2014-2017全国卷(理)真题汇编 - 概率与统计-S

合集下载

专题19 概率统计多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

专题19  概率统计多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

十年(2014-2023)年高考真题分项汇编—概率统计多选、填空题目录题型一:计数原理与排列组合 (1)题型二:二项式定理 (2)题型三:简单的随机抽样 (4)题型四:用样本数字特征估计总体 (4)题型五:相关关系与回归分析 (6)题型六:独立性检验 (6)题型七:事件与概率 (6)题型八:随机变量的分布列 (10)题型一:计数原理与排列组合一、填空题1.(2023年新课标全国Ⅰ卷·第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).2.(2020年高考课标Ⅱ卷理科·第题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.3.(2018年高考数学浙江卷·第16题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)4.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。

(用数字填写答案)5.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有个(用数字作答).6.(2014高考数学北京理科·第13题)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有种.7.(2015高考数学广东理科·第12题)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言。

(用数字做答)8.(2017年高考数学天津理科·第14题)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)9.(2017年高考数学上海(文理科)·第6题)若排列数6654m P =⨯⨯,则m =________.10.(2015高考数学上海理科·第8题)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).11.(2014高考数学浙江理科·第14题)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).12.(2017年高考数学浙江文理科·第16题)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)题型二:二项式定理一、填空题1.(2023年天津卷·第11题)在6312x x ⎛⎫- ⎪⎝⎭的展开式中,2x 项的系数为_________.2.(2021年高考浙江卷·第13题)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =___________,234a a a ++=___________.3.(2020年高考课标Ⅲ卷理科·第14题)262()x x+的展开式中常数项是__________(用数字作答).4.(2020年浙江省高考数学试卷·第12题)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2+a 3=________.5.(2022新高考全国I 卷·第13题)81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).6.(2021高考天津·第11题)在6312x ⎛⎫+ ⎪⎝⎭的展开式中,6x 的系数是__________.7.(2021高考北京·第11题)在341()x x -的展开式中,常数项为__________.8.(2020天津高考·第11题)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.9.(2019·浙江·第13题)在二项式9)x +的展开式中,常数项是,系数为有理数的项的个数是.10.(2019·天津·理·第10题)83128x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为.11.(2019·上海·第4题)已知二项式()521x +,则展开式中含2x 项的系数为________.12.(2018年高考数学浙江卷·第14题)二项式81)2x +的展开式的常数项是.13.(2018年高考数学上海·第3题)在()71x +的二项展开式中,2x 项的系数为.14.(2018年高考数学天津(理)·第10题)在5(x 的展开式中,2x 的系数为.15.7x⎛ ⎝的二项展开式中x 的系数是(用数字作答).16.(2014高考数学山东理科·第14题)若26(b ax x +的展开式中3x 项的系数为20,则22a b +的最小值为.17.(2014高考数学课标2理科·第13题)()10x a +的展开式中,x 7的系数为15,则a =________.(用数字填写答案)18.(2014高考数学课标1理科·第13题)8()()x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)19.(2014高考数学大纲理科·第13题)8⎛⎫的展开式中22x y 的系数为.20.(2014高考数学安徽理科·第13题)设0a ≠,n 是大于1的自然数,(1n x a+的展开式为2012n n a a x a x a x ++++ .若点(,)i i A i a (0,1,2i =)的位置如图所示,则a =.21.(2015高考数学重庆理科·第12题)53x ⎛+ ⎝的展开式中8x 的系数是________(用数字作答).22.(2015高考数学新课标2理科·第15题)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.23.(2015高考数学天津理科·第12题)在614x x ⎛⎫- ⎪⎝⎭的展开式中,2x 的系数为.24.(2015高考数学四川理科·第11题)在()521x -的展开式中,含2x 的项的系数是________(用数字填写答案)25.(2015高考数学上海理科·第11题)在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为.(结果用数值表示)26.(2015高考数学广东理科·第9题)在4)1(-x 的展开式中,x 的系数为.27.(2015高考数学福建理科·第11题)()52x +的展开式中,2x 的系数等于.(用数字作答)28.(2015高考数学北京理科·第9题)在()52x +的展开式中,3x 的系数为.(用数字作答)29.(2015高考数学安徽理科·第11题)371(x x +的展开式中5x 的系数是.(用数字填写答案)30.(2017年高考数学浙江文理科·第13题)已知多项式32543212345(1)(2)x x x a x a x a x a x a ++=+++++,则4a =_____,5a =_______.31.(2017年高考数学山东理科·第11题)已知()13n x +的展开式中含有2x 项的系数是54,则n =__________.32.(2016高考数学天津理科·第10题)281()x x -的展开式中7x 的系数为_____________.(用数字作答)33.(2016高考数学上海理科·第8题)在nx x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________.34.(2016高考数学山东理科·第12题)若25(ax+的展开式中5x 的系数是80-,则实数a =_______.35.(2016高考数学课标Ⅰ卷理科·第14题)5(2x +的展开式中,3x 的系数是.(用数字填写答案)36.(2016高考数学北京理科·第10题)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)二、多选题1.(2021年新高考全国Ⅱ卷·第12题)设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则()A .()()2n n ωω=B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21n n ω-=题型三:简单的随机抽样1.(2014高考数学天津理科·第9题)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_________名学生.2.(2017年高考数学江苏文理科·第3题)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取____________件.题型四:用样本数字特征估计总体1.(2020江苏高考·第3题)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.2.(2019·全国Ⅱ·理·第13题)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.3.(2019·江苏·第5题)已知一组数据6,7,8,8,9,10,则该组数据的方差是.4.(2018年高考数学江苏卷·第3题)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.5.(2014高考数学江苏·第6题)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm ./cm(第6题)6.(2015高考数学湖南理科·第12题)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为135 号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.7.(2015高考数学江苏文理·第题)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为_______.8.(2016高考数学上海理科·第4题)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).9.(2016高考数学江苏文理科·第4题)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.二、多选题1.(2023年新课标全国Ⅰ卷·第9题)有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则()A .2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数B .2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数C .2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差D .2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差2.(2021年新高考Ⅰ卷·第9题)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同3.(2020年新高考全国卷Ⅱ数学(海南)·第9题)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是()A.这11天复工指数和复产指数均逐日增加;B.这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;乙都入选的概率为____________.2.(2021高考天津·第14题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为56和15,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为____________,3次活动中,甲至少获胜2次的概率为______________.3.(2020天津高考·第13题)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.(2023年天津卷·第13题)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.5.(2022年高考全国甲卷数学(理)·第15题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.6.(2020江苏高考·第4题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.7.(2019·上海·第10题)某三位数密码锁,每位数字在90-数字中选取,其中恰有两位数字相同的概率是_______.8.(2019·江苏·第6题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.9.(2018年高考数学江苏卷·第6题)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.10.(2018年高考数学上海·第9题)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个.从中随机选取三个,则这三个砝码的总质量为9克的概率是.11.(2014高考数学上海理科·第10题)为强化安全意识,某商场拟在未来的连续10天中随即选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是_____________(结果用最简分数表示).12.(2014高考数学辽宁理科·第14题)正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,则质点落在阴影区域的概率是.13.(2014高考数学江西理科·第13题)10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.(2014高考数学广东理科·第11题)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为15.(2014高考数学江苏·第4题)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是.16.(2014高考数学福建理科·第14题)如图,在边长为的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.17.(2015高考数学福建理科·第13题)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.18.(2015高考数学江苏文理·第5题)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为_______.19.(2017年高考数学上海(文理科)·第13题)已知四个函数:①y x =-;②1y x =-;③3y x =;④12y x =.从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为________.20.(2017年高考数学江苏文理科·第7题)记函数()f x =的定义域为D .在区间[4,5]-上随机取一个数x ,则x D ∈的概率是________.21.(2016高考数学上海理科·第14题)如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0=++j i OA OA OP ,则点P 落在第一象限的概率是.22.(2016高考数学山东理科·第14题)在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相交”发生的概率为.23.(2016高考数学江苏文理科·第7题)将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.二、多选题1.(2023年新课标全国Ⅱ卷·第题)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).()A .采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B .采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C .采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D .当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率题型八:随机变量的分布列1.(2020年浙江省高考数学试卷·第16题)一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)P ξ==_______;()E ξ=______.2.(2022年浙江省高考数学试题·第15题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==__________,()E ξ=_________.3.(2015高考数学广东理科·第13题)已知随机变量X 服从二项分布(,)B n p .若()30E X =,()20D X =,则p =.4.(2019·全国Ⅰ·理·第15题)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.5.(2021年高考浙江卷·第15题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=___________,()E ξ=___________.6.(2022新高考全国II 卷·第13题).已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.7.(2014高考数学浙江理科·第12题)随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________.8.(2014高考数学上海理科·第13题)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分.若() 4.2E ξ=,则小白得5分的概率至少为_____________.9.(2015高考数学上海理科·第12题)赌博有陷阱.某种赌博每局的规则是:赌客现在标有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在每一局赌博中的赌金与奖金,则12E E ξξ-=(元).10.(2017年高考数学课标Ⅱ卷理科·第13题)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X =.11.(2016高考数学四川理科·第12题)同时抛掷两枚质地均匀的两枚硬币,当至少一枚硬币正面向上时,就说明实验成功,则在2次实验中成功次数X 的均值是______.二、多选题1.(2021年新高考全国Ⅱ卷·第9题)下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数2.(2020年新高考全国Ⅰ卷(山东)·第12题)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log n i i i H X p p ==-∑.()A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )。

