近5年高考数学理科试卷(全国卷1)分类汇编--概率统计(解析版)(大题版)(2011年2012年2013年2014年2015年)

合集下载

近5年全国高考卷理科数学分类汇编-概率统计

近5年全国高考卷理科数学分类汇编-概率统计

近5年全国高考卷理科数学分类汇编-概率统计班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (2016理II)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) (A )4n m (B )2n m (C )4m n (D )2mn2. (2016理II)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A )24 (B )18 (C )12 (D )93. (2016理I)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13 (B )12 (C )23 (D )344. (2012理)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种D .8种5. (2013理II)已知(1+a x )(1+x )5的展开式中x 2的系数为5,则a =( )(A )-4(B )-3(C )-2(D )-16. (2013理I)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( ) A 、5B 、6C 、7D 、87. (2013理I)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样8. (2014理II)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8 B .0.75 C .0.6 D .0.459. (2014理I)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A .81 B .83 C .85 D .87 10.(2015理II)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

近5年高考数学理科试卷(全国卷1)分类汇编函数(解析版)(大题版)

近5年高考数学理科试卷(全国卷1)分类汇编函数(解析版)(大题版)

2011(21)(本小题满分12分) 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。

解:(Ⅰ)221(ln )'()(1)x x b x f x x xα+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =。

(Ⅱ)由(Ⅰ)知ln 11x x x++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--。

考虑函数()2ln h x x =+2(1)(1)k x x --(0)x >,则22(1)(1)2'()k x xh x x -++=。

(i)设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <。

而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-; 当x ∈(1,+∞)时,h (x )<0,可得211x - h (x )>0 从而当x>0,且x ≠1时,f (x )-(1ln -x x +x k )>0,即f (x )>1ln -x x +x k.(ii )设0<k<1.由于当x ∈(1,k -11)时,(k-1)(x 2 +1)+2x>0,故h ’ (x )>0,而h (1)=0,故当x ∈(1,k -11)时,h (x )>0,可得211x -h (x )<0,与题设矛盾。

-2019年全国一卷理科试题汇编---概率统计试题

-2019年全国一卷理科试题汇编---概率统计试题

一、概率与排列组合 1、(2013全国1卷.理3)为了解某地区的中小考生视力情况,拟从该地区的中小考生中抽取部分考生进行调查,事先已了解到该地区小学、初中、高中三个学段考生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样 2.(2014全国1卷.理5)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A 、81 B 、83 C 、85 D 、87 3、(2015全国1卷.理4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为 ,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A 、 B 、 C 、 D 、4. (2016全国1卷.理4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车, 且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A 、31 B 、21 C 、32 D 、43 5.(2017全国1卷.理2)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14 B .π8 C .12D .π4二、二项式定理1、(2013全国1卷.理9)设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、82、(2014全国1卷.理13)()()8x y x y -+的展开式中27x y 的系数为________.(用数字填写答案)3、(2015全国1卷.理10)25()x x y ++的展开式中,52x y 的系数为( ) A 、10 B 、20 C 、30 D 、60 4、(2016全国1卷.理14)5)2(x x +的展开式中,3x 的系数是 .(用数字填写答案)5.(2017全国1卷.理6)621(1)(1)x x++展开式中2x 的系数为( ) A 、15B 、20C 、30D 、356、(2018全国1卷.理3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半7、(2018全国1卷.理10)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 38、(2018全国1卷.理15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)9、(2019全国1卷.理6)我国古代典籍《周易》用卦描述万物的变化。

概率与统计(选择、填空题)(理科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

概率与统计(选择、填空题)(理科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

专题15概率与统计(选择题、填空题)(理科专用)1.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1,2,3,且3>2>1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为甲则甲=2(1−2)13+221(1−3)=21(2+3)−4123记该棋手在第二盘与乙比赛,且连胜两盘的概率为乙则乙=2(1−1)23+212(1−3)=22(1+3)−4123记该棋手在第二盘与丙比赛,且连胜两盘的概率为丙则丙=2(1−1)32+213(1−2)=23(1+2)−4123则甲−乙=21(2+3)−4123−22(1+3)−4123=21−23<0乙−丙=22(1+3)−4123−23(1+2)−4123=22−31<0即甲<乙,乙<丙,则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D2.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C 72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率=21−721=23.故选:D.3.【2021年甲卷理科】已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A 72B .132C D 【答案】A 【解析】【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A 【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立,a c 间的等量关系是求解的关键.4.【2021年甲卷理科】将4个1和2个0随机排成一行,则2个0不相邻的概率为()A .13B .25C .23D .45【答案】C 【解析】【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+.故选:C.5.【2021年乙卷理科】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A .79B .2332C .932D .29【答案】B 【解析】【分析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出.【详解】如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B.【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件,A Ω对应的区域面积,即可顺利解出.6.【2021年新高考1卷】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立【答案】B 【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙丁,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立7.【2021年新高考2卷】某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是()A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D 【解析】【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误.故选:D.8.【2020年新课标1卷理科】某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x=+【答案】D 【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.9.【2020年新课标2卷理科】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A .10名B .18名C .24名D .32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900+-=,9001850=,故至少需要志愿者18名.故选:B 【点晴】本题主要考查函数模型的简单应用,属于基础题.10.【2020年新课标3卷理科】在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是()A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65As =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85Bs =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05Cs =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45Ds =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.11.【2020年新高考1卷(山东卷)】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .62%B .56%C .46%D .42%【答案】C 【解析】【分析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果.【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.【点睛】本题考查了积事件的概率公式,属于基础题.12.【2019年新课标1卷理科】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.13.【2019年新课标2卷理科】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A 【解析】【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤ .则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤ ,中位数仍为5x ,∴A 正确.②原始平均数1234891()9x x x x x x x =+++++ ,后来平均数234817x x x x x '=+++ ()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦ 由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确.本题旨在考查学生对中位数、平均数、方差、极差本质的理解.14.【2019年新课标3卷理科】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8【答案】C【解析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.15.【2018年新课标1卷理科】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M ,根据题意,得到新农村建设后的经济收入为2M ,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.16.【2018年新课标1卷理科】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A 【解析】【分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.【详解】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC ∆的面积为112=S bc ,黑色部分的面积为22221()()[()]2222c b a S bc πππ=⋅+⋅-⋅-2221(4442c b a bc π=+-+22211422c b a bc bc π+-=⋅+=,其余部分的面积为22311122282a a S bc bc ππ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.17.【2018年新课标2卷理科】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .118【答案】C【解析】【详解】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18.【2018年新课标3卷理科】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3【答案】B【解析】【详解】分析:判断出为二项分布,利用公式()()D X np 1p =-进行计算即可.()()D X np 1p =- p 0.4∴=或p 0.6=()()()()6444661010P X 41P X 61C p p C p p ==-<==-,()221p p ∴-<,可知p 0.5>故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题.19.【2021年新高考1卷】有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【答案】CD【解析】【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD20.【2021年新高考2卷】下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC【解析】【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.21.【2020年新高考1卷(山东卷)】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log n i i i H X p p ==-∑.()A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n == ,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )【答案】AC【解析】【分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确.对于B 选项,若2n =,则1,2i =,211p p =-,所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦,当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误.对于C 选项,若()11,2,,i p i n n== ,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m j P Y j p p +-==+(1,2,,j m = ).()2222111log log m m i i i i i iH X p p p p ===-⋅=⋅∑∑122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅ .()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅+⋅+++⋅+++ 12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++ 由于()01,2,,2i p i m >= ,所以2111i i m i p p p +->+,所以222111log log i i m i p p p +->+,所以222111log log i i i i m ip p p p p +-⋅>⋅+,所以()()H X H Y >,所以D 选项错误.故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.22.【2020年新高考2卷(海南卷)】我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.23.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有=C84=70个结果,这4个点在同一个平面的有= 6+6=12个,故所求概率==1270=635.故答案为:635.24.【2022年新高考2卷】已知随机变量X服从正态分布2,2,且o2<≤2.5)=0.36,则o>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为∼2,2,所以<2=>2=0.5,因此>2.5=>2−2<≤2.5=0.5−0.36=0.14.故答案为:0.14.25.【2019年新课标1卷理科】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.【答案】0.18【解析】【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【详解】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.26.【2019年新课标2卷理科】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.【答案】0.98.【解析】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.。

