通用版高考数学复习专题六统计与概率6.2概率统计解答题课件理
高考数学概率统计专题题库
高考数学概率统计专题题库概率统计是高考数学中的一大重点,对于学生来说是一个难点。
为了帮助同学们更好地掌握概率统计的知识,我们特地整理了一套专题题库,旨在提高同学们的题目解答能力。
以下是该题库中的一些典型题目,供同学们参考。
1. 事件A与事件B相互独立,且P(A)=0.2,P(B)=0.3,求P(A∩B)。
解析:由于事件A与事件B相互独立,所以P(A∩B) = P(A) * P(B)= 0.2 * 0.3 = 0.06。
2. 已知事件A的概率为0.6,事件B的概率为0.4,事件A与事件B相互独立,求事件A或事件B发生的概率。
解析:由于事件A与事件B相互独立,所以P(A或B) = P(A) + P(B) - P(A∩B) = 0.6 + 0.4 - (0.6 * 0.4) = 0.76。
3. 有一批产品,其中80%是合格品,20%是次品。
从中随机抽取3个产品进行检验,求恰好有1个次品的概率。
解析:使用组合数的知识,可以知道从总共的产品中选择1个次品和2个合格品的方法有C(1,1) * C(2,0) = 1种。
所以恰好有1个次品的概率为P = (0.2 * 0.8 * 0.8) = 0.128。
4. 某市共有100辆出租车,其中60辆汽车是空车,40辆汽车是有客人的。
一名乘客拦出租车时,随机选择一辆,发现是空车,求另一辆是空车的概率。
解析:由于已经知道选择的出租车是空车,所以可以将问题简化为从剩下的99辆车中选择一辆是空车的概率。
根据全概率公式,可知选择一辆是空车的概率为P = (60/100) * (59/99) = 0.3636。
5. 有一个罐子,里面有红球、黄球、蓝球各20个。
将这些球随机取出2个,求取出的两个球颜色相同的概率。
解析:首先计算红球颜色相同的概率,即取出两个红球的概率为P1 = (20/60) * (19/59) = 0.1153。
同理,黄球颜色相同的概率为P2 = (20/60) * (19/59) = 0.1153,蓝球颜色相同的概率为P3 = (20/60) * (19/59) =0.1153。
新教材老高考适用2023高考数学一轮总复习高考解答题专项六概率与统计综合问题pptx课件北师大版
1
5)×20=0.25=4.
故从全省考生中随机选取 3 人,成绩在 110 及以上的考生人数 X~B
1
P(X=k)=C3 4
X 的分布列为
1 3-
1- 4
=
3 3-
1
C3 4
,k=0,1,2,3.
4
1
3, 4
.则
X
P
由于 X~B
1
3,
4
0
1
27
64
1
,∴EX=np=3×
, = −
∑ ( -)
=1
2
解(1) =
87+90+91+92+95
=91,
5
=
86+89+89+92+94
=90,
5
5
∑ (xi-x)2=(-4)2+(-1)2+02+12+42=34,
=1
5
∑ (xi-)(yi-)=(-4)×(-4)+(-1)×(-1)+0×(-1)+1×2+4×4=35,
i=1
^
所以 =
^= − ^=90-35×91=-125,来自35,
34
故线性回归方程为
34
35 125
Y=34X- 34 .
34
(2)随机变量ξ的可能取值为0,1,2.
因为笔试成绩在90分或90分以上的选手有S2,S3,S4,S5,共4人,
他们笔试和抢答的成绩平均分分别为89.5,90,92,94.5,平均分高于90分的有
(2)以两校这次考试成绩估计全省考生的成绩情况,现从全省考生中随机选
高考大题规范解答系列(六)——概率与统计
高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③
高考数学复习专题训练—统计与概率解答题(含解析)
高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
高考数学概率统计知识点总结(文理通用)
概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。
2015高考总复习数学(文)课件:专题6 概率与统计
疫苗有效 疫苗无效
A组 673 77
B组 x 90
C组 y z
已知在全体样本中随机抽取 1 个,抽到 B 组疫苗有效的概
率是 0.33.