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案)1。

(17全国1理19.(12分))为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.2。

(17全国1文19.(12分))为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.3。

专题19 概率统计多选、填空题(理科)(解析版)-十年(2014-2023)高考数学真题分项汇编

专题19  概率统计多选、填空题(理科)(解析版)-十年(2014-2023)高考数学真题分项汇编

十年(2014-2023)年高考真题分项汇编—概率统计多选、填空题目录题型一:计数原理与排列组合...............................................................1题型二:二项式定理...............................................................................4题型三:简单的随机抽样.....................................................................11题型四:用样本数字特征估计总体......................................................11题型五:相关关系与回归分析.............................................................15题型六:独立性检验.............................................................................15题型七:事件与概率.............................................................................15题型八:随机变量的分布列.. (23)题型一:计数原理与排列组合一、填空题1.(2023年新课标全国Ⅰ卷·第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).【答案】64解析:(1)当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2)当从8门课中选修3门,①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种.故答案为:64.2.(2020年高考课标Ⅱ卷理科·第14题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36解析: 4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种故答案为:36.【点睛】本题主要考查了计数原理的综合应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.3.(2018年高考数学浙江卷·第16题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)【答案】1260解析:解法1:分类讨论四位数中有数字0的有21135333540C C C A =种,无数字0的有224534720C C A =种,则共可以组成5407201260+=个没有重复数字的四位数.解法2:正难则反无限制四位数有2245441440C C A =种,其中数字0在首位的有213533180C C A =种,则共可以组成14401801260-=个没有重复数字的四位数.4.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。

(做)全国卷历年高考概率与统计及解排列组合真题

(做)全国卷历年高考概率与统计及解排列组合真题

(做)全国卷历年高考概率与统计及解排列组合真题在全国卷历年高考中,概率与统计以及排列组合是常见的考试题型。

掌握这些知识点对于高考非常重要。

本文将为您提供一些关于概率与统计以及排列组合真题的解题方法与技巧。

概率与统计概率概率是描述事件发生可能性的一种数值表示方法。

在高考中,常见的概率问题有:- 确定事件发生的可能性;- 计算事件的概率;- 利用概率性质解决问题。

解题方法:1. 确定样本空间:在概率问题中,首先要确定所有可能的结果组成的集合,即样本空间。

2. 确定事件:确定要求解概率的事件。

3. 计算概率:通过计算事件发生的可能性与总事件数之比,得到事件的概率。

统计统计是通过收集、整理和分析数据以得出结论的方法。

在高考中,常见的统计问题有:- 数据的整理与呈现;- 描述性统计;- 探索性数据分析;- 统计推断。

解题方法:1. 理解题目要求:确保正确理解题目中的统计问题要求。

2. 整理数据:对给定的数据进行整理和分类。

3. 进行计算:根据题目要求使用适当的统计方法进行计算和分析。

4. 得出结论:根据计算结果进行结论推断,并确保符合统计学原则。

排列组合排列组合是指在给定条件下,对元素的排列或组合的不同情况进行计数。

在高考中,常见的排列组合问题有:- 计算排列数;- 计算组合数;- 利用排列组合解决问题。

解题方法:1. 确定问题类型:确定是排列问题还是组合问题。

2. 确定条件:根据题目所给条件,确定元素的范围和约束条件。

3. 应用公式:根据排列和组合的定义和公式进行计算。

4. 解决问题:根据计算结果回答题目要求或解决相关问题。

在备考高考时,熟练掌握概率与统计以及排列组合的知识点,并熟练运用解题方法,可以提高解答概率与统计和排列组合题目的准确性和效率。

以上是关于全国卷历年高考概率与统计以及解排列组合真题的简要介绍。

希望对您备考高考有所帮助!。

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案)1.(17全国1理19.(12分))为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.2.(17全国1文19.(12分))为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i xx i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.3.(17全国2理18.(12分))海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++P ()0.050 0.010 0.001 k3.8416.63510.8284.(17全国3理18.(12分))某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:)(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时,Y 的数学期望达到最大值?5.(17全国3文18.(12分))某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 以最高气温位于各区间的频率代替最高气温位于该区间的概率。

