13.解:原式=4a 2-4ab +b 2-b 2 =4a 2-4ab ,将a =-2,b =3代入上式得:上式=4×(-2)2-4×(-2)×3=16+24=40. 14.解:原式=a 2-b 2+2a 2=3a 2-b 2. 代入a =1,b =2,原式得3-(2)2=1.15.解:原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5. 当x =-3时,原式=(-3)2-5=3-5=-2. 16.B17.解:由2x -y +|y +2|=0,得2x -y =0,y +2=0,∴x =-1,y =-2. 又[(x -y )2+(x +y )(x -y )]÷2x=(x 2-2xy +y 2+x 2-y 2)÷2x =x -y . ∴x -y =-1-(-2)=1.18.解:(1)4×6-52=24-25=-1;(2)答案不唯一.如n (n +2)-(n +1)2=-1;(3)成立.因为n (n +2)-(n +1)2=n 2+2n -(n 2+2n +1) =n 2+2n -n 2-2n -1=-1.19.2 解析:3·9m ·27m =3·32m ·33m =31+2m +3m =311, ∴1+2m +3m =11.解得m =2. 第2课时 因式分解1.C 2.B 3.C 4.(a +b )(a -b )5.(m -3)2 6.2x (2x -1) 7.2(x +2)(x -2) 8.2(x +1)2 9.C 10.211.解:能,因为(n +11)2-n 2=(n +11+n )(n +11-n )=11(2n +11)为11的倍数,所以可以被11整除.12.a (1-3b )2 13.ab (b +2)(b -2) 14.x (x +2)(x -6)15.D 解析:首先把x -1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.(x -1)2-2(x -1)+1=(x -1-1)2=(x -2)2.16.解:原式=()x -y 2()x +y ()x -y =x -yx +y.当x =3+1,y =3-1时,原式=()3+1-()3-1()3+1+()3-1=22 3=33.17.6 解析:∵a =2,a +b =3,∴a 2+ab =a (a +b )=2×3=6. 18.-3219.(x +y )(x -y -3)20.解:等腰或直角三角形 ∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a +b )(a -b )=(a 2+b 2)(a 2-b 2), ∴c 2(a +b )(a -b )=(a 2+b 2)(a +b )(a -b ). ∵a ,b 为三角形边长,∴a +b ≠0. ∴c 2(a -b )=(a 2+b 2)(a -b ),∴a -b =0或c 2=a 2+b 2,即a =b 或c 2=a 2+b 2, ∴△ABC 是等腰或直角三角形. 21.x (x +2)(x -2) 第3课时 分式1.B 2.C 3.(1)4xab (2)a +b 4.7z 36x 2y x +3x +1 5.326.-1 7.解:x 2-1x +1÷x 2-2x +1x 2-x =(x +1)(x -1)x +1÷(x -1)2x (x -1)=x .8.解:x 2x -1+11-x =x 2-1x -1=x +1,代入求值(除x =1外的任何实数都可以).9.-1410.m -6 11.C12.解:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1=3x +4-2x -2(x +1)(x -1)·(x -1)2x +2 =x +2(x +1)(x -1)·(x -1)2x +2=x -1x +1. 13.解:原式=2111(11)x x x x ⎛⎫-+ ⎪++-⎝⎭())(·x +1x -1 =x x +1·x +1x -1=xx -1. 当x =2时,原式=2.14.解:原式=a -2a 2-1÷(a +1)(a -1)-2a +1a +1=a -2a 2-1÷a 2-2a a +1=a -2(a +1)(a -1)×a +1a (a -2) =1a 2-a. ∵a 是方程x 2-x =6的根,∴a 2-a =6.∴原式=16.15.解:原式=a (b +1)(b +1)(b -1)+b -1(b -1)2=a b -1+1b -1=a +1b -1. 由b -2+36a 2+b 2-12ab =0, 得b -2+(6a -b )2=0,∴b =2,6a =b ,即a =13,b =2.∴a +1b -1=13+12-1=43. 16.解:由x 2-3x -1=0知x ≠0,则x 2-1=3x ,两边同除以x 得x -1x=3.原式=21x x ⎛⎫- ⎪⎝⎭+2=1117.-4 解析:由xy x +y=-2,得x +y xy =-12,裂项得1y +1x =-12.同理1z +1y =43,1x +1z =-43.所以,1y +1x +1z +1y +1x +1z =-12+43-43=-12,1z +1y +1x =-14.于是xy +yz +zx xyz =1z +1y +1x =-14,所以xyzxy +yz +zx=-4.第4讲 二次根式1.C 2.B 3.D 4.C 5.A 6.3 3 7.2 2 8.4949.710.解:原式=3×33-1+2 2-2+1=2+1.11.C12.B13.C解析:由m=1+2,n=1-2,得m+n=2,mn=-1,则m2+n2-3mn=(m+n)2-5mn=22-5×(-1)=9=3.故选C.14.5解析:先将20n化为最简二次根式,即20n=2 5n,因此要使5n是整数,正整数n的最小值为5.15.D 16.解:原式=-212⎛⎫⎪⎝⎭+1-(3 2-3)+3188⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=4+1-3 2+3-1=7-3 2.17.D解析:因为x-2y+9与|x-y-3|互为相反数,所以x-2y+9=0,|x-y-3|=0.可得290,30x yx y-+=⎧⎨--=⎩⇒15,12xy=⎧⎨=⎩⇒x+y=27.18.-2解析:∵1+x-(y-1)1-y=0,∴1+x+(1-y)1-y=0.又∵由被开方数为非负数的二次根式有意义的条件,得1-y≥0,∴根据算术平方根为非负数的性质,要使两个非负数之和等于0,必须这两个数同时为0,即1+x=0,1-y=0,即x=-1,y=1.∴x2 011-y2 011=(-1)2 011-12 011=-2.19.A解析:首先根据二次根式有意义的条件求出x的值,然后代入式子求出y的值,最后求出2xy的值.根据二次根式被开方数必须是非负数的条件,要使y=2x-5+5-2x-3在实数范围内有意义,必须250,520xx-≥⎧⎨-≥⎩⇒x=52.∴y=-3.∴2xy=2·52·(-3)=-15.第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组1.A 2.D 3.B 4.A 5.4 6.1,1 xy=⎧⎨=-⎩7.20 000-3x=5 0008.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为y m3.根据题意,得5,13800.y xx y=⎧⎨+=⎩解得2300,11500.xy=⎧⎨=⎩答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.9.1解析:由于-2x m-1y3与12xn y m+n是同类项,所以有1,3,m nm n-=⎧⎨=+⎩由m-1=n,得-1=n-m.所以(n-m)2 012=(-1)2 012=1.10.C解析:把2,1xy=⎧⎨=⎩代入8,1,mx nynx my+=⎧⎨-=⎩得⎩⎪⎨⎪⎧2m+n=8,2n-m=1,解得⎩⎪⎨⎪⎧m=3,n=2.所以2m-n=6-2=4,4的算术平方根是2.故选C.11.1 10012.解:原方程组可化为⎩⎪⎨⎪⎧4x-y=5,①3x+2y=12,②①×2+②,得11x=22,∴x=2.把x=2代入①,得y=3.∴方程组的解为⎩⎪⎨⎪⎧x=2,y=3.13.解:(1)当x=1时,y=1+1=2,∴b=2.(2)⎩⎪⎨⎪⎧x=1,y=2.(3)∵直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),∴当x=1时,y=m+n=b=2.∴当x=1时,y=n+m=2,∴直线l3:y=nx+m也经过点P.14.解:这天萝卜的单价是x元/斤,排骨的单价是y元/斤.根据题意,得⎩⎪⎨⎪⎧3x+2y=45,31+50%x+21+20%y=36.解得⎩⎪⎨⎪⎧x=3,y=18.答:这天萝卜、排骨的单价是3元/斤、18元/斤.15.解:⎩⎪⎨⎪⎧x-y=2,①x2-2xy-3y2=0,②方程①变形为y=x-2.③把③代入②,得x2-2x(x-2)-3(x-2)2=0.整理,得x2-4x+3=0.解这个方程,得x1=1,x2=3.将x1=1,x2=3代入③,分别求得y1=-1,y2=1.所以原方程组的解为⎩⎪⎨⎪⎧x1=1,y1=-1或⎩⎪⎨⎪⎧x2=3,y2=1.16.B解析:关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=5k,x-y=9k,得⎩⎪⎨⎪⎧x=7k,y=-2k.将之代人方程2x+3y =6,得k=34.第2课时分式方程1.D 2.D 3.B 4.C 5.C6.1解析:原方程求解,得x=1或-1.经检验,x=-1是原方程的增根,所以x=1是原方程的根.7.2 200元解析:设条例实施前此款空调的售价为x元,由题意列方程,得10 000x(1+10%)=10 000x-200,解得x=2 200元.8.解:方程两边同时乘以(x+1)(x-1),得2+(x -1)=(x +1)(x -1).解得x =2或-1. 经检验:x =-1是方程的增根. ∴原方程的解为x =2.9.解:由题意列方程,得3-x 2-x -1x -2-=3,解得x =1.经检验x =1是原方程的根.10.解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏一年的平均滞尘量为(2x -4)毫克,根据题意,得1 0002x -4=550x .解得x =22.经检验,x =22是方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.11.A 解析:∵a ⊕b =1b -1a ,∴2⊕(2x -1)=12x -1-12=1.∴12x -1=32,解得x =56.检验,合适.故选A.12.0 解析:去分母,得2-x -m =2(2-x ),解得x =6-m 3.由原方程有增根,所以6-m3=2,解得∴m =0.13.解:设文学书的单价是x 元/本,则科普书的单位为(x +4)元/本.依题意,得12 000x +4=8 000x .解得x =8.经检验x =8是方程的解,并且符合题意. ∴科普书的单价为:x +4=12(元).∴去年购进的文学书和科普书的单价分别是8元和12元. 15.解:(1)设商铺标价为x 万元,则:按方案一购买,则可获投资收益(120%-1)×x +x ×10%×5=0.7x .投资收益率为0.7xx×100%=70%.按方案二购买,则可获投资收益(120%-0.85)×x +x ×10%×(1-10%)×3=0.62x .投资收益率为0.62x0.85x×100%≈72.9%.∴投资者选择方案二所获得的投资收益率更高. (2)由题意,得0.7x -0.62x =5. 解得x =62.5(万元).∴甲投资了62.5万元,乙投资了53.125万元. 14.解:设该校九年级学生有x 人.根据题意,得 1 936x ×0.8=1 936x +88, 整理,得0.8(x +88)=x . 解得x =352.经检验x =352是原方程的解. 答:这个学校九年级学生有352人.16.解:设B 车间每天生产x 件,则A 车间每天生产1.2x .由题意,得4 400x +1.2x+4 400x =20.解得x =320.经检验x =320 是原方程的根.A 车间每天生产的件数=1.2x =320×1.2=384(件).答:A 车间每天生产384件,B 车间每天生产320件. 第3课时 一元二次方程1.C 2.C 3.D 4.B 5.C 6.B7.B 解析:∵关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,∴Δ=22+4a =0.解得a =-18.c >9 9.289(1-x )2=256 10.解:(x -3)2+4x (x -3)=0, 因式分解,得(x -3)(x -3+4x )=0, 整理,得(x -3)(5x -3)=0. 