近三年高考概率统计

合集下载

2018-2020年近三年高考数学真题解答题汇编:专题4.3 统计与概率(学生版+解析版)

2018-2020年近三年高考数学真题解答题汇编:专题4.3 统计与概率(学生版+解析版)

专题4.3 统计与概率1.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)3.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,4.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,5.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.6.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.7.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:交付金额(元) 支付方式(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.8.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计值为记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).9.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.10.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.11.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.12.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ①证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性.13.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.14.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,15.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.16.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; ②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.17.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为(01)p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; ②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?专题4.3 统计与概率1.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年海南省高考数学试卷(新高考全国Ⅱ卷) 【答案】(1)0.64;(2)答案见解析;(3)有.【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表; (3)计算出2K ,结合临界值表可得结论.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 2.某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)【试题来源】2020年北京市高考数学试卷 【答案】(1)该校男生支持方案一的概率为13,该校女生支持方案一的概率为34; (2)1336,(3)01p p < 【解析】(1)该校男生支持方案一的概率为2001200+4003=,该校女生支持方案一的概率为3003300+1004=;(2)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,所以3人中恰有2人支持方案一概率为2121311313()(1)()(1)3433436C -+-=; (3)01p p <3.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年新高考全国卷Ⅱ(海南卷) 【答案】(1)0.64;(2)答案见解析;(3)有.【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表;(3)计算出2K ,结合临界值表可得结论.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【名师点睛】本题考查了古典概型的概率公式,考查了完善22⨯列联表,考查了独立性检验,属于中档题.4.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年全国统一高考数学试卷(文)(新课标Ⅱ)【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【名师点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.5.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.【试题来源】2020年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)116;(2)34;(3)716. 【分析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率;(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率;(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.【解析】(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC , 所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等, 所以丙赢的概率为()97123216P N =-⨯=. 【名师点睛】本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.6.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【试题来源】2020年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)12000;(2)0.94;(3)详见解析【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x y y r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i ix y(i=1,2,…,20)的相关系数为20()()0.943i ix x y yr--===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.7.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:交付金额(元)支付方式(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【试题来源】2019年北京市高考数学试卷(理)【答案】(1) 25;(2)见解析;(Ⅱ)见解析. 【分析】(1)由题意利用古典概型计算公式可得满足题意的概率值;(2)首先确定X 可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可. (Ⅱ)由题意结合概率的定义给出结论即可.【解析】(1)由题意可知,两种支付方式都是用的人数为1003025540---=人,则: 该学生上个月A ,B 两种支付方式都使用的概率4021005p ==. (2)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25, 仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35, 且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=, X 的分布列为其数学期望:()0121252525E X =⨯+⨯+⨯=. (Ⅱ)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下: 随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率.学校是一个相对消费稳定的地方,每个学生根据自己的实际情况每个月的消费应该相对固定,出现题中这种现象可能是发生了“小概率事件”.【名师点睛】本题以支付方式相关调查来设置问题,考查概率统计在生活中的应用,考查概率的定义和分布列的应用,使学生体会到数学与现实生活息息相关.8.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ)【答案】(1) 0.35a =,0.10b =;(2) 4.05,6.【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数.【解析】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【名师点睛】本题考查频率分布直方图和平均数,属于基础题.9.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.。

高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析概率与统计作为高考数学的重要部分,占据了相当大的比重。

掌握概率与统计的相关知识对于考生来说是至关重要的。

本文将通过对2024年高考概率与统计专题历年题目的解析,帮助考生更好地理解和掌握这一部分知识点。

一、选择题解析选择题是高考中常见的题型,对于考生来说,熟练掌握解题技巧是很重要的。

题目1:某班有30名学生,其中男生占总人数的40%。

已知从该班随机抽取一名学生,他是男生的概率是多少?解析:根据题目可知男生的人数为30 × 40% = 12人,所以男生的概率是12/30 = 2/5。

题目2:某工厂生产零件,每天生产150个。

已知每个零件的质量标准为99%,A同学随机抽样抽取2个零件,请问这两个零件都合格的概率是多少?解析:每个零件合格的概率为99% × 1/100 = 0.99。

因为是随机抽取,所以这两个零件都合格的概率为0.99 × 0.99 = 0.9801。

二、解答题解析解答题在概率与统计中也占据重要地位,考察学生的综合应用能力和解题能力。

题目3:某校学生的身高服从正态分布,其中男生的平均身高为170cm,标准差为5cm;女生的平均身高为165cm,标准差为4cm。

已知该校男女生比例为2:3,请问在该校随机抽取一个学生,他身高超过175cm的概率是多少?解析:根据题目可知男生的概率为2/5,女生的概率为3/5。

设男生身高超过175cm的概率为p1,女生身高超过175cm的概率为p2。

根据正态分布的性质,可以计算出男生身高超过175cm的概率为0.5 × (1 - p1) = 2/5,女生身高超过175cm的概率为0.5 × (1 - p2) = 3/5。

解方程得到p1 = 1/5,p2 = 2/5,所以在该校随机抽取一个学生,他身高超过175cm的概率为(2/5) × (1/5) + (3/5) × (2/5) = 11/25。

2024年高考数学概率统计历年题目全扫描

2024年高考数学概率统计历年题目全扫描

2024年高考数学概率统计历年题目全扫描2024年的高考即将来临,数学科目一直是考生们的重点和难点之一。

其中,概率统计作为数学的一个重要分支,对于数学成绩的提高具有重要意义。

为了帮助同学们更好地备考,本文将对近十年的高考数学概率统计部分的历年题目进行全面扫描,帮助大家更好地了解题型和复习重点。

第一部分:选择题分析选择题是高考数学概率统计部分的常见题型之一,也是考生们最易把握的题型。

下面我们结合历年的选择题,来总结概率统计选择题的特点和解题技巧。

1. 下列哪个事件是必然事件?A. 投掷一枚硬币出现正面B. 从一副扑克牌中随机抽取一张牌是红桃C. 投掷一个均匀骰子出现的点数是7D. 从26个大写英文字母中任意选择一个字母是元音字母解析:根据概率的定义,必然事件是指事件发生的概率为1的事件。

在选项中,只有A选项“投掷一枚硬币出现正面”,硬币只有正反两面,因此出现正面的概率为1,故A是正确选项。

2. 一枚硬币连续翻两次,出现正面的次数为k,那么k的取值范围是:A. k≥0B. 0≤k≤1C. k≥1D. 1≤k≤2解析:一枚硬币连续翻两次,每次的结果都是正面或反面,根据排列组合的知识可知,共有2^2=4种可能的结果:正正、正反、反正、反反。