历年高考数学真题(全国卷整理版)

历年高考数学真题(全国卷整理版)

参考公式:如果事件A 、B 互斥,则球的外表积公式如果事件A 、B 相互独立,则其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,则334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 2、集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为*=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 4 正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B 3C 2D 1〔5〕等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101 (C) 99100 (D) 101100〔6〕△ABC 中,AB 边的高为CD ,假设a ·b=0,|a|=1,|b|=2,则(A)〔B 〕 (C) (D)〔7〕α为第二象限角,sin α+sin β=33,则cos2α=(A)5-3〔B 〕5-9 (C)59 (D)53〔8〕F1、F2为双曲线C:*²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14〔B〕35 (C)34 (D)45〔9〕*=lnπ,y=log52,12z=e,则(A)*<y<z 〔B〕z<*<y (C)z<y<* (D)y<z<*(10) 函数y=*²-3*+c的图像与*恰有两个公共点,则c=〔A〕-2或2 〔B〕-9或3 〔C〕-1或1 〔D〕-3或1〔11〕将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不一样,梅列的字母也互不一样,则不同的排列方法共有〔A〕12种〔B〕18种〔C〕24种〔D〕36种〔12〕正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

历年高考理科数学真题汇编+答案解析(7):概率统计(2017-2020年)

历年高考理科数学真题汇编+答案解析(7):概率统计(2017-2020年)

每个小区至少安排 1 名同学,则不同的安排方法共有 种.
【解析】根据题意,先把 4 名同学分为 3 组,其中 1 组有两人,2 组各有一人,即从 4 名同学中任
选两人即可,故有 C42 种选法;将分成的 3 组同学安排到 3 个小区,共有 A33 种方法;所以
不同的安排方法共有 C42 A33 36 种. 【答案】36
的数学意义可知,与平均值距离大的数据的频率越高,则标准差越大. 比较四个选项,B
选项中 1 和 4 的频率最高,因此可以推断 B 选项的标准差最大.
【答案】B
7.(2020
全国
III
卷理
14)
x2
2 x
6
的展开式中常数项是__________(用数字作答).
【解析】展开式的通项公式为 Tr1
C xr 2(6r ) 6
的关系,在 20 个不同的温度条件下进行种子的发芽实验,由实验数据(xi , yi )(i 1,2,…,20)得到 下面的散点图:
由此散点图,在 10 C 至 40 C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归 方程类型的是 A. y a bx B. y a bx2 C. y a bex D. y a b ln x 【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选 D 选项. 【答案】D 2.(2020 全国 I 卷理 8) (x y2 )(x y)5 的展开式中 x3 y3 的系数为
份,其中 1200 份不需要志愿者,志愿者只需负责 900 份,故需要 900÷50=18 名志愿者. 【答案】B 4.(2020 全国 II 卷理 12 )0-1 周期 序列 在通 信技 术中 有着 重要 应用 ,若序 列 a1a2 an... 满足

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(概率与统计解答题)汇编考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表等级 ABCD频数40202020乙分厂产品等级的频数分布表等级 ABCD频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表).4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9..量i y并计算得10101022i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)()nx x y yr--=≈∑.2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i,y i)(i=1,2,…,20),其中x i和y i分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160iix==∑,2011200iiy==∑,202180iixx=-=∑(,2021)9000iiy y=-=∑(,201)800iiix yx y=--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i,y i)(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni ix yx y--∑((≈1.414.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.6352.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6 8 12 (75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.8283 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?的附:22()()()()()n ad bc K a b c d a c b d -=++++,4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.8285.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天): 锻炼人次 空气质量等级 [0,200](200,400](400,600]1(优) 2 16 25 2(良)51012的3(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.8286.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.2()P K k…0.050 0.010 0.001 k 3.841 6.635 10.828参考答案考点01:统计案例及应用1 (2021年全国高考乙卷文科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:122S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).【答案】(1)221210,10.3,0.036,0.04x yS S ====;(2)新设备生产产品的该项指标的均值较旧设备有显著提高. 【答案解析】:(1)9.810.31010.29.99.81010.110.29.71010x +++++++++==,10.110.410.11010.110.310.610.510.410.510.310y +++++++++==,22222222210.20.300.20.10.200.10.20.30.03610S +++++++++==,222222222220.20.10.20.30.200.30.20.10.20.0410S +++++++++==(2)依题意,0.320.15y x -==⨯==,=y x -≥,所以新设备生产产品的该项指标的均值较旧设备有显著提高.2 (2020年高考数学课标Ⅰ卷文科)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲.分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表等级 A B C D频数 4020 20 20乙分厂产品等级的频数分布表等级 A B C D频数 2817 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?【答案】(1)甲分厂加工出来的A级品的概率为0.4,乙分厂加工出来的A级品的概率为0.28;(2)选甲分厂,理由见答案解析.【答案解析】(1)由表可知,甲厂加工出来的一件产品为A级品的概率为400.4100=,乙厂加工出来的一件产品为A级品的概率为280.28 100=;(2)甲分厂加工100件产品总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元,所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.3 (2019年高考数学课标Ⅲ卷文科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下实验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据实验数据分别得到如下直方图:的记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中的a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用改组区间的中点值为代表). 【答案】【答案解析】:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P (C )的估计值为0.70. 则由频率分布直方图得: 0.200.150.70.050.1510.7a b ++=⎧⎨++=-⎩, 解得乙离子残留百分比直方图中0.35a =,0.10b =. (2)估计甲离子残留百分比的平均值为:20.1530.2040.3050.2060.1070.05 4.05x =⨯+⨯+⨯+⨯+⨯+⨯=甲.乙离子残留百分比的平均值为:30.0540.150.1560.3570.280.156x =⨯+⨯+⨯+⨯+⨯+⨯=乙.4 (2019年高考数学课标Ⅱ卷文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组[0.20,0)-[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数 2 24 53 147 (1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈. 【答案】【答案解析】:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=.产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=,()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.5.(2022新高考全国II 卷·)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表); (2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001). 【答案】(1)47.9岁; (2)0.89; (3)0.0014.【答案解析】:(1)平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯ 550.020650.017750.006850.002)1047.9+⨯+⨯+⨯+⨯⨯=(岁). (2)设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.(3)设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病}, 则由条件概率公式可得 ()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.考点02相关关系与回归分析1.(2022年高考全国乙卷(文)·)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据: 样本号i 12345678910总和根部横截面积i x0.04 0.06 0.04 0.08 0.08 0050050.07 0.07 0.06 0.6材积量i y0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得10101022ii i i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数ii( 1.377)()nx x y y r --=≈∑.【答案】(1)20.06m ;30.39m (2)0.97..(3)31209m【答案解析】:【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x == 样本中10棵这种树木的材积量的平均值 3.90.3910y == 据此可估计该林区这种树木平均一棵的根部横截面积为20.06m , 平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---==∑∑0.01340.970.01377==≈≈则0.97r ≈ 【小问3详解】设该林区这种树木的总材积量的估计值为3m Y , 又已知树木的材积量与其根部横截面积近似成正比, 可得0.06186=0.39Y,解之得3=1209m Y . 则该林区这种树木总材积量估计为31209m2.(2020年高考数学课标Ⅱ卷文科·)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,202180i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.的附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见答案解析【答案解析】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯= (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性, 从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.考点03 独立性检验1.(2022年全国高考甲卷(文)·)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数 未准点班次数 A 240 20 B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有0090的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有 【答案解析】根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M ,则24012()26013P M ==; B 共有班次240次,准点班次有210次, 设B 家公司长途客车准点事件为N , 则210()28074P N ==. A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78. (2)列联表准点班次数未准点班次数 合计A 240 20 260B 210 30 240 合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关. 2.(2020年新高考I 卷(山东卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表: 2SOPM2.5[0,50](50,150] (150,475][0,35]32 18 4 (35,75]6812(75,115]3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表: 2SOPM2.5[0,150](150,475][0,75](75,115](3)根据(2)中列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,2()P K k ≥ 0.050 0.010 0.001 k3.841 6.63510.828【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得的222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3 .(2020新高考II 卷(海南卷)·)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)0.64;(2)答案见答案解析;(3)有.【答案解析】:(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为:2SO2.5PM[]0,150(]150,475合计[]0,7564 16 80 (]75,11510 10 20 合计 7426100(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 【题目栏目】统计\相关关系、回归分析与独立性检验\独立性检验4.(2021年高考全国甲卷文科·)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品 二级品 合计 甲机床 150 50 200 乙机床 120 80 200 合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++ ()2P K k ≥ 0.050 0.0100.001k 3.841 6.635 10.828【答案】(1)75%;60%;的(2)能.答案解析:(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060% 200=.(2)()22400150801205040010 6.63527013020020039K⨯-⨯==>>⨯⨯⨯,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.5.(2020年高考数学课标Ⅲ卷文科·)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400] (400,600]1(优) 216 252(良) 510 123(轻度污染) 67 84(中度污染) 72 0(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d-=++++,P(K2≥k)0.050 0.010 0.001 k 3.841 6.635 10.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见答案解析.【答案解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 3337 空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.6.(2019年高考数学课标Ⅰ卷文科·)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:22()()()()()n ad bc K a b c d a c b d -=++++.2()P K k …0.050 0.010 0.001 k3.8416.63510.828【答案】【答案解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010)4.76250507030K⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.。