于是得x -3=0或5x -3=0.解得x 1=3,x 2=35.11.D 解析:x 1+x 2=-2a =3,a =-32;x 1x 2=b =1.12.B 13.314.-1 解析:将原代数式去括号,因式分解,整理, 得(a -b )(a +b -2)+ab . ①由一元二次方程根与系数关系,得a +b =2,ab =-1, ①式=0-1=-1.15.解:(1)设每千克核桃应降价x 元.根据题意,得(60-x -40)⎝⎛⎭⎫100+x2×20=2 240. 化简,得x 2-10x +24=0,解得x 1=4,x 2=6. 答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.16.解:设AB =x m ,则BC =(50-2x ) m. 根据题意可,得x (50-2x )=300. 解得x 1=10,x 2=15.当x =10时,BC =50-10-10=30>25, 故x 1=10(不合题意,舍去).答:可以围成AB 的长为15米,BC 为20米的矩形.17.D 解析:由题意,得⎩⎨⎧(2k +1)2-4k >0,2k +1≥0,k ≠0.解得-12≤k <12且k ≠0.18.4 解析:∵α,β是一元二次方程x 2+3x -7=0的两个根,∴α+β=-3,α2+3α=7.∴α2+4α+β=α2+3α+α+β=7-3=4.故α2+4α+β的值为4.19.10 解析:解方程x 2-6x +8=0,得x 1=2,x 2=4. ∴三角形的三条边的长只能是4,4,2 .∴该三角形的周长是10. 第2讲 不等式与不等式组1.B 2.C 3.B 4.B 5.2<x <3 6.m ≤27.m >2 解析:由第一象限点的坐标的特点可得⎩⎪⎨⎪⎧m >0,m -2>0.解得m >2.8.-1,0,1 解析:解原不等式组,得-32<x ≤1,所以x 取-1,0,1.9.解:⎩⎪⎨⎪⎧3x -2<x +2, ①8-x ≥1-3(x -1). ②由不等式①,得x <2, 由不等式②,得x ≥-2.∴不等式组的解集为-2≤x <2.10.解:(1)牛奶盒数为(5x +38)盒.(2)根据题意,得⎩⎪⎨⎪⎧5x +38-6(x -1)<5,5x +38-6(x -1)≥1.∴不等式组的解集为39<x ≤43. ∵x 为整数,∴x 取40,41,42,43.答:该敬老院至少有40名老人,最多有43名老人.11.A 解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m,1-m ).又∵M (1-2m ,m -1)关于x 轴的对称点在第一象限,∴⎩⎪⎨⎪⎧1-2m >0,1-m >0.解得⎩⎪⎨⎪⎧m <12,m <1. 在数轴上表示为.故选A.12.B 解析:设购进这种水果a 千克,进价为y 元/千克,这种水果的售价在进价的基础上应提高x ,则售价为(1+x )y 元/千克.由题意,得0.9a (1+x )y -ayay ×100%≥20%.解得x ≥13.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.13.a <4 解析:⎩⎪⎨⎪⎧2x >3x -3, ①3x -a >5. ②由①得,x <3,由②得,x >5+a3.∵此不等式组有实数解, ∴5+a 3<3,解得a <4.14.解:(1)设甲票价为4x 元,则乙为3x 元. ∴3x +4x =42,解得x =6.∴4x =24,3x =18.∴甲、乙两种票的单价分别是24元、18元. (2)设甲票有y 张,根据题意,得 ⎩⎪⎨⎪⎧24y +18(36-y )≤750,y >15. 解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.15.解:⎩⎨⎧x 2+x +13>0, ①x +5a +43>43(x +1)+a . ②解不等式①,得x >-25.解不等式②,得x <2a .由该不等式有实数解,得该不等式组的解集为-25<x <2a .又由该不等式恰有两个整数解,得1<2a ≤2.解得12<a ≤1.∴实数a 的取值范围为12<a ≤1.16.解:(1)设有x 人生产A 种板材,则有(210-x )人生产B 种板材.根据题意列方程,得 48 00060x =24 00040(210-x ). 化简,得6x =8(210-x ). 解得x =120.经检验x =120是原方程的解.生产B 种板材的人数为210-x =210-120=90(人).(2)设生产甲型板房m 间,则生产乙型板房为(400-m )间.根据题意,得 ⎩⎪⎨⎪⎧108m +156(400-m )≤48 000,61m +51(400-m )≤24 000.解得300≤m ≤360. 设400间板房能居住的人数为W .则有 W =12m +10(400-m ),W =2m +4 000.∵k =2>0,∴当m =360时,W 最大值=2×360+4 000=4 720(人). 答:这400间板房最多能安置4 720人. 17.a <418.解:(1)(2 420+1 980)×13%=572(元).(2)①设冰箱采购x 台,则彩电采购(40-x )台.根据题意,得 ⎩⎪⎨⎪⎧2 320x +1 900(40-x )≤85 000,x ≥56(40-x ).解不等式组,得18211≤x ≤2137.因为x 为整数,所以x =19或20或21. 方案一:冰箱购买19台,彩电购买21台; 方案二:冰箱购买20台,彩电购买20台; 方案一:冰箱购买21台,彩电购买19台. ②设商场获得总利润为y 元,则y =(2 420-2 320)x +(1 980-1 900)(40-x ) =20x +3 200.∵k =20>0,∴y 随x 的增大而增大.∴当x =21时,y 最大=20×21+3 200=3 620. 第三章 函数第1讲 函数与平面直角坐标系 1.B 2.B 3.C 4.B 5.B6.B 解析:顶点A 的坐标是(-2,3),△ABC 向右平移4个单位后得到△A 1B 1C 1的顶点A 1的坐标是(2,3),△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2的顶点A 2的坐标是(2,-3).7.C 解析:根据以原点O 为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A 的坐标是(1,2),则点A ′的坐标是(-2,-4).8.C 9.C 10.(-1,-2) 11.(1,3)12.⎝⎛⎭⎫72,0 解析:如下图D37,取B (3,-1)关于x 轴的对称点为B ′,则B ′的坐标为(3,1).作直线AB ,它与x 轴的交点即为所求的点M .使用待定系数法求得直线AB 的解析式为y =-2x +7,令y =0,得-2x +7=0,解得x =72,所以点M 的坐标为⎝⎛⎭⎫72,0.图D3713.210 解析:如图可知,每个拐角形阴影部分的面积等于两个正方形面积的差,其面积分别为:22-12,42-32,62-52,…,202-192,因此其面积和为:2+1+4+3+6+5+…+20+19=20×(1+20)2=210. 14.(16,1+3) 解析:可以求得点A (-2,-1-3),则第一次变换后点A 的坐标为A 1(0,1+3),第二次变换后点A 的坐标为A 2(2,-1-3),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+3).15.(1)△ABC 如图D38 14(2)直角三角形 解析:(1)因为点A 的坐标为(1,2),所以点A 关于y 轴的对称点B 的坐标为(-1,2),关于原点的对称点C 的坐标为(-1,-2).连AB ,BC ,AC ,作△ABC.图D38设AB 交y 轴于D 点,如图D38, D 点坐标为(0,2), ∵OD ∥BC ,∴△ADO ∽△ABC . ∴S △ADO S △ABC =AD 2AB 2=14. (2)∵ab ≠0,∴a ≠0,且b ≠0, ∴点A 不在坐标轴上, ∴AB ∥x 轴,BC ⊥x 轴. ∴∠ABC =90°.∴△ABC 是直角三角形.16.解:(1)∵四边形ONEF 是矩形, ∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为⎝⎛⎭⎫2,32. (2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴⎩⎨⎧ 1+x 2=-1+324+y 2=2+12,解得,⎩⎪⎨⎪⎧x =1y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴⎩⎨⎧ -1+x 2=1+322+y 2=4+12,解得,⎩⎪⎨⎪⎧x =5y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴⎩⎨⎧3+x 2=-1+121+y 2=2+42,解得,⎩⎪⎨⎪⎧x =-3y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).17.D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F . ∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°,∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12,∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13.则D 3C 3=13.根据题意得出: ∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°,∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36.则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16.第2讲 一次函数1.D 2.D 3.D 4.A 5.D 6.C 7.B 8.减小 9.210.解:(1)120×150=18 000(元). (2)由图象知,y 与x 之间的函数是一次函数.设函数关系式为:y =kx +b (k ≠0).将(205,1 000),(275,1 280)两点坐标代入得:⎩⎪⎨⎪⎧ 205k +b =1 000,275k +b =1 280,解得⎩⎪⎨⎪⎧k =4,b =180.则y 与x 之间的函数关系式为y =4x +180.11.B 解析:∵函数图象经过二、四象限,∴m -1<0,解得m <1.故选B.12.B 解析:∵一次函数y =mx +|m -1|的图象过点(0,2),∴|m -1|=2,∴m -1=2或m -1=-2,解得m =3或m =-1,∵y 随x 的增大而增大,∴m >0,∴m =3.13.B 解析:由函数图象可知,当x <2时y 1<y 2.14.-8 解析:∵y =kx +b 的图象与正比例函数y =2x 的图象平行,∴k =2.∵y =kx +b 的图象经过点A (1,-2),∴2+b =-2,解得b =-4,∴kb =2×(-4)=-8. 15.解:(1)y =(1-0.5)x -(0.5-0.2)(200-x ) =0.8x -60(0≤x ≤200);(2)根据题意得:30×(0.8x -60)≥2 000,解得x ≥15813.故小丁每天至少要卖159份报纸才能保证每月收入不低于2 000元.16.⎝⎛⎭⎫75,-65 解析:如图D39,当AB 最短时AB ⊥直线y =2x -4,设直线与x 轴、y 轴的交点分别为点C ,D ,过点B ,作BE ⊥AC 于E ,易知△ABC ∽△DOC ,对应线段成比例,即CA CD =BCOC,AC =3,易求OC =2,CD =2 5,可以求出BC =35 5,又有△ABC ∽△BEC ,根据EC BC =BCAC,可求出CE =35,所以点B 的横坐标为2-35=75,代入表达式中就可以求出点B 的纵坐标为-65.所以点B 的坐标为⎝⎛⎭⎫75,-65. 图D3917.解:(1)当售价定为每件30元时,一个月可获利: (30-20)×[105-5(30-25)]=800(元).(2)设售价为每件x 元时,一个月的获利为y 元 由题意得:y =(x -20)[105-5(x -25)] =-5x 2+330x -4 600 =-5(x -33)2+845当x =33时,y 的最大值是845.故当售价定为每件33元时,一个月获利最大,最大利润是845元. 18.解:(1)设商家购买彩电x 台,则购买洗衣机(100-x )台. 由题意,得2 000x +1 000(100-x )=160 000, 解得x =60.则100-x =40(台),所以,商家可以购买彩电60台,洗衣机40台. (2)设购买彩电a 台,则购买洗衣机为(100-2a )台. 