而题目要求的是出现正面的次数,所以k的取值范围是1≤k≤2,故选项D是正确选项。

通过以上两道选择题的解析,我们可以看出,在解决概率统计选择题时,关键在于理解并掌握概率的基本概念和计算方法,同时也要善于利用排列组合的知识。

在复习过程中,可以多做相关的选择题练习,加深对知识点的理解和应用能力。

第二部分:填空题分析填空题在概率统计部分同样占据一定比例,它要求考生能够熟练地应用概率和统计的相关公式和计算方法。

下面我们通过历年的填空题,总结填空题的解题技巧。

1. 一枚硬币连续抛掷,已知前两次抛掷的结果是正反,那么下一次抛掷出正面的概率是____。

解析:一枚硬币连续抛掷,每次结果独立,所以每次抛掷出正面的概率都是1/2,即0.5。

2024年高考数学专题概率统计历年题目归纳

2024年高考数学专题概率统计历年题目归纳

2024年高考数学专题概率统计历年题目归纳在高考数学考试中,概率统计是一个重要的考点。

掌握概率统计的基础理论和解题方法是学生取得高分的关键。

为了帮助同学们更好地备考2024年高考数学专题概率统计,本文将对历年高考数学专题概率统计题目进行归纳和总结。

1. 投掷硬币问题:- 实例:某学生有3枚硬币,分别为甲、乙、丙。

每枚硬币均正反面均匀无区别,共有两面。

甲硬币正面为A,乙硬币正面为B,丙硬币正面为C。

每枚硬币正、反面出现的概率均为0.5。

如果学生随机选取一枚硬币并投掷,问投掷得到正面的概率是多少?- 解题思路:根据题意,学生随机选取硬币的概率为1/3,而每枚硬币出现正面的概率为0.5。

因此,投掷得到正面的概率为(1/3)×0.5 = 1/6。

2. 生日相同问题:- 实例:某班级有30名学生,问他们中至少有两人生日相同的概率是多少?- 解题思路:首先需要计算不同学生生日都不相同的概率。

第一个学生的生日可以是任意一天,而第二个学生的生日不同于第一个学生的概率为(365-1)/365,第三个学生的生日不同于前两个学生的概率为(365-2)/365,以此类推。

所以,30名学生都不生日相同的概率为(365-1)/365 × (365-2)/365 × … × (365-29)/365。

因此,他们中至少有两人生日相同的概率为1-[(365-1)/365 × (365-2)/365 × … × (365-29)/365]。

3. 球的抽取问题:- 实例:某箱子里有5个白球和3个黑球,从中随机抽取2个球,问这两个球颜色相同的概率是多少?- 解题思路:首先需要计算抽取第一个球后,剩下球的情况。

若首先抽到白球,则剩下4个白球和3个黑球。

此时,抽取第二个球颜色相同的概率为4/7。

若首先抽到黑球,则剩下5个白球和2个黑球。

此时,抽取第二个球颜色相同的概率为2/7。

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集

高考数学2024概率与统计历年题目全集概率与统计是高中数学中一门重要的学科,也是高考数学考试的一部分。

在概率与统计中,我们需要通过概率的计算和统计的方法来分析和解决实际问题。

为了帮助同学们复习和准备高考数学考试,本文整理了高考数学2024概率与统计历年题目全集,希望能对同学们有所帮助。

1. 单项选择题1) 已知概率为P(A) = 0.2,P(B) = 0.4,事件A、B相互独立,求P(A并B)的值。

2) 一次抛掷一硬币,设正面向上的概率为p,反面向上的概率为q。

连续抛掷3次硬币,求正面朝上的次数不超过2次的概率。

3) 某音乐社有男生40人,女生60人。

从中随机抽取一人,求抽到女生的概率。

2. 典型案例题1) 某超市中购买了100个某品牌产品,其中有5个是次品。

现从中不放回地连续抽取3个产品,求至少有一个次品的概率。

2) 某餐厅的饭菜有4个主食和6个副食。

现从中选择2个饭菜,求至少有一个主食的概率。

3. 解答题1) 设事件A与事件B相互独立,且P(A) = 0.3,P(B) = 0.5。

求下列事件的概率:a) P(A并B)b) P(A或B)c) P(A的对立事件)2) 设P(A) = 0.4,P(B) = 0.3,P(A并B) = 0.1,求下列事件的概率:a) P(A的对立事件)b) P(B的对立事件)c) P(A或B)3) 有一批产品,其中20%是次品。

现从中不放回地连续抽取3个产品,求以下事件的概率:a) 已抽出的3个产品都是次品;b) 至少有一个次品。

(提示:利用组合数学中的排列、组合知识进行计算)本文仅列举了一部分高考数学2024概率与统计历年题目,希望能给同学们提供一些复习和备考的参考。

在备考过程中,同学们还需结合教材和课堂上的知识,多进行习题训练和模拟考试,提高解题能力和应试技巧。

祝同学们取得优异的高考成绩!。

高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)

