九年级数学上册:21一元二次方程与实际问题(2)
人教版九年级数学上册21.3 实际问题与一元二次方程(第2课时)公开课 精品教案
21.3 实际问题与一元二次方程教学时间课题21.3实际问题与一元二次方程(2)课型新授教学媒体多媒体教学目标知识技能1.能根据○1以流感为问题背景,按一定传播速度逐步传播的问题;○2以封面设计为问题背景,边衬的宽度问题中的数量关系列出一元二次方程,体会方程刻画现实世界的模型作用.2.培养学生的阅读能力与分析能力.3.能根据具体问题的实际意义,检验结果是否合理.过程方法通过自主探究,独立思考与合作交流,使学生弄清实际问题的背景,挖掘隐藏的数量关系,把有关数量关系分析透彻,找出可以作为列方程依据的主要相等关系,正确的建立一元二次方程.情感态度在分析解决问题的过程中逐步深入地体会一元二次方程的应用价值.教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程教学过程设计教学程序及教学内容师生行为设计意图一、复习引入导语:通过上节课的学习,谈谈列一元二次方程解决实际问题的一般步骤及应注意的问题.二、探究新知课本45页探究1分析:○1设每轮传染中平均一个人传染x了个人.这里的一轮指一个传染周期.○2第一轮的传染源有几个人?第一轮后有几个人被传染了流感?包括传染源在内,共有几个人患着流感?○3第二轮的传染源有几个人?第二轮后有几个人被传染了流感?包括第二轮的传染源在内,共有几个人患着流感?点题,板书课题.教师提出问题,并指导学生进行阅读,独立思考,学生根据个人理解,回答教师提出的问题.弄清题意,设出未知数,并表示相关量,根据相等关系尝试列方程,求根.根据实际问题要求,对根进行选择确定问题的解.教师组织学生合作交流,达到共识,联系上节课内容,进一步学习一元二次方程的应用弄清问题背景,特别注意分析清楚题意,题中没有特别说明,那么最早的患者没有痊愈,仍在继续传染别人.○4本题用来列方程的相等关系是什么?列出方程.拓展:课本思考.四轮呢?归纳:本题一流感为问题背景,讨论按一定传播速度逐步传播的问题,,特别需要注意的是,在第二轮传染中,在实际生活中,类似原型很多,比如细胞分裂,信息传播,传染病扩散,害虫繁殖等,一般就考虑两轮传播,这些问题有通性,在解题时有规律可循.课本47页探究3分析:○1正中央的长方形与整个封面的长宽比例相同,是什么含义?○2上下边衬与左右边衬的宽度相等吗?如果不相等,应该有什么关系?○3若设正中央的长方形的长和宽分别为9a㎝,7a㎝,尝试表示边衬的长度,并探究上下边衬与左右边衬的宽度的数量关系?○4“应如何设计四周边衬的宽度?”是要求四周边衬的宽度,除了根据上下边衬与左右边衬的宽度比为,设上下边衬宽为与左右边衬宽为.还可以根据正中央的长方形长与宽的比为9:7,设正中央的长方形的长为9x㎝,宽为7x ㎝.尝试列出方程.○5方程的两个根都是正数,但是它们不都是问题的解,需要根据它们的值的大小来确定哪个更合乎实际,这种取舍选择更多的要考虑问题的实际意义.归纳:○1在实际生活中有许多几何图形的问题原型,可以用一元二次方程作为数学模型来分析和解决○2.对于比较复杂的问题,可以通过设间接未知数的方法来列方程.三、课堂训练补充练习:1.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().师生汇总生活中常见的类似问题,总结这类题的做题技巧.教师提出问题,让学生结合画图独立理解并解答问题,培养学生对几何图形的分析能力,将数学知识和实际问题相结合的应用意识教师总结,学生体会学生独立完成,教师巡视指导,了解学生掌握情况,并集中订正师生归纳总结,学生作笔记.让学生掌握这一类题型将几何图形的问题用一元二次方程方法来解决使学生巩固提高,了解学生掌握情况纳入知识系统,总结本节课内容,让学生体会方程刻画现实世界的模型作用.A.8cm B.64cm C.8cm2 D.64cm2 2.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.3.有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)4.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?四小结归纳谈一节课的收获和体会.五、作业设计必做:P18:4-8选做:P19:10补充作业:某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?教学反思。
人教版数学九年级上册21.3 实际问题与一元二次方程(2)同步练习1
——Keep pushing——21.3实际问题与一元二次方程(第2课时)用一元二次方程解决增降率问题1.若设每次的平均增长(或降低)率为x,增长(或降低)前的数量为a,则第一次增长(或降低)后的数量为__a(1±x)___,第二次增长(或降低)后的数量为__a(1±x)(1±x)___,即__a(1±x)2___.2.某商品进价为a元,售价为b元,则利润为__(b-a)___元,若一天的销售量为c,则总利润为__(b-a)c___元.知识点1:平均变化率问题1.(2014·昆明)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( D)A.144(1-x)2=100B.100(1-x)2=144C.144(1+x)2=100 D.100(1+x)2=1442.经过两年的连续治理,某城市的大气环境有了明显改善,其每月每平方公里的降尘量从50吨下降到40.5吨,则平均每年下降的百分率是( A)A.10%B.15%C.20%D.25%3.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为__20%___.4.(2014·沈阳)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.解:设这个增长率为x,根据题意得20(1+x)2-20(1+x)=4.8,解得x1=0.2=20%,x2=-1.2(不合题意,舍去),则所求增长率为20%知识点2:市场经济问题5.某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元,若该商品两次调价的降价率相同,则这个降价率为__10%___;经调查,该商品每降价0.2元,即可多销售10件,若该商品原来每月销售500件,那么两次调价后,每月可销售商品__880___件.6.(2014·巴中)某商店准备进一批季节性小家电,单价40元,经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若准备获利2000元,则应进货多少个?定价为多少元?解:设每个商品的定价是x元,由题意得(x-40)[180-10(x-52)]=2000,整理得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(x-52)=200,不合题意,舍去;当x=60时,进货180-10(x-52)=100,符合题意,则该商品应进货100个,定1 / 1。
人教九年级数学上册- 实际问题与一元二次方程(变化率问题和销售问题)(附习题)
推进新课
知识点1 有关增长/下降率的问题
探究2 两年前生产1t甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在 生产1t甲种药品的成本是3000元,生产1t乙种药品的成 本是3600元,哪种药品成本的年平均下降率较大? 下降率是什么意思?它与原成本、终成本之间有何数量关系?