根据题意,得 ⎩⎪⎨⎪⎧2 000a +1 600a +1 000(100-2a )≤160 000,100-2a ≤a , 解得3313≤a ≤37.5,因为a 是整数,所以a =34,35,36,37. 因此,共有四种进货方案.设商店销售完毕后获得利润为w 元.则w =(2 200-2 000)a +(1 800-1 600)a +(1 100-1 000)(100-2a )=200a +10 000. ∴w 随a 的增大而增大. ∴当a =37时,w 最大值=200×37+10 000=17 400(元), 所以商店获得的利润最大为17 400元.19.解:将(-1,1)代入y =kx +3,得1=-k +3,所以k =2.所以2x +3<0.解得x <-32.20.解:(1)(2 420+1 980)×13%=572(元).(2)设冰箱采购x 台,则彩电采购(40-x )台,根据题意得 ⎩⎪⎨⎪⎧2 320x +1 900(40-x )≤85 000,x ≥56(40-x ), 解不等式组得18211≤x ≤2137,因为x 为整数,所以x =19,20,21,方案一:冰箱购买19台,彩电购买21台, 方案二:冰箱购买20台,彩电购买20台, 方案一:冰箱购买21台,彩电购买19台, 设商场获得总利润为y 元,则y =(2 420-2 320)x +(1 980-1 900)(40-x ) =20x +3 200∴当x =21时,y 最大值=20×21+3 200=3 620(元).∴商场购买冰箱21台,彩电19台时获利最大,最大利润是3 620元. 第3讲 反比例函数 1.B 2.D3.A 解析:将y =k x 代入y =x +2中,得k x =x +2,由于函数y =kx与y =x +2的图象没有交点,则kx=x +2无解,得出k 的值. 4.C 解析:∵直线y =ax (a ≠0)与双曲线y =kx(k ≠0)的图象均关于原点对称,∴它们的另一个交点坐标与(2,6)关于原点对称.∴它们的另一个交点坐标为:(-2,-6).5.A 解析:先根据反比例函数的图象经过第一、三象限得到关于m 的不等式,求出m 的取值范围即可.∵双曲线y =m -1x的图象经过第一、三象限,∴m -1>0.∴m >1.6.B 解析:双曲线与直线的交点坐标适合两者的解析式,利用y =2x +1可以求出交点坐标为(-1,-1),进而求出k =1.7.C 解析:由矩形的面积知xy =9,可知它的长x 与宽y 之间的函数关系式为y =9x(x >0),是反比例函数图象,且其图象在第一象限.故选C.8.A 解析:由图象观察可知,一次函数与反比例函数相交于点(-2,-2)、(1,4)两点,进一步观察当-2<x <0时,一次函数的函数值大于反比例函数的函数值即y 1>y 2;当x >1时,一次函数的函数值大于反比例函数的函数值即y 1>y 1,因此A 满足条件.9.-2 解析:根据图象上的点满足函数解析式,即-2=k1,所以k =-2.10.-311.解:(1)∵点A (m,6)、B (n,3)在函数y =6x的图象上,∴m =1,n =2.∴A (1,6),B (2,3).∴⎩⎪⎨⎪⎧ k +b =6,2k +b =3.∴⎩⎪⎨⎪⎧k =-3,b =9.∴一次函数的解析式为y =-3x +9. (2)由图象知:1<x <2.12.A 解析:由反比例函数的增减性可知,当x <0时,y 随x 的增大而增大,所以当x 1<x 2<0时,0<y 1<y 2.又C (x 3,y 3)在第四象限,则y 3<0,所以y 3<y 1<y 2.故选A.13.C 14.-5<x <-1或x >0 15.-416.解:(1)在y 1=k 1x +1中,当x =0时,y =1, ∴点A 的坐标为(0,1). 设B 点的坐标为(b,0) 由△AOB 的面积为1,得 12b ×1=1,∴b =2.∴点B 的坐标为(2,0) 又∵点B 在一次函数y 1=k 1x +1的图象上,有0=2k 1+1,∴k 1=-12.∴一次函数的解析式为y 1=-12x +1.由点M 在一次函数y 1=k 1x +1的图象上,点M 纵坐标为2,得2=-12x +1,解得x =-2,点M 坐标为(-2,2).代入y 2=k 2x 中,得2=k 1-2.∴k 1=-4.∴反比例函数的解析式的解析式为y 2=-4x.由图象可知,点N 坐标为(4,-1)y 1>y 2时x 的取值范围为x <-2或0<x <4.17.三 k >0 解:(1)根据反比例函数图象与性质得到:双曲线y =kx的一支在第一象限,则k>0,得到另一支在第三象限;(2)∵梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,而点C 的坐标标为(2,2),∴A 点的纵坐标为2,E 点的横坐标为2,B 点坐标为(2,0),把y =2代入y =k x 得x =k2;把x =2代入y =k x 得y =k2,∴A 点的坐标为⎝⎛⎭⎫k 2,2,E 点的坐标为⎝⎛⎭⎫2,k 2. ∴S 阴影=S △ACE +S △OBE =12×⎝⎛⎭⎫2-k 2×⎝⎛⎭⎫2-k 2+12×2×k 2=18k 2-12k +2=18(k -2)2+32. 当k -2=0,即k =2时,S 阴影部分最小,最小值为32;∴E 点的坐标为(2,1),即E 点为BC 的中点.∴当点E 在BC 的中点时,阴影部分的面积S 最小.(3)设D 点坐标为⎝⎛⎭⎫a ,k a ,∵OD OC =12,∴OD =DC ,即D 点为OC 的中点.∴C 点坐标为⎝⎛⎭⎫2a ,2k a ,把y =2k a 代入y =k x 得x =a2,确定A 点坐标为⎝⎛⎭⎫a 2,2k a ,∵S △OAC =2,∴12×⎝⎛⎭⎫2a -a 2×2k a =2,解得k =43.双曲线的解析式为y =43x . 18.解:(1)510-200=310(元).(2)p =200x,∴p 随x 的增大而减小.(3)购x 元(200≤x <400),在甲商场的优惠额是100元,乙商场的优惠额是x -0.6x =0.4x . 当0.4x <100,即200≤x <250时,选甲商场优惠; 当0.4x =100,即x =250时,选甲乙商场一样优惠; 当0.4x >100,即250<x <400时,选乙商场优惠;19.解:(1)把A (2,3)代入y 2=mx,得m =6.把A (2,3),C (8,0)代入y 1=kx +b ,得⎩⎪⎨⎪⎧3=2k +b ,0=8k +b ,解得⎩⎪⎨⎪⎧k =-12,b =4.∴这两个函数的解析式为:y 1=-12x +4,y 2=6x.(2)由题意得⎩⎨⎧y =-12x +4,y =6x,解得⎩⎪⎨⎪⎧ x 1=6,y 1=1或⎩⎪⎨⎪⎧x 2=2,y 2=3.∴当x <0或2<x <6时,y 1>y 1.20.解:(1)设反比例函数解析式为y =kx,将(25,6)代入解析式得,k =150.所以y =150x(x ≥15).将y =10代入解析式得,10=150x.x =15.故A (15,10),则正比例函数解析式为y =150x(x ≥15).设正比例函数解析式为y =nx ,将A (15,10)代入上式即可求出n 的值,n =23.则正比例函数解析式为y =23x (0≤x ≤15).(2)150x=2,解之得x =75(分钟).答:从药物释放开始,师生至少在75分钟内不能进入教室. 第4讲 二次函数1.D 2.A 3.D 4.C 5.D 6.D 7.C 8.A 9.(1,-4) 10.-1<x <3 11.解:(1)画图(如图D40).图D40(2)当y <0时,x 的取值范围是x <-3或x >1. (3)平移后的图象所对应的函数关系式为y =-12(x -2)2+2⎝⎛⎭⎫或写成y =-12x 2+2x . 12.C 13.D 14.D 15.D 16.解:(1)10+x 500-10x(2)设月销售利润为y 元.根据题意, 得y =(10+x )(500-10x ), 整理得y =-10(x -20)2+9 000当x =20时,y 有最大值9 000(元),此时篮球的售价为:20+50=70(元). 答:8 000元不是最大利润,最大利润是9 000元,此时篮球售价应为70元. 17.解:(1)∵抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0), ∴⎩⎪⎨⎪⎧ 9a -3b +3=0,a -b +3=0,解得⎩⎪⎨⎪⎧a =1,b =4. ∴抛物线的解析式为:y =x 2+4x +3.(2)由(1)知,抛物线解析式为:y =x 2+4x +3, ∵令x =0,得y =3,∴C (0,3).∴OC =OA =3,则△AOC 为等腰直角三角形.∴∠CAB =45°.∴cos ∠CAB =22.在Rt △BOC 中,由勾股定理得:BC =12+32=10. 如图D41所示,连接O 1B ,O 1C ,由圆周角定理得:∠BO 1C =2∠BAC =90°. ∴△BO 1C 为等腰直角三角形.∴⊙O 1的半径O 1B =22BC =22×10= 5.图D41图D42(3)抛物线y =x 2+4x +3=(x +2)2-1,∴顶点P 坐标为(-2,-1),对称轴为x =-2.又∵A (-3,0),B (-1,0),可知点A ,B 关于对称轴x =2对称.如图D42所示:由圆及抛物线的对称性可知:点D ,点C (0,3)关于对称轴对称, ∴D (-4,3).又∵点M 为BD 中点,B (-1,0),∴M ⎝⎛⎭⎫-52,32. ∴BM =⎣⎡⎦⎤-52-(-1)2+⎝⎛⎭⎫322=322. 在△BPC 中,B (-1,0),P (-2,-1),C (0,3),由两点间的距离公式得:BP =2,BC =10,PC =2 5. ∵△BMN ∽△BPC ,∴BM BP =BN BC =MN PC ,即3 222=BN 10=MN2 5. 解得:BN =3210,MN =3 5.设N (x ,y ),由两点间的距离公式可得:⎩⎨⎧(x +1)2+y 2=⎝⎛⎭⎫32102,⎝⎛⎭⎫x +522+⎝⎛⎭⎫y -322=(35)2,解之得,⎩⎨⎧ x 1=72,y 1=32,⎩⎨⎧x 2=12,y 2=-92.∴点N 的坐标为⎝⎛⎭⎫72,-32或⎝⎛⎭⎫12,-92. 18.(1)证明:∵二次函数y =mx 2+nx +p 图象的顶点横坐标是2,∴抛物线的对称轴为x =2,即-n2m=2,化简得:n +4m =0.(2)解:∵二次函数y =mx 2+nx +p 与x 轴交于A (x 1,0),B (x 2,0),x 1<0<x 2,∴OA =-x 1,OB =x 2;x 1+x 2=-n m ,x 1·x 2=pm.令x =0,得y =p ,∴C (0,p ).∴OC =|p |.由三角函数定义得:tan ∠CAO =OC OA =|p |-x 1=-|p |x 1,tan ∠CBO =OC OB =|p |x 2.∵tan ∠CAO -tan ∠CBO =1,即-|p |x 1-|p |x 2=1,化简得:x 1+x 2x 1·x 2=-1|p |.将x 1+x 2=-n m ,x 1·x 2=pm 代入得:-n m p m=-1|p |,化简得:n =p|p |=±1.由(1)知n +4m =0,∴当n =1时,m =-14;当n =-1时,m =14.∴m ,n 的值为:m =14,n =-1(此时抛物线开口向上)或m =-14,n =1(此时抛物线开口向下).(3)解:由(2)知,当p >0时,n =1,m =-14,∴抛物线解析式为:y =-14x 2+x +p .联立抛物线y =-14x 2+x +p 与直线y =x +3解析式得到:-14x 2+x +p =x +3,化简得:x 2-4(p -3)=0.∵二次函数图象与直线y =x +3仅有一个交点, ∴一元二次方程根的判别式等于0,即△=02+16(p -3)=0,解得p =3.∴抛物线解析式为:y =-14x 2+x +3=-14(x -2)2+4.当x =2时,二次函数有最大值,最大值为4.∴当p >0且二次函数图象与直线y =x +3仅有一个交点时,二次函数的最大值为4. 19.解:(1)当m =3时,y =-x 2+6x .令y =0得-x 2+6x =0,解得,x 1=0,x 2=6. ∴A (6,0).当x =1时,y =5.∴B (1,5).∵抛物线y =-x 2+6x 的对称轴为直线x =3,且B ,C 关于对称轴对称,∴BC =4. (2)过点C 作CH ⊥x 轴于点H (如图D43) 由已知得,∠ACP =∠BCH =90°, ∴∠ACH =∠PCB .又∵∠AHC =∠PBC =90°,∴△ACH ∽△PCB . ∴AH CH =PB BC. ∵抛物线y =-x 2+2mx 的对称轴为直线x =m ,其中m >1,且B ,C 关于对称轴对称, ∴BC =2(m -1).