高考数学-概率与统计(含22年真题讲解)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】>70%,所以A错;讲座前中位数为70%+75%2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3 ,4),(3,5),(3,6),(4,5),(4,6),(5,6)15种情况,其中数字之积为4的倍数的有(1,4),(2,4),(2,6),(3,4),(4,5),(4,6)6种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】=7.4,A选项结论正确.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.1=8.50625>8,16B选项结论正确.=0.375<0.4,对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616C选项结论错误.=0.8125>0.6,对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316D选项结论正确.故选:C4.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p1,p2,p3,且p3>p2>p1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率p丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p甲则p甲=2(1−p2)p1p3+2p2p1(1−p3)=2p1(p2+p3)−4p1p2p3记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙则p乙=2(1−p1)p2p3+2p1p2(1−p3)=2p2(p1+p3)−4p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=2(1−p1)p3p2+2p1p3(1−p2)=2p3(p1+p2)−4p1p2p3则p甲−p乙=2p1(p2+p3)−4p1p2p3−[2p2(p1+p3)−4p1p2p3]=2(p1−p2)p3<0p 乙−p丙=2p2(p1+p3)−4p1p2p3−[2p3(p1+p2)−4p1p2p3]=2(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D5.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率P=21−721=23.故选:D.6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有n=C84=70个结果,这4个点在同一个平面的有m=6+6=12个,故所求概率P=mn =1270=635.故答案为:635.7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C53=10甲、乙都入选的方法数为C31=3,所以甲、乙都入选的概率P=310故答案为:3108.【2022年新高考2卷】已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为X∼N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)−P(2<X ≤2.5)=0.5−0.36=0.14.故答案为:0.14.9.【2022年浙江】现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P(ξ=2)=__________,E(ξ)=_________.【答案】 1635, 127##157 【解析】 【分析】利用古典概型概率公式求P(ξ=2),由条件求ξ分布列,再由期望公式求其期望. 【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有C 73种取法,其中所抽取的卡片上的数字的最小值为2的取法有C 41+C 21C 42种,所以P(ξ=2)=C 41+C 21C 42C 73=1635,由已知可得ξ的取值有1,2,3,4, P(ξ=1)=C 62C 73=1535,P(ξ=2)=1635,,P(ξ=3)=C 32C 73=335,P(ξ=4)=1C 73=135所以E(ξ)=1×1535+2×1635+3×335+4×135=127,故答案为:1635,127.10.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【解析】 【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算K 2,再利用临界值表比较即可得结论. (1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则P(M)=240260=1213;B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则P(N)=210240=78.A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=500×(240×30−210×20)2260×240×450×50≈3.205>2.706,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.【答案】(1)0.6;(2)分布列见解析,E(X)=13.【解析】【分析】(1)设甲在三个项目中获胜的事件依次记为A,B,C,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望.(1)设甲在三个项目中获胜的事件依次记为A,B,C,所以甲学校获得冠军的概率为P=P(ABC)+P(A BC)+P(AB̅C)+P(ABC)=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.16+0.16+0.24+0.04=0.6.(2)依题可知,X的可能取值为0,10,20,30,所以,P(X=0)=0.5×0.4×0.8=0.16,P(X=10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44,P(X=20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34,P(X=30)=0.5×0.6×0.2=0.06.即X的分布列为期望E(X)=0×0.16+10×0.44+20×0.34+30×0.06=13.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2)和材积量(单位:3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(x i−x̅)n i=1(y i −y̅)√∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.【答案】(1)0.06m 2;0.39m 3 (2)0.97 (3)1209m 3 【解析】 【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值. (1)样本中10棵这种树木的根部横截面积的平均值x̅=0.610=0.06样本中10棵这种树木的材积量的平均值y̅=3.910=0.39据此可估计该林区这种树木平均一棵的根部横截面积为0.06m 2, 平均一棵的材积量为0.39m 3 (2)r =∑(x i −x)10i=1(y i −y)√∑10i=1(x i −x)2∑10i=1(y i −y)2=∑10i=1i i 10xy√(∑10i=1x i 2−10x2)(∑10i=1y i 2−10y 2)=0.2474−10×0.06×0.39√(0.038−10×0.062)(1.6158−10×0.392)=0.0134√0.0001896≈0.01340.01377≈0.97则r ≈0.97 (3)设该林区这种树木的总材积量的估计值为Y m 3, 又已知树木的材积量与其根部横截面积近似成正比, 可得0.060.39=186Y,解之得Y =1209m 3. 则该林区这种树木的总材积量估计为1209m 313.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.P(B|A)P(B ̅|A)与P(B|A )P(B ̅|A )的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:R =P(A|B)P(A |B)⋅P(A |B ̅)P(A|B ̅);(ⅱ)利用该调查数据,给出P(A|B),P(A|B ̅)的估计值,并利用(ⅰ)的结果给出R 的估计值.附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),【答案】(1)答案见解析 (2)(i )证明见解析;(ii)R =6; 【解析】【分析】(1)由所给数据结合公式求出K2的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未黄该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i)结合已知数据求R.(1)由已知K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200(40×90−60×10)250×150×100×100=24,又P(K2≥6.635)=0.01,24>6.635,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为R=P(B|A)P(B̅|A)⋅P(B̅|A)P(B|A)=P(AB)P(A)⋅P(A)P(AB̅)⋅P(A B̅)P(A)⋅P(A)P(A B),所以R=P(AB)P(B)⋅P(B)P(A B)⋅P(A B̅)P(B̅)⋅P(B̅)P(AB̅)所以R=P(A|B)P(A|B)⋅P(A|B̅) P(A|B̅),(ii)由已知P(A|B)=40100,P(A|B̅)=10100,又P(A|B)=60100,P(A|B̅)=90100,所以R=P(A|B)P(A|B)⋅P(A|B̅)P(A|B̅)=614.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式P(A)=1−P (A)即可解出;(3)根据条件概率公式即可求出.(1)平均年龄x̅=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023 +55×0.020+65×0.012+75×0.006+85×0.002)×10=44.65(岁).(2)设A={一人患这种疾病的年龄在区间[20,70)},所以P(A)=1−P(A)=1−(0.001+0.002+0.006+0.002)×10=1−0.11=0.89.(3)设B={任选一人年龄位于区间[40,50)},C={任选一人患这种疾病},则由条件概率公式可得P(C|B)=P(BC)P(B)=0.1%×0.023×1016%=0.001×0.230.16=0.0014375≈0.0014.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)【答案】(1)0.4(2)75(3)丙【解析】【分析】(1)由频率估计概率即可(2)求解得X的分布列,即可计算出X的数学期望.(3)计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,故答案为0.4(2)设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3P(X=0)=P(A1̅̅̅A2̅̅̅A3̅̅̅)=0.6×0.5×0.5=3,20P(X=1)=P(A1A2̅̅̅A3̅̅̅)+P(A1̅̅̅A2A3̅̅̅)+P(A1̅̅̅A2̅̅̅A3)=0.4×0.5×0.5+0.6×0.5×0.5+0.6×0.5×0.5=8,20P(X=2)=P(A1A2A3̅̅̅)+P(A1A2̅̅̅A3)+P(A1̅̅̅A2A3)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=7,20P(X=3)=P(A1A2A3)=0.4×0.5×0.5=2.20∴X的分布列为∴E(X)=0×320+1×820+2×720+3×220=75 (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【解析】 【分析】中位数恰好是第6名,比中位数成绩高即可确认自己能否进入省田径赛. 【详解】因为11名选手成绩的中位数恰好是第6名,知道了第6名的成绩,小强就可以判断自己是否能参加省举办的田径赛了,其余数字特征不能反映名次. 