高一数学必修3期末考试模拟试题一[1]

合集下载

【人教版】高中数学必修三期末第一次模拟试卷带答案(1)

【人教版】高中数学必修三期末第一次模拟试卷带答案(1)

一、选择题1.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31452.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C .3224π- D .14π-3.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-4.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 5.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A.2 B.3 C.4 D.5⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的6.如图给出的是计算1232018是()A .2018i <B .2018i =C .2018i ≤D .2018i >7.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?8.执行如图所示的程序框图,输出S 的值等于( )A .1111238+++⋅⋅⋅+ B .1111237+++⋅⋅⋅+ C .11111237+++++ D .11111238++++⋅⋅⋅+ 9.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( )A .12.68万元B .13.88万元C .12.78万元D .14.28万元10.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差11.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A .95B .96C .97D .9812.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________.14.在[0,1]上随机取两个实数,a b ,则,a b 满足不等式221a b +≤的概率为________. 15.在区间[]0,2中随机地取出一个数x ,则sin6x π>的概率是__________.16.根据如图所示的伪代码可知,输出的结果为______.17.执行如图所示的程序框图,输出的S 值是__________.18.执行如图所示的算法框图,若输入的x 的值为2,则输出的n 的值为__________.19.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示: 等级A + AB + BB -C + CC -D + DE 分数 7067646158555249464340上海某高中2018届高三()1班选考物理学业水平等级考的学生中,有5人取得A +成绩,其他人的成绩至少是B 级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______人. 20.已知由样本数据集合(){}11,1,2,3,...,x y i n =,求得的回归直线方程为1.2308ˆ.0y x =+,且ˆ4x =,若去掉两个数据点 (4.1,5.7)和(3.9,4.3)后重新求得的回归直线方程l 的斜率估计值为1.2,则此回归直线l 的方程为_______.三、解答题21.为了纪念五四运动100周年和建团97周年,某校团委开展“青春心向党,建功新时代”知识问答竞赛.在小组赛中,甲、乙、丙3人进行擂台赛,每局2人进行比赛,另1人当裁判,每一局的输方担任下局的裁判,由原来裁判向胜者挑战,甲、乙、丙3人实力相当. (1)若第1局是由甲担任裁判,求第4局仍是甲担任裁判的概率;(2)甲、乙、丙3人进行的擂台赛结束后,经统计,甲共参赛了6局,乙共参赛了5局而丙共担任了2局裁判.则甲、乙、丙3人进行的擂台赛共进行了多少局?若从小组赛中,甲、乙、丙比赛的所有场次中任取2场,则均是由甲担任裁判的概率是多少.22.2019年8月8日是我国第十一个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;23.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图. 24.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.25.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y 随月份t 变化的散点图,并用散点图和相关系数说明y 与t 之间具有线性相关性;(2)建立y 关于t 的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量. 参考数据:7772111y9.24,t 7 2.646iiii i i i y=====⋅≈≈∑∑∑(y -y ).参考公式:相关系数()()()()()()11112211niinn ni i i i i i nni i i i i i i t t y y r t ty y t y t y t ty y ======⋅--=⋅--=-⋅-⋅-∑∑∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,nii i ni i tty y bay bt t t==⋅--==-⋅-∑∑. 26.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料: 组号 1 2 3 4 5 温差x (C ︒) 10 11 13 12 8 发芽数y (颗)2325302616经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:()()()1122211ˆn ni i i i i i n n i i i i x x y y x y nxy b x x x nx====---==--∑∑∑∑,ˆˆa y bx =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13925P =⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23759P =⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率. 【详解】盒中有形状、大小都相同的2个红色球和3个黄色球, 从中取出一个球,观察颜色后放回并往盒中加入同色球4个, 若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:13295152P =⨯=, 若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:23775915P =⨯=, ∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P =+=+=, 故选:A . 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.2.D解析:D【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.4.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。

【人教版】高中数学必修三期末一模试题带答案(1)

【人教版】高中数学必修三期末一模试题带答案(1)