(1)求 x 的值; (2)现用分层抽样的方法在全体样本中抽取 360 个测试结 果,问应在 C 组抽取多少个? (3)已知 y≥465,z≥30,求不能通过测试的概率.
)
C.13 人
D.14 人
解析:(1)总体中男生与女生的比例为 4∶3,样本中男生人
4 数为 280×7=160(人).
(2) 使用系统抽样方法,从 840 人中抽取 42 人,即从 20 人抽取 1 人.
480 所以从编号 1~480 的人中,恰好抽取 20 =24(人),接着 240 从编号 481~720 共 240 人中抽取 20 =12(人).
4 1 B2),(A4,B2),故所求概率为P(C)= = . 16 4 【方法与技巧】高考中经常以统计图的形式显示相关的数
据信息,通过统计图来解决相关问题.
【互动探究】 4.(2012 年广东东莞模拟)某高校在 2012 年的自主招生考 试成绩中随机抽取 100 名学生的笔试成绩,按成绩分组,得到 的频率分布表如图 6-5. (1)请先求出频率分布表中①,②位置相应的数据,再在答 题纸上完成下列频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的 第 3,4,5 组中用分层抽样抽取 6 名学生进入第二轮面试,求第 3,4,5 组每组各抽取多少名学生进入第二轮面试?
解:由 f(x)=x2+bx+c 知,事件 A“f(1)≤5,且 f(0)≤3”,
b+c≤4, 即 c≤3.
(1)因为随机数 b,c∈{1,2,3,4},所以共等可能地产生 16 个数对(b,c),列举如下: (1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1), (3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). 事件 A
专题六 概率统计专题复习
专题六、概率统计 1、计数原理、二项式定理热点一 两个原理、排列与组合例1、从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120变式训练:1、若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为( ).A .232B .252C .472D .4843、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种. 热点二 求展开式中的指定项例2、在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于_________.变式训练:1、8的展开式中常数项为( ).A .3516B .358C .354D .1052、若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为_________.3、在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40热点三 求展开式中的各项系数的和例3、若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2变式训练:1、若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=________.2、若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.课外训练: 一、选择题1 .已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-2 .用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279 3 .设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .84 .)()()8411+x y +的展开式中22x y 的系数是 ( )A .56B .84C .112D .1685 .满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .106 . 10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x7 .使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .78 .从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .209 . (x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40二、填空题10.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 11.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).12.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)13. 6x⎛⎝ 的二项展开式中的常数项为______.14.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 15.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =16.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.17.若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.18.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).2、概率、统计与统计案例 热点一 随机事件的概率例1、如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).则V =0时的概率为_______变式训练:1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A .49B .13C .29D .192、某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1).若选手甲在A 区射击,则选手甲至少得3分的概率为_________ 热点二 古典概型与几何概型例2、设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6 D .4-π4变式训练:1、在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A .56B .12C .13D .162、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A .16B .536C .112D .123、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17热点三 统计例3、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙变式训练:1、采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152、某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,16 3、甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩不比乙的成绩稳定 热点四 独立性检验例4、为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩. (1)根据以上数据完成下面的2×2列联表:(2)能否有95%附:K 2=n (ad -bc )2(a +b )(c变式训练:为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d ).课外训练: 一、选择题1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为( ) A .11 B .12 C .13 D .14 3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 4、如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π5、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120 6、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样7、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8二、填空题8、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________; (II)在这些用户中,用电量落在区间[)100,250内的户数为___________.10、利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 11、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 12、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.13、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为______.三、解答题14、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.3、随机变量及其分布列热点一 相互独立事件、互斥事件、对立事件及其概率例1、现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分至少1分的概率; (3)求该射手的总得分至多3分的概率.热点二 二项分布及其应用例2、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.记ξ为射手射击3次后的总得分数,求p(ξ=3)和p(ξ<2).热点三 离散型随机变量的分布列、均值与方差 例3、交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机1 7 92 0 1 53 0选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.课外训练:1、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.3、经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)100≤表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量X∈,则落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)取105X=的概率等于需求量落入[100,110)的概率),求利润T的数X=,且105学期望.。
高考数学二轮复习专题6统计与概率3.1统计与概率大题课件理
-2-
-3-
-4-
-5-
-6-
-7-
-8-
2.独立性检验 对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其样本频数列 联表是:
-9-
4.二项分布 一般地,在n次独立重复试验中,事件A发生的次数为X,设每次试验 中事件A发生的概率为p,则P(X=k)= pkqn-k,其中 0<p<1,p+q=1,k=0,1,2,…,n,称X服从参数为n,p的二项分布,记作 X~B(n,p),且E(X)=np,D(X)=np(1-p).