2014年全国各地高考试题分类汇编(理数)10----概率与

2014年全国各地高考试题分类汇编(理数)10----概率与

2014年全国各地高考试题分类汇编(理数概率与统计(解答题(2014安徽理数 17. (本小题满分 12分甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 5局仍未出现连胜, 则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 23,乙获胜的概率为 13,各局比赛结果相互独立. (1求甲在 4局以内(含 4局赢得比赛的概率;(2记 X 为比赛决出胜负时的总局数,求 X 的分布列和均值(数学期望.解:用 A 表示“ 甲在 4局以内 (含 4局赢得比赛” , k A 表示“第 k 局甲获胜” , k B 表示“ 第 k 局乙获胜” 则 (23k P A =, (13k P B =, 1,2,3,4,5. k = (1 ((((121231234P A P A A P B A A P AB A A =++ (((((((((121231234P A P A P B P A P A P A P B P A P A =++ 2222122125633333381⎛⎫⎛⎫⎛⎫=+⨯+⨯⨯= ⎪⎪⎪⎝⎭⎝⎭⎝⎭.(2 X 的可能取值为 2,3,4,5. (((((((12121212529P X P A A P B B P A P A P B P B ==+=+=, (((((((((123123123123239P X P B A A P A B B P B P A P A P A P B P B ==+=+=, (((123412344P X P AB A A P B A B B ==+((((((((123412341081 P A P B P A P A P B P A P B P B =+=, ((((85123481P X P X P X P X ==-=-=-==, 故 X 分布列为52108234599818181EX =⨯+⨯+⨯+⨯=.(2014北京理数 16:(1从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过的概率.(2从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过 6. 0,一场不超过 6. 0的概率.(3记 x 是表中 10个命中次数的平均数,从上述比赛中随机选择一场,记 X 为李明在这比赛中的命中次数,比较 EX 与 x 的大小. (只需写出结论解:(1 根据投篮统计数据, 在 10场比赛中, 李明投篮命中率 0.6的场次有 5场, 分别是主场 2, 主场 3, 主场 5, 客场 2,客场 4.所以在随机选择的一场比赛中,李明的投篮命中率超过 0.6的概率是 0.5.(2设事件 A 为“ 在随机选择的一场主场比赛中李明的投篮命中率超过0.6” ,事件 B 为“ 在随机选择的一场客场中,李明的投篮命中率一场超过0.6” ,事情 C 为“ 在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过 0.6,一场不超过0.6” .则 C =, A , B 独立.根据投篮统计数据, (35P A =, (25P B =. (((P C P P =+332213555525=⨯+⨯=. 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过 0.6,一场不超过 0.6的概率为1325. (3 EX =.(2014大纲理数 20. (本小题满分 12分设每个工作日甲、乙、丙、丁 4人需使用某种设备的概率分别为 0.6, 0.5, 0.5, 0.4,各人是否需使用设备相互独立. (1求同一工作日至少 3人需使用设备的概率; (2 X 表示同一工作日需使用设备的人数,求 X 的数学期望.解:记 i A 表示事件:同一工作日乙、丙中恰有 i 人需使用设备, 0,1, 2, i =, B 表示事件:甲需使用设备, C 表示事件:定需使用设备, D 表示事件:同一工作日至少 3人需使用设备.(1 122D A B C A B A B C=⋅⋅+⋅+⋅⋅, (0.6P B =, (0.4P C =, (122C 0.5i P A =⨯, 0,1, 2, i = 所以 ((((12212P D P A B C A B A B C P A B C P A B =⋅⋅+⋅+⋅⋅=⋅⋅+⋅+(2P A B C ⋅⋅=((((((((1220.31P A P B P C P A P B P A P B P C ++=.(2 X 的可能取值为 0, 1, 2, 3, 4,则 (((((((200010.60.510.40.06P X P B A C P B P A P C ==⋅⋅==-⨯⨯-=,((0011P X P B A C B A C B A C ==⋅⋅+⋅⋅+⋅⋅(((((((((001P B P A P C P B P A P C P B P A P C =++((((2220.60.510.410.60.50.410.620.510.4=⨯⨯-+-⨯⨯+-⨯⨯⨯-0.25=, (((((22240.50.60.40.06P X P A B C P A P B P C ==⋅⋅==⨯⨯=, (((340.25P X P D P X ==-==,(((((210134P X P X P X P X P X ==-=-=-=-=10.060.250.250.06=----=0.38,数学期望 ((((00112233EX P X P X P X P X =⨯=+⨯=+⨯=+⨯=+(440.2520.3830.2540.062P X ⨯==+⨯+⨯+⨯=.(2014福建理数 18. (本小题满分 13分为回馈顾客, 某商场拟通过摸球兑奖的方式对 1000位顾客进行奖励, 规定:每位顾客从一个装有 4个标有面值的球的袋中一次性随机摸出 2个球, 球上所标的面值之和为该顾客所获的奖励额. (1若袋中所装的 4个球中有 1个所标的面值为 50元,其余 3个均为 10元,求: ①顾客所获的奖励额为 60元的概率;②顾客所获的奖励额的分布列及数学期望;(2商场对奖励总额的预算是 60000元,并规定袋中的 4个球只能由标有面值 10元和 50元的两种球组成,或标有面值 20元和 40元的两种球组成. 为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解:(1设顾客所获的奖励额为 X .(i 依题意,得 (111324C C 160C 2P X ===,即顾客所获的奖励额为 60元的概率为 12. (ii 依题意,得 X 的所有可能取值为 20, 60. (1602P X ==, (2324C 120C 2P X ===, 即 X 的分布列为所以顾客所获的奖励额的期望为 (200.5600.540EX =⨯+⨯=(元. (2 根据商场的预算, 每个顾客的平均奖励额为 60元. 所以, 先寻找期望为 60元的可能方案. 对于面值由 10元和 50元组成的情况,如果选择 (10,10,10,50的方案,因为 60元是面值之和的最大值,所有期望不可能为 60元;如果选择 (50,50,50,10的方案,因为 60元是面值之和的最小值,所以期望也不可能为 60元,因此可能的方案是 (10,10,50,50,记为方案 1.对于面值由 20元和 40元组成的情况,同理可排除 (20,20,20,40和(40,40,40,20的方案,所以可能的方案是 (20,20,40,40,记为方案 2. 以下是对两个方案的分析:对于方案 1,即方案 (10,10,50,50,设顾客所获得奖励额为 1X , 则 1X 的分布列为 1X 的期望为 (1121206010060636E X =⨯+⨯+⨯=, 1X 的方差为 ((((21121160020606060100606363D X =-⨯+-⨯+-⨯=. 对于方案 2,即方案 (20,20,40,40,设顾客所获得奖励额为 2X , 则 2X 的分布列为 2X 的期望为 (212140608060636E X =⨯+⨯+⨯=, 2X 的方差为 ((((22221214004060606080606363D X =-⨯+-⨯+-⨯=. 由于两种方案的奖励额的期望都符合要求,但方案 2奖励额的方差比方案 1的小,所以应该选择方案 2. 注:第(2问,给出方案 1或方案 2的任一种方案,并利用期望说明所给方案满足要求,给 3分; 进一步比较方差,说明应选择方案 2,再给 2分. (2014广东理数 17. (13分随机观测生产某种零件的某工厂 25名工人的日加工零件数(单位:件 ,获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:(1 确定样本频率分布表中 121, , n n f 和 2f 的值; (2根据上述频率分布表,画出样本频率分布直方图; (3根据样本频率分布直方图,求在该厂任取 4人,至少有 1人的日加工零件数落在区间 (]30,35的概率. 解:(1 17n =, 22n =, 10.28f =, 20.08f =. (2样本频率分布直方图如图所示(3根据样本频率分布直方图,得每人的日加工零件数落在区间 (]30,35的概率为0.2, 设所取的 4人中,日加工零件数落在区间 (]30,35的人数为ξ, 则(4,0.2B ξ, (((4110110.210.40960.5904P P ξξ=-==--=-=… ,所以 4人中,至少有 1人的日加工零件数落在区间 (]30,35的概率约为 0.5904.(2014湖北理数 20. (本小题满分 12分计划在某水库建一座至多安装 3台发电机的水电站,过去 50年的水文资料显示, 水库年入流量 X (年入流量:一年内上游来水与库区降水之和, 单位:亿立方米都在 40以上. 其中,不足 80的年份有 10年,不低于 80且不超过 120的年份有 35年,超过 120的年份有 5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. (1求未来 4年中,至多 1年的年入流量超过 120的概率;(2X若某台发电机运行,则该台年利润为万元;若某台发电机未运行,则该台年亏损万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?解:(1依题意, (11040800.250p P X =<<==, (235801200.750p P X ===剟 , (351200.150p P X =>==.由二项分布,在未来 4年中至多有 1年的年入流量超过 120的概率为((43430143433991C 1C 140.9477101010p p p p ⎛⎫⎛⎫=-+-=+⨯⨯= ⎪⎪⎝⎭⎝⎭.(2记水电站年总利润为 Y (单位:万元①安装 1台发电机的情形. 由于水库年人流量总大于 40, 故一台发电机运行的概率为 1, 对应得年利润 5000Y =,(500015000E Y =⨯=.0000②安装 2台发电机的情形.依题意,当 4080X <<时,一台发电机运行,此时50008004200Y =-=,因此 ((1420040800.2P Y P X p ==<<==;当80X … 时,两台发电机运行, 此时 5000210000Y =⨯=, 因此 ((2310000800.8P Y P X p p===+=… ; 由此得 Y 的分布列如下: 所以, (42000.2100000.88840EY =⨯+⨯=.③安装 3台发电机的情形.依题意,当 4080X <<时,一台发电机运行,此时500016003400Y =-=,因此((1340040800.2P Y P X p ==<<==; 当 80120X 剟时, 两台发电机运行, 此时500028009200Y =⨯-=,因此 ((29200801200.7P Y P Xp ====剟 ;当 120X >时,三台发电机运行,此时 5000315000Y =⨯=,因此 ((3150001200.1PY P X p ==>==,由此得 Y 的分部列如下: 所以, (34000.292000.7150000.18620E Y =⨯+⨯+⨯=.综上,欲使水电站年总利润的均值达到最大,应安装发电机 2台.(2014湖南理数 17. 某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为23和 35,现安排甲组研发新产品 A ,乙组研发新产品 B .设甲,乙两组的研发是相互独立的. (1求至少有一种新产品研发成功的概率;(2若新产品 A 研发成功,预计企业可获得 120万元;若新产品 B 研发成功,预计企业可获得利润 100万元, 求该企业可获得利润的分布列和数学期望.解:记 E ={甲组研发新产品成功 }, F ={乙组研发新产品成功 },由题设知 (23P E =, (13P E =, (35P F =, (25P F =,且事件 E 与 F , E 与 F , E 与 F , E 与 F 都相互独立. (1记 H ={至少有一种新产品研发成功 },则 H EF =,于是 (((1223515P H P E P F ==⨯=, 故所求的概率为 ((213111515P H P H =-=-=. (2设企业可或利润为 X (万元 ,则 X 的可能取值为 0, 100, 120, 220,因为 ((12203515P X P EF ===⨯=, ((1331003515P X P EF ===⨯=,((2241203515P X P EF ===⨯=, ((236220P X P EF ===⨯=.故所求的分布列为数学期望为 (2321000100120220140151515151515E X =⨯+⨯+⨯+⨯===. (2014江苏 22. (本小题满分 10 分盒中共有 9个球,其中有 4个红球、 3个黄球和 2个绿球, 这些球除颜色外完全相同. (1从盒中一次随机取出 2个球, 求取出的 2个球颜色相同的概率 P ;(2 从盒中一次随机取出 4个球, 其中红球、黄球、绿球的个数分别记为 1x , 2x , 3x , 随机变量 X 表示 1x ,2x , 3x 中的最大数. 求 X 的概率分布和数学期望 (E X .解:(1取到的 2个颜色相同的球可能是2个红球、 2个黄球或 2个绿球,所以 22243229C C C 6315C 3618P ++++===. (2随机变量 X 所有可能取值为 2, 3, 4. {}4X =表示的随机事件是“ 取到的 4个球是 4个红球” , 故 (((1311121341P X P X P X ==-=-==--=.所以随机变量 X 的概率分布如下表: 因此随机变量 X 的数学期望(1123414631269E X =⨯+⨯+⨯=.(2014江西理数 21. (本小题满分 14分随机将 (1, 2, , 2, 2n n n *⋅⋅⋅∈N …这 2n 个连续正整数分成 , A B 两组, 每组 n 个数, A 组最小数为 1a ,最大数为2a ; B 组最小数为 1b ,最大数为 2b ,记21a a ξ=-, 21b b η=-. (1当 3n =时,求ξ的分布列和数学期望;(2令 C 表示事件“ ξ与η的取值恰好相等” ,求事件 C 发生的概率 (P C ;(3对(2中的事件 C , C 表示 C 的对立事件,判断 (P C 和 (P 的大小关系,并说明理由.解:(1当 3n =时, ξ的所有可能取值为 2, 3, 4, 5.