解:设平均每月的增长率为x. 依题意,32+32(1+x)+32(1+x)2=122. 解得x1=0.25,x2=-3.25(舍去). 二月份发行图书32×(1+0.25)=40(万册) 三月份发行图书32×(1+0.25)2=50(万册)
答:二月份发行图书40万册,三月份发行图书50万册.
课堂小结
下降率是下降额与原成本的比值;
原成本-终成本
下降率=
原成本
×100%
①如果甲种药品成本平均每年的下降率为x,则 下降一次后的成本变为 5000(1-x) ,再次下降 后的成本变为 5000(1-x) 2 .(用代数式表示)
②设甲种药品成本平均每年的下降率为x,由等 量关系 终成本=原成本×(1-下降率)2 可得方 程 5000(1-x)2=3000 ,解这个方程,得到方程的 两根,根据问题的实际意义,应选择哪个根呢? 为什么?
21.3 实际问题与一元二次方程 第2课时 实际问题与一元二次方程(2)
变化率问题和销售问题
新课导入
两年前生产1t甲种药品的成本是5000元, 生产1t乙种药品的成本是6000元,随着生产技 术的进步,现在生产1t甲种药品的成本是3000 元,生产1t乙种药品的成本是3600元,哪种药 品成本的年平均下降率较大?
初中数学九年级上册第二十一章 一元二次方程实际问题与一元二次方程-面积问题的教学设计说明
实际问题与一元二次方程-面积问题的教学设计说明一、教材分析:生活中不少实际问题的解决都要用到方程的知识,在学习本节课之前,学生已经学会了用一元一次方程、二元一次方程(组)解决实际问题,所以本节课对学生来说并不陌生。
本节内容是运用一元二次方程分析解决生活中的两类实际问题:面积问题。
通过本节课的学习,可以对一元二次方程的解法加以巩固,同时本节课的学习又是后面继续学习列方程解决实际问题、用二次函数解决实际问题的基础。
因此,它具有承上启下的作用。
二、学情分析:我校是一所农村镇级中学,学生大多是出生在农村,长在农村。
所以他们对数学与现实生活的联系知之甚少。
更不要说理论联系实际。
但是就这个年龄段的小孩都有一颗好奇的心理。
我们可以充分利用这一契机。
为了能够提高学生学习数学的能力,也为同学们对知识的学以致用思想打下基础。
知识掌握方面:学生对列方程解应用题的一般步骤已经熟悉,适合由特殊到一般的探究方式。
学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。
容易开发他们的主观能动性,适合自主探究、合作交流的数学学习方式。
三、本课例需要解决的几个问题:1.如何审题,以及从繁琐的题目文字当中提炼出有用的信息。
2.如何把实际生活问题转化为数学问题,用数学思想去解决实际问题。
3.如何发挥学生自学、合作、探究三大学习方式。
4.如何渗透信息技术与学科深度融合。
四、教学过程:1.教学设计的指导思想及依据教学设计的指导思想及依据课程标准和新课程的理念,关注了学生的学习过程,创设了一个有利于学生自主探究、合作交流的课堂氛围。
教师真正成为教学的组织者、引导者和合作者。
本课的教学力求遵循知识的发展规律和学生的认知规律,充分调动学生学习的主动性。
教学中重视“学生的亲身感受”。
2.教学目标:知识和技能目标:能根据具体问题中的数量关系,列出一元二次方程,并求解检验。
过程和方法目标:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述。
2022年九年级数学上册第二十一章一元二次方程21.3实际问题与一元二次方程第2课时教案新版新人教版
21.3 实际问题与一元二次方程(2)教学内容建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.教学目标掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法. 重难点关键1.重点:如何全面地比较几个对象的变化状况.2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况.教具、学具准备小黑板教学过程一、复习引入(学生活动)请同学们独立完成下面的题目.问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x 元,则每件平均利润应是(0.3-x )元,总件数应是(500+×100) 解:设每张贺年卡应降价x 元则(0.3-x )(500+)=120 解得:x=0.1答:每张贺年卡应降价0.1元.二、探索新知刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系.例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,那么商场平均每天可多售出34张.如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;,从这0.1x 1000.1x 0.30.751000.10.2534=≈些数目看,好象两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题. 解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元.(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,则:(0.75-y )(200+×34)=120 即(-y )(200+136y )=120 整理:得68y 2+49y-15=0∴y ≈-0.98(不符题意,应舍去)y ≈0.23元答:乙种贺年卡每张降价的绝对量大.因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律. (学生活动)例2.两年前生产1t 甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t 乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?老师点评:绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.解:设甲种药品成本的年平均下降率为x ,则一年后甲种药品成本为5000(1-x )元,两年后甲种药品成本为5000(1-x )元.依题意,得5000(1-x )2=3000解得:x 1≈0.225,x 2≈1.775(不合题意,舍去)设乙种药品成本的平均下降率为y .则:6000(1-y )2=3600整理,得:(1-y )2=0.6解得:y ≈0.225答:两种药品成本的年平均下降率一样大.因此,虽然绝对量相差很多,但其相对量也可能相等.三、巩固练习新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?四、应用拓展例3.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,0.25y 34一个月能售出500kg ,销售单价每涨1元,月销售量就减少10kg ,针对这种水产品情况,请解答以下问题:(1)当销售单价定为每千克55元时,计算销售量和月销售利润.(2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的关系式.(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg .(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)](3)月销售成本不超过10000元,那么销售量就不超过=250kg ,在这个提前下,求月销售利润达到8000元,销售单价应为多少.解:(1)销售量:500-5×10=450(kg );销售利润:450×(55-40)=450×15=6750元(2)y=(x-40)[500-10(x-50)]=-10x 2+1400x-40000(3)由于水产品不超过10000÷40=250kg ,定价为x 元,则(x-400)[500-10(x-50)]=8000 解得:x 1=80,x 2=60当x 1=80时,进货500-10(80-50)=200kg<250kg ,满足题意.当x 2=60时,进货500-10(60-50)=400kg>250kg ,(舍去).五、归纳小结本节课应掌握:建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.六、布置作业1.教材复习巩固2 综合运用7、9.2.选用作业设计:一、选择题1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().A .12人B .18人C .9人D .10人2.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x 增加到(x+10%),则x 是().A .12%B .15%C .30%D .50%3.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为().A .600B .604C .595D .605二、填空题1.一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.3.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体xL ,则列出的方程是________.1000040三、综合提高题1.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?2.