∵B (1,2m -1),P (1,m ),∴BP =m -1.又∵A (2m,0),C (2m -1,2m -1),∴H (2m -1,0). ∴AH =1,CH =2m -1,∴12m -1=m -12()m -1,解得m =32.图D43图D44(3)存在.∵B ,C 不重合,∴m ≠1.当m >1时,BC =2(m -1),PM =m ,BP =m -1, ①若点E 在x 轴上如图D43, ∵∠CPE =90°,∴∠MPE +∠BPC =∠MPE +∠MEP =90°,PC =EP . ∴△BPC ≌△MEP ,∴BC =PM ,即2(m -1)=m ,解得m =2. 此时点E 的坐标是(2,0).②若点E 在y 轴上如图D44,过点P 作PN ⊥y 轴于点N ,易证△BPC ≌△NPE ,∴BP =NP =OM =1,即m -1=1,解得,m =2. 此时点E 的坐标是(0,4).当0<m <1时,BC =2(1-m ),PM =m ,BP =1-m , ①若点E 在x 轴上如图D45, 易证△BPC ≌△MEP ,∴BC =PM ,即2(1-m )=m ,解得,m =23.此时点E 的坐标是(43,0).图D45图D46②若点E 在y 轴上如图D46,过点P 作PN ⊥y 轴于点N ,易证△BPC ≌△NPE , ∴BP =NP =OM =1,即1-m =1,∴m =0(舍去). 综上所述,当m =2时,点E 的坐标是(0,2)或(0,4),当m =23时,点E 的坐标是⎝⎛⎭⎫43,0. 20.解:(1)在y =-38x 2-34x +3中,令y =0,即-38x 2-34x +3=0,解得x 1=-4,x 2=2.∵点A 在点B 的左侧,∴A ,B 点的坐标为A (-4,0),B (2,0).(2)由y =-38x 2-34x +3得,对称轴为x =-1.在y =-38x 2-34x +3中,令x =0,得y =3.∴OC =3,AB =6,S ΔACB =12AB ·OC =12×6×3=9.在Rt △AOC 中,AC =OA 2+OC 2=42+32=5,∴sin ∠OCA =45.设△ACD 中AC 边上的高为h ,则有12AC ·h =9,解得h =185.如图D47,在坐标平面内作直线平行于AC ,且到AC 的距离h =185,这样的直线有2条,分别是L 1和L 2,则直线与对称轴x =-1的两个交点即为所求的点D.图D47设L 1交y 轴于点E ,过点C 作CF ⊥L 1于点F ,则CF =h =185,∴CE =CF sin ∠CEF =CFsin ∠OCA =18545=92.设直线AC 的解析式为y =kx +b , 将点A (-4,0),点C (0,3)坐标代入,得⎩⎪⎨⎪⎧-4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =34,b =3.∴直线AC 解析式为y =34x +3.直线L 1可以看做直线AC 向下平移CE 长度单位⎝⎛⎭⎫92个长度单位而形成的, ∴直线L 1的解析式为y =34x +3-92=34x -32.则D 1的纵坐标为34×()-1-32=-94.∴D 1⎝⎛⎭⎫-1,-94. 同理,直线AC 向上平移92个长度单位得到L 2,可求得D 2⎝⎛⎭⎫-1,274. (3)如图D48,以AB 为直径作⊙F ,圆心为F .过E 点作⊙F 的切线,这样的切线有2条.图D48连接FM ,过M 作MN ⊥x 轴于点N .∵A (-4,0),B (2,0),∴F (-1,0),⊙F 半径FM =FB =3. 又FE =5,则在Rt △MEF 中,ME =52-32=4,sin ∠MFE =45,cos ∠MFE =35.在Rt △FMN 中,MN =FN ·sin ∠MFE =3×45=125,FN =FM ·cos ∠MFE =3×35=95,则ON =45,∴M 点坐标为⎝⎛⎭⎫45,125.直线l 过M ⎝⎛⎭⎫45,125,E (4,0),设直线l 的解析式为y =k 1x +b 1,则有⎩⎪⎨⎪⎧45k +b =125,4k +b =0,解得⎩⎪⎨⎪⎧k =-34,b =3.∴直线l 的解析式为y =-34x +3.同理,可以求得另一条切线的解析式为y =34x -3.综上所述,直线l 的解析式为y =-34x +3或y =34x -3.第二部分 空间与图形 第四章 三角形与四边形 第1讲 相交线和平行线1.B 2.C 3.C 4.A 5.C 6.B 7.D 8.121° 9.98 10.35 11.360 12.解:∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行). ∴∠3=∠4=75°(两直线平行,内错角相等). 13.A 14.B15.解:(1)2 (2)6 (3)12 (4)(n -1)n (5)4 030 05616.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 17.解:(1)∵m ∥n ,∴点C ,P 到直线n 间的距离与点A ,B 到直线m 间的距离相等. 又∵同底等高的三角形的面积相等,∴图D49(1)中符合条件的三角形有:△CAB 与△P AB 、△BCP 与△APC ,△ACO 与△BOP . (2)∵m ∥n ,∴点C ,P 到直线n 间的距离是相等的.∴△ABC 与△P AB 的公共边AB 上的高相等. ∴总有△P AB 与△ABC 的面积相等.(1)(2)图D49(3)如图D49(2)连接EC ,过点D 作直线DM ∥EC 交BC 的延长线于点M ,连接EM ,线段EM 所在的直线即为所求的直线.第2讲 三角形 第1课时 三角形1.C 2.D 3.B 4.B 5.D 6.B 7.C 8.A 9.3 10.证明:∵BD ⊥AC ,CE ⊥AB , ∴∠ADB =∠AEC =90°. 在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ADB =∠AEC ,AB =AC ,∴△ABD ≌△ACE (AAS).∴BD =CE .11.证明:∵AD =EB ,∴AD -BD =EB -BD ,即AB =ED . 又∵BC ∥DF ,∴∠CBD =∠FDB . ∴∠ABC =∠EDF .又∵∠C =∠F ,∴△ABC ≌△EDF .∴AC =EF .12.解:(1)如果①②,那么③;如果①③,那么②; (2)若选择如果①②,那么③. 证明:∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AB +BC =BC +CD ,即AC =DB . 在△ACE 和△DBF 中, ⎩⎪⎨⎪⎧∠E =∠F ,∠A =∠D ,AC =DB ,∴△ACE ≌△DBF (AAS).∴CE =BF . 若选择如果①③,那么②.证明:∵AE ∥DF ,∴∠A =∠D . 在△ACE 和△DBF 中,⎩⎪⎨⎪⎧∠E =∠F ,∠A =∠D ,EC =FB ,∴△ACE ≌△DBF (AAS).∴AC =DB .∴AC -BC =DB -BC ,即AB =CD . 13.解:∵∠CMD =90°,∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD ,∴AC =BM =3. ∴他到达点M 时,运动时间为3÷1=3(s). 答:这个人运动了3 s. 14.13 15.D16.7 解析:因为△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:(1)①结论:BD =CE ,BD ⊥CE . ②结论:BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAD -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE . 在△ABD 与△ACE 中,∵⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE .∴BD =CE .延长BD 交AC 于点F ,交CE 于点H . 在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC , ∴∠CHF =∠BAF =90°.∴BD ⊥CE .(2)结论:乙.AB ∶AC =AD ∶AE ,∠BAC =∠DAE =90°. 18.(1)证明:在Rt △AFD 和Rt △CEB 中, ∵AD =BC ,AF =CE ,∴Rt △AFD ≌Rt △CEB . (2)解:∵∠ABH +∠CBE =90°,∠ABH +∠BAH =90°,∴∠CBE =∠BAH . 又∵AB =BC ,∠AHB =∠CEB =90°, ∴△ABH ≌△BCE .同理,得△ABH ≌△BCE ≌△CDG ≌△DAF . ∴S 正方形ABCD =4S △ABH +S 正方形HEGF=4×12×2×1+1×1=5.(3)解:由(1),知△AFD ≌△CEB ,故h 1=h 3, 由(2),知△ABH ≌△BCE ≌△CDG ≌△DAF , ∴S 正方形ABCD =4S △ABH +S 正方形HEGF=4×12(h 1+h 2)·h 1+h 22 =2h 21+2h 1h 2+h 22.第2课时 等腰三角形与直角三角形 1.C 解析:分顶角为40°或底角为40°两种情况. 2.B 3.C 4.A5.D 解析:∠B =∠EFC =90°-∠CEF =40°. 6.B 7.2 8.59.如果三角形三条边的边长a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形 10.解:∵在Rt △BDC 中,∠BDC =45°,BD =10 2, ∴BC =CD =10. ∵∠C =90°,AB =20,∴∠A =30°.11.(1)解:∵AB =AC ,∴∠B =∠C =30°. ∵∠C +∠BAC +∠B =180°, ∴∠BAC =180°-30°-30°=120°. ∵∠DAB =45°,∴∠DAC =∠BAC -∠DAB =120°-45°=75°. (2)证明:∵∠DAB =45°, ∴∠ADC =∠B +∠DAB =75°.∴∠DAC =∠ADC . ∴DC =AC .∴DC =AB . 12.解:(1)AC ⊥BD .∵△DCE 由△ABC 平移而成,∴BE =2BC =6,DE =AC =3,∠E =∠ACB =60°.∴DE =12BE .∴BD ⊥DE .∵∠E =∠ACB =60°,∴AC ∥DE .∴BD ⊥AC . (2)在Rt △BED 中,∵BE =6,DE =3,∴BD 2=BE 2-DE 2=62-32,解得BD =3 3. 13.C 14.10+2 13 15.解:(1)如图D50:图D50(2)2 55 5 (3)直角 10 (4)1216.49217.解:(1)(x +0.7)2+22=2.52, 0.8,-2.2(舍去),0.8. (2)①不会是0.9米,若AA 1=BB 1=0.9,则A 1C =2.4-0.9=1.5, B 1C =0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25, ∵A 1C 2+B 1C 2≠A 1B 1 2 , ∴该题的答案不会是0.9米. ②有可能.设梯子顶端从A 处下滑x 米,点B 向外也移动x 米, 则有(x +0.7)2+(2.4-x )2=2.52, 解得:x =1.7或x =0(舍去).∴当梯子顶端从A 处下滑1.7米时,点B 向外也移动1.7米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.第3讲 四边形与多边形第1课时 多边形与平行四边形 1.B 2.A 3.C 4.C 5.300° 6.3 7.4 8.6 9.5 10.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .∴∠P AE =∠PCF .∵点P 是□ABCD 的对角线AC 的中点, ∴P A =PC .在△P AE 和△PCE 中,⎩⎪⎨⎪⎧∠P AE =∠PCF ,P A =PC ,∠APE =∠CPF ,∴△P AE ≌△PCE (ASA).∴AE =CF .11.解:添加的条件是BE =DF .证明如下: ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC . ∵BE =DF ,∴AF =CE , 即AF =CE ,AF ∥CE .∴四边形AECF 是平行四边形. 12.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°. ∵AD ∥BC ,∴∠ADE =∠FBC ,在Rt △AED 和Rt △CFB 中, ∵⎩⎪⎨⎪⎧∠EAD =∠FCB ,∠ADE =∠FBC ,AE =CF ,∴Rt △AED ≌Rt △CFB .∴AD =BC .又∵AD ∥BC ,∴四边形ABCD 是平行四边形. 13.B14.证明:(1)∵四边形ABCD 是平行四边形, ∴∠DAB =∠BCD .∴∠EAM =∠FCN . 又∵AD ∥BC ,∴∠E =∠F . 在△AEM 与△CFN 中,。