(全国Ⅰ卷)2017-2020年高考理科数学全国卷1试卷试题真题及答案

(全国Ⅰ卷)2017-2020年高考理科数学全国卷1试卷试题真题及答案


z
x
7
y
的最大值为
.
y 1≥0,
数学试卷 第 3页(共 70页)
14.设 a , b 为单位向量,且 a b 1,则 a b
.
15.已知 F
为双曲线 C :
x2 a2
y2 b2
1a>0,b>0 的右焦点,
A为C
的右顶点, B 为 C

的点,且 BF 垂直于 x 轴,若 AB 的斜率为 3,则 C 的离心率为
(一)公比不为 1 的等比数列, a1为 a2 , a3 的等差中项. (1)求an 的公比; (2)若 a1 1 ,求数列 nan 的前 n 项和.
18.(12 分) 如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为
底面直径, AE AD . △ABC 是底面的内接正三角形, P 为 DO 上一点, PO 6 DO .
(1)当 k 1 时, C1 是什么曲线? (2)当 k 4 时,求 C1 与 C2 的公共点的直角坐标.
23.[选修 4—5:不等式选讲](10 分)
已知函数 f x 3x 1 2 x 1 . (1)画出 y f x 的图像; (2)求不等式 f x>f x 1 的解集.
数学试卷 第 6页(共 70页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- ------------------ ------------------- ------------------- ------------------- ------------------- ------------------- ---------------------------------

2024年高考数学大题--概率统计题型分类汇编(学生版)

2024年高考数学大题--概率统计题型分类汇编(学生版)

概率统计概率统计是是高考数学的热点之一,概率统计大题是新高考卷及多省市高考数学的必考内容。

回顾近几年的高考试题,主要考查古典概型、相互独立事件、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差等内容,多与社会实际紧密结合,以现实生活为背景设置试题,注重知识的综合应用与实际应用。

重点考察考生读取数据、分析数据和处理数据的能力。

题型一:离散型随机变量及其分布列题型二:超几何分布与二项分布题型三:均值与方差的实际应用题型四:正态分布与标准正态分布题型五:线性回归与非线性回归题型六:独立性检验及应用题型七:条件概率/全概率公式/贝叶斯公式题型八:概率与统计图表的综合应用题型九:概率与其他知识的交汇应用题型十:利用概率解决决策类问题题型一:离散型随机变量及其分布列1(2023·广东肇庆·高三广东肇庆中学校考阶段练习)为弘扬中华优秀传统文化,荣造良好的文化氛围,某高中校团委组织非毕业年级开展了“我们的元宵节”主题知识竞答活动,该活动有个人赛和团体赛,每人只能参加其中的一项,根据各位学生答题情况,获奖学生人数统计如下:奖项组别个人赛团体赛获奖一等奖二等奖三等奖高一20206050高二162910550(1)从获奖学生中随机抽取1人,若已知抽到的学生获得一等奖,求抽到的学生来自高一的概率;(2)从高一和高二获奖者中各随机抽取1人,以X表示这2人中团体赛获奖的人数,求X的分布列和数学期望;求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布,可结合其对应的概率计算公式及期望计算公式,简化计算。

)1(2024·四川成都·成都七中模拟预测)甲、乙两人进行羽毛球比赛,比赛采取七局四胜制.已知甲每局比赛获胜的概率为23,输掉的概率为13,每局的比赛结果互不影响.(1)求甲最终获胜的概率;(2)记总共的比赛局数为X,求X的分布列与数学期望.2(2024·云南德宏·高三统考期末)设有甲、乙、丙三个不透明的箱子,每个箱中装有除颜色外都相同的4个球,其中甲箱有2个蓝球和2个黑球,乙箱有3个红球和1个白球,丙箱有2个红球和2个白球.摸球规则如下:先从甲箱中一次摸出2个球,若从甲箱中摸出的2个球颜色相同,则从乙箱中摸出1个球放入丙箱,再从丙箱中一次摸出2个球;若从甲箱中摸出的2个球颜色不同,则从丙箱中摸出1个球放入乙箱,再从乙箱中一次摸出2个球.(1)若最后摸出的2个球颜色不同,求这2个球是从丙箱中摸出的概率;(2)若摸出每个红球记2分,每个白球记1分,用随机变量X表示最后摸出的2个球的分数之和,求X的分布列及数学期望.题型二:超几何分布与二项分布2(2024·广东广州·广州市培正中学校考二模)某校高二(1)班的元旦联欢会设计了一项抽奖游戏:准备了10张相同的卡片,其中只在6张卡片上印有“奖”字.(1)采取放回抽样方式,从中依次抽取3张卡片,求抽到印有“奖”字卡片张数X的分布列、数学期望及方差;(2)采取不放回抽样方式,从中依次抽取3张卡片,求第一次抽到印有“奖”字卡片的条件下,第三次抽到未印有“奖”字卡片的概率.1、独立重复试验与二项分布(1)定型:“独立”“重复”是二项分布的基本特征,“每次试验事件发生的概率都相等”是二项分布的本质特征.判断随机变量是否服从二项分布,要看在一次试验中是否只有两种试验结果,且两种试验结果发生的概率分别为p,1-p,还要看是否为n次独立重复试验,随机变量是否为某事件在这n次独立重复试验中发生的次数.(2)定参,确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率.(3)列表,根据离散型随机变量的取值及其对应的概率,列出分布列.(4)求值,根据离散型随机变量的期望和方差公式,代入相应数据求值.相关公式:已知X~B(n,p),则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,⋯,n),E(X)=np,D(X)=np(1-p).2、超几何分布的适用范围及本质(1)适用范围:考察对象分两类;已知各类对象的个数;从中抽取若干个个题,考察某一类个题个数的概率分布;(2)本质:超几何分布是不放回抽样问题,在每次试验中某一事件发生的概率是不相同的。