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,如果要使产量增加15.2%,那么应多种多少棵桃树?3.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a (a>0)个成品,且每个车间每天都生产b (b>0)个成品,质量科派出若干名检验员周一、周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.(1)这若干名检验员1天共检验多少个成品?(用含a 、b 的代数式表示)(2)若一名检验员1天能检验b 个成品,则质量科至少要派出多少名检验员?答案:一、1.C 2.B 3.D二、1.2 2.1 3.(1-)2= 三、1.甲:设上升率为x ,则100(1+x )2=121,x=10%乙:设上升率为y ,则200(1+y )2=288,y=20%,那么乙商场年均利润的上升率大.2.设多种x 棵树,则(100+x )(1000-2x )=100×1000×(1+15.2%),整理,得:x 2-400x+7600=0,(x-20)(x-380)=0,解得x 1=20,x 2=3803.(1)=a+2b 或 (2)因为假定每名检验员每天检验的成品数相同.所以a+2b=,解得:a=4b 所以(a+2b )÷b=6b ÷b==7.5(人) 所以至少要派8名检验员.4563x 28632222a b +⨯2253a b +⨯2103a b +4545304。
21.3.2实际问题与一元二次方程(2)-人教版九年级数学上册练习
人教版九年级数学上册21.3.2实际问题与一元二次方程(2)一.选择题(共6小题)1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%2.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.813.两个相邻自然数的积是132.则这两个数中,较大的数是()A.11B.12C.13D.144.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个5.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.76.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m二.填空题(共6小题)7.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是.8.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜场.9.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是.10.九年级8班第一小组x名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则x的值是.11.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.12.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为cm.三.解答题(共3小题)13.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?14.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?15.如图,小华要为一个长3分米,宽2分米的长方形防疫科普电子小报四周添加一个边框,要求边框的四条边宽度相等,且边框面积与电子小报内容所占面积相等,小华添加的边框的宽度应是多少分米?人教版九年级数学上册21.3.2实际问题与一元二次方程(2)参考答案与一.选择题(共6小题)1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%【解答】解:设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.2.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.81【解答】解:依题意,得:1000(1﹣x%)2=1000﹣190,解得:x1=10,x2=190(不合题意,舍去).故选:B.3.两个相邻自然数的积是132.则这两个数中,较大的数是()A.11B.12C.13D.14【解答】解:设这两个数中较大的数为x,则较小的数为(x﹣1),依题意,得:x(x﹣1)=132,解得:x1=12,x2=﹣11(不合题意,舍去).故选:B.4.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.5.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.7【解答】解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.6.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m【解答】解:∵与墙垂直的边为xm,∴与墙平行的边为(28﹣2x)m.依题意,得:x(28﹣2x)=80,整理,得:x2﹣14x+40=0,解得:x1=4,x2=10.当x=4时,28﹣2x=20>12,不合题意,舍去;当x=10时,28﹣2x=8.故选:C.二.填空题(共6小题)7.疫情期间居民为了减少外出时间,大家更愿意使用APP在线上买菜,某买菜APP今年一月份新注册用户为200万,三月份新注册用户为338万,则二、三两个月新注册用户每月平均增长率是30%.【解答】解:设二、三两个月新注册用户每月平均增长率是x,依题意,得:200(1+x)2=338,解得:x1=0.3=30%,x2=﹣2.3(不合题意,舍去).故答案为:30%.8.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜11场.【解答】解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.9.用一根20m长的绳子围成一个面积为24m2矩形,则矩形的长与宽分别是6m,4m.【解答】解:设矩形的长为xm,则宽为m,依题意,得:x•=24,整理,得:x2﹣10x+24=0,解得:x1=6,x2=4.∵x≥,∴x≥5,∴x=6,=4.故答案为:6m,4m.10.九年级8班第一小组x名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则x的值是6.【解答】解:依题意,得:x(x﹣1)=30,解得:x1=6,x2=﹣5(不合题意,舍去).故答案为:6.11.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成2m.【解答】解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.12.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后将四周突出部分折起,就能制作一个无盖的方盒,若方盒的底面积(图中阴影部分)是32cm2,则剪去的小正方形的边长为1cm.【解答】解:设剪去的小正方形的边长为xcm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7(不合题意,舍去).故答案为:1.三.解答题(共3小题)13.小张2019年末开了一家商店,受疫情影响,2020年4月份才开始盈利,4月份盈利6000元,6月份盈利达到7260元,且从4月份到6月份,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率.(2)按照这个平均增长率,预计2020年7月份这家商店的盈利将达到多少元?【解答】解:(1)设每月盈利的平均增长率为x,依题意,得:6000(1+x)2=7260,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:每月盈利的平均增长率为10%.(2)7260×(1+10%)=7986(元).答:按照这个平均增长率,预计2020年7月份这家商店的盈利将达到7986元.14.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10件,问应将每件涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?【解答】解:设应将每件涨价x元,则每天可售出(200﹣10×)个,依题意,得:(1+x)(200﹣10×)=480,化简,得:x2﹣9x+14=0,解得:x1=2,x2=7.又∵要让顾客得到实惠,∴x=2.答:应将每件涨价2元时,才能让顾客得到实惠的同时每天利润为480元.15.如图,小华要为一个长3分米,宽2分米的长方形防疫科普电子小报四周添加一个边框,要求边框的四条边宽度相等,且边框面积与电子小报内容所占面积相等,小华添加的边框的宽度应是多少分米?【解答】解:设小华添加的边框的宽度应是x分米,依题意,得:(3+2x)(2+2x)﹣3×2=3×2,整理,得:2x2+5x﹣3=0,解得:x1=,x2=﹣3(不合题意,舍去).答:小华添加的边框的宽度应是分米.。
人教版九年级数学上册21.3 第2课时 实际问题与一元二次方程(2)课件
函数解析式;(2)利用“干果销售量×每
克60元的价格销售,
千克的利润=总利润”建立方程并求解.
