(完整)1.3.2函数的极值与导数(上课)

合集下载

高中数学(新课标)选修2课件1.3.2函数的极值与导数

高中数学(新课标)选修2课件1.3.2函数的极值与导数

知识点一 极值点与极值
1.极小值与极小值点 如图,若函数 y=f(x)在点 x=a 的函数值 f(a)比它在点 x=a 附 近其他点的函数值都小,f′(a)=0;而且在点 x=a 附近的左侧 _f_′__(x_)_<_0_,右侧_f′__(_x_)>__0_,则把点 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值.
类型三 函数极值的综合应用
例 3 已知函数 f(x)=13x3-12ax2,a∈R. (1)当 a=2 时,求曲线 y=f(x)在点(3,f(3))处的切线方程; (2)讨论 f(x)的单调性并判断有无极值,有极值时求出极值.
【解析】 (1)由题意 f′(x)=x2-ax, 所以,当 a=2 时,f(3)=0,f′(x)=x2-2x, 所以 f′(3)=3, 因此,曲线 y=f(x)在点(3,f(3))处的切线方程是 y=3(x-3), 即 3x-y-9=0.
∴f′(x)=32x2-32.
由题意知,x=±1 是 f′(x)=0 的根.
根据 x=±1 列表分析 f′(x)的符号,f(x)的单调性和极值点.
x (-∞,-1) -1 (-1,1)
1
(1,+∞)
f′(x)

0

0

f(x)
极大值 1
极小值-1
由上表可以看出,
当 x=-1 时,函数有极大值,且 f(-1)=1;
解析:由极小值点的定义,知极小值点左右两侧的导函数值是 左负右正,又函数 f(x),x∈R 有唯一的极值点,所以当 x∈(-∞, 1)时,f′(x)≤0;当 x∈(1,+∞)时,f′(x)≥0.
答案:C
2.下图是函数 y=f(x)的导函数 y=f′(x)的图象,给出下列命 题:

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2
复习课件
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选 修2-2
1.3.2 函数的极值与导数
目标定位
重点难点
1.了解函数在某点取得极值的必要条 重点:求函数极值的
件和充分条件 方法和步骤
2.理解极大值和极小值的概念 难点:函数极值的概
3.掌握求可导函数极大值和极小值的 念的理解
设f(x)在x0处连续且f′(x0)=0,判别f(x0)是极大(小)值的方 法:
(1)若在x0两侧f′(x)符号相同,则x0不是f(x)的极值点; (2)若在x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)是极 大值;
(3)若在x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)是极 小值.
解得ab==4-,11 或ab==3-. 3, 故a+b=-7或a+b=0.
【错因分析】可导函数在一点的导数值为0是函数在这 一点取得极值的必要条件,而非充分条件,本题忽略了对所得 两组解进行检验,从而出现了错误.
【正解】(接错解)当a=4,b=-11时, f(x)=x3+4x2-11x+16, 得f′(x)=3x2+8x-11=(3x+11)(x-1). 当x∈-131,1时,f′(x)<0; 当x∈(1,+∞)时,f′(x)>0.
(3) 如 果 f′(x) 在 点 x0 的 左 右 两 侧 符 号 不 变 , 则 f(x0) _不__是__极__值___.
1.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1
B.b<0
C.b>0 【答案】A
D.b<12
2.已知函数y=x3-3x+2,则( ) A.y无极小值,也无极大值 B.y有极小值0,但无极大值 C.y有极小值0,极大值4 D.y有极大值4,但无极小值 【答案】C

1.3.2函数的极值与导数(教师版)

1.3.2函数的极值与导数(教师版)