近5年高考数学理科试卷(全国卷1)分类汇编--概率统计(解

近5年高考数学理科试卷(全国卷1)分类汇编--概率统计(解

2011(19)(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)解:(Ⅰ)由实验结果知,用A配方生产的产品中优质的平率为228=0.3100+,所以用A配方生产的产品的优质品率的估计值为0.3。

由实验结果知,用B配方生产的产品中优质品的频率为32100.42100+=,所以用B配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[)[)[]90,94,94,102,102,110的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42, 即X 的分布列为X 的数学期望值EX=2×0.04+2×0.54+4×0.42=2.68 201218.(本小题满分12分) 某花店每天以5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;日需求量n 14 15 16 17 18 19 20 频数10201616151310(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【解析】(1)当16n ≥时,16(105)80y =⨯-=当15n ≤时,55(16)1080y n n n =--=-得:1080(15)()80(16)n n y n N n -≤⎧=∈⎨≥⎩(2)(i )X 可取60,70,80 (60)0.1,(70)0.2,(80)0.7P X P X P X ====== X 60 70 80 P0.10.20.7600.1700.2800.776EX =⨯+⨯+⨯= 222160.160.240.744DX =⨯+⨯+⨯=(ii )购进17枝时,当天的利润为(14535)0.1(15525)0.2(16515)0.161750.5476.4 y=⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=76.476>得:应购进17枝201319.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=41113161616264⨯+⨯=.(2)X可能的取值为400,500,800,并且P(X=400)=41111161616--=,P(X=500)=116,P(X=800)=14.所以X的分布列为EX=111400+500+80016164⨯⨯⨯=506.25.201418. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(I)求这500件产品质量指标值的样本平均数x和样本方差2s(同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布2(,)Nμδ,其中μ近似为样本平均数x,2δ近似为样本方差2s.(i)利用该正态分布,求(187.8212.2)P Z<<;(ii)某用户从该企业购买了100件这种产品,学科网记X表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.150若Z~2(,)Nμδ,则()P Zμδμδ-<<+=0.6826,(22)P Zμδμδ-<<+=0.9544.【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数x和样本方差2s分别为1700.021800.091900.222000.332100.242200.082300.02200x=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()()()()()()2222222300.02200.09100.2200.33100.24200.08300.02s=-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯150=…………6分(Ⅱ)(ⅰ)由(Ⅰ)知Z~(200,150)N,从而(187.8212.2)P Z<<=(20012.220012.2)0.6826P Z-<<+=………………9分(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826依题意知(100,0.6826)X B:,所以1000.682668.26EX=⨯=………12分2015(19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。

高考真题理科数学全国卷Ⅰ含解析

高考真题理科数学全国卷Ⅰ含解析

年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121iz i i-=++,则z =( ) A .0B .12C .1D .22.已知集合{}2|20A x x x =-->,则A =R( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( ) A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点 M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( ) A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。

近五年高考数学全国卷1试题全解全析汇编篇解析版

近五年高考数学全国卷1试题全解全析汇编篇解析版

f (x) f (x) ,则
(A)
f
(x)


0,

2
Байду номын сангаас
单调递减
(B)
f
(x)


4
,
3 4

单调递减
(C)
f
(x)


0,

2

单调递增
(D)
f
(x)


4
,
3 4

单调递增
解 析 : f (x) 2 sin(x ) , 所 以 2 , 又 f(x) 为 偶 函 数 , 4


0,
2 3
。由
a
b

a2 b2 2ab cos
2 2 cos 1得 cos 1 2




3
,


选A
( 11 ) 设 函 数 f (x) sin(x ) cos(x )( 0, ) 的 最 小 正 周 期 为 , 且 2
得 r=3,对应的常数项=-40,故所求的常数项为 40 ,选 D
解析 2.用组合提取法,把原式看做 6 个因式相乘,若第 1 个括号提出 x,从余下的 5 个括
1
1
1
号中选 2 个提出 x,选 3 个提出 ;若第 1 个括号提出 ,从余下的括号中选 2 个提出 ,
x
x
x
选 3 个提出 x.
故常数项=
16 8
(15)已知矩形 ABCD 的顶点都在半径为 4 的球 O 的球面上,且 AB 6, BC 2 3 ,则棱锥

高考近5年全国卷一理科数学含(详细答案).pdf

高考近5年全国卷一理科数学含(详细答案).pdf

绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设,则( ) A .0B .C .D .2.已知集合,则( ) A .B .C .D .3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:此卷只装订不密封姓名 准考证号 考场号 座位号则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5B.6C.7D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。

五年高考新课标理科数学试题分类汇编(2011-2015)(答案详解版)

五年高考新课标理科数学试题分类汇编(2011-2015)(答案详解版)