-15-
考向一 考向二 考向三 考向四
对点训练 1学校为了了解A,B两个班级学生在本学期前两个月内 观看电视节目的时长,分别从这两个班级中随机抽取10名学生进行 调查,得到他们观看电视节目的时长(单位:小时)如下.
A班:5,5,7,8,9,11,14,20,22,31;B班:3,9,11,12,21,25,26,30,31,35. 将上述数据作为样本. (1)绘制茎叶图,并从所绘制的茎叶图中提取样本数据信息(至少 写出2条); (2)分别求样本中A,B两个班级学生的平均观看时长,并估计哪个 班级的学生平均观看的时间较长; (3)从A班的样本数据中随机抽取一个不超过11的数据记为a,从B 班的样本数据中随机抽取一个不超过11的数据记为b,求a>b的概率.
考向一 考向二 考向三 考向四
根据上表中的数据作出散点图,得知产品研发费的自然对数值z (精确到小数点后第二位)和销售额y具有线性相关关系.
(1)求销售额y关于产品研发费x的回归方程 的计算结果精确到小数点后第二位);
考向一 考向二 考向三 考向四
-20-
考向一 考向二 考向三 考向四
通用版高考数学复习专题六统计与概率6.1概率统计基础题课件(理科)
的倍数,
因此n=6,12,18,24,30,36.因为当样本容量为n+1时,若采用系统抽
样法,则需要剔除1个个体,
所以n+1为35的正约数,因此n=6.
-17-
高考真题体验
典题演练提能
求古典概型的概率
1.(2019 全国Ⅰ·6)我国古代典籍《周易》用“卦”描述万物的变化.每
一“重卦”由从下到上排列的 6 个爻组成,爻分为阳爻“
-11-
高考真题体验
典题演练提能
6.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各
层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九
章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持
钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少
衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,
若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样
本编号( )
ห้องสมุดไป่ตู้
A.522 B.324 C.535
D.578
-8-
高考真题体验
典题演练提能
答案:D 解析:第6行第6列的数开始的数为808,不合适,436合适,789不合 适,535,577,348合适,994不合适,837不合适,522,535重复不合适,578 合适,则满足条件的6个编号为436,535,577,348,522合适,578,则第6 个编号为578,故选D.
-4-
高考真题体验
典题演练提能
2.(2017江苏·3)某工厂生产甲、乙、丙、丁四种不同型号的产品,
产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的
2023年高考数学微专题练习专练66高考大题专练六概率与统计的综合运用含解析理
专练66 高考大题专练(六) 概率与统计的综合运用1.[2022·全国甲卷(理),19]甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.[2021·全国甲卷]甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),3.[2022·全国乙卷(理),19]某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑i =110x 2i =0.038,∑i =110y 2i =1.6158,∑i =110x i y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数r =i =1n(x i -x -)(y i -y -)i =1n (x i -x -)2i =1n (y i -y -)2, 1.896≈1.377.4.[2022·江西鹰潭高三模拟]某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g )与尺寸x(mm )之间近似满足关系式y =c·x b(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间(e 9,e7)≈(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的期望;(2)根据测得数据作了初步处理,得相关统计量的值如表:①根据所给统计量,求y 关于x 的回归方程;②已知优等品的收益z(单位:千元)与x 、y 的关系为z =2y -0.32x ,则当优等品的尺寸x 为何值时,收益z 的预报值最大?