1.3.2函数的极值与导数知识点一函数极值的概念1.极小值点与极小值如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.极大值点与极大值如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧f′(x)>0,右侧f′(x)<0,则把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.思考(1)可导函数f(x)在点x0处取极值的充要条件是什么?(2)函数在某个区间上有多个极值点,那么一定既有极大值也有极小值吗?答案(1)可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即“函数y=f(x)在一点的导数值为零是函数y=f(x)在这点取极值的必要条件,而非充分条件”.可导函数f(x)在点x0处取得极值的充要条件是f′(x0)=0,且在x0左侧和右侧f′(x)符号不同.如果在x0的两侧f′(x)符号相同,则x0不是f(x)的极值点.(2)不一定.知识点二求可导函数f(x)的极值方法与步骤1.求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.求可导函数f(x)的极值的步骤(1)确定函数的定义区间,求导数f′(x).(2)求f(x)的拐点,即求方程f′(x)=0的根.(3)利用f′(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值.思考 可导函数f (x )若存在极值点x 0,则x 0能否为相应区间的端点吗? 答案 不能.题型一 求函数的极值例1 求函数f (x )=13x 3-4x +4的极值.解 由题意可知f ′(x )=x 2-4. 解方程x 2-4=0,得x 1=-2,x 2=2. 由f ′(x )>0得x <-2或x >2; 由f ′(x )<0得-2<x <2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知:当x =-2时,f (x )有极大值f (-2)=283.当x =2时,f (x )有极小值f (2)=-43.反思与感悟 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格.检测f ′(x )在方程根左右两侧的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值.跟踪训练1 求下列函数的极值. (1)y =2x 3+6x 2-18x +3;(2)y =2x +8x.解 (1)函数的定义域为R .y ′=6x 2+12x -18=6(x +3)(x -1), 令y ′=0,得x =-3或x =1.当x 变化时,y ′,y 的变化情况如下表:从上表中可以看出,当x =-3时,函数取得极大值,且y 极大值=57. 当x =1时,函数取得极小值,且y 极小值=-7. (2)函数的定义域为(-∞,0)∪(0,+∞), y ′=2-8x 2=2⎝⎛⎭⎫1-4x 2=2⎝⎛⎭⎫1-2x ⎝⎛⎭⎫1+2x , 令y ′=0,得x =-2或x =2.当x <-2时,y ′>0;当-2<x <0时,y ′<0. 即x =-2时,y 取得极大值,且极大值为-8. 当0<x <2时,y ′<0;当x >2时,y ′>0. 即x =2时,y 取得极小值,且极小值为8. 题型二 利用函数极值确定参数的取值范围(或值)例2 已知函数f (x )=6ln x -ax 2-8x +b (a ,b 为常数),且x =3为f (x )的一个极值点. (1)求a 的值;(2)求函数f (x )的单调区间;(3)若y =f (x )的图象与x 轴正半轴有且只有3个交点,求实数b 的取值范围. 解 (1)∵f ′(x )=6x -2ax -8,∴f ′(3)=2-6a -8=0,解得a =-1.(2)函数f (x )的定义域为(0,+∞). 由(1)知f (x )=6ln x +x 2-8x +b .∴f ′(x )=6x +2x -8=2(x 2-4x +3)x .由f ′(x )>0可得x >3或0<x <1, 由f ′(x )<0可得1<x <3(x <0舍去).∴函数f (x )的单调递增区间为(0,1)和(3,+∞),单调递减区间为(1,3).(3)由(2)可知函数f (x )在(0,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增. 且当x =1和x =3时,f ′(x )=0.∴f (x )的极大值为f (1)=6ln1+1-8+b =b -7, f (x )的极小值为f (3)=6ln3+9-24+b =6ln3+b -15. ∵当x 充分接近0时,f (x )<0,当x 充分大时,f (x )>0,∴要使f (x )的图象与x 轴正半轴有且仅有三个不同的交点,只需⎩⎪⎨⎪⎧f (1)=b -7>0,f (3)=b +6ln3-15<0.∴b 的取值范围是7<b <15-6ln3.反思与感悟 解决参数问题时,要结合函数的图象,同时准确理解函数极值的应用. 跟踪训练2 设函数f (x )=a3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4,若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.解 因为a >0,所以“f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点”等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.由f ′(x )-9x =0(即ax 2+(2b -9)x +c =0)的两实数根分别为1,4,可得⎩⎪⎨⎪⎧9-2b a =5,c a =4,故2b=9-5a ,c =4a .所以对于一元二次方程ax 2+2bx +c =0,Δ=(2b )2-4ac =9(a -1)(a -9).不等式ax 2+2bx +c ≥0在(-∞,+∞)内恒成立等价于⎩⎪⎨⎪⎧a >0,Δ=9(a -1)(a -9)≤0,解得1≤a ≤9.易验证a =1与a =9均满足题意,故a 的取值范围是[1,9].题型三 函数极值的综合应用例3 已知函数f (x )=-13x 3+a2x 2-2x (a ∈R ),若过点⎝⎛⎭⎫0,-13可作函数y =f (x )图象的三条不同切线,求实数a 的取值范围.解 设点P (t ,-13t 3+a2t 2-2t )是函数y =f (x )图象上的切点,则过点P 的切线的斜率k =f ′(t )=-t 2+at -2,所以过点P 的切线方程为y +13t 3-a2t 2+2t =(-t 2+at -2)(x -t ), 因为点⎝⎛⎭⎫0,-13在该切线上, 所以-13+13t 3-a2t 2+2t =(-t 2+at -2)(0-t ),即23t 3-12at 2+13=0. 若过点⎝⎛⎭⎫0,-13可作函数y =f (x )图象的三条不同 切线,则方程23t 3-12at 2+13=0有三个不同的实数根.令g (t )=23t 3-12at 2+13,则函数y =g (t )的图象与坐标轴横轴有三个不同的交点.令g ′(t )=2t 2-at =0,解得t =0或t =a 2.因为g (0)=13,g (a 2)=-124a 3+13,所以必须有g ⎝⎛⎭⎫a 2=-124a 3+13<0,即a >2,使函数图象与坐标轴横轴有三个不同的交点. 所以实数a 的取值范围为(2,+∞).反思与感悟 求出函数的所有极值,有利于我们整体把握函数图象的特征,也就为我们证明有关不等式、解决某些方程根的个数等问题提供了有力的依据,因而函数的极值在中学数学中应用广泛,是高考命题的热点.跟踪训练3 已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ). (1)求函数f (x )的单调递增区间;(2)若对任意a ∈[3,4],函数f (x )在R 上都有三个零点,求实数b 的取值范围.解 (1)因为f (x )=-x 3+ax 2+b , 所以f ′(x )=-3x 2+2ax =-3x (x -2a3).当a =0时,f ′(x )=-3x 2≤0,函数f (x )没有单调递增区间;当a >0时,令f ′(x )>0,即-3x (x -2a 3)>0,解得0<x <2a 3,故函数f (x )的单调递增区间为(0,2a3);当a <0时,令f ′(x )>0,即-3x (x -2a 3)>0,解得2a 3<x <0,故函数f (x )的单调递增区间为(2a3,0).(2)由(1)知,a ∈[3,4]时,函数f (x )的单调递增区间为(0,2a 3),单调递减区间为(-∞,0)和(2a3,+∞).所以f (x )极大值=f (2a 3)=4a 327+b ,f (x )极小值=f (0)=b . 由于对任意a ∈[3,4],函数f (x )在R 上都有三个零点, 所以⎩⎪⎨⎪⎧f (x )极大值>0,f (x )极小值<0,即⎩⎪⎨⎪⎧4a 327+b >0,b <0,解得-4a 327<b <0.因为对任意a ∈[3,4],b >-4a 327恒成立,所以b >(-4a 327)max =-4×3327=-4.所以实数b 的取值范围为(-4,0).因忽视对所得参数进行检验而致误例4 若函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,试求a ,b 的值. 错解 由导数公式表和求导法则得, f ′(x )=3x 2+2ax +b ,依题意得⎩⎪⎨⎪⎧ f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧a 2+a +b =9,2a +b =-3,解得⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.错因分析 由于函数在一点的导数值为0是函数在这点取得极值的必要条件,而非充分条件.因此,本题在解答时很容易忽略对得出的两组解进行检验而出错. 正解 由导数公式表和求导法则得, f ′(x )=3x 2+2ax +b ,依题意得⎩⎪⎨⎪⎧ f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧a 2+a +b =9,2a +b =-3,解得⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.但由于当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故f (x )在R 上单调递增,不可能在x =1处取得极值,所以⎩⎪⎨⎪⎧a =-3,b =3不符合题意,应舍去.而当⎩⎪⎨⎪⎧a =4,b =-11时,经检验知符合题意,故a ,b 的值分别为4,-11.防范措施 根据极值条件求参数的值的问题中,在得到参数的两组解后,应按照函数在这一点处取得极值所对应的条件进行检验,考查每一组解所对应的函数在该点处是否能取得极值,从而进行取舍.1.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( ) A.(2,3) B.(3,+∞) C.(2,+∞) D.(-∞,3)答案 B解析 ∵f ′(x )=6x 2+2ax +36,且在x =2处有极值,∴f ′(2)=0,24+4a +36=0,a =-15,∴f ′(x )=6x 2-30x +36=6(x -2)(x -3),由f ′(x )>0得x <2或x >3.2..函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点 答案 C解析 在x =x 0的两侧,f ′(x )的符号由正变负,则f (x 0)是极大值;f ′(x )的符号由负变正,则f (x 0)是极小值,由图象易知有两个极大值点,两个极小值点.3.已知f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则a 的取值范围为( ) A.-1<a <2 B.-3<a <6 C.a <-1或a >2 D.a <-3或a >6 答案 D解析 f ′(x )=3x 2+2ax +(a +6),因为f (x )既有极大值又有极小值,那么Δ=(2a )2-4×3×(a +6)>0,解得a >6或a <-3.4.设函数f (x )=6x 3+3(a +2)x 2+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实数a 的值为________. 答案 9解析 f ′(x )=18x 2+6(a +2)x +2a .由已知f ′(x 1)=f ′(x 2)=0,从而x 1x 2=2a18=1,所以a =9.5.已知函数f (x )=x -a x +1·e x在定义域内有极值点,则实数a 的取值范围是____________.答案 (-∞,-1)∪(3,+∞)解析 f ′(x )=x +1-x +a (x +1)2·e x +x -a x +1·e x =x 2+(1-a )x +1(x +1)2·e x .因为x 2+(1-a )x +1=0有两个不相等且不等于-1的实数根,所以(1-a )2-4>0且a ≠-1,解得a <-1或a >3. 6.如果函数y =f (x )的导函数的图象如图所示,给出下列判断:①函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增;②函数y =f (x )在区间⎝⎛⎭⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增;④当x =2时,函数y =f (x )有极小值; ⑤当x =-12时,函数y =f (x )有极大值.则上述判断正确的是________.(填序号)答案 ③解析 函数的单调性由导数的符号确定,当x ∈(-∞,-2)时,f ′(x )<0,所以f (x )在(-∞,-2)上为减函数,同理f (x )在(2,4)上为减函数,在(-2,2)上是增函数,在(4,+∞)上为增函数,所以可排除①和②,可选择③.由于函数在x =2的左侧递增,右侧递减,所以当x =2时,函数有极大值;而在x =-12的左右两侧,函数的导数都是正数,故函数在x =-12的左右两侧均为增函数,所以x =-12不是函数的极值点.排除④和⑤.1.求函数极值的基本步骤:(1)求函数定义域;(2)求f ′(x );(3)解f ′(x )=0;(4)列表(f ′(x ),f (x )随x 的变化情况);(5)下结论.2.函数的极值的应用:(1)确定参数的值,一般用待定系数法;(2)判断方程根的情况时,利用导数研究函数单调性、极值,画出函数大致图象,利用数形结合思想来讨论根的情况.。