· 1 ·五年高考分类汇编§1. 集合及其运算1.(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}2.(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}3.(2013·1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}4.(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10§2. 复数计算1.(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .22.(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i3.(2013·2)设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -4.(2012·3)下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i , P 3: z 的共轭复数为1+i , P 4: z 的虚部为-1 .A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4 5.(2011·1)复数212ii+-的共轭复数是( ) A .35i -B .35i C .i -D .i§3. 简易逻辑1.(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 4§4. 平面向量1.(2014·3)设向量a,b满足10|a b|+=,6|a b|-=,则a b⋅=()A.1 B.2 C.3 D.52.(2015·13)设向量a,b不平行,向量λ+a b与2+a b平行,则实数λ= ____________.3.(2013·13)已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=_______. 4.(2012·13)已知向量a,b夹角为45º,且1=||a,102=-||ba,则=||b .§5. 程序框图1.(2015·8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a,b分别为14,18,则输出的a =()A.0 B.2 C.4 D.142.(2014·7)执行右面程序框图,如果输入的x,t均为2,则输出的S= ()A.4 B.5 C.6 D.73.(2013·6)执行右面的程序框图,如果输入的10N=,那么输出的S=()A.11112310++++B.11112!3!10!++++C.11112311++++D.11112!3!11!++++4.(2012·6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输入A、B,则()A. A+B为a1,a2,…,a N的和B.2BA+为a1,a2,…,a N的算术平均数C. A和B分别是a1,a2,…,a N中最大的数和最小的数D. A和B分别是a1,a2,…,a N中最小的数和最大的数· 2 ·· 3 ·5.(2011·3)执行右面的程序框图, 如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040 §6. 线性规划1.(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =- 的最大值为( )A .10B .8C .3D .22.(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .23.(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.4.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . 5.(2011·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 . §7. ※二项式定理1.(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-2.(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .403.(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. 4.(2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.· 4 ·§8. 数 列1.(2015·4)已知等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =( )A .21B .42C .63D .842.(2013·3)等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-3.(2012·5)已知{a n }为等比数列,a 4 + a 7 = 2,a 5 a 6 = 8,则a 1 + a 10 =( )A. 7B. 5C. -5D. -74.(2015·16)设S n 是数列{a n }的前项和,且11a =-,11n n n a S S ++=,则S n =________________. 5.(2013·16)等差数列的前项和为,已知,,则的最小值为____. 6.(2012·16)数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 . 7.(2014·17)已知数列{a n }满足a 1 =1,a n +1 =3 a n +1.(Ⅰ)证明1{}2n a +是等比数列,并求{a n }的通项公式;(Ⅱ)证明:123111…2n a a a +++<.8.(2011·17)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设31323log log log n n b a a a =+++L L ,求数列1{}nb 的前n 项和.§9. 三角函数1. (2014·4)钝角三角形ABC 的面积是12,AB =1,BCAC =( )A .5BC .2D .12.(2012·9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]3.(2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45- B .35- C .35D .454.(2011·11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增{}n a n n S 100S =1525S =n nS· 5 ·5. (2014·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.6.(2013·15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.7.(2011·16)在△ABC中,60,B AC ==2AB BC +的最大值为 . 8.(2015)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC ∠∠;(Ⅱ) 若AD =1,DC=2 ,求BD 和AC 的长.9.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.10. (2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ; (Ⅱ)若a =2,△ABC 的面积为3,求b ,c .§9. 立体几何1.(2015·6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51 2.(2015·9)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A .36πB .64πC .144πD .256π3.(2014·6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A .1727B .59C .1027D .134.(2014·11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( ) A .110B .25CD5.(2013·4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A .α // β且l // αB .αβ⊥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l· 6 ·6.(2013·7)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )7.(2012·7)如图,网格纸上小正方形的边长为1何体的三视图,则此几何体的体积为( ) A. 6B. 9C. 128.(2012·11)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.62B. 63C. 32D. 22 9.(2011·6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )A. B. C. D.10.(2011·15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥O -ABCD 的体积为 .11.(2015·19)如图,长方体ABCD -A 1B 1C 1D 1中AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由); (Ⅱ)求直线AF 与平面α所成角的正弦值.12.(2014·18)如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB // 平面AEC ;(Ⅱ)设二面角D -AE -C 为60º,AP =1,AD E -ACD 的体积.B. C.14. (2012·19)如图,直三棱柱ABC -A 1B 1C 1中,121AA BC AC ==,D 是棱AA 1的中点,DC 1⊥BD . (Ⅰ)证明:DC 1⊥BC ;(Ⅱ)求二面角A 1-BD -C 1的大小.§10. 排列组合、概率统计1.(2015·3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著.B .2007年我国治理二氧化硫排放显现成效.C .2006年以来我国二氧化硫年排放量呈减少趋势.D .2006年以来我国二氧化硫年排放量与年份正相关.2.(2014·5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A .0.8B .0.75C .0.6D .0.453. (2012·2)将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有( ) A. 12种B. 10种C. 9种D. 8种5.(2013·14)从个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.6. (2012·15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,n C BADC 1A 1B 11AD1B1CACEB且元件3正常工作,则部件正常工作. 设三个电子元件的使用寿命(单位:小时)服从正态分布N (1000,502),且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .7.(2015·18)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件评价相互独立,根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 8. (2014·19)某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的估计公式分别为:()()()121ˆnii i ni i tty y bt t ==--=-∑∑,ˆˆay bt =-.· 9 ·(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100, 110),则取x =105,且x =105的概率等于需求量落入[100, 110)的概率),求利润T 的数学期望. 10. (2012·18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理. (Ⅰ)若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?说明理由. 11.(2011·19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生成的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2(94)2(94102)4(102),t <y ,t <,t -⎧⎪=≤⎨⎪≥⎩,从用B 配方生产的产品中任取一件,其利润记为X (单位:元)求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)§11. 解析几何1.(2015·7)过三点A(1, 3),B (4, 2),C (1, -7)的圆交于y 轴于M 、N两点,则MN =( )A .B .8C .D .102.(2015·11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) AB .2CD· 10 ·3.(2014·10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30º的直线交C 于A , B 两点,O 为坐标原点,则△OAB 的面积为( ) ABC .6332D .944.(2013·11)设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的园过点(0,2),则C 的方程为( ) A .24y x =或28y x = B .22y x =或28y x = C .24y x =或216y x =D .22y x =或216y x =5.(2013·12)已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2-C.1(1]3D .11[,)326.(2012·4)设F 1,F 2是椭圆E : 12222=+b y a x )0(>>b a 的左右焦点,P 为直线23ax =上的一点,12PF F △是底角为30º的等腰三角形,则E 的离心率为( ) A.21B.32 C.43 D.54 7.(2012·8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=34,则C 的实轴长为( )A.2B. 22C. 4D. 88.(2011·7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) ABC .2D .39.