将 6个正整数平均分成 A, B 两组,不同的分组方法共有 36C 20=种,所以ξ的分布列为1331723455101052E ξ=⨯+⨯+⨯+⨯=.(2 ξ和η恰好相等的所有可能取值为 1n -, n , 1n +, … , 22n -.又ξ和η恰好相等且等于 1n -时,不同的分组方法有 2种; ξ和η恰好相等且等于 ((1,2,23n k k n n +=-… 时,不同的分组方法有 22C k k 种,所以当 2n =时, (4263P C ==,当3n … 时, (221222C C n k k k n nP C -=⎛⎫+ ⎪=∑.(3由(2知当 2n =时, (13P C =,因此 ((P C P C >,而当3n … 时, ((P C P C <.理由入下:((P C P C <等价于 222142C C n k nk n k -=⎛⎫+< ⎪⎝⎭∑.①用数学归纳法来证明:1当 3n =时,①式左边 ((1242C 42216=⨯+=⨯+=,①式右边 36C 20==,所以①式成立.2假设(3n m m =… 时①式成立,即 222142C C m k m k m k -=⎛⎫+< ⎪⎝⎭∑成立,那么,当1n m =+时, 左边 ((1221122221211142C 42C 4C C 4C m m k k m m m k k m m m k k +------==⎛⎫⎛⎫=+=++<+= ⎪⎪⎝⎭⎝⎭∑∑((2! 422! ! ! 1! 1! m m m m m m ⋅-+=--((((21222! 411! 1!m m m m m m +--<++ (((((((21121211222! 421C C 1! 1! 2121m m m m m m m m m m m m m m +++++-+=⋅<=+++-右边,即当 1n m =+时①式也成立. 综合 1, 2得,对于3n … 的所有正整数,都有 ((P C P C <成立.(2014辽宁理数 18. (本小题满分 12分一家面包房根据以往某面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1求在未来连续 3天里,有连续 2天的日销售量都不低于 100个且另一天的日销售量低于 50个的概率; (2 用 X 表示在未来 3天里日销售量不低于 100个的天数, 求随机变量 X 的分布列, 期望 (E X 及方差 (D X .解:(1设 1A 表示事件“ 日销售量不低于 100个” , 2A 表示事件“ 日销售量低于50个” , B 表示事件“ 在未来连续 3天里有连续 2天日销售量不低于 100个且另一天销售量低于 50个” .因此 ((10.0060.0040.002500.6P A =++⨯=, (20.003500.15P A =⨯=,(0.60.60.1520.108P B =⨯⨯⨯=.(2可能取的值为 0, 1, 2, 3,相应的概率为 ((303010.60.064P X C ==⋅-=,((21310.610.60.288P X C ==⋅-=, ((22320.610.60.432P X C ==⋅-=, (33330.60.216P X C ==⋅=.分布列为因为 (3,0.6XB ,所以期望 (30.61.8E X =⨯=,方差 ((30.610.60.72D X =⨯⨯-=.(2014山东理数 18. (本小题满分 12分乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域 , A B ,乙被划分为两个不相交的区域 , C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在 C 上记 3分,在D 上记 1分,其他情况记 0分.对落点在 A 上的来球,队员小明回球的落点在 C 上的概率为12,在 D 上的概率为 13;对落点在 B 上的来球,小明回球的落点在 C 上的概率为 15,在 D 上日销售量 /个的概率为35.假设共有两次来球且落在 , A B 上各一次,小明的两次回球互不影响.求: (1小明两次回球的落点中恰有一次的落点在乙上的概率; (2两次回球结束后,小明得分之和ξ的分布列与数学期望.解:(1记 1A 为事件“ 小明对落点在 A 上的来球回球的得分为 i 分” (0,1,3i =, 则(312P A =, (113P A =, (01111236P A =--=;记 i B 为事件“ 小明对落点在 B 上的来球回球的得分为 i 分” (0,1,3i =,则 (315P B =, (135P B =, (01311555P B =--=.记 D 为事件“ 小明两次回球的落点中恰有 1次的落点在乙上” .由题意, 30100103D A B A B A B A B =+++,由事件的独立性和互斥性,((((((3010010330100103P D P A B A B A B A B P A B P A B P A B P A B=+++=+++= ((((((((30100103P A P B P A P B P A P B P A P B +++=1111131132535656510⨯+⨯+⨯+⨯= 所以小明两次回球的落点中恰有 1次的落点在乙上的概率为 310.(2由题意,随机变量ξ可能的取值为 0, 1, 2, 3, 4, 6,由事件的独立性和互斥, 得((0011106530P P A B ξ===⨯=, ((((1001100111131135656P P A B A B P A B P A B ξ==+=+=⨯+⨯=,((111312355P P A B ξ===⨯=, ((((30033003111123255615P P A B A B P A B P A B ξ==+=+=⨯+⨯=,((((311331131311114253530P P A B A B P A B P A B ξ==+=+=⨯+⨯=, ((33111 62510P P A B ξ===⨯=.可得随机变量ξ的分布列为:所以数学期望 111211191012346306515301030E ξ=⨯+⨯+⨯+⨯+⨯+⨯=.(2014陕西理数 19. (本小题满分 12分在一块耕地上种植一种作物,每季种植成本为 1000元,此作物的市场价格和这块地上的产量具有随机性,且互不影响,其具体情况如下表:(1设 X 表示在这块地上种植 1季此作物的利润,求 X 的分布列;(2若在这块地上连续 3季种植此作物,求这 3季中至少有 2季的利润不少于2000元的概率. 解:(1设 A 表示事件“ 作物产量为300kg ” B表示事件“ 作物市场价格为 6元∕ kg ” ,由题设知 (0.5P A =, (0.4P B =,因为利润 =产量⨯市场价格 -成本,所以 X 所有可能的取值为 5001010004000⨯-=, 500610002000⨯-=, 3001010002000⨯-=, 30061000800⨯-=. (((((400010.510.40.3P X P A P B ===-⨯-=,(((((((200010.50.40.510.40.5P X P A P B P A P B ==+=-⨯+⨯-=,(((8000.50.40.2P X P A P B ===⨯=,所以 X 的分布列为(2设 i C 表示事件“ 第 i 季利润不少于 2000元” ,由题意知 1C , 2C , 3C 相互独立, 由(1知, ((((1400020000.30.50.81,2,3P C P X P X i ==+==+==, 3季的利润均不少于 2000元的概率为 ((((31231230.80.512C C C P C P C P C ===;3季中有 2季利润均不少于 2000元的概率为 (((212312312330.80.20.384P C C C P C C C P C C C ++=⨯⨯=,所以,这 3季中至少有 2季的利润不少于 2000元的概率为 0.5120.3840.896+=.(2014四川理数 17. 一款击鼓小游戏的规则如下:每盘游戏都需要击鼓三次,每次击鼓要么出现一次音乐, 要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得 20分,出现三次音乐获得100分,没有出现音乐则扣除 200分(即获得 200-分 .设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1设每盘游戏获得的分数为 X ,求 X 的分布列; (2玩三盘游戏,至少有一盘出现音乐的概率是多少?(3玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解:(1 X 可能的取值为 10, 20, 100, 200-.根据题意,有 (121311310C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪⎪⎝⎭⎝⎭,(212311320C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪⎪⎝⎭⎝⎭, (3033111100C 1228P X ⎛⎫⎛⎫==⨯⨯-= ⎪⎪⎝⎭⎝⎭,(0303111200C 1228P X ⎛⎫⎛⎫=-=⨯⨯-= ⎪⎪⎝⎭⎝⎭.所以 X 的分布列为(2设“ 第 i 盘游戏没有出现音乐” 为事件 (1,2,3i A i =,则 ((((2312008 i P A P A P A P X ====-=. 所以, “ 三盘游戏中至少有一次出现音乐” 的概率为 (3 23115111118512512i P A A A ⎛⎫-=-=-=⎪⎝⎭. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3 X 的数学期望为 33115102010020088884EX =⨯+⨯+⨯-⨯=-.这表明,获得分数 X 的均值为负. 因此,多次游戏之后分数减少的可能性更大.(2014天津理数 16. (本小题满分 13分某大学志愿者协会有 6名男同学, 4名女同学. 在这 10名同学中,3名同学来自数学学院,其余 7名同学来自物理、化学等其他互不相同的 7个学院. 现从这 10名同学中随机选取 3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同 . (1求选出的 3名同学是来自互不相同学院的概率;(2设 X 为选出的 3名同学中女同学的人数,求随机变量 X 的分布列和数学期望. 解:(1设“ 选出的 3名同学是来自互不相同的学院” 为事件 A ,则(120337373104960C C C C P A C ⋅+⋅==.所以选出的 3名同学是来自互不相同的学院的概率为 4960. (2随机变量 X 的所以可能值为 0, 1, 2, 3. ((3463100,1,2,3K kC C P X k k C -===.所以随机变量 X 的分布列是随机变量 X 的数学期望(1131601236210305E X =⨯+⨯+⨯+⨯=. (2014新课标 1理数 18. (本小题满分 12分从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1求这 500件产品质量指标值的样本平均数 x 和样本方差 2s (同一组数据用该区间的中点值作代表 ; (2由频率分布直方图可以认为,这种产品的质量指标值 Z 服从正态分布 2(, N μδ,其中μ近似为样本平均数 x , 2δ近似为样本方差 2s . (i 利用该正态分布,求 (187.8212.2 P Z <<;(ii 某用户从该企业购买了 100件这种产品, 记 X 表示这 100件产品中质量指标值为于区间 2. 212, 8. 187(的产品件数,利用(i 的结果,求 EX .. 2.若 Z ~2(, N μδ,则( P Z μδμδ-<<+=0. 6826, (22 P Z μδμδ-<<+=0. 9544.解:(1抽取产品质量指标值的样本平均数和样本方差 2s 分别为1700.021800.091900.222000.332100.242200.08=⨯+⨯+⨯+⨯+⨯+⨯+2300.02200⨯=(((((222222300.02200.09100.2200.33100.24200.08s =-⨯+-⨯+-⨯+⨯+⨯+⨯+(2300.02150⨯=(2 (ⅰ由 (1 知 Z(200,150N , 从而 (187.8212.2 P Z <<=(20012.220012.2 0.6826P Z -<<+=(ⅱ由(ⅰ知,一件产品中质量指标值为于区间(187.8,212.2的概率为 0.6826依题意知(100,0.6826XB ,所以 1000.682668.26EX =⨯=(2014 新课标 2 理数)19.(本小题满分 12 分)某地区 2007 年至 2013 年农村居民家庭纯收入 y (单位:千元)的数据如下表:年份年份代号 t 人均纯收入y 2007 1 2.9 2008 2 3.3 2009 3 3.6 2010 4 4.4 2011 5 4.8 2012 6 5.2 2013 7 5.9 (1)求y 关于 t 的线性回归方程;(2)利用(1)中的回归方程,分析 2007 年至 2013 年该地区农村居民家庭人均纯收入的变化情况,并预测该地区 2015 年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为: bt t y y i 1 i i n t t i 1 i n 2 ˆ.ˆ y bt ,a 解:7 4 , 7 1 y(1)由所给数据计算得 t 1 2 3 4 5 6, ti t 7 i 1 1 72.93.3 3.64.4 4.85.2 5.9 4.3, t i 1 7 i t yi y =2 9 4 1 0 1 4 9 283 1.4 2 1 1 0.7 +0 0.1+1 0.5+2 0.9+3 1.6 =14 , t yi y i ˆ b t i 1 7 i t i 1 7,所求回归方程为y ˆ 0.5t 2.3 .ˆ yt 2 14 ˆ 4.3 0.5 4 2.3bt 0.5 ,a 28 ˆ 0.5 0 ,故 2007 年至 2013 年该地区农村居民家庭人均纯收入逐年增加,平均每年增加 0.5 (2)由(1)知,b ˆ 0.5 9 2.3 6.8 千元,故预测该地区 2015 年千元.将 2015 年的年份代号 t 9 代入(I)中的回归方程,得 y 农村居民家庭人均纯收入为 6.8 千元.(2014 重庆理数)18.(本小题满分 13 分)一盒中装有 9 张各写有一个数字的卡片,其中 4 张卡片上的数字是1 , 3 张卡片上的数字是2 , 2 张卡片上的数字是3 ,从盒中任取 3 张卡片.(1)求所取 3 张卡片上的数字完全相同的概率; b c,(2) X 表示所取 3张卡片上的数字的中位数,求 X 的分布列与数学期望(注:若三个数 a, b, c 满足 a剟则称 b 为这三个数的中位数).解:(1)由古典概型中的概率计算公式知所求概率为 P 3 C3 5 4 C3 . 3 C9 84 (2) X 的所有可能值为 1,2,3,且 P X 1 1 C2 1 2 C7 ,故 X 的分布列为 3 C9 12 1 3 1 1 2 1 3 C2 C1 17 434C5 C4 3C4 C2 C3 C6 C3 ,, P X 2 3 3 C9 42 C9 84 P X 3 X P 1 2 3 从而 E X 1 17 43 1 47 2 3 . 42 84 12 28 11 17 42 43 84 1 1212。