高中数学1.3.2函数的极值与导数优秀课件

高中数学1.3.2函数的极值与导数优秀课件
返回
本课结束
答案
(1)极小值点与极小值 函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都 小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0.那么把点a 叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值. (2)极大值点与极大值 函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都 大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0.那么把点b 叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值极.大值点 、
极小值点 统称为极值点,极大值和极小值统称为极值.
答案
知识点二 求函数y=f(x)极值的方法
解方程f′(x)=0,当f′(x0)=0时, (1)如果在x0附近的左侧f′(x) > 0,右侧f′(x) < 0,那么f(x0)是极大值. (2)如果在x0附近的左侧f′(x) < 0,右侧f′(x) > 0,那么f(x0)是极小值.
解析答案
类型三 函数极值的综合应用 例3 设函数f(x)=x3-6x+5,x∈R. (1)求函数f(x)的单调区间和极值; 解 f′(x)=3x2-6,令f′(x)=0, 解得 x1=- 2,x2= 2.
因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0. 所以,f(x)的单调递增区间为(-∞,- 2)和( 2,+∞);
第一章 §1.3 导数在研究函数中的应用
函数的极值与导数
学习目标
1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的 关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.

1.3.2 函数的极值与导数

1.3.2 函数的极值与导数

(2)解方程f'(x)=0,得方程的根x0;
(3)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x0)是极大值;如
果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么f(x0)是极小值.
【做一做2】 函数f(x)=x3-3x的极大值等于
,极小值等

.
解析:由题意知f'(x)=3x2-3,令f'(x)=3x2-3=0得x=±1,当x∈(-∞,-1)时
1.3.2 函数的极值与导数
-1-
学习目标
思维脉络
1.了解函数的极值、极值点的概念. 2.理解函数在某点取得极值的条件. 3.会利用导数求函数的极值.
课前篇自主预习
【思考1】如何画出函数f(x)=2x3-3x2-36x+16的大致图象. 答案:f'(x)=6x2-6x-36=6(x2-x-6)=6(x-3)(x+2).由f'(x)>0得x<-2或 x>3,
是减函数,而在区间(1,+∞)上是增函数,所以函数f(x)在x=1处取得极
小值,④正确. 答案:①②④
探究一
探究二
探究三
思想方法 当堂检测
课堂篇探究学习
反思感悟由函数图象研究极值的方法 这类函数图象问题是利用导数研究函数极值问题中较为常见的一 种题型,解答这类问题的关键是选准出发点,对于导函数的图象,我 们重点考查其在哪个区间上为正,哪个区间上为负,在哪个点处与x 轴相交,在该点处,导函数的值是怎样变化的,若是由正值变为负值, 则在该点处取得极大值;若由负值变为正值,则在该点处取得极小 值.
=