为了让顾客得到更大
解:(1)设y关于x的函数解析式为y=kx+b.
的实惠,现决定降价销售,已知这种干果
根据题意,得
销售量y(单位:kg)与每千克降价x(单位:
2k+b=120,解得 k=10,
元)(0<x<20)之间满足一次函数关系,其图
B.2×8(1+x)= 11.52
C.8(1+x)2= 11.52
D.8(1+x2)= 11.52
2.某商品经过两次降价,售价由原来的每件25元降到每件
16元,已知两次降价的百分率相同,则每次降价的百分率
为( A )
A.20%
B.25%
C.30%
D.36%
3.某网络学习平台2020年的新注册用户数为100万,2022 年的新注册用户数为169万,设新注册用户数的年平均增 长率为x(x>0),则x= ___3_0_%___(用百分数表示).
2.直播购物逐渐走进了人们的生活.某电商在平台上对一款成本 价为40元的小商品进行直播销售,如果按每件60元销售,每天 可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日 销售量增加10 件.若日销售利润保持不变,商家想尽快销售完该 款商品,每件售价应定为多少元?
解:设每件售价应定为x元,
(2)由题意,得(60-40-x) (10x+100)=2090.
整理,得x2-10x+9=0.
解得x1=1, x2=9.
隐含价格低这一条件
因为要让顾客得到更大的实惠,所以x=9.
答:商贸公司要想获利2090元,则这种干
人教版九年级数学上册21.3实际问题与一元二次方程(第二课时)导学案含答案解析
21.3 实际问题与一元二次方程(第二课时)导学探究阅读教材P19-20,回答下列问题:1.请根据你对“变化额”“变化率”的理解,填空:(1)某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产______个,增长率是______;若三月份生产零件1140个,那么三月份比二月份减产____个,下降率是________.(2)某厂今年一月份的总产量为100吨,设平均每月增长率是x,则二月份总产量为_____吨;三月份总产量为_________吨.(用含x的代数式表示).(3)某种商品原价是100元,平均每次降价的百分率为x,则第一次降价后的价格是_____元;第二次降价后的价格是______元.(用含x的代数式)2.我市前年有汽车3万辆,据统计平均每年的增长率为x.(1)去年我市汽车有万_______辆; (用含x的代数式表示)(2)今年我市汽车有万_______辆; (用含x的代数式表示)(3)若我市今年有汽车12万辆,根据题意,可列出方程___________________________.3.请你总结:(1) 增长率问题: 若原来的量为a,平均增长率是x,则第一次增长后的量为________;第二次增长后的量为__________;若两次增长后的量为A,则可列方程__________________.(2)下降率问题:若原来的量为a,平均下降率是x,则第一次下降后的量为__________;第二次下降后的量为___________;若两次下降后的量为A,则可列方程_________________.归纳梳理1.本节课我们将讨论平均变化率问题,变化率有增长率和________率.2.有关变化率的公式:(1)增长后的量= 原来的量+_________= 原来的量×(1+________);下降后的量= 原来的量-________ = 原来的量×(1-_______).(2)单位时间增长量=增长后的量一_______=原来的量×__________;单位时间下降量=原来的量一__________=原来的量×__________(3)如果某个量原来的值是a,每次增长的百分率是x, 则增长1次后的值是________,增长2次后的值是_________,…,增长n次后的值是______________.如果某个量原来的值是a,每次下降的百分率是x,则下降1次后的值是__________,下降2次后的值是_________,…,下降n次后的值是____________.3.如果设平均每次增长(或下降)的百分数为x,则原来的量a, 经过两次增长(或下降)到A,可列方程为______________(或)_______________.典例探究【例1】(·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8总结:增长率问题会涉及到最后产量、基数、平均增长率或平均降低率.若平均增长(或降低)百分率为x,增长(或降低)前基数为a,增长(或降低)n次后的最后产量是b,则它们的数量关系可表示为a(1±x)n=b,其中增长取“+”,降低取“-”,注意1与x的位置不能调换.增长率问题中,解方程一般用直接开平方法,注意方程根的取舍问题.练1:(•珠海)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?练2. (·青海西宁·10分)青海新闻网讯:2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出到市政府配置公共自行车数量的年平均增长率.夯实基础1.(秋•丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?2.(•泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%3.(•江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元 B.36元 C.64元 D.80元4.(春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是.5.(·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169.6.(•泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?7.(春•淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.8.(•香洲区校级一模)据媒体报道,我国公民出境旅游总人数约5000万人,公民出境旅游总人数约7200万人,若、公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果仍保持相同的年平均增长率,请你预测我国公民出境旅游总人数约多少万人?9、(贵州毕节)为进一步发展基础教育,自以来,某县加大了教育经费的投入,该县投入教育经费6000万元.投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算该县投入教育经费多少万元.典例探究答案【例1】(·湖北随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【考点】由实际问题抽象出一元二次方程.【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.练1:(•珠海)白溪镇有绿地面积57.5公顷,该镇近几年不断增加绿地面积,达到82.8公顷.(1)求该镇至绿地面积的年平均增长率;(2)若年增长率保持不变,该镇绿地面积能否达到100公顷?