2014年概率统计高考题汇总详解

2014年概率统计高考题汇总详解

2014年全国各地高考题————概率统计专题1.[2014·重庆卷] 某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为() A.100 B.150C.200 D.2502.[2014·湖北卷] 甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.3.[2014·湖南卷] 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则() A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p34.[2014·四川卷] 在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本5.[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.6.[2014·天津卷] 某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学 A B C女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.7.[2014·安徽卷] 某高校共有学生15 000人,其中男生10 500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图1-4所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.图1-4(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)8.[2014·北京卷] 从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图(如图1-6).组号分组频数1[0,2) 62[2,4)83[4,6)174[6,8)225[8,10)256[10,12)12图1-6(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;9.[2014·广东卷] 为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .2010.[2014·江苏卷] 为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有____株树木的底部周长小于100 cm.11.[2014·山东卷] 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,图是根据试验数据制成的频率分布直方图,7 [12,14) 6 8 [14,16) 2 9 [16,18) 2 合计100已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ) A .6 B .8 C .12 D .1812.[2014·山东卷] 海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C 数量50150100(1)求这6件样品中来自A ,B ,C 各地区商品的数量; (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.13.[2014·陕西卷] 某公司10位员工的月工资(单位:元)为x 1,x 2,…,x 10,其均值和方差分别为x -和s 2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A.x -,s 2+1002B.x -+100,s 2+1002C.x -,s 2D.x -+100,s 214.[2014·重庆卷] 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.15.[2014·湖北卷] 根据如下样本数据x 3 4 5 6 7 8 y4.02.5-0.50.5-2.0-3.0得到的回归方程为y ^=bx +a ,则( )A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >016.[2014·辽宁卷] 某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品 不喜欢甜品 合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=n (n 11n 22-n 12n 21)2n 1+n 2+n +1n +2,P (χ2≥k )0.100 0.050 0.010 k2.7063.8416.63517.[2014·广东卷] 某车间20名工人年龄数据如下表: (1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄 的茎叶图;(3)求这20名工人年龄的方差.18.[2014·新课标全国卷Ⅱ] 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.19.[2014·全国新课标卷Ⅰ] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________.20.[2014·浙江卷] 在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计2021.[2014·四川卷] 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.22.[2014·广东卷] 从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为________.23.[2014·湖北卷] 随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3 C.p1<p3<p2D.p3<p1<p224.[2014·江苏卷] 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.25.[2014·江西卷] 掷两颗均匀的骰子,则点数之和为5的概率等于()A.118 B.19 C.16 D.11226.[2014·陕西卷] 从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15 B.25 C.35 D.4527.[2014·福建卷] 如图1-5所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图1-528.[2014·湖南卷] 在区间[-2,3]上随机选取一个数X,则X≤1的概率为()A.45 B.35 C.25 D.1529.[2014·辽宁卷] 若将一个质点随机投入如图1-1所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )图1-1A.π2B.π4C.π6D.π830.[2014·重庆卷] 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)4.如图,在半径为R 的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是( )A .34 B .334 C .34π D .334π5.O 为边长为6的等边三角形内心,P 是三角形内任一点, 使得OP<3的概率是( ). A .123 B .93 C .123π D .93π 6、有五根细木棒,长度分别为1,3,5,7,9(cm).从中任取三根,能搭成三角形的概率是( ) A.203 B.52 C.51 D.10310.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是 ( )A.81B. 83C. 85D. 87 11、假设关于某设备使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:x 1 2 4 5 y11.55.58若由资料可知y 对x 呈线性相关关系,则y 与x 的线性回归方程y=bx+a 必过的点是( ) A .(2,2) B .(1,2) C .(3,4) D .(4,5)(第10题图)12.函数[]2()255f x x x x =--∈-,,,在定义域内任取一点0x ,使0()0f x ≤的概率是( ).15.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:则表中的=m ,=a 。

(完整版)2014-2017全国卷(理)真题汇编-概率与统计-T,推荐文档

(完整版)2014-2017全国卷(理)真题汇编-概率与统计-T,推荐文档

第九章 附-统计与概率高考真题 (2014全国1)18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(I )求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .18.【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数x 和样本方差2s 分别为1700.021800.091900.222000.332100.242200.082300.02200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150= …………6分(Ⅱ)(ⅰ)由(Ⅰ)知Z ~(200,150)N ,从而(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+= ………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826 依题意知(100,0.6826)X B :,所以1000.682668.26EX =⨯= ………12分(2014全国2)19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9 (Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣. 解答:解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∴===0.5, =﹣=4.3﹣0.5×4=2.3.∴y 关于t 的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元. 将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.(2015全国1)(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i 数据作了初步处理,得到下面的散点图及一些统计量的值。

2017高考理科专题--概率与统计解析

2017高考理科专题--概率与统计解析
试题解析:(Ⅰ)
x 12 0.06 14 0.14 16 0.3 18 0.32 20 0.10 22 0.08 17 (Ⅱ)由频率分布直方图可知 P( x x 4) 0.14 , ∴ ~ B 5, 0.14 ,所以 E 5 0.14 0.7
12.某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外
数是
A. 40 B. 60 C. 80 D. 100 【解析】三个小球放入盒子是不对号入座的方法有 2 种,由排列组合的知识可得,不同的
放法总数是: 2C63 40 种。本题选择 A。
7.某厂家为了解广告宣传费与销售轿车台数之间的关系,得到如下统计数据表:根据数据
表可得回归直线方程 yˆ bˆx aˆ ,其中bˆ 2.4 , aˆ y bˆx ,据此模型预测广告费用为
根据以上信息,这 5 人的笔试名次的所有可能的种数是( )
A. 54 B. 72 C. 78 D. 96
【解析】由题得甲不是第一,乙不是最后,先排乙,乙得第一,有 A 4 24 种,乙没得第
一有 3 种再排甲也有 3 种,余下得有 3
6 种,故有 6
3
3=54
4
种,所以一共有
A
24+54=78 种
3
9.已知随机变量 X 服从正态分布 N(2,σ²),且 P(0≤X≤2)=0.3,则 P(X>4)=_____.
【解析】解:由题意结合正态分布的性质可知: P 2 x 4 0.3 ,则:
P(X
4) 1 0.3 2 2
0.2 .
点睛:求解本题关键是明确正态曲线关于 x=2 对称,且区间[0,4]也关于 x=2 对称.
【解析】(Ⅰ)先根据频率分布直方图中小长方形面积等于对应区间概率得概率,再根据组