故选:B .2.(2022·黑龙江·大庆实验中学模拟预测(理))2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .415【答案】B 【解析】 【分析】利用对立事件和古典概型的概率公式求解即可. 【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-.故选:B.3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程()0by c x x=+>,令1t x=,则y 关于t 的回归直线过点()2,5,()12,25,则当()1.01,1.02y ∈时,x 的取值范围是( )A .()0.01,0.02B .()50,100C .()0.02,0.04D .()100,200【答案】D 【解析】 【分析】 先令1t x =可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得522512b c b c=+⎧⎨=+⎩从而求得21y t =+,再由y 的范围求得t 的范围,进而求得x 的范围. 【详解】根据题意可得()0y bt c t =+>,由y 关于t 的回归直线过点()2,5,()12,25可得:522512b cb c =+⎧⎨=+⎩,所以2,1b c ==, 所以21y t =+,由()1.01,1.02y ∈可得1.0121 1.02t <+<, 所以0.0050.01t <<, 所以10.0050.01x<<,所以100200x <<, 故选:D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==, 所以买到中国疫苗的概率为119120P P =-=. 故选:D .5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称“营养链”,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率( )A .35B .25C .23D .13【解析】 【分析】用列举法写出构成的摄食关系,计数后可求得概率. 【详解】从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,共有10种选法:鹰麻雀,鹰兔,鹰田鼠,鹰蝗虫,麻雀兔,麻雀田鼠,麻雀蝗虫,兔田鼠,兔蝗虫,田鼠蝗虫.其中田鼠鹰,兔鹰,麻雀鹰,蝗虫麻雀共四种可构成摄食关系,不能构成摄食关系的有6种,所以概率为63105P ==. 故选:A .6.(2022·山东潍坊·模拟预测)Poisson 分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson 分布的概率分布列为()()e 0,1,2,!kP X K k k λλ-===⋅⋅⋅,其中e 为自然对数的底数,λ是Poisson 分布的均值.当二项分布的n 很大()20n ≥而p 很小()0.05p ≤时,Poisson 分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用20.05/J m 紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是( ) A .31e -- B .3e - C .313e -- D .314e --【答案】A 【解析】 【分析】结合题意1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似条件,再计算二项分布的均值为Poisson 分布的均值λ,再代入公式先求不致死的概率,再用对立事件的概率和为1计算即可 【详解】由题, 1000020n =≥,0.00030.05p =≤,此时Poisson 分布满足二项分布的近似的条件,此时100000.00033λ=⨯=,故不致死的概率为()03330e e 0!P X --===,故致死的概率为()3101e P X --==-7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量(20,4)X N ,则全公司上一季度至少完成22套房屋销售的人员大概有( )附:若随机变量X 服从正态分布()2,N μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.A .254人B .127人C .18人D .36人【答案】B 【解析】 【分析】根据正态分布的性质求出()22P X ≥,从而估计出人数; 【详解】 解:因为(20,4)X N ,所以20μ=,2σ=,所以()1()10.6827220.1586522P X P X μσμσ--<≤+-≥===所以全公司上一季度至少完成22套房屋销售的人员大概有8000.15865127⨯≈(人); 故选:B8.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为A ,B ,C ,D 四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是( ) A .改进生产工艺后,A 级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍【答案】C【解析】【分析】由题可得改进生产工艺前后四个等级的生产量,逐项分析即得.【详解】设原生产总量为1,则改进生产工艺后生产总量为2,所以原A,B,C,D等级的生产量为0.3,0.37,0.28,0.05,改进生产工艺后四个等级的生产量为0.6,1.2,0.12,0.08,故改进生产工艺后,A级产品的数量增加,故A错误;改进生产工艺后,D级产品的数量增加,故B错误;改进生产工艺后,C级产品的数量减少,故C正确;改进生产工艺后,B级产品的数量增加超过2倍,故D错误.故选:C.9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为()A.12B.23C.34D.1316【答案】D【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C =种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P =-=, 故选:D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量X 和任意的正数a ,都有()()(),P X a f E X a ≥≤,其中()(),f E X a 是关于数学期望()E X 和a 的表达式.由于记忆模糊,该同学只能确定()(),f E X a 的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为( ) A .()aE X B .()1aE XC .()a E XD .()E X a【答案】D 【解析】 【分析】根据期望的计算公式,以及m x a ≥即可求解. 【详解】设非负随机变量X 的所有可能取值按从小到大依次为0,i x i N *>∈,对应的概率分别为,0i i p p >设满足i x a ≥的有,,,m a a x k m n m N k N **≤≤∈∈,()ani i k P X a p =≥=∑,()111a ai nk i iii n i ii k i ax pE ax p x pX a -===+==∑∑∑,因为m x a ≥,所以1mx a≥()()()1111a a aaannniiiiiik k i k i k i k ii i i i x px px px p p P X a P X a E aa aaaX --=====⎛⎫+≥+=+≥≥≥ ⎪⎝⎭=∑∑∑∑∑故选:D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的“钱袋子”,某社区开展“全民反诈在行动——反诈骗知识竞赛”活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:(1)求抽取的100名居民竞赛成绩的平均分x 和方差2s (同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X 近似地服从正态分布()2,N μσ,其中μ近似为样本成绩平均分x ,2σ近似为样本成缋方差2s ,若2μσμσ-<≤+X ,参赛居民可获得“参赛纪念证书”;若2μσ>+X ,参赛居民可获得“反诈先锋证书”,①若该社区有3000名居民参加本次竞赛活动,试估计获得“参赛纪念证书”的居民人数(结果保留整数);②试判断竞赛成绩为96分的居民能否获得“反诈先锋证书”. 附:若()2,XN μσ,则()0.6827P X μσμσ-<≤+≈,(22)0.9545P X μσμσ-<≤+≈,(33)0.9973P X μσμσ-<≤+≈.【答案】(1)75x =,2100s = (2)①2456 ;②能 【解析】 【分析】(1)利用公式直接求出均值、方差即可;(2)①结合给的概率和正态分布的性质,确定获得“参赛纪念证书”,进而计算可得人数; ②利用正态分布的知识求出2μσ>+X ,即95>X ,进而可得结果. (1)100名居民本次竞赛成绩平均分24224028445556575859575100100100100100100=⨯+⨯+⨯+⨯+⨯+⨯=x , 100名居民本次竞赛成绩方差22222422(4575)(5575)(6575)100100100=-⨯+-⨯+-⨯s 22240284(7575)(8575)(9575)100100100100+-⨯+-⨯+-⨯=, (2)①由于μ近似为样本成绩平均分x ,2σ近似为样本成绩方差2s , 所以,275,100μσ==,可知,10σ=,由于竞赛成绩X 近似地服从正态分布()2,N μσ,因此竞赛居民可获得“参赛纪念证书”的概率 (2)P X μσμσ-<≤+11()(22)22μσμσμσμσ=-<≤++-<≤+P X P X 110.68270.95450.818622≈⨯+⨯= 30000.81862455.82456⨯=≈估计获得“参赛纪念证书”的居民人数为2456;②当2μσ>+X 时,即95>X 时,参赛居民可获得“反诈先锋证书”, 所以竞赛成绩为96分的居民能获得“反诈先峰证书”.12.(2022·贵州·贵阳一中模拟预测(文))“十四五”规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖、水库、湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()(),1,2,,20,i i x y i =其中i x 和i y 分别表示第i 个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得20160i i x ==∑,2011200i i y ==∑,2021-)120,i i x x ==∑(2021-)9000,i i y ==∑(y 201-)-)1000.i iix x y ==∑((y (1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数); (2)求样本()(),1,2,,20i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数-)-) 1.732.niix y x r =≈∑((y【答案】(1)6000 (2)0.96(3)采用分层抽样的方法,理由见解析 【解析】 【分析】(1)根据该地区这种水生动物数量的估计值的计算方法求解即可; (2)根据相关系数的公式求解即可;(3)根据(2)中的结论各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性考虑即可 (1)样区水生动物平均数为201111200602020i i y ==⨯=∑, 地块数为100,该地区这种水生动物的估计值为100606000⨯=. (2)样本()(),1,2,,20i i x y i =⋯的相关系数为()()20,0.96.iix x y y r -===≈∑ (3)由(2)知各样区的这种水生动物的数量与水草覆盖面积有很强的正相关性,由于各地块间水草覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,所以采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种水生动物数量更准确的估计.13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在A ,B 两块试验田上进行实验(两地块的土质等情况一致).6月25日在A 试验田播种该品种大豆,7月10日在B 试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照[)100,150,[)150,200,[]200,250进行分组,得到如下表格:。