附:对于样本(v i ,u i )(i =1,2,…,n),其回归直线u =b·v+a 的斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1(v i -v )(u i -u )∑ni =1(v i -v )2=∑ni =1v i u i -nvu ∑n i =1v 2i -nv 2, a ^=u -b ^v ,e ≈2.7182.5.[2022·河南省六市联考]在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产防疫物品,保障抗疫一线医疗物资供应,某口罩生产厂商在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:[100,110),[110,120),[120,130),[130,140),[140,150],得到如下频率分布直方图.(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩,现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,求抽取的口罩至少有一个一级口罩的概率;(2)在2021年“双十一”期间,某网络购物平台推出该型号口罩订单“秒杀”抢购活动,甲、乙、丙三人分别在该平台参加一次抢购活动,假定甲、乙、丙抢购成功的概率分别为0.1,0.2,0.3,记三人抢购成功的总次数为X,求X的分布列及数学期望E(X).专练66 高考大题专练(六)概率与统计的综合运用1.解析:(1)设三个项目比赛中甲学校获胜分别为事件A,B,C,易知事件A,B,C相互独立.甲学校获得冠军,对应事件A,B,C同时发生,或事件A,B,C中有两个发生,故甲学校获得冠军的概率为p=P(ABC+A-BC+A B-C+AB C-)=P (ABC )+P (A -BC )+P (A B -C )+P (AB C -)=0.5×0.4×0.8+(1-0.5)×0.4×0.8+0.5×(1-0.4)×0.8+0.5×0.4×(1-0.8) =0.16+0.16+0.24+0.04 =0.6.(2)由题意得,X 的所有可能取值为0,10,20,30.易知乙学校在三个项目中获胜的概率分别为0.5,0.6,0.2,则P (X =0)=(1-0.5)×(1-0.6)×(1-0.2)=0.16,P (X =10)=0.5×(1-0.6)×(1-0.2)+(1-0.5)×0.6×(1-0.2)+(1-0.5)×(1-0.6)×0.2=0.44,P (X =20)=0.5×0.6×(1-0.2)+0.5×(1-0.6)×0.2+(1-0.5)×0.6×0.2=0.34, P (X =30)=0.5×0.6×0.2=0.06,所以X 的分布列为则E (X )2.解析:(1)根据题表中数据知,甲机床生产的产品中一级品的频率是150200=0.75,乙机床生产的产品中一级品的频率是120200=0.6.(2)根据题表中的数据可得K 2=400×(150×80-120×50)2200×200×270×130=40039≈10.256.因为10.256>6.635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.3.解析:(1)该林区这种树木平均一棵的根部横截面积x -=0.610=0.06(m 2),平均一棵的材积量y -=3.910=0.39(m 3).(2)由题意,得i =110(x i -x -)2=i =110x 2i -10x -2=0.038-10×0.062=0.002,i =110(y i -y -)2=i =110y 2i -10y -2=1.6158-10×0.392=0.0948,i =110(x i -x -)(y i -y -)=i =110x i y i -10x -y -=0.2474-10×0.06×0.39=0.0134,所以相关系数r =0.01340.002×0.0948=0.01341.896×0.0001≈0.01340.01377≈0.97.(3)因为树木的材积量与其根部横截面积近似成正比,所以比例系数k =y -x -=0.390.06=6.5,所以该林区这种树木的总材积量的估计值为186×6.5=1209(m 3). 4.解析:(1)由表可知,抽取的6件合格产品中有3件优等品, 所以,ξ的所有可能取值为0,1,2,3,P(ξ=0)=C 33 C 36 =120,P(ξ=1)=C 13 C 23 C 36 =920,P(ξ=2)=C 23 C 13 C 36 =920,P(ξ=3)=C 33C 36=120, 所以,随机变量ξ的期望为E(ξ)=0×120+1×920+2×920+3×120=32.