数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024

数学高考概率与统计历年真题精选2024概率与统计是高中数学的重要内容之一,在高考中占有相当的比重。

为了帮助广大考生更好地备考概率与统计,本文整理了数学高考概率与统计的历年真题,并进行了精选,希望对考生的备考有所帮助。

1. 选择题精选1)(2015年广东高考)设事件A、B独立,P(A)=0.3,P(A∪B)=0.7,则P(B)为()A. 0.2B. 0.3C. 0.4D. 0.5解析:由独立事件的性质可得,P(A∪B) = P(A) + P(B) - P(A)·P(B),代入已知条件可得,0.7 = 0.3 + P(B) - 0.3·P(B),整理得P(B) = 0.4,故选C。

2)(2016年江苏高考)某人参加驾驶证考试,第一道选择题有5个选项,有且只有1个正确选项,则某人随机选择答案的通过率为()。

A. 5%B. 20%C. 25%D. 80%解析:某人随机选择答案的通过率为正确答案的比例,即为1/5,转换成百分数为20%,故选B。

2. 解答题精选1)(2017年北京高考)某地下车库共有4层,每层有16个停车位,小明停车习惯于停在第1层,而小红停车习惯于停在第2层,他们同时来到车库停车,请问小明和小红停在同一层的概率是多少?解析:小明停在第1层的概率为1/4,小红停在第2层的概率为1/4,由于小明和小红是同时来到车库停车的,因此小明和小红停在同一层的概率为(1/4)·(1/4) = 1/16。

2)(2018年福建高考)某地区的夏季天气,可以分为晴天、多云、阴天三种情况,以往观测数据表明:晴天、多云、阴天的概率分别为0.4、0.3、0.3。

今有一天这个地区天气为晴天,已知当天多云、阴天的概率为x和y,求概率x与y之和的最大值。

解析:根据题意,晴天的概率为0.4,多云和阴天的概率之和为0.6,因此x+y=0.6。

根据概率的性质,x和y的取值范围为[0, 0.3],且x+y的最大值为0.6。

2014-2017全国卷(理)真题汇编---概率与统计-T

2014-2017全国卷(理)真题汇编---概率与统计-T
答案 D
(18)某公司为了解用户对其产品的满意度,从 A,B 两地区分别随机调查了 20 个用户,得到用户对产品 的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B 地区:73 83 62 51 91 46 53 73 64 82
P(C) P(CB1CA1 CB2CA2 )
P(CB1CA1) P(CB2CA2 )
P(CB1)P(CA1) P(CB2 )P(CA2 )
16 4 10 8 由所给数据得 CA1, CA2 , CB1, CB2 发生的频率分别为 20 , 20 , 20 , 20 ,故
P(C A1 )16 20似为样本方差 s2 .
(i)利用该正态分布,求 P(187.8 Z 212.2) ;
(ii )某用户从该企业购买了 100 件这种产品,记 X 表示这
100 件产品中质量指标值为于区间(187.8,212.2)的产品件数,
利用(i)的结果,求 EX .
18.【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数 x 和样本方差 s2 分别为
(Ⅰ)根据散点图判断, y a bx 与 y c d x 哪一个适宜作为年销售量 y 关于年宣传费 x 的回归
方程类型?(给出判断即可,不必说明理由) (Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程;
(Ⅲ)已知这种产品的年利率 z 与 x、y 的关系为 z 0.2 y x 。根据(Ⅱ)的结果回答下列问题:
112 3
(A) (B) (C) (D)
323 4
如图所示,画出时间轴:
7:30 7:40 7:50 8:00 8:10 8:20 8:30

2014年高考数学真题汇编(含答案):概率与统计

2014年高考数学真题汇编(含答案):概率与统计

2014年全国高考理科数学试题分类汇编(纯w o r d 解析版) 八、概率与统计(逐题详解) 第I 部分1.【2014年陕西卷(理06)】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) 【答案】 C【解析】C p 选反向解题.53C 4C 4-1.2525===2.【2014年重庆卷(理03)】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =,3.5y =,则由观测的数据得线性回归方程可能为( )【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(,)x y --,故选A 3.【2014年陕西卷(理09)】设样本数据1210,,,x x x 的均值和方差分别为1和4,若i i y x a =+(a 为非零常数, 1,2,,10i =),则12,10,y y y 的均值和方差分别为( )(A )1+,4a (B )1,4a a ++ (C )1,4 (D )1,4+a【答案】 A【解析】A 选变均值也加此数,方差不样本数据加同一个数,. 4.【2014年湖南卷(理02)】对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则 A. 321p p p <= B. 132p p p <= C. 231p p p <= D. 321p p p ==【答案】D【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D5.【2014年山东卷(理07)】为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 (A )6 (B )8 (C ) 12(D )18 【答案】C【解析】第一组与第二组频率之和为0.24+0.16=0.4200.450÷=500.361818612⨯=-=6.【2014年全国新课标Ⅰ(理05)】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.7.【2014年全国新课标Ⅱ(理05)】某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 【答案】 A 【解析】8.【2014年广东卷(理06)】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为 A. 200,20 B. 100,20 C. 200,10 D. 100,10 【答案】A【解析】由题意知:该地区中小学生总人数为:35004500200010000++=人,所以样本容量为100002%200⨯=,应抽取高中生人数为:420040794⨯=++,所以抽取的高中生近视人数为4050%20⨯=人.故选A.9.【2014年湖北卷(理04)】根据如下样本数据x 3 45 6 7 8 y4.02.5 -0.5 0.5-2.0-3.0得到的回归方程为a bx y +=ˆ,则A.0,0>>b aB.0,0<>b aC.0,0><b aD.0.0<<b a 【答案】 B【解析】画出散点图如图所示,y 的值大致随x 的增加而减小,因而两个变量呈负相关,所以0<b ,0>a10.【2014年湖北卷(理07)】由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x ,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为( ) A.81 B.41 C. 43 D.87 【答案】 D【解析】依题意,不等式组表示的平面区域如图,由几何概型概率公式知,该点落在2Ω内的概率为111221722218222BDFCEFBDFSSP S⨯⨯-⨯⨯-===⨯⨯. 11.【2014年江西卷(理06)】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是 【答案】D【解析】根据独立性检验相关分析知,阅读量与性别相关数据较大,选D 12.【2014年浙江卷(理09)】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3m ≥,3)n ≥,从乙盒中随机抽取(1i i =,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1i i ξ=,2);(b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1i p i =,2).则A.12p p >,12()()E E ξξ<B.12p p <,12()()E E ξξ>C.12p p >,12()()E E ξξ>D.12p p <,12()()E E ξξ< 【答案】A 【解析】,,,所以P1>P 2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以 ==,E (ξ1)﹣E (ξ2)=.故选A第II 部分13.【2014年辽宁卷(理14)】正方形的四个顶点(1,1),(1,1),(1,1),(1,1)A B C D ----分别在抛物线2y x =-和2y x =上,如图所示,若将一个质点随机投入正方形ABCD 中,学科网则质点落在阴影区域的概率是 .【答案】【解析】∵A (﹣1,﹣1),B (1,﹣1),C (1,1),D (﹣1,1),∴正方体的ABCD 的面积S=2×2=4,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积S=2=2=2[(1﹣)﹣(﹣1+)]=2×=,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是.故答案为:14.【2014年广东卷(理11)】从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 。