1.3.2函数的极值与导数课件人教新课标

1.3.2函数的极值与导数课件人教新课标

重难聚焦
(6)若f(x)在区间(a,b)内有极值,则f(x)在(a,b)内一定不是单调函数, 即在某区间内单调的函数没有极值.
(7)如果函数f(x)在[a,b]上有极值,那么它的极值点的散布是有规 律的.相邻两个极大值点之间必有一个极小值点,同样,相邻两个极 小值点之间必有一个极大值点.一般地,当函数f(x)在[a,b]上连续且 有有限个极值点时,函数f(x)在[a,b]上的极大值点、极小值点是交 替出现的.
错因分析:函数在一点处的导数值为0是函数在这点取得极值的 必要条件,而非充分条件.错解中忽略了对得出的两组解进行检验 而出错.一般地,根据极值条件求参数值的问题时,在得到参数的两 组解后,应按照函数在这一点处取得极值所对应的条件进行检验, 考察每一组解所对应的函数在该点处是否能取得极值,从而进行取 舍.
知识梳理
【做一做 2-2】 函数 y=2-x2-x3 的极值情况是( )
A.有极大值,没有极小值
B.有极小值,没有极大值
C.既无极大值也无极小值
D.既有极大值也有极小值
解析:y'=-2x-3x2,令 y'=0,

x1=−
2 3
,
x2
=
0.
当x<−
2 3
时,y'<0;


2 3
<
x
<
0
时,y'>0;当
重难聚焦
(3)极大值与极小值之间无确定的大小关系.在某一点的极小值 也可能大于另一点的极大值,即极大值不一定比极小值大,极小值也 不一定比极大值小.如图所示.
(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极 值点.

1.3.2函数的极值与导数

1.3.2函数的极值与导数
⇒ f ( x )的 增 区 间 令 f '( x ) < 0, 解 不 等 式 ⇒ f ( x )的 减 区 间
y 极大值 2 0 极小值 x
③下结论 思考】 【思考】函数 f(x)在 x=0 和 x=2 处的函数 在 值与这两点附近的函数值有什么关系? 值与这两点附近的函数值有什么关系
函数的极值: 二、新课——函数的极值: 新课 函数的极值
Байду номын сангаас
例3:函数 3:函数 处具有极值, 的值 处具有极值,求a的值
分析:f(x)在 分析:f(x)在 要条件可知, 要条件可知, 解: ∵ ∴ ,

处有极值, 处有极值,根据一点是极值点的必 可求出a的值. 可求出a的值.
∴a=2 ∴a=2.
例4:y=alnx+bx2+x在x=1和x=2处 有极值, 有极值,求a、b的值
因此,当 时有极小值,并且 因此 当x=-1时有极小值 并且 极小值=-3; 时有极小值 并且,y 时有极大值,并且 而,当x=1时有极大值 并且 极大值=3. 当 时有极大值 并且,y
思考题:已知函数 思考题 已知函数f(x)=-x3+ax2+b. 已知函数 (1)若函数 若函数f(x)在x=0,x=4处取得极值 且极小值为 处取得极值,且极小值为 若函数 在 处取得极值 且极小值为-1, 的值. 求a、b的值 、 的值 (2)若 x ∈ [0,1],函数 函数f(x)图象上的任意一点的切线斜 若 函数 图象上的任意一点的切线斜 率为k,试讨论 率为 试讨论k≥-1成立的充要条件 . 成立的充要条件 试讨论 2 解:(1)由 f ′( x) = −3 x + 2ax = 0得x=0或x=4a/3.故4a/3=4, 由 或 故 a=6. 由于当x<0时, f ′(x) < 0,当x>0时, f ′(x) > 0.故当 故当x=0时, 由于当 时 时 时 f(x)达到极小值 达到极小值f(0)=b,所以 所以b=-1. 达到极小值 所以 (2)等价于当 x∈[0,1] 时,-3x2+2ax≥-1恒成立 即g(x)= 恒成立,即 等价于当 恒成立 3x2-2ax-1≤0对一切 x ∈[0,1] 恒成立. 对一切 恒成立 由于g(0)=-1≤0,故只需 故只需g(1)=2-2a≤0,即a≥1. 由于 故只需 即 反之,当 恒成立. 反之 当a≥1时,g(x)≤0对一切 x ∈[0,1] 时 对一切 恒成立 所以,a≥1是k≥-1成立的充要条件 是 成立的充要条件. 所以 成立的充要条件

人教a版数学【选修2-2】1.3.2《函数的极值与导数》ppt课件

人教a版数学【选修2-2】1.3.2《函数的极值与导数》ppt课件
成才之路 · 数学
人教A版 · 选修2-2
路漫漫其修远兮 吾将上下而求索
第一章
导数及其应用
第一章
1.3 导数在研究函数中的应用
1.3.2 函数的极值与导数
1
自主预习学案
2
Hale Waihona Puke 典例探究学案3巩固提高学案
4
备 选 练 习
自主预习学案
1.掌握极值的概念,了解函数在某点取得极值的必要条件和 充分条件. 2.会用导数求不超过三次的多项式函数的极大值、极小值 ,及其他简单函数的极值.
2.一般地,已知函数y=f(x)及其定义域内一点x0,对于包含 x0在内的开区间内的所有点x,如果都有__________,则称函 f(x)<f(xf0()x)的一个 数f(x)在点x0处取得__________,并把x0称为函数 __________;如果都有 __________,则称函数f(x)在点x0处取 极大值 得________,并把x0称为函数f(x)的一个__________.极大值 f(,极大值点与极小值点统称为 x)>f(x0) 极大值点 与极小值统称为______ 极小值 极小值点 ________. 极值 极值点
重点:函数极值的概念与求法. 难点:函数的单调性与极值的综合应用.
函数的极值与导数的关系 思维导航 在函数的图象上,有的点左、右两侧函数的单调性相同,有 的点左、右两侧的单调性相反,有些情形下左增右减,在些 情况下左减右增,这些点对研究函数有何特殊意义?
新知导学
1.如图是函数y=f(x)的图象,在x=a邻近 的左侧f(x)单调 ..
极大值 极小值 - 0 4e 2 由上表可以看出,当x=0时,函数有极小值,且f(0)=0. 4 当x=2时,函数有极大值,且f(2)=e2.