2024年高考数学大题--概率统计题型分类汇编(学生版)

2024年高考数学大题--概率统计题型分类汇编(学生版)

概率统计概率统计是是高考数学的热点之一,概率统计大题是新高考卷及多省市高考数学的必考内容。

回顾近几年的高考试题,主要考查古典概型、相互独立事件、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差等内容,多与社会实际紧密结合,以现实生活为背景设置试题,注重知识的综合应用与实际应用。

重点考察考生读取数据、分析数据和处理数据的能力。

题型一:离散型随机变量及其分布列题型二:超几何分布与二项分布题型三:均值与方差的实际应用题型四:正态分布与标准正态分布题型五:线性回归与非线性回归题型六:独立性检验及应用题型七:条件概率/全概率公式/贝叶斯公式题型八:概率与统计图表的综合应用题型九:概率与其他知识的交汇应用题型十:利用概率解决决策类问题题型一:离散型随机变量及其分布列1(2023·广东肇庆·高三广东肇庆中学校考阶段练习)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以X表示这2人中团体赛获奖的人数,求X的分布列和数学期望;求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布,可结合其对应的概率计算公式及期望计算公式,简化计算。

)1(2024·四川成都·成都七中模拟预测)甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.2(2024·云南德宏·高三统考期末)设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的4个球,其中甲箱有2个蓝球和2个黑球,乙箱有3个红球和1个白球,丙箱有2个红球和2个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X表示最后摸出的2个球的分数之和,求X的分布列及数学期望.题型二:超几何分布与二项分布2(2024·广东广州·广州市培正中学校考二模)某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了10张相同的卡片,其中只在6张卡片上印有“奖”字.(1)采取放回抽样方式,从中依次抽取3张卡片,求抽到印有“奖”字卡片张数X的分布列、数学期望及方差;(2)采取不放回抽样方式,从中依次抽取3张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.1、独立重复试验与二项分布(1)定型:“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.(2)定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.(3)列表,根据离散型随机变量的取值及其对应的概率,列出分布列.(4)求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,⋯,n),E(X)=np,D(X)=np(1-p).2、超几何分布的适用范围及本质(1)适用范围:考察对象分两类;已知各类对象的个数;从中抽取若干个个题,考察某一类个题个数的概率分布;(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的。

数学高考历年真题概率与统计专项2024

数学高考历年真题概率与统计专项2024

数学高考历年真题概率与统计专项20242024年数学高考将重点考察概率与统计专项内容,本文将通过总结历年真题,从不同角度介绍该专项的重点知识点和解题技巧,帮助考生们更好地备考。

一、基础概念回顾1.1 概率的基本概念及性质概率是研究随机现象的定量指标,常用的统计方法有频数法、频率法、极限法、随机抽样法等。

1.2 随机变量与概率分布随机变量是在随机试验中可能取到的数值,概率分布描述了随机变量的取值与其对应的概率之间的关系,常见的概率分布有二项分布、正态分布、泊松分布等。

二、经典概型及计数原理2.1 排列与组合排列是从n个元素中取出m个元素并按照一定次序排列,组合是从n个元素中取出m个元素,不考虑次序。

掌握排列与组合的计算方法可以帮助解决复杂的计数问题。

2.2 事件与样本空间事件是随机现象的一种具体结果,样本空间是随机试验所有可能结果的集合。

事件的概率可以通过样本空间中有利结果与样本空间元素个数的比值计算得出。

三、条件概率与独立事件3.1 条件概率的概念与计算已知事件B发生的条件下,关于事件A发生的概率称为条件概率,可以通过全概率公式和贝叶斯公式进行计算。

3.2 相互独立事件若两个事件A和B满足P(A∩B) = P(A)P(B),则称事件A和B相互独立。

熟练掌握独立事件的判定方法和计算公式对解题至关重要。

四、随机变量及其概率分布4.1 二项分布二项分布描述了n个相互独立的重复试验中成功次数的概率分布,其中每次试验只有两种可能的结果。

4.2 正态分布正态分布是概率论和统计学中最重要的概率分布之一,具有对称性、钟形曲线等特点,在实际问题中具有广泛应用。

4.3 泊松分布泊松分布常用于描述单位时间或单位空间内事件发生的概率,如电话呼叫次数、车到达次数等。

五、统计与抽样调查5.1 抽样调查的方法和步骤抽样调查是通过对部分个体或单位进行观察和测量,推断总体特征或总体之间关系的一种方法。

常见的抽样调查方法有随机抽样、分层抽样、整群抽样等。

数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。

为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。

1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。

2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。

A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。

2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。

2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。

今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。

解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。

根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。

2024年高考数学概率统计历年真题精细分析

2024年高考数学概率统计历年真题精细分析

2024年高考数学概率统计历年真题精细分析概率统计是高中数学中的一门重要的学科,也是在高考数学卷中占有一定比重的内容。

通过对历年真题的精细分析,我们可以更好地理解和掌握概率统计的知识点,提高解题能力和应对高考的能力。

下面,我们将对2024年高考数学概率统计部分的历年真题进行精细分析,帮助同学们深入了解考点,掌握解题技巧。

1. 第一题【题目描述】某校全年级的学生身高数据如下:- 140cm-150cm:30人- 150cm-160cm:60人- 160cm-170cm:80人- 170cm-180cm:50人- 180cm-190cm:30人从中随机抽取一位同学,求身高在160cm以上的概率。

【解题思路】首先,计算总人数:30 + 60 + 80 + 50 + 30 = 250。

然后,计算身高在160cm以上的学生人数:80 + 50 + 30 = 160。

最后,计算概率:160 / 250 ≈ 0.64。

【解答】身高在160cm以上的概率为0.64。

2. 第二题【题目描述】一袋中有12个黑球和8个白球,从中无放回地抽取3个球,求至少有2个黑球的概率。

【解题思路】首先,计算总球数:12 + 8 = 20。

然后,计算抽取至少2个黑球的情况有几种:- 抽取2个黑球:C(12, 2) * C(8, 1) = 66 * 8 = 528- 抽取3个黑球:C(12, 3) = 220最后,计算概率:(528 + 220) / C(20, 3) ≈ 0.343。

【解答】抽取至少有2个黑球的概率为约0.343。

3. 第三题【题目描述】设事件A、B相互独立。

若P(A) = 0.4,P(B) = 0.3,则P(A∪B) = ?【解题思路】由题意可知,事件A、B相互独立,则P(A∪B) = P(A) + P(B) -P(A∩B)。

已知P(A) = 0.4,P(B) = 0.3,且相互独立,则P(A∩B) = P(A) * P(B) = 0.4 * 0.3 = 0.12。

高考数学重点2024概率统计历年真题精编

高考数学重点2024概率统计历年真题精编

高考数学重点2024概率统计历年真题精编高考数学重点2024年概率统计历年真题精编概率统计作为高考数学的一个重要知识点,占据了数学考试知识体系的一定比重。

为了帮助同学们更好地复习和应对2024年的高考数学考试,本文将介绍一些历年真题中的概率统计题目,并提供精编练习题作为参考。

希望通过这些例题的针对性训练,同学们能够更好地掌握概率统计的基本原理和解题方法。

一、选择题1. 第一道选择题......2. 第二道选择题......3. 第三道选择题......通过上述三道选择题的解答,我们可以发现在概率统计考试中,理解题意、运用概率统计基本原理和灵活运用解题技巧是解答选择题的关键。

希望同学们能多做类似的选择题,通过大量的练习,形成对概率统计题目的解题思路,提高解答能力。

二、填空题1. 第一道填空题......2. 第二道填空题......通过以上两道填空题的解答,我们可以看出对于填空题,在概率统计中,计算过程要清晰、准确,掌握好公式和技巧是解答填空题的关键。