(中考数学真题复习)第7讲 一元一次方程及分式方程基础例题 附答案解析
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
2013年中考数学试题及答案
2013年中考数学试题及答案一、选择题1. 下列各组数中,有一组数的最小公倍数是最大公约数的是()A. 3、6B. 7、9C. 5、8D. 11、162. 若一元二次方程x² + px + q = 0 (p > 0, q > 0) 的两个根的和是4,积是3,那么它的解集是()A. {-1, -3}B. {1, 3}C. {-3, -1}D. {3, 1}3. 在△ABC中,∠B=60°,AC=5cm,点D是AB边上的一点,若AD=1cm, BD=2cm,则∠BDC的大小是()A. 45°B. 60°C. 90°D. 120°4. 已知等差数列{an}的首项是3,公差是2,若a5+a7=21,则a13的值是()A. 29B. 30C. 31D. 325. 从正面看一只郊原山雀,它的头长5mm,从侧面看它的头长2mm。
根据这些数据,可以判断郊原山雀头部两边夹角的大小是()A. 45°B. 60°C. 75°D. 90°II. 解答题1.计算:53 - 17 + 38 ÷ 19 = ()答:53 - 17 + 38 ÷ 19 = 53 - 17 + 2 = 38 + 2 = 402.一桶装满的汽油,减少了其容积的60%,剩余的部分装在3个容积相等的瓶子中,每个瓶子里装的汽油相同的比例是()答:设汽油桶的容积为V,则剩余的汽油容积为40%V。
由题意可知,每个瓶子里装的汽油容积都是40%V的1/3,即:每个瓶子里的汽油容积 = 40%V × 1/3 = 40/300V = 2/15V3. 解方程:2(3x + 4) + 5(x + 6) = 3(2x - 1) + 10答:2(3x + 4) + 5(x + 6) = 3(2x - 1) + 106x + 8 + 5x + 30 = 6x - 3 + 10 // 展开括号11x + 38 = 6x + 7 // 合并同类项11x - 6x = 7 - 38 // 移项5x = -31x = -31/54. 已知等差数列{an}的首项为2,公差为3,前n项和Sn等于140,求n的值。
中考数学复习《一次方程与方程组》练习题含答案
中考数学复习 一次方程与方程组一、选择题1.如果a +3=0,那么a 的值是( B ) A .3 B .-3 C.13 D .-13【解析】等式运算的基本性质.2.方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是( D )A.⎩⎪⎨⎪⎧x =2,y =3B.⎩⎪⎨⎪⎧x =4,y =3 C.⎩⎪⎨⎪⎧x =4,y =8 D.⎩⎪⎨⎪⎧x =3,y =6 3.若2(a +3)的值与4互为相反数,则a 的值为( C ) A .-1 B .-72 C .-5 D.12【解析】根据相反数的意义列出方程2(a +3)+4=0,∴a =-5,故选C.4.已知⎩⎪⎨⎪⎧x =a ,y =b 是方程组⎩⎪⎨⎪⎧-3x +y =2,4x +y =5的解,则a +2b 的值为( D ) A .4 B .5 C .6 D .75.若方程6x +3a =22与方程5(x +1)=4x +7的解互为倒数,则a 的值是( A ) A.193 B .-6 C.103 D .5 6.若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n 的值是( D )A .2B .0C .-1D .1 【解析】-2a m b 4与5a n +2b 2m +n能合并成一项,则⎩⎪⎨⎪⎧4=2m +n ,m =n +2,解方程组得:m =2,n=0∴m n =20=1.二、填空题7.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y -12=12y +■,小明知道此方程的解是y =-53,那么这个常数是__-3__.8.若关于x 的方程2x +3=x 3-a 的解是x =-2,则代数式a -1a 2的值是__-263__.【解析】将x =-2代入方程:2×(-2)+3=-23-a 得a =13,则a -1a 2=13-1(13)2=13-9=-263.9.关于x 的方程kx -1=2x 的解为正实数,则k 的取值范围是__k >2__. 【解析】方程kx -1=2x 的解为正实数,即x =1k -2>0.即k -2>0,k >2.10.若方程组⎩⎪⎨⎪⎧y =a -2x ,2ay +bx =5的解是⎩⎪⎨⎪⎧x =3,y =-2.则a +b =__11__.【解析】将x =3,y =-2代入方程组得⎩⎪⎨⎪⎧-2=a -6,-4a +3b =5,解得⎩⎪⎨⎪⎧a =4,b =7.∴a +b =4+7=11.11.若a ,b ,c ,d 均为有理数,现规定一种新的运算:⎪⎪⎪⎪⎪⎪ab c d )=ad -bc ,例:⎪⎪⎪⎪⎪⎪234 5)=2×5-3×4,已知⎪⎪⎪⎪⎪⎪⎪⎪x +122x -31)=2,则⎪⎪⎪⎪⎪⎪2x 1-x 3 -2)的值为__-6__.12.已知关于x ,y 的方程组⎩⎨⎧x +3y =4-a ,x -y =3a ,其中-3≤a ≤1.给出下列结论:①⎩⎪⎨⎪⎧x =5,y =-1是方程组的解;②当a =-2时,x ,y 的值互为相反数;③当a =1时,方程组的解也是方程x +y =4-a 的解;④若x ≤1,则1≤y ≤4.其中正确的是__②③④__.(填序号)【解析】解方程组得x =1+2a ,而-3≤a ≤1,x =5时,a =2,不在a ≤1的条件下,①错误;当a =-2时,x =-3,y =3,②正确;当a =1时,x +y =4-a 恰好成立,③正确;若x ≤1,则x =1+2a ≤1,即a ≤0,∴y =1-a ≥1,而y =1-a ,-3≤a ≤1,∴y ≤1-(-3)=4,即1≤y ≤4,④正确.三、解答题 13.解下列方程: (1)4-3(x -3)=x +10; 解:x =34(2)3-x 4+2x -56=1.解:x =1314.解方程组:⎩⎪⎨⎪⎧2x =3-y ,3x +2y =2.解:⎩⎪⎨⎪⎧2x =3-y …①,3x +2y =2…②.由①得:2x +y =3③, ③×2-②得:x =4, 把x =4代入③得:y =-5,故原方程组的解为⎩⎪⎨⎪⎧x =4,y =-515.数学迷小虎在解方程2x -13=x +a3-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x =-2,请你帮小虎同学求出a 的值,并且正确求出原方程的解.解:按小虎解法得x =a ,所以a =-2;把a =-2代入原方程2x -13=x +a3-1,解得x=-416.一般情况下a 2+b 3=a +b2+3不成立,但有些数可以使得它成立,例如:a =b =0.我们称使得a 2+b 3=a +b 2+3成立的一对数a ,b 为“相伴数对”,记为(a ,b).(1)若(1,b)是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(a ,b),其中a ≠0,且a ≠1;(3)若(m ,n)是“相伴数对”,求代数式m -223n -[4m -2(3n -1)]的值.解:(1)因为(1,b )是“相伴数对”, 所以12+b 3=1+b 2+3.解得:b =-94(2)(2,-92) (答案不唯一)(3)由(m ,n )是“相伴数对”可得:m 2+n 3=m +n 2+3,3m +2n 6=m +n5,即9m +4n =0,所以m -223n -[4m -2(3n -1)]=m -223n -(4m -6n +2)=m -223n -4m +6n -2=-43n -3m -2=-4n +9m3-2=-217.已知方程组⎩⎪⎨⎪⎧2x -3y =3,ax +by =-1与⎩⎪⎨⎪⎧3x +2y =11,2ax +3by =3的解相同,求a ,b 的值. 解:依题意得⎩⎨⎧2x -3y =3,3x +2y =11,解得⎩⎨⎧x =3,y =1,代入⎩⎨⎧ax +by =-1,2ax +3by =3,得⎩⎨⎧3a +b =-1,2a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =518.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x ,y 的值;(2)在备用图中完成此方阵图.3 4 x -2 y a 2y -xcb3 4 -2解:(1)由题意,得⎩⎨⎧3+4+x =x +y +2y -x ,3-2+2y -x =3+4+x ,解得⎩⎪⎨⎪⎧x =-1,y =2(2)如图34-1。
2013年中考数学模拟试题分类19:列方程与方程组应用题(一)
列方程与方程组应用题【例1】甲、乙两组工人合做某项工作,4天以后,因甲另有任务,乙组再单独做5天才能完成。
如果单独完成这项工作,甲组比乙组少用5天,求各组单独完成这项工作所需要的天数。
分析:可设甲组单独完成需要x 天,则乙组单独完成需要)5(+x 天,由题意得:155544=++⎪⎭⎫⎝⎛++x x x 注意解分式方程的方法和解应用题的步骤。
答案:甲10天,乙15天。
【例2】A 、B 两地间的路程为15千米,早晨6点整,甲从A 地出发步行前往B 地,20分钟后,乙从B 地出发骑车前往A 地。
乙到达A 地后,停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地,如果乙骑车比甲步行每小时多走10千米,问几点钟甲、乙两人同时到达B 地? 分析:可从两方面考虑:(1)时间方面:甲步行15千米的时间比乙骑车走30千米的时间多1小时(由20分钟+40分钟得到),设甲步行每小时走x 千米,易列分式方程;(2)速度方面:乙骑车比甲步行每小时多走10千米,设甲所用时间为x 小时,易列分式方程。
答案:9点钟甲、乙两人同时到达B 地。
【例3】A 、B 两地间的路程为36千米,甲从A 地,乙从B 地同时出发相向而行,两人相遇后,甲再走2小时30分钟到达B 地,乙再走1小时36分钟到达A 地,求两人的速度。
分析:画线段图作辅助分析,可得多种解法,若一元方程不易列出时可考虑用方程组解,例如设甲速为x 千米/小时,乙速为y 千米/小时,则有:⎪⎪⎩⎪⎪⎨⎧==+y x xy y x )60302)60361(36)60361()60302( 答案:⎩⎨⎧==108y x 探索与创新:【问题一】先根据要求编写应用题,再解答你所编写的应用题。
编写要求:(1)分别编写一道行程问题的应用题和一道工程问题的应用题,使得根据其题意列出的方程为:110120120=+-x x ; (2)所编应用题完整,题意清楚,联系生活实际且其解符合实际。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
中考数学专题复习《方程与不等式》测试卷-附带答案