函数的极值与导数(公开课)

函数的极值与导数(公开课)

单调性与极值
单调性
函数在某区间内单调增加或单调减少 的性质。
单调性与极值的关系
单调性可以用来判断函数是否存在极 值,以及极值的类型(极大值或极小 值)。
02 导数与极值的关系
导数的定义与性质
导数的定义
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
导数的性质
导数具有连续性、可导性、可积性等 性质,这些性质在研究函数的极值时 非常重要。
在量子力学中,极值理论也被广泛应 用于描述微观粒子的行为。通过求解 薛定谔方程,可以找到微观粒子的波 函数和能量状态。
在光学中,极值理论可以用于研究光 的传播和干涉现象。通过分析光波的 振幅和相位变化,可以解释光的干涉 和衍射等现象。
极值在工程领域的应用
在工程设计中,极值理论被广泛应用于结构分析和优 化设计。通过分析结构的应力和应变分布,可以找到3Fra bibliotek极大值
当函数在某点的值大于其邻近点的值时,该点为 函数的极大值点,函数在该点的值为极大值。
极值的条件
一阶导数测试
若一阶导数在某点的左右两侧由正变负或由负变正, 则该点可能是函数的极值点。
二阶导数测试
若二阶导数在某点的值为零,且一阶导数在该点的左 右两侧变号,则该点可能是函数的极值点。
凹凸性判断
若函数在某点的凹凸性发生改变,则该点可能是函数 的极值点。
总结词
导数可以用于计算函数的极值点,通过求 导并令导数为0,可以找到函数的极值点。
VS
详细描述
在极值点处,函数的导数由正变负或由负 变正,即一阶导数为0。通过求解一阶导 数等于0的点,可以找到函数的极值点, 并进一步计算极值。
导数在函数图像绘制中的应用
总结词