(2)①∵y=c·x b,∴ln y =ln c +b ln x ,∵∑6i =1 (ln x i )=24.6,∑6i =1(ln y i )=18.3, ∴ln x =16∑6i =1 (ln x i )=4.1,ln y =16∑6i =1(ln y i )=3.05,∴b ^=∑6i =1(ln x i ·ln y i )-6×ln x ×ln y∑6i =1(ln x i )2-6×(ln x )2=75.3-6×4.1×3.05101.4-6×4.12=0.5, a ^=ln y -b ^ln x =3.05-0.5×4.1=1, ∴ln y =1+0.5ln x ,所以,c =e, 故y 关于x 的回归方程为y ^=e x 0.5; ②由①知,y ^=e x 0.5,∴z ^=2y ^-0.32x =2e x 0.5-0.32x =-0.32(x -e 0.32)2+e 20.32,当x =e 0.32,即x =(e 0.32)2≈72时,z ^取得最大值,故当优等品的尺寸x 为72mm 时,收益z 的预报值最大.5.解析:(1)由频率分布直方图可得,二级品的频率为10×(0.005+0.04+0.03)=0.75, 一级品的频率为10×(0.02+0.005)=0.25,按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为6、2,故事件“至少有一个一级品”的概率P =C 26 C 12 +C 16 C 22 C 38=914. (2)由题知X 的可能取值为0,1,2,3, P(X =0)=0.9×0.8×0.7=0.504,P(X =1)=0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398, P(X =2)=0.1×0.2×0.7+0.1×0.8×0.3+0.9×0.2×0.3=0.092, P(X =3)=0.1×0.2×0.3=0.006, 所以X 的分布列为E(X)。
6统计与概率整理和复习(第2课时)(课件)-六年级下册数学+人教版
(1.40+1.43+1.46+1.49+1.52+1.55+1.58)÷7
=10.43÷7
天天
=1.49(m)
小红
六(1)班同学的身高、体重情况如下表。
身高/m 1.40 1.43 1.46 1.49 1.52 1.55 1.58
人数
1
3
5
10 12
6
3
(2)六(1)班同学的平均身高和平均体重分别是多少?
琪琪
小志
去年全年的总产量和总销量的情况。
去年的月平均生产量和销售量各是多少呢?
小红
总产量和总销售量都是20.9万台。 20.9÷12≈1.7(万台)
平均数在生活中有哪些应用?
六年级同学完成数学作业所需的平均时长。 某同学400米跑步的平均速度。 某班同学的平均身高。 某销售公司的一年平均销售量等。
百分比/% 第五次 第六次 第七次 22.89 16.60 17.95 66.85 70.14 63.35 10.25 13.26 18.70
天天
小明
回顾这节课,同学们有什么收获?
在解决问题时,不能光凭感觉做判断,要 借助数据来进行计算和分析,从而做出正 确合理的判断。
小红
当一组数据较大时,可以找到一个基准简化计算。
人数
2
4
5
12 10
4
3
(2)六(1)班同学的平均身高和平均体重分别是多少?
体重总和: 30×2+33×4+36×5+39×12+42×10+45×4+48×3=1584(kg)
总人数: 2+4+5+12+10+4+3=40(人)
高考数学一轮复习专题六概率与统计课件文
大于 19 的频率为 0.7,故 n 的最小值为 19.(7 分)
(3)若每台机器在购机同时都购买 19 个易损零件,则这 100 台机器中有 70 台在购买易损零件上的费用为 3 800 元,20 台的费 用为 4 300 元,10 台的费用为 4 800 元,因此这 100 台机器在购买 易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000(元).
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
① 根据课堂提问抓住老师的思路。老师在讲课过程中往往会提出一些问题,有的要求回答,有的则是自问自答。一般来说,老师在课堂上提出的问 题都是学习中的关键,若能抓住老师提出的问题深入思考,就可以抓住老师的思路。
若每台机器在购机同时都购买 20 个易损零件,则这 100 台机 器中有 90 台在购买易损零件上的费用为 4 000 元,10 台的费用为 4 500 元,因此这 100 台机器在购买易损零件上所需费用的平均数 为1100(4 000×90+4 500×10)=4 050(元).
比较两个平均数可知,购买 1 台机器的同时应购买 19 个易损 零件.(12 分)
从这 6 名学生中随机抽取 2 个的方法有 AB、AC、AD、AE、 AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF,共 15 种.
其中至少含 E 或 F 的取法有 9 种,则所求概率为35.