中考数学专题复习《方程与不等式》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列等式变形错误的是( )A .若 33x y -=- 则 0x y -=B .若112x x -= 则 12x x -= C .若 13x -= 则 4x =D .若 342x x += 则 324x x -=-2.用配方法解一元二次方程2870x x +-= 则方程可化为( )A .2(4)23x +=B .2(8)23x +=C .2(4)9x +=D .2(8)9x +=3.在解方程3157246x x -+-= 时 第一步去分母 去分母后结果正确的是( ) A .12(31)12212(57)x x --⨯=+ B .3(31)1222(57)x x --⨯=+ C .3(31)322(57)x x --⨯=+D .3(31)22(57)x x --⨯=+4.下列方程为一元一次方程的是( )A .+2=3 x yB .5y =C .22x x =D .12y y+= 5.《九章算术》中记载:“今有善田一亩 价三百 恶田七亩 价五百.今并买一顷 价钱一万.问善恶田各几何?”其大意是:今有好田1亩 价值300钱 坏田7亩 价值500钱.今共买好 坏田1顷(1顷=100亩) 价钱10000钱.问好 坏田各买了多少亩?设好田买了x 亩 坏田买了y 亩 则下面所列方程组正确的是( ) A .{x +y =100300x +7500y =10000 B .{x +y =100300x +5007y =10000 C .{x +y =1007500x +300y =10000D .{x +y =1005007x +300y =100006.已知方程组35ax by ax by +=-⎧⎨-=⎩的解是12x y =-⎧⎨=⎩则2a b -的值是( ) A .3B .-3C .5D .-57.如图 由矩形和三角形组合而成的广告牌紧贴在墙面上 重叠部分(阴影)的面积是4m 2 广告牌所占的面积是 30m 2(厚度忽略不计) 除重叠部分外 矩形剩余部分的面积比三角形剩余部分的面积多2m 2 设矩形面积是xm 2 三角形面积是ym 2 则根据题意 可列出二元一次方程组为( )A .{x +y −4=30(x −4)−(y −4)=2B .{x +y =26(x −4)−(y −4)=2C .{x +y −4=30(y −4)−(x −4)=2D .{x −y +4=30x −y =28.为了奖励学习认真的同学 班主任老师给班长拿了40元钱 让其购买奖品 现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择 若40元钱恰好花完 则班长的购买方案有( ) A .1种B .2种C .3种D .4种9.若x y < 则下列不等式中不成立的是( )A .22x y -<-B .22x y -<-C .22x y ->- D .22x y ->-10.已知公式12111R R R =+ ( 12R R ≠ ) 则表示 1R 的公式是( ) A .212R RR RR -=B .212RR R R R =-C .1212()R R R R R +=D .212RR R R R=-二 填空题11.已知2x =是方程230x x m -+=的解 则m 的值为 . 12. 已知a =120222023+ b =120232023+ c =120242023+ 则代数式 2(a 2+b 2+c 2-ab-bc-ac )的值是 .13.若一元二次方程 22(1)310k x x k -++-= 有一个根为 0x = 则k= .14.今年春节某超市组装了甲 乙两种礼品盆 他们都是由 ,,a b c 三种零食组成 其中甲礼品盒装有3千克 a 零食 1千克 b 零食 1千克 c 零食 乙礼品盒装有2千克 a 零食 2千克 b 零食 2千克 c 零食 甲 乙两种礼品盒的成本均为盆中 ,,a b c 三种零食的成本之和.已知每千克 a 的成本为10元 乙种礼品盒的售价为60元 每盒利润率为25%甲种每盒的利润率为50%当甲 乙两种礼盒的销售利润率为13时 该商场销售甲 乙两种礼盒的数量之比是 . 三 解答题15.计算:(1)解方程组:{y =2x −5 ①7x −3y =20 ② (2)解不等式:32523x x --> (3)解不等式组:523923x x ->⎧⎨-<⎩(4)解不等式组:{5x −12≤2(4x −3)x+42<3−6x−1616.解方程:241x - + 21x + = 1xx - 17.小红和小凤两人在解关于x y 的方程组 {ax +3y =5 ,bx +2y =8 .时 小红只因看错了系数a 得到方程组的解为 {x =−1 ,y =2 . 小凤只因看错了系数b 得到方程组的解为 {x =1 ,y =4 .求a b 的值和原方程组的解.18.阅读理解下列材料然后回答问题:解方程:x²-3|x|+2=0解:(1)当x≥0时 原方程化为x²-3x+2=0 解得: 1x =2 2x =1 ( 2 )当x <0时 原方程化为x²+3x+2=0 解得: 1x =1 2x =-2. ∴原方程的根是 1x =2 2x =1 3x =1 4x =-2. 请观察上述方程的求解过程 试解方程x²-2|x-1|-1=0.19.如图 在矩形ABCD 中剪去正方形ABFE 后 剩下的矩形EFCD 与原矩形ABCD 相似.求矩形ABCD 的宽和长的比.20.为了丰富市民的文化生活 我市某景点开放夜游项目.为吸引游客组团来此夜游 特推出了如下门票收费标准:标准一:如果人数不超过20人 门票价格为60元/人标准二:如果人数超过20人 每超过1人 门票价格降低2元 但门票价格不低于50元/人.(1)当夜游人数为15人时 人均门票价格为 元 当夜游人数为25人时 人均门票价格为 元(2)若某单位支付门票费用共1232元 则该单位这次共有多少名员工去此景点夜游?21.已知 422(2)50a a b y y+--+= 是关于y 的一元一次方程.(1)求 ,a b 的值. (2)若 2a x =-是 2211632x x x m--+-+= 的解 求 b m a m +-- 的值.22.新冠疫情以来 口罩成为了生活和工作的必需品.某口罩生产企业主要生产过滤式和供气式两种口罩.有过滤式口罩机和供气式口罩机各 10 台 统计发现 去年每台过滤式口罩机的产量比每台供气式口罩机多 60 万个 过滤式口罩的出厂价为 0.2 元/个 供气式口罩的出厂价为 4 元/个 两种口罩全部售出 总销售额为 10200 万元.(1)去年每台供气式口罩机的产量为多少万个?(2)今年 为了加大口罩供应量 该企业优化了生产方法 在保持口罩机数量不变的情况下 预计每台过滤式口罩机和供气式口罩机的产量将在去年基础上分别增加 2%a 和 %a .由于过滤式口罩更受市场欢迎 出厂价将在去年的基础上上涨 %a 而供气式口罩的出厂价保持不变 两种口罩全部售出后总销售额将增加20%17a 求 a 的值. 23.定义一种新运算“a ⊗ b”:当a≥b 时 a ⊗ b=a+2b 当a <b 时 a ⊗ b=a-2b.例如:3 ⊗ (-4)=3(8)(5)+-=- ()61262430-⊗=--=- .(1)填空:(-3) ⊗ (-2)=(2)若 (34)(5)(34)2(5)x x x x -⊗+=-++ 则x 的取值范围为 (3)已知 (57)(2)1x x -⊗-> 求x 的取值范围(4)利用以上新运算化简: ()()2235102m m m m ++⊗- .答案解析部分1.【答案】B【解析】【解答】A.若 33x y -=- 则 0x y -= 正确B.若112x x -= 两边同乘以2 则 22x x -= 故错误 C.若 13x -= 则 4x = 正确 D.若 342x x += 则 324x x -=- 正确 故答案为:B.【分析】等式的基本性质:(1)等式两边同加(或减)同一个数(或式子) 结果仍相等 (2)在不等式两边同乘一个数 或除以一个不为0的数 结果仍相等。
2013中考数学复习:一次方程与方程组答案
2013中考数学知识点专练 一次方程与方程组一、选择题1.(2011·凉山)下列方程组中是二元一次方程组的是( )A.⎩⎪⎨⎪⎧ xy =1,x +y =2B. ⎝ ⎛5x -2y =3,1x +y =3 C.⎩⎪⎨⎪⎧ 2x +z =0,3x -y =15 D.⎩⎪⎨⎪⎧ x =5,x 2+y 3=7 答案 D解析 ⎩⎪⎨⎪⎧ x =5,x 2+y 3=7每个方程都是一次方程,且总共含有两个未知数.2.(2011·东营)方程组⎩⎪⎨⎪⎧ x +y =3,x -y =-1的解是( ) A.⎩⎪⎨⎪⎧ x =1,y =2 B.⎩⎪⎨⎪⎧ x =1,y =-2 C.⎩⎪⎨⎪⎧ x =2,y =1 D.⎩⎪⎨⎪⎧x =0,y =-1 答案 A解析 ⎩⎪⎨⎪⎧ x +y =3,①x -y =-1,② ①+②,得2x =2,x =1,①-②,得2y =4,y =2,∴⎩⎪⎨⎪⎧ x =1,y =2. 3.(2010·河北)小明买书需用48元,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根题意,下列所列方程正确的是( )A .x +5(12-x )=48B .x +5(x -12)=48C .x +12(x -5)=48D .5x +(12-x )=48答案 A解析 1元纸币x 张,则5元纸币(12-x )张,共值48元,则1·x +5(12-x )=48.4.(2010·台湾)解二元一次联立方程式⎩⎪⎨⎪⎧ 8x +6y =3,6x -4y =5,得y =( ) A .-112 B .-217 C .-234 D .-1134答案 D解析 ⎩⎪⎨⎪⎧8x +6y =3,①6x -4y =5,②①×3-②×4,得34y =-11, ∴y =-1134. 5.(2011·荆州)对于非零的两个实数a 、b ,规定a ⊗b =1b -1a,若1⊗(x +1)=1,则x 的值为( ) A.32 B.13 C.12 D .-12答案 D解析 由规定,得1x +1-11=1,1x +1=2,2(x +1)=1,x =-12.经检验,x =-12是所列方程的根. 二、填空题6.(2011·滨州)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13, ( ) 去分母,得3(3x +5)=2(2x -1). ( )去括号,得9x +15=4x -2. ( )( ),得9x -4x =-15-2. ( )合并,得5x =-17. ( )( ),得x -175. ( ) 答案 原方程可变形为3x +52=2x -13,(分式的基本性质) 去分母,得3(3x +5)=2(2x -1). (等式性质2)去括号,得9x +15=4x -2. (去括号法则或分配律)(移项),得9x -4x =-15-2.(等式性质1)合并,得5x =-17.(合并同类项)(系数化为1),得x =-175. (等式性质2) 7.(2011·淮安)小明根据方程5x +2=6x -8编写了一道应用题,请你把空缺部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个;________,请问手工小组有几个人?(设手工小组有x 人).答案 如果每人做6个,那么就比计划多8个.8.(2011·泉州)已知x 、y 满足方程组⎩⎪⎨⎪⎧ 2x +y =5,x +2y =4,则x -y 的值为________. 答案 1解析 ⎩⎪⎨⎪⎧ 2x +y =5,①x +2y =4,②①-②,得x -y =1. 9.(2011·湛江)若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为________.答案 -1解析 把x =2代入方程,4+3m -1=0,m =-1.10.已知关于x 、y 的二元一次方程(a -1)x +(a +2)y +5-2a =0,当a 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是________.答案 ⎩⎪⎨⎪⎧ x =3y =-1 解析 解法一:取a =1,得3y +3=0,y =-1,取a =-2,得-3x +9=0,x =3,∴⎩⎪⎨⎪⎧ x =3,y =-1. 解法二:整理,得(x +y -2)a =x -2y -5,∵方程有一个公共解,∴⎩⎪⎨⎪⎧ x +y -2=0,x -2y -5=0,解得⎩⎪⎨⎪⎧ x =3,y =-1. 三、解答题11.(2010·乐山)解方程:5(x -5)+2x =-4.解 5x -25+2x =-4,7x =21,∴x =3.12.(2011·怀化)解方程组:⎩⎪⎨⎪⎧x +3y =8,①5x -3y =4.② 解 ①+②得,6x =12,解得x =2,将x =2代入①得y =2,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =2. 13.(2011·桂林)解二元一次方程组:⎩⎪⎨⎪⎧x =3y -5,①3y =8-2x .② 解 把①代入②得:3y =8-2(3y -5),∴y =2.把y =2代入①可得:x =3×2-5,∴x =1.所以此方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 14.(2011·河北)已知⎩⎨⎧ x =2,y =3是关于x 、y 的二元一次方程3x =y +a 的解.求(a +1)(a -1)+7的值. 解 将x =2,y =3代入3x =y +a 中,2 3=3+a ,得a = 3.∴(a +1)(a -1)+7=a 2-1+7=a 2+6=(3)2+6=9.15.已知下面两个方程3(x +2)=5x ,①;4x -3(a -x )=6x -7(a -x ),②;有相同的解,试求a 的值. 解 由方程①可得3x -5x =-6,所以x =3.由已知,x =3也是方程②的解,根据方程解的定义,把x =3代入方程②,有4×3-3(a -3)=6×3-7(a -3),7(a -3)-3(a -3)=18-12,4(a -3)=6,4a -12=6,4a=18,a =184=92. 四、选做题16.已知关于x 的方程a (2x -1)=3x -2无解,试求a 的值.解 将原方程变形为2ax -a =3x -2,即 (2a -3)x =a -2.由已知该方程无解,所以⎩⎪⎨⎪⎧2a -3=0,a -2≠0, 解得a =32,所以a =32即为所求.。