最新2019版高中数学 第一章 1.3.2 函数的极值与导数(一)教案 新人教A版选修2-2

最新2019版高中数学 第一章   1.3.2 函数的极值与导数(一)教案 新人教A版选修2-2

1.3.2 函数的极值与导数(一)学习目标 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.知识点一函数的极值点和极值思考观察函数y=f(x)的图象,指出其极大值点和极小值点及极值.答案极大值点为e,g,i,极大值为f(e),f(g),f(i);极小值点为d,f,h,极小值为f(d),f(f),f(h).梳理(1)极小值点与极小值若函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,就把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)极大值点与极大值若函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,就把点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极大值点、极小值点统称为极值点;极大值、极小值统称为极值.知识点二函数极值的求法与步骤(1)求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时,①如果在x0附近的左侧函数单调递增,即f′(x)>0,在x0的右侧函数单调递减,即f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧函数单调递减,即f′(x)<0,在x0的右侧函数单调递增,即f′(x)>0,那么f(x0)是极小值.(2)求可导函数f(x)的极值的步骤①确定函数的定义区间,求导数f′(x);②求方程f′(x)=0的根;③列表;④利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.1.导数为0的点一定是极值点.( × ) 2.函数的极大值一定大于极小值.( × ) 3.函数y =f (x )一定有极大值和极小值.( × ) 4.极值点处的导数一定为0.( × )类型一 求函数的极值点和极值 命题角度1 不含参数的函数求极值 例1 求下列函数的极值. (1)f (x )=2x x 2+1-2;(2)f (x )=ln xx. 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)函数f (x )的定义域为R . f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可以看出,当x =-1时,函数有极小值,且极小值为f (-1)=-3; 当x =1时,函数有极大值,且极大值为f (1)=-1. (2)函数f (x )=ln xx的定义域为(0,+∞),且f ′(x )=1-ln x x2. 令f ′(x )=0,解得x =e.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗因此,x =e 是函数的极大值点,极大值为f (e)=1e ,没有极小值.反思与感悟 函数极值和极值点的求解步骤 (1)确定函数的定义域. (2)求方程f ′(x )=0的根.(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格. (4)由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况. 特别提醒:当实数根较多时,要充分利用表格,使极值点的确定一目了然. 跟踪训练1 求下列函数的极值点和极值. (1)f (x )=13x 3-x 2-3x +3;(2)f (x )=x 2e -x.考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 解 (1)f ′(x )=x 2-2x -3. 令f ′(x )=0,得x 1=-1,x 2=3,当x 变化时,f ′(x ),f (x )的变化情况如下表:↘由上表可以看出,当x =-1时,函数有极大值,且极大值f (-1)=143,当x =3时,函数有极小值,且极小值f (3)=-6. (2)函数f (x )的定义域为R .f ′(x )=2x e -x -x 2e -x =x (2-x )e -x .令f ′(x )=0,得x =0或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:当x =2时,函数有极大值,且极大值为f (2)=4e -2. 命题角度2 含参数的函数求极值例2 已知函数f (x )=(x 2+ax -2a 2+3a )e x(x ∈R ),当实数a ≠23时,求函数f (x )的单调区间与极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x. 令f ′(x )=0,解得x =-2a 或x =a -2, 由a ≠23知-2a ≠a -2.分以下两种情况讨论: ①若a >23,则-2a <a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,-2a ),(a -2,+∞)上是增函数,在(-2a ,a -2)上是减函数,函数f (x )在x =-2a 处取得极大值f (-2a ),且f (-2a )=3a e-2a,函数f (x )在x =a -2处取得极小值f (a -2),且f (a -2)=(4-3a )e a -2.②若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )在(-∞,a -2),(-2a ,+∞)上是增函数,在(a -2,-2a )上是减函数,函数f (x )在x =a -2处取得极大值f (a -2),且f (a -2)=(4-3a )e a -2,函数f (x )在x =-2a 处取得极小值f (-2a ),且f (-2a )=3a e-2a.反思与感悟 讨论参数应从f ′(x )=0的两根x 1,x 2相等与否入手进行. 跟踪训练2 已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 含参数求极值问题解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因而f (1)=1,f ′(1)=-1.所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0,知①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a . 又当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值. 类型二 利用函数的极值求参数例3 (1)已知函数f (x )的导数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值范围是( )A .(-∞,-1)B .(0,+∞)C .(0,1)D .(-1,0)(2)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a =________,b =________. 考点 利用导数研究函数的极值 题点 已知极值点求参数 答案 (1)D (2)2 9解析 (1)若a <-1,因为f ′(x )=a (x +1)(x -a ), 所以f (x )在(-∞,a )上单调递减,在(a ,-1)上单调递增,所以f (x )在x =a 处取得极小值,与题意不符;若-1<a <0,则f (x )在(-1,a )上单调递增,在(a ,+∞)上单调递减,从而在x =a 处取得极大值.若a >0,则f (x )在(-1,a )上单调递减,在(a ,+∞)上单调递增,与题意不符,故选D. (2)因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b ,所以⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-3,-1)时,f (x )为减函数, 当x ∈(-1,+∞)时,f (x )为增函数,所以f (x )在x =-1处取得极小值,因此a =2,b =9. 反思与感悟 已知函数的极值求参数时应注意两点(1)待定系数法:常根据极值点处导数为0和极值两个条件列出方程组,用待定系数法求解. (2)验证:因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证. 跟踪训练3 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 考点 利用导数研究函数的极值 题点 已知极值点求参数 解 (1)∵f (x )=a ln x +bx 2+x , ∴f ′(x )=ax+2bx +1,∴f ′(1)=f ′(2)=0,∴a +2b +1=0且a2+4b +1=0,解得a =-23,b =-16.(2)由(1)可知f (x )=-23ln x -16x 2+x ,且定义域是(0,+∞),f ′(x )=-23x -1-13x +1=-(x -1)(x -2)3x.当x ∈(0,1)时,f ′(x )<0;当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点.1.函数f (x )的定义域为R ,它的导函数y =f ′(x )的部分图象如图所示,则下面结论错误的是( )A .在(1,2)上函数f (x )为增函数B .在(3,4)上函数f (x )为减函数C .在(1,3)上函数f (x )有极大值D .x =3是函数f (x )在区间[1,5]上的极小值点 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 根据导函数图象知,x ∈(1,2)时,f ′(x )>0,x ∈(2,4)时,f ′(x )<0,x ∈(4,5)时,f ′(x )>0.∴f (x )在(1,2),(4,5)上为增函数,在(2,4)上为减函数,x =2是f (x )在[1,5]上的极大值点,x =4是极小值点.故选D. 2.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 D解析 函数f (x )=2x+ln x 的定义域为(0,+∞).f ′(x )=1x -2x2,令f ′(x )=0,即1x -2x2=0得,x =2,当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0. 因为x =2为f (x )的极小值点,故选D.3.函数f (x )=ax -1-ln x (a ≤0)在定义域内的极值点的个数为________. 考点 函数在某点处取得极值的条件 题点 判断极值点的个数 答案 0解析 因为x >0,f ′(x )=a -1x =ax -1x,所以当a ≤0时,f ′(x )<0在(0,+∞)上恒成立, 所以函数f (x )在(0,+∞)上单调递减, 所以f (x )在(0,+∞)上没有极值点.4.已知曲线f (x )=x 3+ax 2+bx +1在点(1,f (1))处的切线斜率为3,且x =23是y =f (x )的极值点,则a +b =________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -2解析 f ′(x )=3x 2+2ax +b ,由题意知⎩⎪⎨⎪⎧f ′(1)=3,f ′⎝ ⎛⎭⎪⎫23=0,即⎩⎪⎨⎪⎧3+2a +b =3,43+43a +b =0,解得⎩⎪⎨⎪⎧a =2,b =-4,则a +b =-2.5.已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断f (x )的单调区间,并求极值. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 解 (1)f ′(x )=2ax +b x,由题意得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=12, 即⎩⎪⎨⎪⎧2a +b =0,a =12,∴a =12,b =-1.(2)由(1)得,f ′(x )=x -1x =x 2-1x =(x +1)(x -1)x.又f (x )的定义域为(0,+∞), 令f ′(x )=0,解得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).f (x )极小值=f (1)=12.1.求函数极值的步骤 (1)确定函数的定义域; (2)求导数f ′(x );(3)解方程f ′(x )=0得方程的根;(4)利用方程f ′(x )=0的根将定义域分成若干个小开区间,列表,判定导函数在各个小开区间的符号;(5)确定函数的极值,如果f ′(x )的符号在x 0处由正(负)变负(正),则f (x )在x 0处取得极大(小)值.2.已知函数极值,确定函数解析式中的参数时,注意两点(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.一、选择题1.下列函数中存在极值的是( ) A .y =1xB .y =x -e xC .y =2D .y =x 3考点 利用导数研究函数的极值 题点 极值存在性问题 答案 B解析 对于y =x -e x ,y ′=1-e x,令y ′=0,得x =0. 在区间(-∞,0)上,y ′>0; 在区间(0,+∞)上,y ′<0.故x =0为函数y =x -e x的极大值点.2.函数f (x )=ln x -x 在区间(0,e)上的极大值为( ) A .-e B .1-e C .-1D .0考点 函数在某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 C解析 f (x )的定义域为(0,+∞),f ′(x )=1x-1.令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,当x ∈(1,e)时,f ′(x )<0, 故f (x )在x =1处取得极大值f (1)=ln 1-1=0-1=-1.3.已知函数f (x )=2x 3+ax 2+36x -24在x =2处有极值,则该函数的一个递增区间是( ) A .(2,3) B .(3,+∞) C .(2,+∞)D .(-∞,3)考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 B解析 因为f ′(x )=6x 2+2ax +36,且在x =2处有极值, 所以f ′(2)=0,即24+4a +36=0,解得a =-15, 所以f ′(x )=6x 2-30x +36 =6(x -2)(x -3), 由f ′(x )>0,得x <2或x >3.4.设三次函数f (x )的导函数为f ′(x ),函数y =xf ′(x )的图象的一部分如图所示,则( )A .f (x )极大值为f (3),极小值为f (-3)B .f (x )极大值为f (-3),极小值为f (3)C .f (x )极大值为f (-3),极小值为f (3)D .f (x )极大值为f (3),极小值为f (-3) 考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 D解析 当x <-3时,y =xf ′(x )>0,即f ′(x )<0; 当-3<x <3时,f ′(x )≥0;当x >3时,f ′(x )<0. ∴f (x )的极大值是f (3),f (x )的极小值是f (-3).5.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于点(1,0),则f (x )的( ) A .极大值为427,极小值为0B .极大值为0,极小值为427C .极小值为-427,极大值为0D .极大值为-427,极小值为0考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 A解析 f ′(x )=3x 2-2px -q .由函数f (x )的图象与x 轴切于点(1,0),得p +q =1, ∴q =1-p ,① 3-2p -q =0,②联立①②,解得p =2,q =-1, ∴函数f (x )=x 3-2x 2+x ,则f ′(x )=3x 2-4x +1,令f ′(x )=0得x =1或x =13.当x ≤13时,f ′(x )≥0,f (x )单调递增,当13<x <1时,f ′(x )<0,f (x )单调递减,当x ≥1时,f ′(x )≥0,f (x )单调递增,∴f (x )极大值=f ⎝ ⎛⎭⎪⎫13=427,f (x )极小值=f (1)=0.故选A.6.设a <b ,函数y =(x -a )2(x -b )的图象可能是( )考点 函数极值的综合应用 题点 函数极值在函数图象上的应用 答案 C解析 y ′=(x -a )(3x -a -2b ),由y ′=0得x 1=a ,x 2=a +2b3.当x =a 时,y 取得极大值0, 当x =a +2b3时,y 取得极小值且极小值为负,故选C.7.已知函数f (x )=e x(sin x -cos x ),x ∈(0,2 017π),则函数f (x )的极大值之和为( ) A.e 2π(1-e 2 018π)e 2π-1B.e π(1-e 2 016π)1-e 2πC.e π(1-e 1 008π)1-e2πD.e π(1-e 1 008π)1-eπ考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 B解析 f ′(x )=2e xsin x ,令f ′(x )=0得sin x =0, ∴x =k π,k ∈Z ,当2k π<x <2k π+π时,f ′(x )>0,f (x )单调递增, 当(2k -1)π<x <2k π时,f ′(x )<0,f (x )单调递减, ∴当x =(2k +1)π时,f (x )取到极大值, ∵x ∈(0,2 017π),∴0<(2k +1)π<2 017π, ∴0≤k <1 008,k ∈Z . ∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2 015π)=e π+e 3π+e 5π+…+e 2 015π=e π[1-(e 2π)1 008]1-e 2π=e π(1-e 2 016π)1-e2π,故选B.二、填空题8.函数y =x e x在其极值点处的切线方程为________. 考点 函数某点处取得极值的条件 题点 不含参数的函数求极值问题 答案 y =-1e解析 令y ′=e x +x e x =(1+x )e x=0, 得x =-1,∴y =-1e,∴在极值点处的切线方程为y =-1e.9.若函数f (x )=(x -2)(x 2+c )在x =2处有极值,则函数f (x )的图象在x =1处的切线的斜率为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -5解析 ∵函数f (x )=(x -2)(x 2+c )在x =2处有极值, ∴f ′(x )=(x 2+c )+(x -2)×2x ,令f ′(2)=0,∴(c +4)+(2-2)×2×2=0,∴c =-4, ∴f ′(x )=(x 2-4)+(x -2)×2x .∴函数f (x )的图象在x =1处的切线的斜率为f ′(1)=(1-4)+(1-2)×2=-5.10.若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为________.考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 -1解析 函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·ex -1=ex -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点,得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1.所以f (x )=(x 2-x -1)ex -1,f ′(x )=e x -1·(x 2+x -2).由ex -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.11.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取得极值10,则f (-1)=________. 考点 利用导数研究函数的极值 题点 已知极值(点)求参数 答案 30解析 由题意知⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.经检验知,当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )≥0,不合题意.∴f (x )=x 3+4x 2-11x +16,则f (-1)=30. 三、解答题12.设函数f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.考点 函数在某点处取得极值的条件 题点 不含参数函数求极值 解 (1)f ′(x )=a x -12x 2+32. 由题意知,曲线在x =1处的切线斜率为0,即f ′(1)=0, 从而a -12+32=0,解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0),f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x2. 令f ′(x )=0,解得x 1=1,x 2=-13(舍去).当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为单调递减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为单调递增函数.故f (x )在x =1处取得极小值,极小值为f (1)=3.13.已知函数f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.考点 利用导数研究函数的极值 题点 已知极值(点)求参数解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ), 令f ′(x )=0,得x =-m 或x =23m .当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )有极大值f (-m )=-m 3+12m 3+2m 3-4=-52,∴m =1. 四、探究与拓展14.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )考点函数极值的综合应用题点函数极值在函数图象上的应用答案 C解析由题意可得f′(-2)=0,而且当x∈(-∞,-2)时,f′(x)<0,此时xf′(x)>0;排除B,D,当x∈(-2,+∞)时,f′(x)>0,此时若x∈(-2,0),xf′(x)<0,若x∈(0,+∞),xf′(x)>0,所以函数y=xf′(x)的图象可能是C.15.已知函数f(x)=(x2+ax+a)e x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,请说明理由.考点利用导数研究函数的极值题点已知极值(点)求参数解(1)f(x)=(x2+x+1)e x,f′(x)=(2x+1)e x+(x2+x+1)e x=(x2+3x+2)e x.当f′(x)>0时,解得x<-2或x>-1,当f′(x)<0时,解得-2<x<-1,所以函数的单调递增区间为(-∞,-2),(-1,+∞);单调递减区间为(-2,-1).(2)令f′(x)=(2x+a)e x+(x2+ax+a)e x=[x2+(2+a)x+2a]e x=(x+a)(x+2)e x=0,得x=-a或x=-2.当a=2时,f′(x)≥0恒成立,函数无极值,故舍去;当a<2时,-a>-2.当x变化时,f′(x),f(x)的变化情况如下表:由表可知,f(x)极大值=f(-2)=(4-2a+a)e-2=3,解得a=4-3e2<2,所以存在实数a<2,使f(x)的极大值为3,此时a=4-3e2.。