2014-2016年高考理科数学真题-第十四章 概率

2014-2016年高考理科数学真题-第十四章  概率

第十四章 概率 考点1 随机事件及其概率1.(2015·广东,4)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.1 B.1121C.1021 D.5211.C [从袋中任取2个球共有C 215=105种取法,其中恰好1个白球1个红球共有C 110C 15=50种取法,所以所取的球恰好1个白球1个红球的概率为50105=1021.]2.(2014·新课标全国Ⅰ,5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18B.58C.38D.782.D [由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P =24-1-124=1416=78,故选D.]考点2 古典概型与几何概型1.(2016·全国Ⅰ,4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.341.B[如图所示,画出时间轴:小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.]2.(2016·全国Ⅱ,10)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2mn2.C [由题意得:(x i ,y i )(i =1,2,…,n )在如图所示正方形中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=m n ,∴π=4mn,故选C.]3.(2015·陕西,11)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12πB.14-12πC.12-1πD.12+1π3.B [由|z |≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为:P =14π×12-12×122=π4-12=14-1.]4.(2014·陕西,6)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15B.25 C.35D.454.C [从这5个点中任取2个,有C 25=10种取法,满足两点间的距离不小于正方形边长的取法有C 24=6种,因此所求概率P =610=35.故选C.]5.(2014·湖北,7)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( ) A.18B.14C.34D.785.D [由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×22×22=74,则所求的概率P =742=78.选D.]6.(2016·江苏,7)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.6.56[基本事件共有36个.如下:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),其中满足点数之和小于10的有30个.故所求概率为P =3036=56.]7.(2016·山东,14)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.7.34[由已知得,圆心(5,0)到直线y =kx 的距离小于半径,∴|5k |k 2+1<3,解得-34<k <34,由几何概型得P =34-⎝⎛⎭⎫-341-(-1)=34.]8.(2015·江苏,5)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 8.56 [这两只球颜色相同的概率为16,故两只球颜色不同的概率为1-16=56.]9.(2015·福建,13) 如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.9.512 [由几何概型的概率公式:P =1-∫21x2d x 4=512.]10.(2014·福建,14)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为______.10.2e 2 [因为函数y =e x 与函数y =ln x 互为反函数,其图象关于直线y =x 对称,又因为函数y =e x与直线y =e 的交点坐标为(1,e),所以阴影部分的面积为2(e×1-∫10e x d x )=2e -2ex⎪⎪⎪10=2e -(2e -2)=2,由几何概型的概率计算公式,得所求的概率P =S 阴影S 正方形=2e 2.]11.(2014·江苏,4)从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.11.13 [从1,2,3,6中随机取2个数,共有6种不同的取法,其中所取2个数的乘积是6的有1,6和2,3,共2种,故所求概率是26=13.]12.(2014·广东,11)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.12.16 [十个数中任取七个不同的数共有C 710种情况,七个数的中位数为6,那么6只有处在中间位置,有C 36种情况,于是所求概率P =C 36C 710=16.]13.(2014·江西,12)10件产品中有7件正品、3件次品,从中任取4件,则恰好取到1件次品的概率是________.13.12[从10件产品中任取4件共有C 410=210种不同的取法,因为10件产品中有7件正品、3件次品,所以从中任取4件恰好取到1件次品共有C 13C 37=105种不同的取法,故所求的概率为P =105210=12.]14.(2015·北京,16)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16B 组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1) 求甲的康复时间不少于14天的概率;(2) 如果a =25,求甲的康复时间比乙的康复时间长的概率;(3) 当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)14.设事件A i 为“甲是A 组的第i 个人”,事件B i 为“乙是B 组的第i 个人”,i =1,2,…,7.由题意可知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37. (2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知, C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6.因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049.(3)a =11或a =18.考点3 离散型随机变量的分布列、均值与方差1.(2014·浙江,9)已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(b )放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2).则( )A.p 1>p 2,E (ξ1)<E (ξ2)B.p 1<p 2,E (ξ1)>E (ξ2)C.p 1>p 2,E (ξ1)>E (ξ2)D.p 1<p 2,E (ξ1)<E (ξ2) 1.A [法一 (特值法) 取m =n =3进行计算、比较即可.法二 (标准解法)从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P (ξ=0)=n m +n =P (ξ1=1),P (ξ=1)=m m +n =P (ξ1=2),所以E (ξ1)=1·P (ξ1=1)+2·P (ξ1=2)=mm +n +1,所以p 1=E (ξ1)2=2m +n 2(m +n );从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P (η=0)=C 2n C 2m +n =P (ξ2=1),P (η=1)=C 1n C 1mC 2m +n=P (ξ2=2),P (η=2)=C 2mC 2m +n =P (ξ2=3),所以E (ξ2)=1·P (ξ2=1)+2P (ξ2=2)+3P (ξ2=3)=2m m +n+1,所以p 2=E(ξ2)3=3m+n3(m+n),所以p1>p2,E(ξ1)<E(ξ2),故选A.]2.(2016·全国Ⅰ,19)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?2.(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04;所以X的分布列为(2)由(1)知P((3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.3.(2016·全国Ⅱ,18)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:(1)(2)若续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.3.解 (1)设A 表示事件:“续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件:“续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ), 故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为E (X )=0.85a ×=1.23a . 因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2016·山东,19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).4.(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A -BCD +AB -CD +ABC -D +ABCD -.由事件的独立性与互斥性,P (E )=P (ABCD )+P (A -BCD )+P (A B -CD )+P (AB C -D )+P (ABC D -)=P (A )P (B )P (C )P (D )+P (A -)P (B )P (C )P (D )+P (A )P (B -)P (C )P (D )+P (A )P (B )P (C -)P (D )+P (A )P (B )P (C )P (D -)=34×23×34×23+2×⎝⎛⎭⎫14×23×34×23+34×13×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=60144=512. P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望EX =0×1144+1×572+2×25144+3×112+4×512+6×14=236.5.(2015·安徽,17)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望). 5.解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A .P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400.P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为E (X )=200×110+300×310+400×610=350.6.(2015·福建,16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 6.解 (1)设“当天小王的该银行卡被锁定”的事件为A ,则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为所以E (X )=1×16+2×16+3×23=52.7.(2015·重庆,17)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.7.解 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35(个).8.(2015·天津,16)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.8.解 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635.所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.9.(2015·山东,19)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分. (1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ).9.解 (1)个位数是5的“三位递增数”有125,135,145,235,245,345; (2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142,所以X 的分布列为则E (X )=0×23+(-1)×114+1×1142=421.10.(2015·湖南,18)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.10.解 (1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 12A 与1A A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 12A +1A A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 12A +1A A 2)=P (A 12A )+P (1A A 2)=P (A 1)P (2A )+P (1A )P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×⎝⎛⎫1-12+⎝⎛⎫1-25×12=12. 故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝⎛⎭⎫3,15. 于是P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫151⎝⎛⎭⎫452=48125,P (X =2)=C 23⎝⎛⎭⎫152⎝⎛⎭⎫451=12125,P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125.故X 的分布列为X 的数学期望为E (X )=3×15=35.11.(2014·天津,16)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同). (1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列和数学期望. 11.解 (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960.所以,选出的3名同学是来自互不相同学院的概率为4960. (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k 6C 310(k =0,1,2,3). 所以,随机变量X 的分布列是随机变量X 的数学期望E (X )=0×16+1×12+2×310+3×130=65.12.(2014·四川,17)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 12.解 (1)X 可能的取值为:10,20,100,-200.根据题意,有P (X =10)=C 13×⎝⎛⎭⎫121×⎝⎛⎭⎫1-122=38,P (X =20)=C 23×⎝⎛⎭⎫122×⎝⎛⎭⎫1-121=38, P (X =100)=C 33×⎝⎛⎭⎫123×⎝⎛⎭⎫1-120=18,P (X =-200)=C 03×⎝⎛⎭⎫120×⎝⎛⎭⎫1-123=18. 所以X 的分布列为(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P (A 1A 2A 3)=1-⎝⎛⎭⎫183=1-1512=511512. 因此,玩三盘游戏至少有一盘出现音乐的概率是511512.(3)X 的数学期望为E (X )=10×38+20×38+100×18-200×18=-54.这表明,获得分数X 的均值为负,因此,多次游戏之后分数减少的可能性更大.13.(2014·山东,18)乒乓球台面被球网分隔成甲、乙两部分.如图,甲上有两个不相交的区域A ,B ,乙被划分为两个不相交的区域C ,D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,在D 上记1分,其他情况记0分.对落点在A 上的来球,队员小明回球的落点在C 上的概率为12,在D 上的概率为13;对落点在B 上的来球,小明回球的落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在A ,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率; (2)两次回球结束后,小明得分之和ξ的分布列与数学期望.13.解 (1)记A i 为事件“小明对落点在A 上的来球回球的得分为i 分”(i =0,1,3), 则P (A 3)=12,P (A 1)=13,P (A 0)=1-12-13=16;记B i 为事件“小明对落点在B 上的来球回球的得分为i 分”(i =0,1,3), 则P (B 3)=15,P (B 1)=35,P (B 0)=1-15-35=15.记D 为事件“小明两次回球的落点中恰有一次的落点在乙上”. 由题意,D =A 3B 0+A 1B 0+A 0B 1+A 0B 3, 由事件的独立性和互斥性, P (D )=P (A 3B 0+A 1B 0+A 0B 1+A 0B 3) =P (A 3B 0)+P (A 1B 0)+P (A 0B 1)+P (A 0B 3)=P (A 3)P (B 0)+P (A 1)P (B 0)+P (A 0)P (B 1)+P (A 0)P (B 3) =12×15+13×15+16×35+16×15=310, 所以小明两次回球的落点中恰有一次的落点在乙上的概率为310.(2)由题意,随机变量ξ可能的取值为0,1,2,3,4,6, 由事件的独立性和互斥性,得 P (ξ=0)=P (A 0B 0)=16×15=130,P (ξ=1)=P (A 1B 0+A 0B 1)=P (A 1B 0)+P (A 0B 1)=13×15+16×35=16,P (ξ=2)=P (A 1B 1)=13×35=15,P (ξ=3)=P (A 3B 0+A 0B 3)=P (A 3B 0)+P (A 0B 3)=12×15+16×15=215,P (ξ=4)=P (A 3B 1+A 1B 3)=P (A 3B 1)+P (A 1B 3)=12×35+13×15=1130,P (ξ=6)=P (A 3B 3)=12×15=110.可得随机变量ξ的分布列为:所以数学期望E (ξ)=0×130+1×16+2×15+3×215+4×1130+6×110=9130.14.(2014·重庆,18)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)14.解 (1)由古典概型中的概率计算公式知所求概率为p =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384,P (X =3)=C 22C 17C 39=112, 故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.15.(2014·江西,21)随机将1,2,…,2n (n ∈N *,n ≥2)这2n 个连续正整数分成A ,B 两组,每组n 个数.A 组最小数为a 1,最大数为a 2;B 组最小数为b 1,最大数为b 2,记ξ=a 2-a 1,η=b 2-b 1.(1)当n =3时,求ξ的分布列和数学期望;(2)令C 表示事件“ξ与η的取值恰好相等”,求事件C 发生的概率P (C );(3)对(2)中的事件C ,C 表示C 的对立事件,判断P (C )和P (C )的大小关系,并说明理由. 15.解 (1)当n =3时,ξ的所有可能取值为2,3,4,5.将6个正整数平均分成A ,B 两组,不同的分组方法共有C 36=20种,所以ξ的分布列为E (ξ)=2×15+3×310+4×310+5×15=72.(2)ξ和η恰好相等的所有可能取值为:n -1,n ,n +1,…,2n -2. 又ξ和η恰好相等且等于n -1时,不同的分组方法有2种; ξ和η恰好相等且等于n 时,不同的分组方法有2种;ξ和η恰好相等且等于n +k (k =1,2,…,n -2)(n ≥3)时,不同的分组方法有2C k 2k 种; 所以当n =2时,P (C )=46=23,当n ≥3时,P (C )=22122(2C )Cn k k k n n-=+∑.(3)由(2)知当n =2时,P (C )=13,因此P (C )>P (C ).而当n ≥3时,P (C )<P (C ),理由如下: P (C )<P (C )等价于2214(2C)n k k k -=+∑<2C n n .①用数学归纳法来证明:1°当n =3时,①式左边=4(2+12C )=4(2+2)=16, ①右边=36C =20,所以①式成立.2°假设n =m (m ≥3)时①式成立,22214(2C)C m km k m k -=+<∑即成立,那么,当n=m +1时, 左边=12214(2C)m kkk +-=+∑21122(1)22(1)14(2C )4C <C +4C m k m m m k m m m k -----==++∑ =(2m )!m !m !+4·(2m -2)!(m -1)!(m -1)! =(m +1)2(2m )(2m -2)!(4m -1)(m +1)!(m +1)!<(m +1)2(2m )(2m -2)!(4m )(m +1)!(m +1)!=C m +12(m +1)·2(m +1)m (2m +1)(2m -1)<C m +12(m +1)=右边.即当n =m +1时①式也成立.综合1°,2°得:对于n ≥3的所有正整数,都有P (C )<P (C )成立.16.(2014·安徽,17)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).16.解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5.(1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4)=P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (A 3)P (A 4) =⎝⎛⎭⎫232+13×⎝⎛⎭⎫232+23×13×⎝⎛⎭⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)·P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)·P (A 2)P (B 3)P (B 4)=1081,P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为E (X )=2×59+3×29+4×1081+5×881=22481.17.(2014·福建,18)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: (ⅰ)顾客所获的奖励额为60元的概率; (ⅱ)顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.17.解 (1)设顾客所获的奖励额为X .(ⅰ)依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.(ⅱ)依题意,得X 的所有可能取值为20,60.P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.18.(2014·辽宁,18)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).18.解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P(X=3)=C33·0.63=0.216.分布列为因为X~B(3,0.6)×(1-0.6)=0.72.考点4 二项分布与正态分布1.(2015·新课标全国Ⅰ,4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3121.A[该同学通过测试的概率为p=0.6×0.6+C12×0.4×0.62=0.648.]2.(2015·湖南,7)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4.A.2 386B.2 718C.3 413D.4 7722.C [由X ~N (0,1)知,P (-1<X ≤1)=0.682 6, ∴P (0≤X ≤1)=12×0.682 6=0.341 3,故S ≈0.341 3.∴落在阴影部分中点的个数x 估计值为x 10 000=S1(古典概型),∴x =10 000×0.341 3=3 413,故选C.]3.(2015·山东,8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%3.B [由题意,知P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=95.44%-68.26%2=13.59%.]4.(2014·新课标全国Ⅱ,5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8 B.0.75 C.0.6 D.0.454.A [由条件概率可得所求概率为0.60.75=0.8,故选A.]5.(2016·四川,12)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.5.32[由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为P =1-12×12=34,∵2次独立试验成功次数X 满足二项分布X ~B ⎝⎛⎭⎫2,34,则E (X )=2×34=32.]6.(2014·陕西,19)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.6.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本,所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为(2)设C i表示事件“第i由题意知C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×0.2=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.7.(2014·新课标全国Ⅰ,18)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2. (ⅰ)利用该正态分布,求P (187.8<Z <212.2);(ⅱ)某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(ⅰ)的结果,求E (X ). 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6, P (μ-2σ<Z <μ+2σ)=0.954 4.7.解 (1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150. (2)(ⅰ)由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)= 0.682 6.(ⅱ)由(ⅰ)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以E (X )=100×0.682 6=68.26.。