(3)估计平均分为 75×0.06+85×0.04+95×0.22+105×0.2 +115×0.18+125×0.15+135×0.1+145×0.05=110.
高考数学-热点专题专练-专题六-算法、统计、概率、复数测试题-理精品
专题六算法、统计、概率、复数测试题(时间:120分钟满分:150分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z的共轭复数为,若|=4,则z·=( )A.4 B.2C.16 D.±2解析设z=a+,则z·=(a+)(a-)=a2+b2.又|=4,得=4,所以z·=16.故选C.答案C2.(2011·湖北)如图,用K、A1、A2三类不同的元件连接成一个系统,当K 正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为( )A.0.960 B.0.864C.0.720 D.0.576解析K正常工作,概率P(A)=0.9A1A2正常工作,概率P(B)=1-P(1)P(2)=1-0.2×0.2=0.96∴系统正常工作概率P=0.9×0.96=0.864.答案B3.(2011·课标)有3个爱好小组,甲、乙两位同学各自参与其中一个小组,每位同学参与各个小组的可能性相同,则这两位同学参与同一个爱好小组的概率为( )解析古典概型,总的状况共3×3=9种,满意题意的有3种,故所求概率为P==.答案A4.对变量x,y有观测数据(,)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(,)(i=1,2,…,10),得散点图2.由这两个散点图可以推断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析夹在带状区域内的点,总体呈上升趋势的属于正相关;反之,总体呈下降趋势的属于负相关.明显选C.答案C5.某个容量为100的样本的频率分布直方图如图所示,则在区间[4,5)上的数据的频数为( )A.15 B.20C.25 D.30解析在区间[4,5)的频率/组距的数值为0.3,而样本容量为100,所以频数为30.故选D.答案D6.(2011·辽宁丹东模拟)甲、乙两名同学在五次测试中的成果用茎叶图表示如图,若甲、乙两人的平均成果分别是x甲、x乙,则下列结论正确的是( )A.x甲>x乙;乙比甲成果稳定B.x甲>x乙;甲比乙成果稳定C.x甲<x乙;甲比乙成果稳定D.x甲<x乙;乙比甲成果稳定解析由题意得,x甲=×(68+69+70+71+72)=×350=70,x乙=×(63+68+69+69+71)=×340=68,所以x甲>x乙.又=×(22+12+02+12+22)=×10=2,=×(52+02+12+12+32)=×36=7.2,所以甲比乙成果稳定.故选B.答案B7.(2012·福建)如图所示,在边长为1的正方形中任取一点P,则点P恰好取自阴影部分的概率是( )解析由图示可得,图中阴影部分的面积S=(-x)=错误!错误!=错误!-错误!=,由此可得点P恰好取自阴影部分的概率P==.答案C8.如图所示的流程图,最终输出的n的值是( )A.3 B.4C.5 D.6解析当n=2时,22>22不成立;当n=3时,23>32不成立;当n=4时,24>42不成立;当n=5时,25>52成立.所以n=5.故选C.答案C9.正四面体的四个表面上分别写有数字1,2,3,4,将3个这样的四面体同时投掷于桌面上,与桌面接触的三个面上的数字的乘积能被3整除的概率为( )解析将正四面体投掷于桌面上时,与桌面接触的面上的数字是1,2,3,4的概率是相等的,都等于.若与桌面接触的三个面上的数字的乘积能被3整除,则三个数字中至少应有一个为3,其对立事务为“与桌面接触的三个面上的数字都不是3”,其概率是3=,故所求概率为1-=.答案C10.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号依次平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是( ) A.5 B.6C.7 D.8解析设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故选B.答案B11.(2011·杭州市第一次教学质量检测)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则始终发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是( )解析发球次数X的分布列如下表,所以期望解得p>(舍去)或p<,又p>0,故选C . 