1.3.2函数的极值与导数(上课)

1.3.2函数的极值与导数(上课)

练习2
求下列函数的极值:
(1) f (x) 6x2 x 2;
(2) f (x) x3 27 x;
(3) f (x) 6 12 x x3;
(4) f (x) 3x x3.
解:
(3) 令f (x) 12 3x2 0, 解得 x1 2, x2 2.
所以, 当 x = –2 时, f (x)有极小值 – 10 ;
f(x) 增
极大值 减
x x0左侧
x0 x0右侧
f(x) f(x) <0 f(x) =0 f(x) >0
f(x) 减
极小值 增
左正右负为极大,右正左负为极小
思考
❖若寻找可导函数极值点,
可否只由f(x)=0求得即可?
探索: x =0是否为函数f(x)=x3 的极值点?
f(x)=3x2 当f(x)=0时,x =0,而x =0
(4) f (x) 3x x3.
解:
(2) 令f (x) 3x2 27 0, 解得 x1 3, x2 3. 列表:
x (–∞, –3)
f (x) +
f (x) 单调递增
–3 (–3, 3)
0

54 单调递减
3 ( 3, +∞)
0
+
54 单调递增
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
3.函数 f (x) x3 ax2 bx a2 在 x 1时有极值10,则a,
b的值为( )C
A、 a 3, b 3 或 a 4, b 11
B、 a 4, b 1 或 a 4,b 11
C、a 4, b 11 , D、 以上都不对

1.3.2函数的极值与导数(完美版)