分析:(1)设每绿地面积的年平均增长率为x,就可以表示出的绿地面积,根据的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论.解答:解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8,解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36(万元)答:该镇绿地面积不能达到100公顷.点评:本题考查了增长率问题的数量关系的运用,关键是运用增长率的数量关系建立一元二次方程求解.练2. (·青海西宁·10分)青海新闻网讯:2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出到市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用配置720辆公共自行车,结合增长率为x,进而表示出配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设到市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:到市政府配置公共自行车数量的年平均增长率为75%.夯实基础1.(秋•丹江口市校级月考)一种药品经过两次降价,由每盒60元调至48.6元,平均每次降价的百分率是多少?分析:设该药品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是60(1﹣x),第二次后的价格是60(1﹣x)2,据此即可列方程求解.解答:解:设平均每次降价的百分率是x,依题意得:60(1﹣x)2=48.6,解方程得:x1=0.1=10%,x2=1.9(舍去),答:平均每次降价的百分率是10%.故答案为:10%.点评:此题主要考查了一元二次方程的应用﹣﹣增长率(下降率)问题,关键是读懂题意,掌握公式:“a(1±x)n=b”,理解公式是解决本题的关键.2.(•泰安模拟)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%解:根据题意得:第三季度的产值比第一季度增长了(2+x%)•x%,故选D3.(•江岸区校级模拟)为提高民生,让人民更好的享受经济和社会发展的成果,今年多数药品生产的企业对某些药品实行降价,其中某种药品经过再次降价,每盒下降了36%.假设每次降价的百分率相同,降价前的药品价格为100元,则第一次降价后的价格为()A.18元 B.36元 C.64元 D.80元解:∵原价为100元的药品经过两次降价后下降了36%,∴降价后的药品价格为100(1﹣36%)=64元,设平均每次降价的百分率是x,依题意得:100(1﹣x)2=64,解方程得:x1=0.2=20%,x2=1.8(舍去),第一次降价的价格为100×(1﹣20%)=80元.故选D.4.(2015春•富阳市校级月考)甲菜农计划以每千克5元的价格对外批发某种蔬菜,由于部分菜农盲目扩大种植这种蔬菜,造成这种蔬菜滞销.甲菜农为加快销售,减少损失,对这种蔬菜的价格经过两次下调,最后以每千克3.2元的单价对外批发销售,则他平均每次下调的百分率是20% .解:设平均每次下调的百分率是x.由题意,得5(1﹣x)2=3.2.解得x1=0.2,x2=1.8(不符合题意),符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.故答案为:20%.5.(2016·四川眉山·3分)受“减少税收,适当补贴”政策的影响,某市居民购房热情大幅提高.据调查,2016年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.假设该公司这两个月住房销售量的增长率为x,根据题意所列方程为100(1+x)2=169.【分析】根据年1月该市宏鑫房地产公司的住房销售量为100套,3月份的住房销售量为169套.设该公司这两个月住房销售量的增长率为x,可以列出相应的方程.【解答】解:由题意可得,100(1+x)2=169,故答案为:100(1+x)2=169.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出形应的方程.6.(2014•泗县校级模拟)某公司一月份营业额为100万元,第一季度总营业额为331万元,问:该公司二、三月份营业额的平均增长率是多少?解:设该公司二、三月份营业额平均增长率是x.根据题意得100+100(1+x)+100(1+x)2=331,解得x1=0.1,x2=﹣3.1(不合题意,舍去).答:该公司二、三月份营业额平均增长率是10%.7.(2014春•淮阴区校级月考)前一阶段,我校成功的举办了首届数学节,某种活动所需材料经过两次降价后,从原来的20元减少到12.8元,若两次降价的百分率相同,请你求出降价的百分率.解:设平均每次降价的百分率为x,根据题意得:20(1﹣x)2=12.8解得:x1=0.2,x2=1.8(不符合题意舍去).答:每次降价的百分率为:20%.8.(2014•香洲区校级一模)据媒体报道,我国2011年公民出境旅游总人数约5000万人,2013年公民出境旅游总人数约7200万人,若2012年、2013年公民出境旅游总人数逐年递增,请解答如下问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2014年仍保持相同的年平均增长率,请你预测2014年我国公民出境旅游总人数约多少万人?解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2=7200,解得x1=0.2=20%,x2=﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2014年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为 7200(1+x)=7200×(1+20%)=8640(万人次).答:预测2014年我国公民出境旅游总人数约8640万人次.9、(2016贵州毕节)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.。
最新人教版数学九年级上册第二十一章3 实际问题与一元二次方程 (第2课时)
21.3 实际问题与一元二次方程/
1.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜
产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜
产量的年平均增长率为x,则可列方程为( A )
A.80(1+x)2=100
B.100(1﹣x)2=80
C.80(1+2x)=100
D.80(1+x2)=100
链接中考
21.3 实际问题与一元二次方程/
2.某市从2017年开始大力发展“竹文化”旅游产业.
据统计,该市2017年“竹文化”旅游收入约为2亿元.
预计2019“竹文化”旅游收入达到2.88亿元,据此估
计该市2018年、2019年“竹文化”旅游收入的年平均
增长率约为( C )
A.2%
B.4.4%
C.20%
知识点
有关增长/下降率的问题
两年前生产1t甲种药品的成本是5000元,生产1t乙种药
品的成本是6000元,随着生产技术的进步,现在生产1t甲种
药品的成本是3000元,生产1t乙种药品的成本是3600元,哪
种药品成本的年平均下降率较大?