(2014·6)设点M (0x ,1),若在圆O :221x y +=上存在点N ,使得∠OMN =45º,则0x 的取值范围是________.10.(2011·14)在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为 .11.(2015·20)已知椭圆C :2229x y m +=(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否平行四边形?若能,求此时l 的斜率;若不能,说明理由.12.(2014·20)设F 1,F 2分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a, b .13.(2013·20)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点F 的直线0x y +-=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 面积的最大值.14.(2012·20)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上的一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点. (Ⅰ)若∠BFD =90º,△ABD 面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.15.(2011·20)在平面直角坐标系xOy 中,已知点A (0, -1),B 点在直线y =-3上,M 点满足//MB OA uuu r uu r, MA AB MB BA ⋅=⋅uuu r uu u r uuu r uu r ,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值 .§12. 函数与导数1.(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(log 12)f f -+=( )A .3B .6C .9D .122.(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .3.(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U4.(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .35.(2014·12)设函数()x f x mπ=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( ) A .(,6)(6,+)-∞-∞U B .(,4)(4,+)-∞-∞U C .(,2)(2,+)-∞-∞UD .(,1)(4,+)-∞-∞U6.(2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>7.(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= 8.(2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A.C. D.xx x x9.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+10.(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=11.(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .612.(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .813.(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________.14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围. 15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001). 16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+. (Ⅰ)求)(x f 的解析式及单调区间;(Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. 18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. §13. 几何证明选讲1.(2015·22)如图,O 为等腰三角形ABC 内一点,⊙O 与△ABC 的底边BC 交于M 、N 两点,与底边上的高AD 交于点G ,且与AB ,AC 分别相切于E ,F 两点. (Ⅰ)证明:EF ∥BC ;(Ⅱ)若AG 等于⊙O 的半径,且AE=MN=求四边形EBCF 的面积.2.(2014·22)如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B 、C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E . 证明:(Ⅰ)BE = EC ;(Ⅱ)AD ·DE = 2PB 2.3.(2013·22)如图,为外接圆的切线,的延长线交直线于点,,分别为弦与弦上的点,且,B 、E 、F 、C 四点共圆.(Ⅰ)证明:是外接圆的直径;(Ⅱ)若,求过B 、E 、F 、C 四点的圆的面积与外接圆面积的比值.4.(2012·22)如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交于△ABC 的外接圆于F ,G 两点,若CF // AB ,证明: (Ⅰ)CD = BC ; (Ⅱ)△BCD ∽△GBD .5.(2011·22)如图,D ,E 分别为△ABC 的边AB ,AC 上的点,且不与△ABC 的顶点重合. 已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程x 2-14x +mn =0的两个根. (Ⅰ)证明:C 、B 、D 、E 四点共圆;(Ⅱ)若∠A =90º,且m =4,n =6,求C 、B 、D 、E 所在圆的半径.CD ABC △AB CD D E F AB AC BC AE DC AF ⋅=⋅CA ABC △DB BE EA ==ABC △G§14. 坐标系与参数方程1.(2015·23)在直角坐标系xOy 中,曲线C 1:cos sin x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:2sin ρθ=,C 3:ρθ=. (Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.2.(2014·23)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,[0,]2πθ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.3.(2013·23)已知动点,都在曲线(为参数)上,对应参数分别为与,为的中点. (Ⅰ)求的轨迹的参数方程;(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.4.(2012·23)已知曲线C 1的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ = 2. 正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA |2 + |PB |2 + |PC |2 + |PD |2的取值范围.5.(2011·23)在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是C 1上的动点,P 点满足2OP OM =uu u v uuu v,P 点的轨迹为曲线C 2.(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.P Q 2cos ,:2sin x t C y t =⎧⎨=⎩t t α=2(02)t ααπ=<<M PQ M M d αM§15. 不等式选讲1.(2015·24)设a ,b ,c ,d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd>||||a b c d -<-的充要条件.2.(2014·24)设函数1()||||(0)f x x x a a a=++->.(Ⅰ)证明:f (x ) ≥ 2;(Ⅱ)若f (3) < 5,求a 的取值范围.3.(2013·24)设均为正数,且.证明:(Ⅰ);(Ⅱ).4.(2012·24)已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x ) ≥ 3的解集;(Ⅱ)若f (x ) ≤ | x -4 |的解集包含[1, 2],求a 的取值范围.5.(2011·24)设函数()||3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集; (Ⅱ)若不等式()0f x ≤的解集为{|1}x x ≤-,求a 的值.参 考 答 案§1. 集合及其运算1. 【答案:A 】解析:由已知得,故,故选A.2.【答案:D 】解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}M N =.3.【答案:A 】解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩Na b c 、、1a b c ++=13ab bc ca ++≤2221a b c b c a ++≥{}21B x x =-<<={0, 1, 2},故选A. 4.【答案:D 】解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.§2. 复数计算1. 【答案:B 】解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B.2.【答案:A 】解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.3.【答案:A 】解析:由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i-+=-1+i . 4.【答案:C 】解析:经计算2221,||(1)21z i z z i i i==--∴==---+ =,复数z 的共轭复数为1i -+,z 的虚部为1-,综上可知P 2,P 4正确.5.【答案:C 】解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.§3. 简易逻辑5. 【答案:A 】解析:由||1+a b 得2[0,)3πθ⇒∈.由||1-==a b 得(,]3πθπ⇒∈,故选A.§4. 平面向量1.【答案:A 】解析:2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=.2. 【答案:】 解析:因为向量a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k kλ=⎧⎨=⎩,所以12λ=.1cos 2θ>-1cos 2θ<123.【答案:2】解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE uu u r =(1,2),BD uu u r=(-2, 2),所以=2AE BD ⋅uu u r uu u r.4.【答案:解析:由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+or r r r r r r r r r r r24|||10b b =-+=r r ,解得||b =r.§5. 程序框图1. 【答案:B 】解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .2.【答案:D 】解析:输入的x ,t 均为2.判断12≤?是,1221M =⋅=,235S =+=,112k =+=;判断22≤?是,2222M =⋅=,257S =+=,213k =+=,判断32≤?否,输出7S =.3.【答案:B 】解析:由程序框图知,当k =1,S =0,T =1时,T =1,S =1;当k =2时,12T =,1=1+2S ; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯; … … … … ; 当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++, k 增加1变为11,满足k >N ,输出S ,故选B . 4.【答案:C 】解析:由程序框图判断x >A 得A 应为a 1,a 2,…,a N 中最大的数,由x <B 得B 应为a 1,a 2,…,a N 中最小的数. 5. 【答案:B 】解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B.§6. 线性规划1.【答案:B 】解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8. 2.【答案:B 】解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1, -2a ),所以2-2a =1,解得12a =. 故选B.3. 【答案:】 解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,2D ,则z =x +y 的最大值为32.4.【答案:[3,3]-】解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-. 5. 【答案:-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩(4,-5)时,min 6z =-.§7. ※二项式定理1.【答案:D 】解析:因为(1+x )5的二项展开式的通项为5C r r x (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 故选D. 2. 【答案:D 】32l 0 l 13x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=052CA BA (1, -2a )解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1). 故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D .3. 【答案:3】解析:由已知得,故的展开式中x 的奇数次幂项分别为,,,,,其系数之和为,解得. 4.【答案:12】 解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =. §8. 数列1. 【答案:B 】解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42,故选B.2.