1.3.2函数的极值与导数(完美版)

2 例 3、 已知 f(x)=x +ax +bx+c 在 x=1 与 x=- 时都 3
3 2
取得极值. (1)求 a,b 的值; 3 (2)若 f(-1)= ,求 f(x)的单调区间和极值. 2
练习:已知函数f(x)=x3+ax2+bx+a2在x=1处有极值为 10,求a、b的值. 解: f ( x ) =3x2+2ax+b=0有一个根x=1,故3+2a+b=0.①
当x变化时, f ( x ) ,f(x)的变化情况如下表: x (-∞,-a) -a (-a,0) (0,a) a (a,+∞)
f’(x)
f(x)
+

0
极大值-2a

-
0
+

↘ 极小值2a
故当x=-a时,f(x)有极大值f(-a)=-2a;当x=a时,f(x)有极 小值f(a)=2a.
6x 练习:求函数 y 1 x 2 的极值.
x3 x x4 x5
的极值点, 并指出哪些是极大值点, 哪些是极小值点.
x2 a x1 O
x6
b
探究 1、导数值为0的点一定是函数的极值点吗?
2、函数在某点取得极值的必要条件 和充分条件分别是什么?
可导函数的极值点一定是它导数为零的点, 反之函数的导数为零的点,不一定是该函数的极值点. 例如,函数y=x3,在点x=0处的导数为零,但它不是极值 点,原因是函数在点x=0处左右两侧的导数都大于零. 导数为零的点仅是该点为极值点的必要条件, 其充分条件是在这点两侧的导数异号.
探究函数y=f(x)在极值点的导数值为多少?
y
y f x
C

函数的极值与导数(教案)

函数的极值与导数(教案)

1.3.2 函数的极值与导数一、教学目标1 知识与技能〈1〉结合函数图象;了解可导函数在某点取得极值的必要条件和充分条件〈2〉理解函数极值的概念;会用导数求函数的极大值与极小值2过程与方法结合实例;借助函数图形直观感知;并探索函数的极值与导数的关系..3情感与价值感受导数在研究函数性质中一般性和有效性;通过学习让学生体会极值是函数的局部性质;增强学生数形结合的思维意识..二、重点:利用导数求函数的极值难点:函数在某点取得极值的必要条件与充分条件三、教学基本流程回忆函数的单调性与导数的关系;与已有知识的联系提出问题;激发求知欲组织学生自主探索;获得函数的极值定义通过例题和练习;深化提高对函数的极值定义的理解四、教学过程〈一〉、创设情景;导入新课1、通过上节课的学习;导数和函数单调性的关系是什么提高学生回答2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象;回答以下问题1当t=a 时;高台跳水运动员距水面的高度最大;那么函数()h t 在t=a 处的导数是多少呢2在点t=a 附近的图象有什么特点 3点t=a 附近的导数符号有什么变化规律共同归纳: 函数ht 在a 点处h /a=0;在t=a 的附近;当t <a 时;函数()h t 单调递增;()'h t >0;当t >a 时;函数()h t 单调递减; ()'h t <0;即当t 在a 的附近从小到大经过a时; ()'h t 先正后负;且()'h t 连续变化;于是h /a=0.3、对于这一事例是这样;对其他的连续函数是不是也有这种性质呢 <二>、探索研讨1、观察1.3.9图所表示的y=fx 的图象;回答以下问题:1函数y=fx 在a.b 点的函数值与这些点附近的函数值有什么关系 2 函数y=fx 在a.b.点的导数值是多少3在a.b 点附近; y=fx 的导数的符号分别是什么;并且有什么关系呢aoht2、极值的定义:我们把点a 叫做函数y=fx 的极小值点;fa 叫做函数y=fx 的极小值; 点b 叫做函数y=fx 的极大值点;fa 叫做函数y=fx 的极大值.. 极大值点与极小值点称为极值点; 极大值与极小值称为极值.3、通过以上探索;你能归纳出可导函数在某点x 0取得极值的充要条件吗 充要条件:fx 0=0且点x 0的左右附近的导数值符号要相反4、引导学生观察图1.3.11;回答以下问题:1找出图中的极点;并说明哪些点为极大值点;哪些点为极小值点 2极大值一定大于极小值吗 5、随堂练习:1 如图是函数y=fx 的函数;试找出函数y=fx 的极值点;并指出哪些是极大值点;哪些是极小值点.如果把函数图象改为导函数y=()'f x 的图象<三>、讲解例题例4 求函数()31443f x x x =-+的极值教师分析:①求f /x;解出f /x=0;找函数极点; ②由函数单调性确定在极点x 0附近f /x 的符号;从而确定哪一点是极大值点;哪一点为极小值点;从而求出函数的极值. 学生动手做;教师引导解:∵()31443f x x x =-+∴()'f x =x 2-4=x-2x+2 令()'f x =0;解得x=2;或x=-2.下面分两种情况讨论:(1)当()'f x >0;即x >2;或x <-2时; (2) 当()'f x <0;即-2<x <2时.当x 变化时; ()'f x ;fx 的变化情况如下表: x-∞;-2 -2 -2;22 2;+∞ ()'f x+ 0_+ fx单调递增283单调递减43- 单调递增因此;当x=-2时;fx 有极大值;且极大值为f-2= 283;当x=2时;fx 有极 小值;且极小值为f2= 43- 函数()31443f x x x =-+的图象如: 归纳:求函数y=fx 极值的方法是:1求()'f x ;解方程()'f x =0;当()'f x =0时:(1) 如果在x 0附近的左边()'f x >0;右边()'f x <0;那么fx 0是极大值. (2) 如果在x 0附近的左边()'f x <0;右边()'f x >0;那么fx 0是极小值 <四>、课堂练习1、求函数fx=3x-x 3的极值2、思考:已知函数fx=ax 3+bx 2-2x 在x=-2;x=1处取得极值; 求函数fx 的解析式及单调区间.. <五>、课后思考题:1、 若函数fx=x 3-3bx+3b 在0;1内有极小值;求实数b 的范围..2、 已知fx=x 3+ax 2+a+bx+1有极大值和极小值;求实数a 的范围.. <六>、课堂小结: 1、 函数极值的定义 2、 函数极值求解步骤3、 一个点为函数的极值点的充要条件..22-()31443f x x x =-+<七>、作业P32 5 ①④。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档