同学们可以多做一些类似的题目,加深对填空题目的理解。

三、解答题1. 第一道解答题......2. 第二道解答题......在解答题中,对于概率统计问题,理论与实践密切结合,需要同学们通过数学思维的拓展和技巧的应用,以逻辑清晰、步骤齐全的方式进行解答。

同学们在复习过程中,可以多做解答题,加深对概率统计问题的理解和应用。

四、综合题1. 第一道综合题......2. 第二道综合题......在综合题中,概率统计知识点经常与其他数学知识点相互结合,要求同学们综合运用知识,进行综合性的分析和解答。

在复习过程中,同学们可以注重做一些综合性的题目,以提高解决实际问题的能力。

通过以上几道例题的讲解,我们可以认识到在概率统计的学习和复习中,理解题意、掌握基本原理并熟练掌握解题方法是非常关键的。

同学们可以通过大量的练习和真题演练,夯实基础,提高解题水平,以应对2024年的高考数学概率统计考试。

近三年高考数学全国卷《概率统计》试题特点及备考建议

近三年高考数学全国卷《概率统计》试题特点及备考建议

福州八中
数学高级教师周平
此类试题表述长,考查难度属中档。

阅读理解审题意,养成习惯何惧难。

一.试题特点
从近三年全国高考新课标卷概率统计试题来看,无论是文科卷还是理科卷,都是1道客观题和1道解答题,分值为17分,试题的题量、题型、分值都很稳定.概率统计试题对知识点的考查较为全面,以理科数学为例,考点覆盖了概率统计必修与选修的各个章节内容,考查了抽样方法,统计图表,数据的数字特征,用样本估计总体,回归分析,独立性检验,古典概型,几何概型,条件概率,相互独立事件的概率,独立重复试验的概率,离散型随机变量的分布列、数学期望与方差,超几何分布,二项分布,正态分布等基础知识和基本方法。

从近三年全国高考新课标I卷与II卷中概率统计试题的考查知识点与分值可以看出,全国高考卷概率统计试题特点如下:
1.题量稳定:题量为2题,约占全卷题量的9%。

2.题型稳定:题型为1道客观题和1道解答题,客观题主要考查随机事件的概率计算,统计图表的分析判断,解答题主要考查数据的整理分析,用样本估计总体,随机变量的。

3.分值稳定:分值为17分,1道客观题5分,1道解答题。

4.难度稳定:难度中等或中等偏易,选择题位于前5题位置,填空题位于前2题位置,解答题位于前3题位置。

5.综合性强:客观题经常将古典概型与计数原理、排列组合知识结合起来考查,将几何概型与简单线性规划、定积分知识结合起来考查.解答题经常以抽样问题为背景,以频数分布表、频率分布直方图、茎叶图、散点图等统计图表为载体,以能力为立意,将统计知识与概率知识、函数知识综合题。

专题12 概率与统计(文)-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题12 概率与统计(文)-三年(2022–2024)高考数学真题分类汇编(全国通用)(原卷版)

专题12概率与统计(文)考点三年考情(2022-2024)命题趋势考点1:回归分析2022年高考全国乙卷数学(理)真题2023年天津高考数学真题2024年上海夏季高考数学真题2024年天津高考数学真题统计学是“大数据”技术的关键,在互联网时代具有强大的社会价值和经济价值,在高考中受重视程度越来越大,未来在考试中的出题角度会更加与实际生活紧密联系,背景新颢、形式多样.考点2:信息图表处理2024年新课标全国Ⅱ卷数学真题2022年高考全国甲卷数学(理)真题考点3:频率分布直方图与茎叶图2023年新课标全国Ⅱ卷数学真题2022年新高考天津数学高考真题2022年高考全国乙卷数学(文)真题考点4:古典概型与几何概型2024年新课标全国Ⅱ卷数学真题2023年高考全国乙卷数学(理)真题2023年高考全国乙卷数学(文)真题2023年高考全国甲卷数学(理)真题2022年新高考全国I卷数学真题2022年高考全国甲卷数学(文)真题考点5:平均数、中位数、众数、方差、标准差、极差2023年高考全国乙卷数学(理)真题2023年新课标全国Ⅰ卷数学真题考点6:独立性检验2022年高考全国甲卷数学(文)真题2024年高考全国甲卷数学(理)真题2024年上海夏季高考数学真题考点1:回归分析1.(2022年高考全国乙卷数学(理)真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积i x 0.040.060.040.080.080.050.050.070.070.060.6材积量iy 0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022iii i i=1i=1i=10.038, 1.6158,0.2474x y x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数iii=122iii=1i=1( 1.896 1.377)()()nnnx x y y r x x y y --=≈--∑∑∑.2.(2023年天津高考数学真题)鸢是鹰科的一种鸟,《诗经·大雅·旱麓》曰:“鸢飞戾天,鱼跃余渊”.鸢尾花因花瓣形如鸢尾而得名,寓意鹏程万里、前途无量.通过随机抽样,收集了若干朵某品种鸢尾花的花萼长度和花瓣长度(单位:cm ),绘制散点图如图所示,计算得样本相关系数为0.8642r =,利用最小二乘法求得相应的经验回归方程为 0.75010.6105y x =+,根据以上信息,如下判断正确的为()A.花瓣长度和花萼长度不存在相关关系B.花瓣长度和花萼长度负相关C.花萼长度为7cm的该品种鸢尾花的花瓣长度的平均值为5.8612cmD.若从样本中抽取一部分,则这部分的相关系数一定是0.86423.(2024年上海夏季高考数学真题)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势4.(2024年天津高考数学真题)下列图中,线性相关性系数最大的是()A.B.考点2:信息图表处理5.(2024年新课标全国Ⅱ卷数学真题)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并整理如下表亩产量[900,950)[950,1000)[1000,1050)[1050,1100)[1100,1150)[1150,1200)频数61218302410根据表中数据,下列结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg至300kg之间D.100块稻田亩产量的平均值介于900kg至1000kg之间6.(2022年高考全国甲卷数学(理)真题)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差考点3:频率分布直方图与茎叶图7.(2023年新课标全国Ⅱ卷数学真题)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为()p c ;误诊率是将未患病者判定为阳性的概率,记为()q c .假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率()0.5p c =%时,求临界值c 和误诊率()q c ;(2)设函数()()()f c p c q c =+,当[]95,105c ∈时,求()f c 的解析式,并求()f c 在区间[]95,105的最小值.8.(2022年新高考天津数学高考真题)为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A .8B .12C .16D .189.(2022年高考全国乙卷数学(文)真题)分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A .甲同学周课外体育运动时长的样本中位数为7.4B .乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.6考点4:古典概型与几何概型10.(2024年新课标全国Ⅱ卷数学真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.11.(2023年高考全国乙卷数学(理)真题)设O 为平面坐标系的坐标原点,在区域(){}22,14x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A .18B .16C .14D .1212.(2023年高考全国乙卷数学(文)真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .56B .23C .12D .1313.(2023年高考全国甲卷数学(理)真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A .16B .13C .12D .2314.(2022年新高考全国I 卷数学真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A .16B .13C .12D .2315.(2022年高考全国甲卷数学(文)真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A .15B .13C .25D .23考点5:平均数、中位数、众数、方差、标准差、极差16.(2023年高考全国乙卷数学(理)真题)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果2210s z ≥则不认为有显著提高)17.(多选题)(2023年新课标全国Ⅰ卷数学真题)有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A .2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B .2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C .2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D .2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差考点6:独立性检验18.(2022年高考全国甲卷数学(文)真题)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,()2P K k0.1000.0500.010k 2.706 3.841 6.63519.(2024年高考全国甲卷数学(理)真题)某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果(1)1.65p p p p n->+150件产品的数据,能否认为生15012.247≈)附:22()()()()()n ad bc K a b c d a c b d -=++++()2P K k≥0.0500.0100.001k3.8416.63510.82820.(2024年上海夏季高考数学真题)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩[)0,0.5[)0.5,1[)1,1.5[)1.5,2[)2,2.5优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d -=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)。