【答案:C 】解析:由S 3=a 2+10a 1,得,a 1+a 2+a 3=a 2+10a 1即,a 3=9a 1,亦即a 1q 2=9a 1,解得q 2=9. ∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19.3.【答案:D 】解析:472∵a a +=,56478a a a a ==-,4742a a ∴==-,或4724a a =-=,,14710∵,,,a a a a 成等比数列,1107a a ∴+=-.4. 【答案:】解析:由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以. 5.【答案:-49】解析:设数列{a n }的首项为a 1,公差为d ,则S 10=1109102a d ⨯+=10a 1+45d=0①,S 15=11514152a d ⨯+=15a 1+105d =25②,联立①②,得a 1=-3,23d =,所以S n 2(1)211032333n n n n n -=-+⨯=-. 令f (n )=nS n ,则32110()33f n n n =-,220()3f n n n '=-. 令f ′(n )=0,得n =0或203n =. 当203n >时,f ′(n )>0,200<<3n 时,f ′(n )<0,所以当203n =时,f (n )取最小值,而n ∈N +,则f (6)=-48,f (7)=-49,所以当n =7时,f (n )取最小值-49.6.【答案:1830】4234(1)1464x x x x x +=++++4()(1)a x x ++4ax 34ax x 36x 5x 441+6+1=32a a ++3a =1n-111n n n n n a S S S S +++=-=⋅1n n S S +⋅1111n nS S +=--1n S ⎧⎫⎨⎬⎩⎭1-1-11(1)n S n n =---=-1n S n=-解析:由1(1)21nn n a a n ++-=-得2212124341①②k k k ka a k a a k -+-=-⎧⎪⎨+=-⎪⎩L L ,由②-①得, 21212k k a a +-+=③ 由①得,2143656059()()()()奇偶S S a a a a a a a a -=-+-+-++-L (1117)30159********+⨯=++++==L .由③得,3175119()()()奇S a a a a a a =++++++5957()21530a a ++=⨯=L , 所以60()217702301830奇奇奇偶偶S S S S S S =+=-+=+⨯=.7.解析:(Ⅰ)证明:∵131n n a a +=+,∴1113()22n n a a ++=+,即:112312n n a a ++=+,又11322a +=,∴1{}2n a +是以32为首项,3为公比的等比数列.∴113322n n a -+=⋅,即312n n a -=.(Ⅱ)证明:由(Ⅰ)知312n n a -=,∴11231()3133n n n n n a -=≤=∈-N*, ∴21211()11111131331[1()]133323213nn n n a a a -++⋅⋅⋅+≤+++⋅⋅⋅+==-<- 故:1211132n a a a ++⋅⋅⋅+< 8.解析:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =. 由条件可知a >0,故13q =. 由12231a a +=得12231a a q +=,所以113a =. 故数列{a n }的通项式为13n n a =.(Ⅱ )31323(1)log log log =(12)2n n n n b a a a n +=+++-+++=-, 故12112()(1)1n b n n n n =-=--++,121111111122((1)()())22311nn b b b n n n +++=--+-++-=-++, 所以数列1{}nb 的前n 项和为21nn-+. §9. 三角函数1.【答案:B 】解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴s i n B =,即45B =或135.又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =2.【答案:A 】解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.3. 【答案:B 】解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. 4. 【答案:A 】解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴=+, 故选A. 5.【答案:1 】解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x xϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.6.【答案:】 解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=sin θsin θ+cos θ=. 7.【答案:解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=,022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+,2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是.8.解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,2DC=,所以BD ABD ∆和ADC ∆中,由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.9.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=. (Ⅱ)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos4a c ac π-. 又a 2+c 2≥2ac ,故ac ≤当且仅当a =c 时,等号成立.因此△ABC.10.解析:(Ⅰ)由cos sin 0a C C b c +--=及正弦定理可得sin cos sin A C A Csin sin 0B C --=,sin cos sin sin()sin 0A C A C A C C -+-=sin cos sin A C A C - sin 0C -=,sin 0C >Q,cos 10A A --=,2sin()106A π∴--=,1sin()62A π-=,0A π<<Q ,5666A πππ∴-<-<,66A ππ∴-=,3A π∴=.(Ⅱ)ABC S =V Q1sin 24bc A bc ∴==4bc ∴=,2,3a A π==Q , 222222cos 4abc bc A b c bc ∴=+-=+-=,228b c ∴+=,解得2b c ==.§10. 立体几何1. 【答案:D 】解析:由三视图得,在正方体ABCD -A 1B 1C 1D 1中,截去四面体A -A 1B 1D 1,如图所示,设正方体棱长为,则,故剩余几何体体积为,所以截去部分体积与剩余部分体积的比值为,故选D.2. 【答案:C 】解析:如图所示,当点C 位于垂直于面的直径端点时,三棱锥的体积最大,设球O 的半径为R ,此时,故R=6,则球O 的表面积为,故选C .3.【答案:C 】解析:原来毛坯体积为π·32·6=54π (cm 2),由三视图得,该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,所以该零件的体积为:π·32·2+π·22·4=34π (cm 2),则切削掉部分的体积为54π-34π =20π(cm 2),所以切削掉部分的体积与原来毛a 11133111326A AB D V a a -=⨯=3331566a a a -=AOB O ABC -2311136326O ABC C AOB V V R R R --==⨯⨯==24144S R ππ==1坯体积的比值为20105427ππ=. 4.【答案:C 】解析:取BC 的中点P ,连结NP 、AP , ∵M ,N 分别是A 1B 1,A 1C 1的中点,∴四边形NMBP 为平行四边形,∴BM //PN ,∴所求角的余弦值等于∠ANP 的余弦值,不妨令BC =CA =CC 1=2,则AN =APNP =,∴222||||||cos 2||||AN NP AP ANP AN NP +-∠=⨯⋅10=. 【另解】如图建立坐标系,令AC =BC =C 1C =2,则A (0, 2, 2),B (2, 0, 2),M (1, 1, 0),N (0, 1, 0),(1,1,2)(0,1,2),BM AN ∴=--=--,cos ||||6BM AN θBM AN ⋅===⋅5.【答案:D 】解析:因为m ⊥α,l ⊥m ,l ⊄α,所以l ∥α. 同理可得l ∥β. 又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D. 6.【答案:A 】解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为右图,则它在平面zOx 上的投影即正视图为右图,故选A. 7.【答案:B 】解析:由三视图可知,此几何体为底面是斜边为6的等腰直角三角形(俯视图),高为3的三棱锥,故其体积为113932V =⨯⨯=.8.【答案:A 】解析:易知点S 到平面ABC 的距离是点O 到平面ABC 的距离的2倍.显然O -ABC 是棱长为113O ABC V -==2S ABC O ABC V V --=. 9. 【答案:D 】解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的. 故选D.10.【答案:解析:设ABCD 所在的截面圆的圆心为M ,则AM=,OM22=,1623O ABCD V -=⨯⨯=11.解析:(Ⅰ)交线围成的正方形EHGF 如图:ACB1A1C 1BNMP(Ⅱ)作EM AB ⊥,垂足为M ,则14AM AE ==,18EM AA ==因为EHGF 为正方形,所以EH EF =10BC ==,于是6MH ==,所以10AH =,以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所以的空间直角坐标系D xyz -,则(10,0,0)A ,(10,10,0)H ,(10,4,8)E ,(0,4,8)F ,(10,0,0)FE =,(0,6,8)HE =-,设(,,)n x y z =是平面EHGF 的法向量,则00n FE n HE ⎧⋅=⎪⎨⋅=⎪⎩,即100680x y z =⎧⎨-+=⎩,所以可取(0,4,3)n =,又(10,4,8)AF =-,故||4|cos ,|||||n AFn AF n AF ⋅<>==AF 与平面EHGF 所成角的正弦值为15. 12.解析:(Ⅰ)证明:连结BD 交AC 于点O ,连结OE .∵底面ABCD 为矩形,∴点O 为BD 的中点,又E 为PD 的中点,∴//OE PB ,∵OE ⊂平面AEC ,PB ⊄平面AEC ,∴PB//平面AEC .(Ⅱ)以A 为原点,直线AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系,设AB a =,则D ,(0,0,0)A,1)2E ,(C a ,∴1(0,)2AE =,(AC a=,设(,,)n x yz =是平面AEC 的法向量,则310220n AE y zn AC ax⎧⋅=+=⎪⎨⎪⋅=+=⎩,解得:yx z ⎧=⎪⎨⎪=⎩,令x =(3,,)n a =-,又∵(,0,0)AB a =是平面AED 的一个法向量,∴1|cos ,|cos602AB n <>==, 解得32a =,∴111||||||322E A C D V A D C D A P -=⨯⨯⨯⨯113132228=⨯⨯⨯=.13.解析:(Ⅰ)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1 // 平面A 1CD . (Ⅱ)由AC =CB =2AB 得,AC ⊥BC . 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz . 设CA =2,PB CDEA则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则100CD CA ⎧⋅=⎪⎨⋅=⎪⎩n n ,即11110,220.x y x z +=⎧⎨+=⎩可取n =(1, -1, -1).同理,设m 是平面A 1CE 的法向量,则100CE CA ⎧⋅=⎪⎨⋅=⎪⎩m m ,可取m =(2, 1, -2).从而cos 〈n ,m〉=||||3=·n m n m ,故sin 〈n ,m即二面角D -A 1C -E14.解析:(Ⅰ) 证明:设112A CBC A Aa ===,直三棱柱111C B A ABC -,1DC DC ∴==,12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥. 又1DC BD ⊥Q ,1DC DC D =I ,1DC ∴⊥平面BDC . BC ⊂Q 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC,1BC =,又已知BD DC ⊥1,BD ∴=. 在Rt ABD △中,BD =,,90AD a DAB =∠=o,AB ∴=. 222AC BC AB ∴+=,AC BC ∴⊥.<法一>取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD ,已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角. 在1Rt C DE △中,1111s i n 2C E C D E C D ∠===,130C DE ∴∠=. 即二面角11C BD A --的大小为30.<法二>以点C 为坐标原点,为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B a D a a C a . (),,DB a a a =--,()1,0,DC a a =-,设平面1DBC 的法向量为1111(,,)n x y z =r ,则11111100n D B a x a y a z n DC a x a z ⎧⋅=-+-=⎪⎨⋅=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取1(1,2,1)n =r .同理,可求得平面1DBA 的一个法向量2(1,1,0)n =r . 设1n r与2n r的夹角为θ,则1212cos ||||6n n n n θ⋅===⋅⨯, 30θ∴=. 由图可知,二面角的大小为锐角,故二面角11C BD A --的大小为30.§11. 排列组合、概率统计1. 【答案:D 】解析:由柱形图可知,从2006年以来,我国二氧化硫排放量呈下降趋势,所以二氧化硫排放量与年份负相关,故选D.2.【答案:A 】解析:设A =“某一天的空气质量为优良”,B =“随后一天的空气质量为优良”,C BADC 1A 1B 1。