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A.316B.38C.14D.182.已知三棱锥P﹣ABC的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为()A.815B.715C.45D.353.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A 3B.31C.3πD.31π-4.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x,y,则满足()()22lg2lg3lgx y x y+=+的概率为()A.18B.14C.13D.125.执行如图所示的程序框图,结果是()A.11 B.12 C.13 D.14 6.该程序中k的值是()A.9 B.10 C.11 D.12 7.若执行如图所示的程序框图,则输出S的值为()A .9-B .16-C .25-D .36-8.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .3910.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生11.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .2912.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .0815二、填空题13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________14.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点”的概率为_______.15.如图,圆柱12O O 内接于球O ,且圆柱的高等于球O 的半径,则从球O 内任取一点,此点取自圆柱12O O 的概率为______;16.下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.17.运行如图所示的程序框图,则输出的所有y 值之和为___________.18.程序框图如下图所示,其输出的结果是__________________________.19.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.20.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88,若B样本数据恰好是A样本数据每个都加2后所得数据,则,A B两样本的数字特征(众数、中位数、平均数、方差)对应相同的是__________.三、解答题21.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)22.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (3)若从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽出的两名男生在同一组的概率.23.下面给出一个用循环语句编写的程序: k =1 sum =0 WHILE k <10 sum =sum +k ∧2 k =k +1 WEND PRINT sum END(1)指出程序所用的是何种循环语句,并指出该程序的算法功能; (2)请用另一种循环语句的形式把该程序写出来.24.某批发部出售袜子,当购买少于300双时,每双批发价为2.5元;不少于300双时,每双批发价为2.2元.试分别画出程序框图和用程序语言编写计算批发金额.25.某校高一年级举行“抗击新冠肺炎”在线知识问答比赛,现将60名参赛学生的成绩(满分100分)统计如下: 分组 频数 频率 [50,60)180.30[60,70) 24 0.40 [70,80) 9 0.15 [80,90) 6 0.10 [90,100]30.05(1)根据上面的统计表,作出这些数据的频率分布直方图;(2)求这60名参赛学生成绩的平均数(同一组中的数据用该组区间的中间值作代表)和中位数.26.某快递公司招聘快递骑手,该公司提供了两种日工资方案:方案(1)规定每日底薪50元,快递骑手每完成一单业务提成3元;方案(2)规定每日底薪150元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快递公司记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[)25,35、[)35,45、[)45,55、[)55,65、[)65,75、[)75,85、[]85,95七组,整理得到如图所示的频率分布直方图.(1)求直方图中a 的值;(2)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由(同组中的每个数据用该组区间的中点值代替);(3)假设公司中所有骑手都选择了你在(2)中所选的方案,已知公司现有骑手400人,某骑手希望自己的收入在公司众骑手中处于前100名内,求他每天的平均业务量至少应达多少单?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴112224BCI S ∆=⨯⨯=,112242BCI EFGH S S ∆==⨯=平行四边形∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.3.D解析:D 【分析】由半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解. 【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,所以该正十二边形的面积为21121sin 326S π=⨯⨯⨯=, 由几何概型的概率计算公式,可得所求概率31P π=-,故选D. 【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A PN求解,着重考查了分析问题和解答问题的能力. 4.B解析:B 【分析】 先化简()()22lg 2lg 3lg x yx y +=+,得到x y =或2x y =.利用列举法和古典概型概率计算公式可计算出所求的概率. 【详解】 由22320xxy y ,有()()20x y x y --=,得x y =或2x y =,则满足条件的(),x y 为()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,()2,1,()4,2,()6,3,所求概率为91364p == .