【思考】下降率是什么意思?它与原成本、终成本之间
有何数量关系?
探究新知
D.44%
课堂检测
21.3 实际问题与一元二次方程/
基础巩固题
1.某厂今年一月的总产量为500பைடு நூலகம்,三月的总产量为720
吨,平均每月增长率是x,列方程( B )
A.500(1+2x)=720
B.500(1+x)2=720
C.500(1+x2)=720
D.720(1+x)2=500
2022-2023学年九年级上数学:实际问题与一元二次方程(附答案解析)
【分析】设每轮传染中平均一个人传染的人数为 ,根据“一个人患了流感,经过两轮传染后共有64人患了流感”,即可得出关于 的一元二次方程,解之即可得出 的值,再将其正值代入 中即可求出结论.
【答案】D
【解析】解:设每轮传染中平均一个人传染的人数为 ,
依题意得: ,
解得: , (不合题意,舍去),
,
经过三轮传染后患流感的人数共有512个.
故选: .
【精讲2】襄阳市要组织一次少年足球联赛,要求参赛的每两队之间都要进行两场比赛,共要比赛90场,则共有个队参加比赛.
【分析】设共有 个队参加比赛,利用比赛的总场数 参加比赛的队伍数 (参加比赛的队伍数 ,即可得出关于 的一元二次方程析】设这种商品每件涨价 元,则销售量为 件,根据“总利润 每件商品的利润 销售量”列出一元二次方程.
【答案】C
【解析】解:设这种商品每件涨价 元,则销售量为 件,
根据题意,得: ,
故选: .
【精讲2】某水果店销售一种新鲜水果,平均每天可售出120箱,每箱盈利60元,为了扩大销售减少库存,水果店决定采取适当的降价措施,经调查发现,如果每箱水果每降价5元,水果店平均每天可多售出20箱.
2022-2023学年九年级上数学第21章一元二次方程
21.3实际问题与一元二次方程
自学笔记:
设基准数为a,两次增长(或下降)后为b;增长率(下降率)为x,第一次增长(或下降)后为 ;第二次增长(或下降)后为 .可列方程为 =b.
命题方向:
与增长率或下降率有关的一元二次方程的应用.
名师点拨:
列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.
最新部编人教版九年级上学期数学实际问题与一元二次方程(2)课件
探究三:动点问题
重点、难点知识★▲
问题: (1)设经过x秒钟,BQ=___2_x___, BP=___5_-_x___. (2)等量关系是:_____B_P_2_+_B_Q__2=_P__Q_2_______.
如何列方程求解?
解:(1)设:经过x秒以后△PBQ面积为6,
1 2
×(5-x)×2x=6
活动1 面积问题
例. 如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶 一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积 是5400cm2,设金色纸边的宽为xcm,求满足x的方程.
(1)挂图长为_(__8_0_+_2_x_)__cm,宽为_(__5_0_+_2_x_)__cm. (2)等量关系是:_挂__图__面__积__为__5_4_0_0__c_m_2_.
和68cm2,那么矩形ABCD的面积是( B )
A.21cm2 C.24cm2பைடு நூலகம்
B.16cm2 D.9cm2
解:设AB=xcm,AD=(10-x)cm,则正方形ABEF的面积为x2cm2, 正方形ADGH的面积为(10-x)2cm2, 根据题意得 x2+(10-x)2=68, 整理得 x2-10x+16=0 解之得 x1=2,x2=8 所以AB=2cm,AD=8cm或AB=8cm,AD=2cm, 综上可求矩形ABCD的面积是16cm2.
北
AC
东
E B
问题:(1)设t时刻,轮船行驶到C点,此时AC=____2_0_t___; 台风中心运动到E点,此时AE=__1_0_0_-_4_0_t_;
(2)等量关系是:____E__C_2_=_A_C__2+__A_E_2_____.
九年级数学上册第二十一章一元二次方程21.3实际问题与一元二次方程第2课时用一元二次方程解决增长率
2018-2019学年九年级数学上册第二十一章一元二次方程21.3 实际问题与一元二次方程第2课时用一元二次方程解决增长率问题教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十一章一元二次方程21.3 实际问题与一元二次方程第2课时用一元二次方程解决增长率问题教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十一章一元二次方程21.3 实际问题与一元二次方程第2课时用一元二次方程解决增长率问题教案(新版)新人教版的全部内容。
第2课时用一元二次方程解决增长率问题01 教学目标1.能根据具体问题中的数量关系,列出一元二次方程,并能根据具体问题的实际意义,检验结果是否合理.2.通过实际问题中的增降情况,学会将应用问题转化为数学问题,列一元二次方程解有关增降率的应用题.02 预习反馈阅读教材P19~20“探究2”,完成下面的探究内容.问题两年前生产1吨甲种药品的成本是5 000元,生产1吨乙种药品的成本是6 000元.随着生产技术的进步,现在生产1吨甲种药品的成本是3 000元,生产1吨乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?(精确到0.001)绝对量:甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元),乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元),显然,乙种药品成本的年平均下降率较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5__000(1-x)元,两年后甲种药品成本为5__000(1-x)2元.依题意,得5__000(1-x)2=3__000.解得x1≈0.225,x2≈1。
九年级数学上册 第二十一章 一元二次方程. 实际问题与一元二次方程用一元二次方程解决传播问题
2.(教材 P22T4 变式)某种植物的主干长出若干数目的支干,每个支干又长出同样数目 的小分支,支干、小分支的总数是 110,求每个支干长出多少个小分支.