近五年全国卷理科数学概率与统计(大题)

近五年全国卷理科数学概率与统计(大题)

12丄全国普通高等学校招生统一考试理科数学18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。

(1 )若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n (单位:枝,n N)的函数解析式。

(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率。

(i )若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由。

13」全国普通高等学校招生统一考试理科数学(19 )一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n =3 ,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n = 4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验•假设这批产品的优质品率1为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立•2(I)求这批产品通过检验的概率;(n)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X的分布列及数学期望。

13.II全国普通高等学校招生统一考试理科数学(19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。

根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示。

经销商为下一个销售季度购进了130t该农产品。

以X (单位:t, 100空X <150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润。

高考数学理科全国一卷及详解答案

高考数学理科全国一卷及详解答案

理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3.全部答案在答题卡上完成,答在本试题上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z满足1+z1z-=i,则|z|=(A)1 (B(C(D)2 (2)sin20°cos10°-con160°sin10°=(A)(B(C)12-(D)12(3)设命题P:∃n∈N,2n>2n,则⌝P为(A)∀n∈N, 2n>2n(B)∃ n∈N, 2n≤2n(C)∀n∈N, 2n≤2n(D)∃ n∈N, 2n=2n(4)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A ) (B ) (C ) (D )(5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF <u u u u r u u u u rg ,则0y 的取值范围是(A )(, (B )(,(C )(3-,3) (D )(3-,3)(6)《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放斛的米约有斛 斛 斛 斛(7)设D 为V ABC 所在平面内一点3BC CD =u u u r u u u r,则(A )1433AD AB AC =-+u u u r u u ur u u u r (B) 1433AD AB AC =-u u u r u u u r u u u r(C )4133AD AB AC =+u u u r u u u r u u u r (D) 4133AD AB AC =-u u u r u u u r u u u r(8)函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为(A)13(,),44k k k Z ππ-+∈ (B) 13(2,2),44k k k Z ππ-+∈ (C) 13(,),44k k k Z -+∈ (D) 13(2,2),44k k k Z -+∈(9)执行右面的程序框图,如果输入的t=,则输出的n=(A )5 (B )6 (C )7 (D )8(10)25()x x y ++的展开式中,52x y 的系数为(A )10 (B )20 (C )30 (D )60(11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011
(19)(本小题满分12分)
某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B 配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:
(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为
从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)
解:
(Ⅰ)由实验结果知,用A配方生产的产品中优质的平率为228
=0.3
100
+
,所
以用A配方生产的产品的优质品率的估计值为0.3。

由实验结果知,用B配方生产的产品中优质品的频率为3210
0.42
100
+
=,所以
用B配方生产的产品的优质品率的估计值为0.42
(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[)[)[]
90,94,94,102,102,110
的频率分别为0.04,,054,0.42,因此
P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42, 即X 的分布列为
X 的数学期望值EX=2×0.04+2×0.54+4×0.42=2.68 2012
18.(本小题满分12分) 某花店每天以5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;
(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;
(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
【解析】(1)当16n ≥时,16(105)80y =⨯-=
当15n ≤时,55(16)1080y n n n =--=-
得:1080(15)
()80
(16)n n y n N n -≤⎧=∈⎨
≥⎩
(2)(i )
X 可取60,70,80 (60)0.1,(70)0.2,(80)0.7P X P X P X ====== X 的分布列为
600.1700.2800.776EX =⨯+⨯+⨯= 222160.160.240.744DX =⨯+⨯+⨯=
(ii )购进17枝时,当天的利润为
(14535)0.1(15525)0.2(16515)0.161750.5476.4y =⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯+⨯⨯=
76.476> 得:应购进17枝
2013
19.(2013课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.
假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为
1
2
,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.
解:(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A ,依题意有A =(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以
P (A )=P (A 1B 1)+P (A 2B 2)
=P (A 1)P (B 1|A 1)+P (A 2)P (B 2|A 2)
=41113161616264
⨯+⨯=. (2)X 可能的取值为400,500,800,并

P (X =400)=4111
1161616
--=,P (X =500)=116,P (X =800)=1
4
.
EX =1
400+500+80016164
⨯⨯⨯=506.25.
2014
18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(I )求这500件产品质量指标值的样本平均数x 和样本方差2
s (同一组数据用该区间的中点值作代表);
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2
(,)N μδ,其
中μ近似为样本平均数x ,2
δ近似为样本方差2s . (i )利用该正态分布,求(187.8212.2)P Z <<;
(ii )某用户从该企业购买了100件这种产品,学科网记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .
若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,
(22)P Z μδμδ-<<+=0.9544.
【解析】:(Ⅰ) 抽取产品质量指标值的样本平均数x 和样本方差2s 分别为
1700.021800.091900.222000.33
2100.242200.082300.02200
x =⨯+⨯+⨯+⨯+⨯+⨯+⨯= ()()()()()()222
22
2
2
300.02200.09100.2200.33
100.24200.08300.02
s =-⨯+-⨯+-⨯+⨯+⨯+⨯+⨯
150= …………6分
(Ⅱ)(ⅰ)由(Ⅰ)知Z ~(200,150)N ,从而
(187.8212.2)P Z <<=(20012.220012.2)0.6826P Z -<<+= ………………9分
(ⅱ)由(ⅰ)知,一件产品中质量指标值为于区间(187.8,212.2)的概率为0.6826 依题意知(100,0.6826)X B ,所以1000.682668.26EX =⨯= ………12分
2015 (19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x1和年销售量y1(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。

表中w 1 ,w =
1
8
1
1
1x w +∑
(Ⅰ)根据散点图判断,y=a+bx 与y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;
(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。

根据(Ⅱ)的结果回答下列问题:
(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii ) 年宣传费x 为何值时,年利率的预报值最大? 附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v=αβ+u 的斜率和截距的最小二乘估计分别为:。

相关文档
最新文档