故选B. 【点睛】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.5.B解析:B 【分析】根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,可得答案. 【详解】根据题意,模拟程序框图的运行过程,如下:17,0n k ==17不是偶数,3171=52n =⨯+,011k =+=,521≠; 52是偶数,52262n ==,112k =+=,261≠; 26是偶数,26132n ==,213k =+=,131≠;13不是偶数,3131=40n =⨯+,314k =+=,401≠; 40是偶数,40202n ==,415k =+=,201≠; 20是偶数,20102n ==,516k =+=,101≠; 10是偶数,1052n ==,617k =+=,51≠; 5不是偶数,351=16n =⨯+,718k =+=,161≠;16是偶数,1682n ==,819k =+=,81≠; 8是偶数,842n ==,9110k =+=,41≠; 4是偶数,422n ==,10111k =+=,21≠; 2是偶数,212n ==,11112k =+=,11=;故选:B 【点睛】 关键点睛:解题的关键是要读懂程序框图,模拟程序框图的运行过程,即突破难点.6.B解析:B 【分析】本题只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可(注意避免计算错误). 【详解】3,2,8,814x k y ===<,第一次循环,4,10,1014k y ==<; 第二次循环,6,12,1214k y ==<; 第三次循环,8,14,1414k y ===; 第四次循环,10,16,1614k y ==>, 退出循环,输出10k =, 故选:B. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.D解析:D【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案.【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•;第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•;第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•;第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•;第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•;第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•,此时刚好满足9n >,所以输出S 的值为36-.故选D.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题. 8.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解.【详解】模拟程序的运行,可得n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2不满足条件x >a ,执行循环体,x =2,n =3不满足条件x >a ,执行循环体,x =6,n =4不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5.可得:6≤a <24.故选:A .【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.9.B解析:B【解析】前4个数据对应的19.5x = ,0.195y = (把百分数转化为小数),而0( 4.68)0y kx ∧=-= 0.0468bx -,0.19519.50.0468b ∧∴=⨯-,0.0124b ∧∴=,0(1.24 4.68)0y x ∧∴=- ,当3034322x +==, 1.2432 4.6835t =⨯-=. 10.C解析:C【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N , 若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.11.A解析:A【解析】【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可.【详解】 由题意可得:810111214115x ++++==, 由线性回归方程的性质可知:99112744y =⨯+=,故21252835275m ++++=,26m ∴=. 故选:A .【点睛】 本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.12.A解析:A【解析】分析:先确定间距,再根据等差数列通项公式求结果. 详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-= 选A.点睛:本题考查系统抽样概念,考查基本求解能力.二、填空题13.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为 解析:12【解析】五种抽出两种的抽法有2510C =种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12. 14.【解析】【分析】在上任取两个数在以2为棱长的正方形内在内有零点等价于即求出可行域的面积利用几何概型概率公式求解即可【详解】在上任取两个数则在以2为棱长的正方形内因为在内有零点所以即表示如图所示的梯形 解析:38【解析】【分析】在[]0,2上任取两个数,a b , (),a b 在以2为棱长的正方形内,()f x 在[]0,1内有零点, 等价于()()010f f ≤,即()()110a b a -+-≤,求出可行域的面积,利用几何概型概率公式求解即可.【详解】在[]0,2上任取两个数,a b ,则(),a b 在以2为棱长的正方形内,因为()f x 在[]0,1内有零点,所以()()010f f ≤,即()()110a b a -+-≤,(),a b 表示如图所示的梯形区域,由几何概型概率公式可得“函数()1f x bx a =+-在[]0,1内有零点”的概率为()112132228⨯+⨯=⨯,故答案为38. 【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 15.