答案 C12.(2012·济宁一中高三模拟)某计算机程序每运行一次都随机出现一个五位的二进制数A =,其中A 的各位数中,a 1=1,(k 可取2,3,4,5)出现0的概率为,出现1的概率为.记ξ=a 1+a 2+a 3+a 4+a 5,当程序运行一次时,ξ的数学期望E(ξ)=( )解析 ξ=1,P 1=40=, ξ=2时,P 2=3·=, ξ=3时,P 3=·2·2=, ξ=4时,P 4=·3=, ξ=5时,P 5=4=,E(ξ)=1×+2×+3×+4×+5×=. 答案 C二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上.13.(2012·广东湛江十中模拟)在可行域内任取一点,规则如流程图所示,则能输出数对(x ,y)的概率为.解析如图所示,给出的可行域即为正方形与其内部.而所求事务所在区域为一个圆,两面积相比即得概率为.答案14.(2012·山东潍坊模拟)给出下列命题:(1)若z∈C,则z2≥0;(2)若a,b∈R,且a>b,则a+i>b+i;(3)若a∈R,则(a+1)i是纯虚数;(4)若z=,则z3+1对应的点在复平面内的第一象限.其中正确的命题是.解析由复数的概念与性质知,(1)错误;(2)错误;(3)错误,若a=-1,(a+1)i=0;(4)正确,z3+1=(-i)3+1=i+1.答案(4)15.(2011·上海)随机抽取的9位同学中,至少有2位同学在同一月份诞生的概率为.(默认每个月的天数相同,结果精确到0.001)解析P=1-≈0.985.答案0.98516.若某程序框图如图所示,则该程序运行后输出的y等于.解析由图中程序框图可知,所求的y是一个“累加的运算”,即第一步是3;其次步是7;第三步是15;第四步是31;第五步是63.答案63三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某班主任对全班50名学生学习主动性和对待班级工作的看法进行了调查,统计数据如下表所示:是多少?抽到不太主动参与班级工作且学习主动性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习主动性与对待班级工作的看法是否有关系?并说明理由.(参考下表)主动参与班级工作且学习主动性一般的学生有19人,概率为.(2)K2==≈11.5,∵K2>10.828,∴有99.9%的把握说学生的学习主动性与对待班级工作的看法有关系.18.(本小题满分12分)在1996年美国亚特兰大奥运会上,中国香港风帆选手李丽珊以惊人的耐力和斗志,勇夺金牌,为香港体育史揭开了“突破零”的新一页.在风帆竞赛中,成果以低分为优胜.竞赛共11场,并以最佳的9场成果计算最终的名次.前7场竞赛结束后,排名前5位的选手积分如表一所示:表一此时让你预料谁将获得最终的成功,你会怎么看?解由表一,我们可以分别计算5位选手前7场竞赛积分的平均数和标准差,分别作为衡量各选手竞赛的成果与稳定状况,如表二所示.表二就是说,在前7场竞赛过程中,她的成果最为优异,而且表现也最为稳定.尽管此时还有4场竞赛没有进行,但这里我们可以假定每位运动员在各自的11场竞赛中发挥的水平大致相同(实际状况也的确如此),因此可以把前7场竞赛的成果看做是总体的一个样本,并由此估计每位运动员最终的竞赛的成果.从已经结束的7场竞赛的积分来看,李丽珊的成果最为优异,而且表现最为稳定,因此在后面的4场竞赛中,我们有足够的理由信任她会接着保持优异而稳定的成果,获得最终的冠军.19.(本小题满分12分)(2012·苏州五中模拟)设不等式组错误!表示的区域为A,不等式组错误!表示的区域为B,在区域A中随意取一点P(x,y).(1)求点P落在区域B中的概率;(2)若x、y分别表示甲、乙两人各掷一次正方体骰子所得的点数,求点P落在区域B中的概率.解(1)设区域A中随意一点P(x,y)∈B为事务M.因为区域A的面积为S1=36,区域B在区域A中的面积为S2=18.故P(M)==.(2)设点P(x,y)落在区域B中为事务N,甲、乙两人各掷一次骰子所得的点P(x,y)的个数为36,其中在区域B中的点P(x,y)有21个.故P(N)==.20.(本小题满分12分)某中学部分学生参与全国中学数学竞赛,取得了优异成果,指导老师统计了全部参赛同学的成果(成果都为整数,试题满分120分),并且绘制了“频率分布直方图”(如图),请回答:(1)该中学参与本次数学竞赛的有多少人?(2)假如90分以上(含90分)获奖,则获奖率是多少?