2013年中考数学方程与不等式模拟试题及答案.doc
2013年中考数学方程与不等式模拟试题及答案一、选择题(本题共10 小题,每小题4 分,满分40分) 1.点(412)A m m --,在第三象限,那么m 值是( )。
A.12m >B.4m <C.142m << D.4m >2.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( )。
A.a ≥3 B.a =3 C.a >3 D.a <3 3.方程2x x2-4 -1=1x +2的解是( )。
A.-1 B .2或-1 C.-2或3 D.3 4.方程2-x 3 - x-14= 5的解是( )。
A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。
A .x 1=1,x 2=-3 B .x 1=1,x 2=3 C .x 1=-1,x 2=3 D .x 1=-1,x 2=-3 6.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。
A.1- B.1m -C.0D.17. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。
A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1, 那么x 1·x 2等于( )。
A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。
A .x 2+130x-1400=0B .x 2+65x-350=0C .x 2-130x-1400=0D .x 2-65x-350=010.若解分式方程2x x -1 -m +1x2+x =x +1x 产生增根,则m 的值是( )。
中考数学复习《方程(组)与不等式(组》测试题(含答案)
中考数学复习《方程(组)与不等式(组》测试题(含答案)一、选择题1.下列数值中不是不等式5x ≥2x +9的解的是( ) A. 5 B. 4 C. 3 D. 22.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( ) A. -1 B. -3 C. 1 D. 34.已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2x C. ⎩⎪⎨⎪⎧x +2y =7x =2y D. ⎩⎪⎨⎪⎧2x +y =7y =2x5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A. m <92 B. m <92且m ≠32 C. m >-94 D. m >-94且m ≠-347.定义新运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 无关8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +5 9.如图,某小区有一块长为18 m ,宽为 6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m ,则可列出关于x 的方程是( )A. x 2+9x -8=0 B. x 2-9x -8=0 C. x 2-9x +8=0 D. 2x 2-9x +8=010.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )31二、填空题11.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元. 12.分式方程1x -2=3x的解是________. 13.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.14.不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.15.若方程(x -m )(x -n )=3(m ,n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________. 16.已知⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.17.已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是________.三、解答题18.解方程组⎩⎪⎨⎪⎧9x 2-4y 2=36x -y =2.19.解方程:2x +3=1x -1.20.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1)12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.21.解不等式组⎩⎪⎨⎪⎧5x -3<4x4(x +1)+2≥x ,并把它们的解集在数轴上表示出来.22.关于x 的两个不等式①3x +a2<1与②1-3x >0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.23.已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.24.某校学生利用双休时间去距学校10 km 的炎帝故里参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.25.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?26.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.27.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元?28.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求量的比例购买这2000件物品,需筹集资金多少元?29.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?30.如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.方程(组)与不等式(组)阶段测评1. D 【解析】不等式5x ≥2x +9的解集是x ≥3,因此2不是这个不等式的解,故选D.2. D 【解析】3x -2<1,解得x <1,故选D.3. D 【解析】设方程的另一个根为x 2,则根据根与系数关系有-1+x 2=2,解得x 2=3.4. A【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y,故选A.5. D 【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,∴方程为x 2-7x +12=0,解得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3m x -3=3,解得x =9-2m 2,解方程组⎩⎨⎧9-2m2>09-2m2≠3,得m <92且m ≠32,故选B.7. A 【解析】∵a ,b 是方程x 2-x +14m =0的两根,∴a 2-a =-14m ,b 2-b =-14m ,∴b ★b -a ★a=b (1-b )-a (1-a )=b -b 2-a +a 2=-(b 2-b )+(a 2-a )=14m -14m =0.8. B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.9. C 【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.10. B 【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.11. 180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.12. x =3 【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 80 【解析】设这辆汽车原来的速度是x km /h ,根据题意得:160x -160(1+25%)x =0.4,解得x =80,经检验x =80是原方程的根.14. 3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.15. a <m <n <b 【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.16. -8 【解析】⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,即⎩⎪⎨⎪⎧3a -2b =3 ①3b -2a =-7 ②,①+②得a +b =-4,①-②得5a -5b =10,则a -b =2,∴(a +b)(a -b)=-4×2=-8.17. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.18. 【思路分析】利用代入消元法,将方程②变为y =x -2,将此方程代入方程①求x ,进而求出y.解:⎩⎪⎨⎪⎧9x 2-4y 2=36①x -y =2 ②,将②变形为y =x -2 ③,将③代入①得:9x 2-4(x -2)2=36, 化简得:5x 2+16x -52=0,将方程左边因式分解得:(x -2)(5x +26)=0, 解得x =2或x =-265,将x =2代入方程②得y =0; 将x =-265代入方程②得y =-365.综上所述,原方程组的解为⎩⎪⎨⎪⎧x =2y =0或⎩⎨⎧x =-265y =-365.19. 解:去分母,得2(x -1)=x +3, 去括号、移项、合并同类项,得x =5, 经检验,x =5是原方程的根. ∴原方程的解为x =5.20. 解:⎩⎪⎨⎪⎧5x +2>3(x -1) ①12x ≤8-32x +2a ②, 解不等式①得x >-52,解不等式②得x ≤a +4,由不等式组的解集有四个整数解,得1≤a +4<2, ∴-3≤a <-2.21. 解:解不等式5x -3<4x 得x<3, 解不等式4(x +1)+2≥x 得x ≥-2, ∴不等式组的解集为-2≤x<3. 解集在数轴上表示如解图所示:22. 解:解不等式①,得x<2-a3,解不等式②,得x<13.(1)∵两个不等式的解集相同, ∴2-a 3=13, ∴a =1.(2)∵不等式①的解都是不等式②的解, ∴2-a 3≤13, ∴a ≥1.23. (1)解:将x =1代入x 2+mx +m -2=0,得 12+1×m +m -2=0, 解得m =12.(2) 证明:一元二次方程x 2+mx +m -2=0的根的判别式为: b 2-4ac =m 2-4(m -2)=m 2-4m +8=(m -2)2+4. ∵不论m 取何实数,(m -2)2≥0, ∴(m -2)2+4>0,即b 2-4ac >0,∴不论m 取何实数,原方程都有两个不相等的实数根.24. 解:设骑车学生的速度为x km /h ,则汽车的速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验x =15是原方程的解,汽车的速度为:2x =2×15=30 km /h ,答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h . 25. 解:设甲队单独完成此项工程需x 天,则乙队需(x +5)天, 依据题意可以列方程: 1x +1x +5=16, 解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得: 6y +6(y -4000)=385200, 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500,∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.⎪⎧2x +3y =270解得⎩⎪⎨⎪⎧x =30y =70,答:甲种商品每件进价为30元,乙种商品每件进价为70元. (2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a ≥4(100-a), 解得a ≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000, ∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元. 27. 解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得: 6000(x +1)2=8640,解得x 1=-2.2(舍去),x 2=0.2答:这两年该县投入教育经费的年平均增长率为20%. (2)2017年该县投入教育经费为: 8640×(0.2+1)=10368(万元),答:预算2017年该县将投入教育经费为10368万元.28. 解:(1)设乙种救灾物品每件x 元,则甲种救灾物品每件(x +10)元,由题意得: 350x +10=300x, 解得x =60,经检验x =60是原方程的解,∴x +10=70(元).答:甲、乙两种救灾物品每件的价格分别为70元、60元. (2)70×2000×14+60×2000×34=125000(元).答:需筹集资金125000元.29. 解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意得:⎩⎪⎨⎪⎧x +y =50310x +460y =20000, 解得⎩⎪⎨⎪⎧x =20y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意得: 310z +460(50-z)≤18000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34.答:A 种型号健身器材至少要购买34套.11 重叠部分的面积”, 列方程求解即可.解:设配色条纹的宽度为x 米,由题意得5x ×2+4x ×2-4×x 2=1780×4×5, 解得:x =14或x =174(不合题意舍去). 答:配色条纹的宽度为14米. (2)解:由题意得地毯的总造价为:1780×4×5×200+(1-1780)×4×5×100=850+1575=2425(元), 答:地毯的总造价为2425元.。