解:设每个支干长出 x 个小分支,根据题意,得 x+x2=110.解得 x1=10,x2=- 11(舍去).答:每个支干长出 10 个小分支
换两个数位上的数字,则得到的新两位数为____. 练习2:一个两位数等于它个位数的平方,且个位数10比a+十b位数大3,则这个两位数是
() A.25C B.36
C1.2/122/2502或1 36 D.-25或-36
第三页,共十五页。
12/12/2021
第四页,共十五页。
知识点 1:倍数传播问题 1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台感染,设每轮感染中平均每一台电脑会感染 x 台电脑,由题意列方程为( C )
5.(2018·绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则 参加酒会的人数为( C )
A.9 人 B.10 人 C.11 人 D.12 人
6.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束 后统计共签订了 78 份合同,有__1_3__家公司出席了这次交易会.
解:设每轮一个人要向 x 个人发送微信,由题意得 x(x+1)=56,解得 x1=7,x2 =-8(不合题意,舍去),则每轮一个人要向 7 个人发送微信 13.一个两位数,十位上的数字比个位上的数字的平方小 2,如果把这个数的个 位数字与十位数字交换,那么所得到的两位数比原来的数小 36,求原来的两位数.
九年级数学上册21.3 用一元二次方程解决实际问题
2.对于“增长率”问题,如人口的减少、利率的 降低、汽车的折旧等等,都是在原来基数上减少, 不能与一般性的增加和减少相混淆.
(二)几何中面积、长度问题
例2 如图所示,一架长为10 m的梯子斜
靠在墙上,梯子的顶端A处到地面的距离 A
为8 m,如果梯子的顶端沿墙面下滑2 m,A’ 那么梯子的底端在地面上滑动的距离是多 少?
答:梯子的底端在地面上滑动的距离是 2 m.
B
B’
例 3 在宽为 20 m、长为 32 m 的矩形地 面上,修筑同样宽的两条互相垂直的道 路,余下部分作为耕地,要使耕地面积 为 540 m 2,道路的宽应为多少?
分析:如图所示,此题的相等关系是 矩形面积减去道路面积等于 540元二次方程
用一元二次方程解决实际问题 人教版·九年级上册
【常见类型】
列一元二次方程解决实际问题的常见类型有以下几种 (1)增长率问题 (2)几何中面积、长度问题 (3)假设存在问题 (4)排列组合问题 (5)销售问题
(一)增长率问题
例1 某市为了解决市民看病难的问题,决定下调 药品的价格.某种药品经过连续两次降价后,由 每盒200元下调至128元,求这种药品平均每次 降价的百分率是多少?
解得,x1=2,x2=50(不合题意,舍去). (以下步骤同解法一)
20米
32米
小结 1.解法二和解法一相比更简单,它利用“图形经过移动, 它的面积大小不会改变”的道理,把纵、横两条路移动一下, 可以使列方程容易些(目的是求出路面的宽,至于实际施工, 仍可按原图的位置修路).
2.有些同学在列方程解应用题时,往往看到正解就保留, 看到负解就舍去.其实,即使是正解也要根据题设条件 进行检验,该舍就舍.此题一定要注意原矩形“宽为20 m、长为32 m”这个条件,从而进行正确取舍.
九年级上册数学实际问题与一元二次方程
九年级上册数学实际问题与一元二次方程九年级上册数学学习内容中,实际问题与一元二次方程是一个非常重要的部分。
实际问题是数学知识在生活中的应用,而一元二次方程是解决实际问题的数学工具。
在本文中,我们将探讨实际问题与一元二次方程之间的关系,并且举一些实际问题的例子,以便更好地理解和应用这一知识。
实际问题与一元二次方程有着密切的联系。
实际问题中常常涉及到某个未知数,我们可以通过设立方程来解决这个问题。
而一元二次方程是一种常见的形式,可以表示很多实际问题。
一元二次方程的一般形式是ax^2 + bx + c = 0,其中a、b、c是已知数,x是未知数。
实际问题中,我们常常需要根据已知条件求解未知数的值,而设立方程是解决这一问题的重要方法。
通过将已知条件翻译成数学表达式,我们可以设立方程,并且通过解方程求解未知数的值。
一元二次方程是解决这类问题的常见工具。
下面,我们来看几个实际问题的例子,以便更好地理解和应用一元二次方程。
例1:某人乘坐公交车从甲地到乙地需要1小时,如果他步行从甲地到乙地需要2小时。
公交车的速度是步行速度的3倍。
求他步行的速度和公交车的速度。
这个问题中,我们设步行速度为x,公交车速度为3x。
根据题意,我们可以列出方程:1/(3x) + 2/x = 1,然后解这个方程,就可以求得他的步行速度和公交车的速度。
例2:一个长方形的长是宽的3倍,长方形的面积是七个单位面积。
求长方形的长和宽。
这个问题中,设长方形的宽为x,那么长就是3x。
根据题意,我们可以列出方程:3x * x = 7,然后解这个方程,就可以求得长方形的长和宽。
例3:现有一座长方形的花坛,花坛的长是宽的2倍,花坛的面积是72平方米。
现在要将花坛的长和宽都加长x米,使得新的花坛的面积是原来的3倍。
求x的值。
这个问题中,设原长方形的宽为x,那么长就是2x。
根据题意,我们可以列出方程:(2x + x)(x + x) = 3*72,然后解这个方程,就可以求得x的值。
九年级数学上册第21章优质习题课件实际问题与一元二次方程()面积问题(人教版)
(2)能围成面积为200 cm2的矩形吗?请说明理由.
(2)设矩形的长为x cm,则宽为(28-x)cm. 依题意,得x(28-x)=200, 即x2-28x+200=0. ∵Δ=(-28)2-4×200=784-800=-16<0, ∴原方程无解. 答:不能围成一个面积为200 cm2的矩形.
解:设人行通道的宽度为x m, 则两块矩形绿地的长为(21-3x)m. 宽为(10-2x)m. 根据题意,得 (21-3x)(10-2x)=90. 解得x1=10(不符题意,舍去),x2=2. 答:人行通道的宽度为2 m.