2024高考数学概率与统计历年题目大盘点

2024高考数学概率与统计历年题目大盘点

2024高考数学概率与统计历年题目大盘点概率与统计作为高中数学的重要内容之一,一直以来都是高考中的必考内容。

掌握好概率与统计的理论知识,并通过做题来加深对知识点的理解和应用能力的培养,对于顺利应对高考数学考试至关重要。

本文将通过对2024年高考数学概率与统计部分的历年题目进行大盘点,帮助同学们更好地掌握和复习这一知识点。

一、选择题1. 设随机变量X的概率密度函数为f(x) = kx^2,其中0<x<1,求k的值。

2. 设随机变量X的概率密度函数为f(x) = cx(1-x),其中0<x<1,求c的值。

3. 已知事件A发生的概率为P(A) = 0.4,事件B发生的概率为P(B) = 0.5,事件A与事件B独立,求事件A与事件B同时发生的概率P(A∩B)。

4. 写出使得事件A、B、C相互独立的随机试验的条件。

5. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,事件A与事件B互斥,求事件"A或B发生"的概率P(A∪B)。

6. 已知事件A发生的概率为P(A) = 0.3,事件B发生的概率为P(B) = 0.4,且P(A∪B) = 0.6,求事件"A与B互斥"的概率P(A∩B)。

7. 一批产品共100个,其中有4个次品。

从中任意取出5个,求取出的样本中有2个次品的概率。

8. 已知事件A、B独立,P(A) = 0.4,P(B) = 0.6,求P(A∪B)与P(A∩B)。

二、计算题1. 某汽车4个月出事故的概率为0.01,问8个月中出事故至少2次的概率是多少?2. 某商品的销售量服从正态分布N(400,100),求销售量大于380的概率。

3. 某座城市的某个月的降水量服从正态分布N(150,25),求该月降水量大于200的概率。

4. 某厂生产的电视机寿命服从正态分布N(1000,100^2),求电视机寿命小于900的概率。

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解

高考数学2024概率与统计历年题目全解概率与统计作为高考数学中的重要部分,一直是考生们难以逾越的“坎”。

为了帮助广大考生更好地应对高考概率与统计部分的考题,本文将对高考数学2024年概率与统计题目进行全面解析,希望能够为考生们提供帮助和指导。

1. 选择题部分选择题是高考中概率与统计部分的常见题型,也是考生们容易出错的地方。

以下是2024年高考概率与统计选择题的解答:题目一:已知事件A发生的概率为P(A)=0.6,事件B发生的概率为P(B)=0.3,且事件A与事件B相互独立。

求事件A发生且事件B不发生的概率。

解答一:事件A发生且事件B不发生,表示为A发生的概率P(A)乘以B不发生的概率P(B'),即P(A且B')=P(A)×P(B')=0.6×(1-0.3)=0.6×0.7=0.42。

因此,事件A发生且事件B不发生的概率为0.42。

题目二:已知事件C发生的概率为P(C)=0.4,事件D发生的概率为P(D)=0.5,且事件C与事件D相互独立。

求事件C或事件D发生的概率。

解答二:事件C或事件D发生,表示为C发生的概率P(C)加上D发生的概率P(D),即P(C或D)=P(C)+P(D)=0.4+0.5=0.9。

因此,事件C或事件D发生的概率为0.9。

2. 计算题部分计算题是概率与统计部分的重要考察内容,需要考生们掌握一定的计算方法和技巧。

以下是2024年高考概率与统计计算题的解答:题目一:某班有40名学生,其中20名男生、20名女生。

现从该班级随机选取3名学生,求选出的3名学生全为男生的概率。

解答一:选出的3名学生全为男生的概率等于从20名男生中选取3名学生的概率除以从40名学生中选取3名学生的概率。

即P(全为男生)=C(20,3)/C(40,3)=[20×19×18]/[40×39×38]=0.0283。

因此,选出的3名学生全为男生的概率为0.0283。

近三年高考概率统计试题的分析与思考

近三年高考概率统计试题的分析与思考
的分布列略.
警-P 1 ~ -( 0 3 . .

重组 , 更加贴近生 活 , 并让学生感 到数学有应用价值 ;0 0 2 1年安 徽卷第 1题 :以对卒气污染指数 的监测数据 为问题情境 ,设 问 8 巧, 考查知识 点全 面 , 且具有时代气息. () 2 试题 与其他数 学试 题有着明显的区别 , 它的文字 、 数据 和图形的信息量 大 , 具有一定的可阅读性. 近j年来 出现过三种
成 失 分.
类型 : 一是 以课本知识 为基础 , 以现实生活 中人们关注的典型事
例为背景概括 出来 的问题( 09 2 0 年海南卷第 1题 )二是与其他ห้องสมุดไป่ตู้ 8 ; 知识有联 系的问题 (0 0 2 1年全 国卷 Ⅱ)几何概 型问题 ; 是将概 , 二 _
2通 过 从 文 字 语 言 中 捕 捉 信 息 、 文 字 语 言 转 化 为 数 学 语 . 将 言 . 用 分 类讨 论 和 转 化 的 思 想 来解 决 问题. 应
统计和流程图的综合 1, 1 填 空题 查 、 考 中位 数 和线 性 回 2 1 2 00 1 l0 2 l% 5 2 5 归方程 的考查 、 抽样和 1 7 解 答 题 率 ( 典 概 型 ) 概 古 的综

合 考 查 1, 3 填 空 题 性 回归 的 概 念及 数 线
和5 , 件 测量产 品中微量元素 ,的含量 ( 单位 : 毫克 ) 表是 乙 . 下
厂 的5 件产 品 的测 量 数据
编 号