十年高考理数真题专题 概率和统计(原卷)

十年高考理数真题专题 概率和统计(原卷)

第十二章概率和统计一.基础题组1.【2014课标Ⅰ,理5】4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为() A .81 B .83 C .85 D .87 2.【2013课标全国Ⅰ,理3】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样3.【2011全国新课标,理4】有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为() A .13B .12C .23D .344.【2012全国,理15】(某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.5. 【2014课标Ⅰ,理18】从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(I )求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(II )由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,Nμσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(i )利用该正态分布,求()187.8212.2P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.利用(i )的结果,求EX .附:15012.2≈ 若()2~,Z Nμσ则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=。

2014年全国高考理科数学试题分类汇编11:概率与统计_有答案

2014年全国高考理科数学试题分类汇编11:概率与统计_有答案

2014年全国高考理科数学试题分类汇编11:概率与统计一、选择题1某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B2某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B3某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C4某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D5如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是()A .14π-B .12π- C .22π-D .4π【答案】A6节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C错误!未指定书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 附-统计与概率
高考真题 (2014全国1)
18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(I )求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z
服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .
(i )利用该正态分布,求(187.8212.2)P Z <<;
(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .
(2014全国2)
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.
(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1,2,...,8)i y i =数据作了初步处理,得到下面的散点图及一些统计量的值。

46.6 563 6.8 289.8 表中i w =
8
1
i i
w w ==∑
(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;
(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为0.2z y x =-。

根据(Ⅱ)的结果回答下列问题:
(i )
年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x 为何值时,年利润的预报值最大?
附:对于一组数据1122(,),(,),...,(,)n n u v u v u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为:
^
^^
1
2
1
()()
,()
n
i
i
i n
i
i u u v v v u u u βαβ==--=
=--∑∑
(3)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是( )
(A)逐年比较,2008年减少二氧化硫排放量的效果最显著
(B)2007年我国治理二氧化硫排放显现
(C)2006年以来我国二氧化硫年排放量呈减少趋势
(D)2006年以来我国二氧化硫年排放量与年份正相关
(18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:
A地区:62 73 81 92 95 85 74 64 53 76
78 86 95 66 97 78 88 82 76 89
B地区:73 83 62 51 91 46 53 73 64 82
93 48 65 81 74 56 54 76 65 79
(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);
(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:
记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。

假设两地区用户的评价结果相互独立。

根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率
(2016全国1)4.某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,
且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是
(A )
13(B )12(C )23(D )34
(2016全国1)19.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进
机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500
元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;
(II )若要求()0.5P X n ≤≥,确定n 的最小值;
(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个?
(2016全国2)5.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )
(A)24 (B)18 (C)12 (D)9
(2016全国2)18.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
设该险种一续保人一年内出险次数与相应概率如下:
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
(2017全国1)2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色
部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A .
B .
C .
D .
(2017全国1)19.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个
零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布.
(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在之外的零件数,求及的数学期望;
(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
经计算得,,其中为抽取的第个零件的尺寸,.
用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计
和(精确到0.01). 附:若随机变量
服从正态分布,则,

14
π81
2
π42(,)N μσ(3,3)μσμσ-+(1)P X ≥X (3,3)μσμσ-+16119.9716i i x x ===∑0.212s ==≈i x i 1,2,,16i =⋅⋅⋅x μˆμ
s σˆσˆˆˆˆ(3,3)μ
σμσ-+μσZ 2(,)N μσ(33)0.997 4P Z μσμσ-<<+=160.997 40.959 2=0.09≈
(2017全国2)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安
排方式有 A.12种
B.18种
C.24种
D.36种
(2017全国2)13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,
X 表示抽到的二等品件数,则D X = 。

(2017全国2)18. 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了
100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:
(1) 设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱
产量不低于50kg”,估计A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3

根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)
附:
2
2
()()()()()
n ad bc K a b c d a c b d -=++++。

相关文档
最新文档