6. 一个矩形周长为56 cm. (1)当矩形面积为180 cm2时,长和宽分别为多少厘米?
影部分),剩余的空地上种植草坪,使草坪的面积为540 m2. 设道路的宽为x m.根据
题意,下面列出的方程正确的是
()
A. 32x+20x-2x2=540
B. 32x+20x=32×20-540
C. (32-x)(20-x)=540
C
D. (32-x)(20-x)=32×20-540
B组 5. 如图1-21-10-7,有一块长为21 m,宽为10 m的矩形空地,计划在其中修建两块相同 的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道,且人行通道的宽度不能 超过3 m. 如果两块绿地的面积之和为90 m2,求人行通道的宽度.
解:(1)设垂直于墙的一边为x m,则另一边为(80-2x)m.根据题意,得x (80-2x)=750. 整理,得x2-40x+375=0. 解得x1=25,x2=15. 由于墙长45 m,而80-2×15=50>45, ∴x2=15不合题意,舍去. 答:鸡场的长是30 m,宽是25 m.
人教版九年级上册数学第21章 一元二次方程 建立一元二次方程模型解应用问题 (2)
5.一次会议上,每两个参加会议的人都相互握了一次手,经统 计所有人一共握了 66 次手.这次会议到会的人数是多少? 解:设这次会议到会的人数是 x. 由题意得x(x-2 1)=66, 解得 x1=12,x2=-11(舍去). 答:这次会议到会的人数是 12.
6.一个两位数的个位数字为 a,十位数字为 b,则这个两位数为 _1_0_b_+_a___;若交换两个数位上的数字,得到的新两位数为 _1_0_a_+_b___.
4.(2018·黑龙江龙东地区)某中学组织初三学生篮球比赛,以班
为单位,每两班之间都比赛一场,计划安排 15 场比赛,则共
有多少个班级参赛?( C )
A.4 B.5 C.6 D.7 【点拨】设共有 x 个班级参赛. 根据题意,得x(x-2 1)=15, 解得 x1=6,x2=-5(不合题意,舍去). 则共有 6 个班级参赛.
未消失.若开始时传染源为 1,传染速度为 x,则一轮后被感 染的有__1+__x____;第二轮传染时,传染源为_1_+_x___,传染速度 还是 x,则二轮后被感染的有_(1_+__x_)2___.
(2)在细胞分裂问题中,分裂源在一轮分裂后消失了.若开始时分 裂源是 1,分裂的速度是 x,则一轮分裂后是___x_____;第二 轮分裂时,分裂源为___x_____,分裂速度还是 x,则二轮分裂 后是___x2_____.
8.(2018·遵义)在水果销售旺季,某水果店购进一种优质水果, 进价为 20 元/千克,售价不低于 20 元/千克,且不超过 32 元/ 千克,根据销售情况,发现该水果一天的销售量 y(千克)与该 天的售价 x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为 23.5 元/千克,求当天该水果的销售量; 解:设 y 与 x 之间的函数关系式为 y=kx+b. 由题意得2224k.6+k+b=b=323,4.8,解得kb==-80.2, ∴y 与 x 之间的函数关系式为 y=-2x+80. 当 x=23.5 时,y=-2×23.5+80=33. 答:当天该水果的销售量为 33 千克.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标:能根据具体问题中的数量
关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.并能根据具体问题的实际意义,检验结果是否合理。
学习重点:经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
学习难点:通过用一元二次方程解决身边的问题,体会数学知识应用的价值,了解数学对促进社会进步和发展人类理性精神的作用。
学习过程:
一、【课前预习】(阅读教材P20 , 完成课前预习)
探究问题2:
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.001)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元, 乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然, 乙种药品成本的年平均下降额较大.
相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.
分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为元,两年后甲种药品成本为元.
依题意,得
解得:x
1≈,x
2
≈。
根据实际意义,甲种药品成本的年平均下降率约为。
②设乙种药品成本的平均下降率为y.则,
列方程:
解得:
答:两种药品成本的年平均下降率.
思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状态?
二、【课堂活动】
活动1:预习反馈,分析问题
活动2:典型例题,初步应用
例1:某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?
例2:青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8460
kg,求水稻每公顷产量的年平均增长率.
活动3:归纳小结
1.列一元二次方程解应用题的一般步骤:
(1)“设”,即设_____________,设未知数的方法有直接设和间接设未知数两种;
(2)“列”,即根据题中________ 关系列方程;
(3)“解”,即求出所列方程的_________;
(4)“检验”,即验证是否符合题意;
(5)“答”,即回答题目中要解决的问题。
2.增长率=(实际数-基数)/基数。
平均增长率公式:2
(1)Q a x =± 其中a 是增长(或降低)的基础量,x 是平均增长(或降低)率,2是增长(或降低)的次数。
三、【课后巩固】
1.某次会议中,参加的人员每两人握一次手,共握手190次,求参加会议共有多少人?
2.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x 名同学,那么根据题意列出的方程是( )A .x (x+1)=182 B .x (x -1)=182
C .2x (x+1)=182
D .x (1-x )=182×2
3.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).
A .12人
B .18人
C .9人
D .10人
4.学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?
5.参加一次足球联赛的每两个队之间都进行两次比赛(双循环比赛),共要比赛90场,共有多少个队参加比赛?
6.两个连续偶数的积为168,求这两个偶数.
7.某商品原来单价96元,厂家对该商品进行了两次降价,每次降低的百分数相同,现单价为54元,求平均每次降价的百分数?
8.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.96%,平均每次降息的百分率是多少?(结果精确到0.01﹪)
9.一个直角三角形的两条直角边的和是14 cm ,面积是24 cm 2,求两条直角边的长。
10.一个菱形两条对角线长的和是10cm ,面积是12 cm 2,求菱形的周长。
四、谈一谈你今天的收获?。