— —
以广东省近 年高考数学试题 为例 ,有哭概率 统计部分
的 试 题 分 布 如下 年 份 题 号 总分 数 比 J 类 别 分
— —
率知识作为1具 , 二 解决数理统计方面的问题 (0 0 2 1辽宁理数第 1 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程进行检查 .
ˆ 3 ˆ ˆ , 剔 除 ( 之 ) 外 的 数 据 9.22 , 剩 下 数 据 的 平 均 数 为 ˆ 3
1 (16 9.97 9.22) 10.02 , 15
因此 的估计值为 10.02.
x
i 1
16
2 i
ˆ 3 ˆ, ˆ 3 ˆ ) 之外的数据 9.22, 16 0.2122 16 9.972 1591.134 , 剔除 (
1 16 1 16 1 16 2 2 xi 9.97 , s 经计算得 x ( xi x ) ( xi 16 x 2 ) 0.212 , 16 i 1 16 i 1 16 i 1
其中 xi 为抽取的第 i 个零件的尺寸, i 1, 2, ,16 .
ˆ ,用样本标准差 s 作为 的估计值 ˆ ,利用估计值 用样本平均数 x 作为 的估计值
ˆ 3 ˆ, ˆ 3 ˆ ) 之外的数据, 判断是否需对当天的生产过程进行检查?剔除 ( 用剩下的
数据估计 和 (精确到 0.01).
2 附:若随机变量 Z 服从正态分布 N (, ) ,则 P( 3 Z 3 ) 0.997 4 ,
=–30.4+13.5×
利用模型②, 该地区 2018 年的环境基础设施投资额的预测值为 =99+17.5×9=256.5 (亿元) . (2)利用模型②得到的预测值更可靠。理由如下: (i)从折线图可以看出, 2000 年至 2016 年的数据对应的点没有随机散布在直线 y=– 30.4+13.5t 上下,这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述 环境基础设施投资额的变化趋势. 2010 年相对 2009 年的环境基础设施投资额有明显增加, 2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基础设 施投资额的变化规律呈线性增长趋势,利用 2010 年至 2016 年的数据建立的线性模型 =99+17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势, 因此利用模型 ②得到的预测值更可靠. (ii)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型①得到的预 测值 226.1 亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用 模型②得到的预测值更可靠.
5、 ( 2017 年全国 2)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时 各随机抽取了 100 个网箱,测量各箱水产品的产量(单位: kg) .其频率分布直方图如下:
(1) 设两种养殖方法的箱产量相互独立, 记 A 表示事件: “旧养殖法的箱产量低于 50kg, 新养殖法的箱产量不低于 50kg” ,估计 A 的概率;
2 N ( , ). 产线正常状态下生产的零件的尺寸服从正态分布
(1) 假设生产状态正常, 记 X 表示一天内抽取的 16 个零件中其尺寸在 ( 3 , 3 ) 之外的零件数,求 P( X 1) 及 X 的数学期望; (2 )一天内抽检零件中,如果出现了尺寸在 ( 3 , 3 ) 之外的零件,就认为这 条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸: 9.95 10.26 10.12 9.91 9.96 10.13 9.96 10.02 10.01 9.22 9.92 10.04 9.98 10.05 10.04 9.95
;根据 2010 年至 2016 年的数据(时间变量的值依次为 ②: .
(1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.
解: (1)利用模型①,该地区 2018 年的环境基础设施投资额的预测值为 19=226.1(亿元) .
∴当 p (0,
1 (2) (i)设余下产品中不合格品数量为 Y ,则 X 40 25Y ,由题可知Y ~ B(180 , ) , 10 1 ∴ EY np 180 18 . 10 ∴ EX E (40 25Y ) 40 25EY 40 25 18 490 (元). (ii)由(i)可知一箱产品若全部检验只需花费 400 元,若余下的不检验则要490 元,
P( X 1) 1 P( X 0) 1 0.997416 0.0408 .
EX 16 0.0026 0.0416 .
ˆ 0.212 , ˆ 9.97 , 的估计值为 (ii)由 x 9.97, s 0.212 ,得 的估计值为
ˆ 3 ˆ, ˆ 3 ˆ ) 之外, 由样本数据可以看出有一个零件的尺寸在 ( 因此需对当天的生产
所以应该对余下的产品作检验.
2、 (2018 年全国 2)下图是某地区 2000 年至 2016 年环境基础设施投资额 (单位:亿元) 的折线图.
为了预测该地区 2018 年的环境基础设施投资额,建立了 与时间变量的两个线性回归 模型.根据 2000 年至 2016 年的数据(时间变量的值依次为 )建立模型①: )建立模型
0.997 416 0.959 2 , 0.008 0.09 .
解: (1)抽取的一个零件的尺寸在 ( 3 , 3 ) 之内的概率为 0.9974, 从而零件的尺寸在 ( 3 , 3 ) 之外的概率为 0.0026,故 X ~B(16,0.0026) . 因此
⑴根据茎叶图判断哪种生产方式的效率更高?并说明理由; ⑵求 40 名工人完成生产任务所需时间的中位数 m , 并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表: 超过 m 第一种生产方式 第二种生产方式 不超过 m
⑶根据⑵中的列表,能否有 99%的把握认为两种生产方式的效率有差异?
P K 2 ≥ k 0.050 0.010 0.001 附: K , . k 3.841 6.635 10.828 a b c d a c b d
2
n ad bc
2
解: (1)第二种生产方式的效率更高.理由如下: (i)由茎叶图可知:用第一种生产方式的工人中,有 75%的工人完成生产任务所需时间至 少 80 分钟, 用第二种生产方式的工人中, 有 75%的工人完成生产任务所需时间至多 79 分钟. 因此第二种生产方式的效率更高. (ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分 钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5 分钟.因此第二种生 产方式的效率更高. (iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80 分钟; 用第二种生产方式的工人完成生产任务平均所需时间低于 80 分钟,因此第二种生产方式的 效率更高. (iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 8 上的最 多,关于茎 8 大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分 布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方 式完成生产任务所需的时间更少,因此第二种生产方式的效率更高 . 以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分 .
(2 )填写下面列联表,并根据列联表判断是否有 99%的把握认为箱产量与养殖方法有 关: 箱产量<50kg 旧养殖法 新养殖法 ( 3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到 0.01) . 箱产量≥ 50kg
附:

n(ad bc)2 K (a b)(c d )(a c)(b d )
(2)由茎叶图知 列联表如下: 超过 第一种生产方式 15
.
不超过 5
第二种生产方式
5
15
()由于

所以有 99%的把握认为两种生产方式的效率有差异 .
4、 ( 2017 年全国 1)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线 上随机抽取 16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生
2
【考点】 独立事件概率公式、独立性检验原理、频率分布直方图估计中位数 【名师点睛】 (1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独 立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随 机变量的观测值值越大,说明“两个变量有关系”的可能性越大. (2)利用频率分布直方图求众数、中位数和平均数时,应注意三点: ①最高的小长方形底边中点的横坐标即众数; ②中位数左边和右边的小长方形的面积和是相等的; ③平均数是频率分布直方图的“重心” ,等于频率分布直方图中每个小长方形的面积乘 以小长方形底边中点的横坐标之和.
剩下数据的样本方差为
1 (1591.134 9.222 15 10.022 ) 0.008 , 15
因此 的估计值为 0.008 0.09 .
点】正态分布,随机变量的期望和方差 【名师点睛】数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平 均水平 .求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质, 确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个 值的概率,列出对应的分布列,最后求出数学期望.正态分布是一种重要的分布,之前 考过一次,尤其是正态分布的 3 原则.
3、 ( 2018 年全国 3)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任 务的两种新的生产方式.为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两 组,每组 20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人 完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
相关文档
最新文档