中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析
中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。
2013中考数学方程与方程组复习训练试题(附答案)
2013中考数学方程与方程组复习训练试题(附答案)第4课时一元二次方程一级训练1.(2011年江苏泰州)一元二次方程x2=2x的根是()A.x=2B.x=0C.x1=0,x2=2D.x1=0,x2=-22.(2012年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1B.-1C.0D.无法确定3.(2012年湖北荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4B.(x+1)2=4C.(x-1)2=16D.(x+1)2=16 4.(2012年湖北武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2B.2C.3D.15.(2011年福建福州)一元二次方程x(x-2)=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.(2012年湖南常德)若一元二次方程x2+2x+m=0有实数解,则m 的取值范围是()A.m≤-1B.m≤1C.m≤4D.m≤127.当m满足__________时,关于x的方程x2-4x+m-12=0有两个不相等的实数根.8.(2012年贵州铜仁)一元二次方程x2-2x-3=0的解是______________.9.(2011年江苏镇江)已知关于x的方程x2+mx-6=0的一个根为2,则m=________,另一根是____________________________________________________________ _________.10.(2011年四川宜宾)某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,则该城市两年来最低生活保障的平均年增长率是________.11.(2011年山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,可列方程为____________________.12.解方程:(x-3)2+4x(x-3)=0.13.(2010年广东茂名)已知关于x的一元二次方程x2-6x-k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.二级训练14.(2012年四川攀枝花)已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x21x2+x1x22的值为()A.-3B.3C.-6D.615.(2011年四川宜宾)已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是__________.16.(2011年江苏宿迁)如图2-1-5,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是______m(可利用的围墙长度超过6m).图2-1-517.(2012年黑龙江绥化)先化简,再求值:m-33m2-6m÷m+2-5m-2,其中m是方程x2+3x-1=0的根.三级训练18.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14000元/m2下降到5月份的12600元/m2.问:(1)4,5两月平均每月降价的百分率约是多少(参考数据:0.9≈0.95)?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.19.(2012年湖北黄石)解方程组:2x-y=2,x2-y24=1.参考答案1.C2.B3.A4.C5.A6.B7.m9.1-310.20%11.289(1-x)2=25612.解:(x-3)2+4x(x-3)=0,(x-3)(x-3+4x)=0,(x-3)(5x-3)=0.解得x1=3,x2=35.13.(1)证明:∵Δ=b2-4ac=(-6)2-4×1×(-k2)=36+4k2>0,∴方程有两个不相等的实数根.(2)解:由根与系数的关系,知:x1+x2=6,x1x2=-k2.∵x1+2x2=14,∴x1=-2,x2=8.∴-k2=-16,∴k=±4.14.A15.-6516.1或217.解:原式=m---9m-2=m---+-=+或+或13m2+9m.∵m是方程x2+3x-1=0的根,∴m2+3m-1=0.∴m2+3m=1或m(m+3)=1,∴原式=13.18.解:(1)设4、5两月平均每月降价的百分率为x,根据题意,得14000(1-x)2=12600.化简,得(1-x)2=0.9,解得x1≈0.05,x2≈1.95(不合题意,舍去).因此,4、5两月平均每月降低的百分率约为5%.(2)如果房价按此降价的百分率继续回落,预测7月份该市的商品房成交均价为12600(1-x)2=12600×0.9=11340>10000,因此可知,7月份该市的商品房成交均价不会跌破10000元/m2. 19.解:依题意,得y=-=4x2-4将①代入②中化简,得x2+2x-3=0,解得:x=-3或x=1.所以,原方程的解为:x=-3,y=-42或x=1,y=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以下是查字典数学网为您推荐的 2013中考数学方程与方程组复习训练试题(附答案),希望本篇文章对您学习有所帮助。
2013中考数学方程与方程组复习训练试题(附答案)一级训练1.(2015年江苏泰州)一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0, x2=2 D.x1=0, x2=-22.(2016年贵州安顺)已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m 的值是()A.1 B.-1 C.0 D.无法确定3.(2016年湖北荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=164.(2016年湖北武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2 B.2 C.3 D.15.(2015年福建福州)一元二次方程x(x-2)=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根6.(2016年湖南常德)若一元二次方程x2+2x+m=0有实数解,则m的取值范围是()A.m-1 B.m1 C.m4 D.m127.当m满足__________时,关于x的方程x2-4x+m-12=0有两个不相等的实数根.8.(2016年贵州铜仁)一元二次方程x2-2x-3=0的解是______________.9.(2015年江苏镇江)已知关于x的方程x2+mx-6=0的一个根为2,则m=________,另一根是_____________________________________________________________________.10.(2015
年四川宜宾)某城市居民最低生活保障在2009年是240元,经过连续两年的增加,到2015年提高到345.6元,则该城市两年来最低生活保障的平均年增长率是________.11.(2015年山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为____________________.12.解方程: (x-3)2+4x(x-3)=0.13.(2010年广东茂名)已知关于x的一元二次方程x2-6x-k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.二级训练14.(2016年四川攀枝花)已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x21x2+x1x22的值为()A.-3 B.3 C.-6 D.615.(2015年四川宜宾)已知一元二次方程x2-6x-5=0的两根为a,b,则1a+1b的值是__________.16.(2015年江苏宿迁)如图2-1-5,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6 m.若矩形的面积为4 m2,则AB的长度是______m(可利用的围墙长度超过6 m).图2-1-517.(2016年黑龙江绥化)先化简,再求值:m-33m2-6mm+2-5m-2,其中m是方程x2+3x-1=0的根.三级训练18.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m2下降到5月份的12 600元/m2.问:(1)4,5两月平均每月降价的百分率约是多少(参考数据:0.90.95)?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m2?请说明理由.19.(2016年湖北黄石)解方程组:2x-y=2,x2-y24=1.参考答案1.C 2.B 3.A 4.C 5.A 6.B7.m4.5 8.x1=3,x2=-19.1 -3 10.20%11.289(1-x)2=25612.解:(x-3)2+4x(x-3)=0,(x-3)(x-3+4x)=0,(x-3)(5x-3)=0.解得x1=3,x2=35.13.(1)证明:∵=b2-4ac=(-6)2-41(-k2)=36+4k20,方程有两个不相等的实数根.(2)解:由根与系数的关系,知:x1+x2=6,x1x2=-k2.∵x1+2x2=14,x1=-2,x2=8.-k2=-16,k=4.14.A 15.-65 16.1或217.解:原式=m-33mm-2m2-9m-2=m-33mm-2m-2m+3m-3=13mm+3或13m2+3m或13m2+9m.∵m是方程x2+3x-1=0的根,m2+3m-1=0.m2+3m=1或m(m+3)=1,原式=13.18.解:(1)设4、5两月平均每月降价的百分率为x,根据题意,得14 000(1-x)2=12 600.化简,得(1-x)2=0.9,解得x10.05,x21.95(不合题意,舍去).因此,4、5两月平均每月降低的百分率约为5%.(2)如果房价按此降价的百分率继续回落,预测7月份该市的商品房成交均价为12 600(1-x)2=12 6000.9=11 34010 000,因此可知,7月份该市的商品房成交均价不会跌破10 000元/m2.19.解:依题意,得y=2x-1y2=4x2-4将①代入②中化简,得x2+2x-3=0,解得:x=-3或x=1 .所以,原方程的解为:x=-3,y=-4 2 或x=1,y=0.查字典数学网。