(3)这次竞赛成果的中位数落在哪段内?(4)上图还供应了其他信息,请再写出两条.解(1)由直方图(如图)可知:4+6+8+7+5+2=32(人);(2)90分以上的人数为7+5+2=14(人),∴×100%=43.75%.(3)参赛同学共有32人,按成果排序后,第16个、第17个是最中间两个,而第16个和第17个都落在80~90之间.∴这次竞赛成果的中位数落在80~90之间.(4)①落在80~90段内的人数最多,有8人;②参赛同学的成果均不低于60分.21.(本小题满分12分)(2012·天津)现有4个人去参与某消遣活动,该活动有甲、乙两个嬉戏可供参与者选择.为增加趣味性,约定:每个人通过掷一枚质地匀称的骰子确定自己去参与哪个嬉戏,掷出点数为1或2的人去参与甲嬉戏,掷出点数大于2的人去参与乙嬉戏.(1)求这4个人中恰有2人去参与甲嬉戏的概率;(2)求这4个人中去参与甲嬉戏的人数大于去参与乙嬉戏的人数的概率;(3)用X,Y分别表示这4个人中去参与甲、乙嬉戏的人数,记ξ=-,求随机变量ξ的分布列与数学期望Eξ.解依题意,这4个人中,每个人去参与甲嬉戏的概率为,去参与乙嬉戏的概率为.设“这4个人中恰有i人去参与甲嬉戏\”为事务(i=0,1,2,3,4),则P()=4-i.(1)设4个人中恰有2人去参与甲嬉戏的概率为P(A2)P(A2)=22=.(2)设“这4个人中去参与甲嬉戏的人数大于去参与乙嬉戏的人数”为事务B,则B=A3∪A4,由于A3和A4互斥,故P(B)=P(A3)+P(A4)=3+4=.所以,这4个人中去参与甲嬉戏的人数大于去参与乙嬉戏的人数的概率为.(3)ξ的全部可能取值为0,2,4.由于A1与A3互斥,A0和A4互斥,故P(ξ=0)=P(A2)=,P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=.所以ξ的分布列是随机变量ξ22.(本小题满分14分)(2012·福建)受轿车在保修期内修理费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年.现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保障期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预料今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.解(1)设“甲品牌轿车首次出现故障发生在保修期内”为事务A.则P(A)==.(2)依题意得,X1的分布列为X2的分布列为(3)由(2)得,E(X1)=1×+2×+3×==2.86(万元),E(X2)=1.8×+2.9×=2.79(万元).因为E(X1)>E(X2),所以应生产甲品牌轿车.。
最新高考数学(理)二轮专题复习课件:第二部分 专题六 统计与概率3.1
������≈1.331-0.103×4≈0.92.
所以,y 关于 t 的回归方程为���^���=0.92+0.10t.
将 2018 年对应的 t=11 代入回归方程得���^���=0.92+0.10×11=2.02.
核心知识
考点精题
-19-
考向一 考向二 考向三
对点训练1(2017河北石家庄二中模拟,理18)下表是某校高三一次
数字表示个位数;当数据是三位数,前两位相对比较集中时,常以前
两位为茎,第三位(个位)为叶(其余类推).
核心知识
考点精题
-8-
2.样本的数字特征
(1)众数:是指出现次数最多的数,体现在频率分布直方图中,是指
高度最高的小矩形的宽的中点的横坐标;
(2)中位数是指从左往右小矩形的面积之和为0.5处的横坐标;
质:E(aX+b)=aE(X)+b;E(ξ+η)=E(ξ)+E(η);D(aX+b)=a2D(X).
6.3.1 统计与统计案例
核心知识
考点精题
-15-
考向一 考向二 考向三
相关关系的判断及回归分析 例1下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿 吨)的折线图.
注:年份代码1-7分别对应年份2008-2014. (1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系 数加以说明;
������=1
回归方程���^���
=
���^���
+
^
������t
中斜率和截距最小二乘估计公式分别为:
������
^
������
=
∑ (������������-������)(������������-������ )