【分析】设出球的半径利用勾股定理求得圆柱的底面半径分别计算圆柱和球的体积然后利用几何概型的概率计算公式求得所求的概率【详解】设球的半径为依题意可知圆柱底面半径故圆柱的体积为而球的体积为故所求概率为【 解析:916【分析】设出球的半径,利用勾股定理求得圆柱的底面半径,分别计算圆柱和球的体积,然后利用几何概型的概率计算公式,求得所求的概率.【详解】设球的半径为r,依题意可知,圆柱底面半径r ==',故圆柱的体积为22333πππ44r r r r r ⋅=⋅⋅=',而球的体积为34π3r ,故所求概率为333π944π163r r =. 【点睛】本小题主要考查有关球的内接几何体的问题,考查体积型的集合概型概率计算,属于基础题.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间).有关球内接几何体的问题,主要是构造直角三角形,利用勾股定理来计算长度. 16.2【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用根据题意 解析:2【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,并输出.【详解】该题考查的是有关程序框图的问题,在解题的过程中,注意对框图进行分析,明确框图的作用,根据题意,建立相应的等量关系式,求得结果. 根据题意,可知该程序的作用是计算分段函数2,224,251,5x x y x x x x⎧⎪≤⎪=-<≤⎨⎪⎪>⎩的函数值,依题意得2224x x x ≤⎧⎨=-+⎩或252424x x x <≤⎧⎨-=-+⎩或5124x x x>⎧⎪⎨=-+⎪⎩,解得1x =-±x 的值有两个,故答案是:2.【点睛】该题考查的是有关程序框图的问题,在解题的过程中,注意分析框图的作用,之后建立相应的等量关系式,求得结果,从而得到满足条件的x 的个数.17.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值 解析:10【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可.【详解】输入2n =-,第一次循环,8,1y n ==-;第二次循环,3,0y n ==;第三次循环,0,1y n ==;第四次循环,1,2y n =-=;退出循环,可得所有y 值之和为830110++-=,故答案为10.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.18.127【分析】根据题意按照程序框图的顺序进行执行然后输出结果即可【详解】解:由程序框图知循环体被执行后a 的值依次为37153163127故输出的结果是127故答案为127【点睛】本题考查程序框图的识解析:127【分析】根据题意,按照程序框图的顺序进行执行,然后输出结果即可【详解】解:由程序框图知,循环体被执行后a 的值依次为3、7、15、31、63、127,故输出的结果是127.故答案为127.【点睛】本题考查程序框图的识别,通过对已知框图的分析与执行,写出运算结果,属于基础题. 19.1【解析】分析:根据平均数与对应概率乘积的和得总平均数计算结果详解:点睛:本题考查平均数考查基本求解能力解析:1【解析】分析:根据平均数与对应概率乘积的和得总平均数,计算结果.详解:7245%74(145%)72.1⨯+⨯-=.点睛:本题考查平均数,考查基本求解能力.20.方差【解析】根据样本数字特征样本数据都加上2后新数据的众数中位数和平均数都增加2只有方差计算公式为结果不变故答案为方差解析:方差【解析】根据样本数字特征,样本数据都加上2后新数据的众数、中位数和平均数都增加2,只有方差计算公式为2211()n i i S x x n ==-∑,结果不变,故答案为方差. 三、解答题21.(1)30,10x y ==;2.3分钟;(2)1720. 【分析】(1)已知得25540,3060y x ++=+=,可求得,x y ,再运用1230325455100x y ⨯+⨯+⨯+⨯+⨯可估计顾客一次购物的结算时间的平均值; (2)利用古典概率公式可求得所求和概率.【详解】(1)由已知得25540,3060y x ++=+=,解得30,10x y ==.该超市所以顾客一次购物的结算时间可视为一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为13023032541055 2.3100⨯+⨯+⨯+⨯+⨯=分钟. (2)记A 为事件“一位顾客一次购买的结算时间不超过3分钟”,12,A A 分别表示事件“该顾客一次购物的结算时间为4分钟”,“该顾客一次购物的结算时间为5分钟”,将频率视为概率得1210151(),()1001010020P A P A ====, 12()1()()P A P A P A =--11171102020=--=, 故一位顾客一次购物的结算时间不超过3分钟的概率为1720. 【点睛】 本题考查数据的分析和处理,平均数的求得,以及古典概率的求法,属于中档题. 22.(1)0.06;(2)1745.;144;(3)715. 【分析】(1)先由第六组的人数除以样本容量得到第六组的频率,然后用1减去除第七组外其它各组的频率和即可得到第七组的频率;(2)过中位数的直线两侧的矩形的面积相等.第一组到第三组的频率和为0.32,第一组到第四组的频率和为0.52,所以中位数在第四组内,可求出中位数;(3)求出第八组的人数,根据排列组合,求出从这两组的所有男生中随机抽取两名男生的基本事件总数和抽出的两名男生在同一组的基本事件数,即可求得概率.【详解】 第六组的频率为400850.=, ∴第七组的频率为()100850008200160042006006......--⨯⨯++⨯+=(2)第一组到第三组的频率和为()50.0080.0160.040.32⨯++=,第一组到第四组的频率和为()50.0080.0160.0420.52⨯++⨯=,所以中位数在第四组内,设中位数为m ,则170175m <<,由()0.321700.040.5,174.5m m +-⨯=∴=,所以可估计该校800名男生的身高的中位数为1745..第六组到第八组的频率和为0.080.0650.0080.18++⨯=,身高在180cm 以上(含180cm )的人数为8000.18144⨯=人.(3)第六组的人数为4人,第八组的人数为5050.0082⨯⨯=人.记“抽出的两名男生在同一组”为事件A ,从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,共有2615C =种不同选法,其中事件A 包含22427C C 种, 所以事件A 的概率715P =. 【点睛】 本题主要考查频率分布直方图,属于基础题.23.(1)答案见解析;(2)答案见解析.【解析】【试题分析】(1) 所用的循环语句是WHILE 循环语句,其功能是计算222129+++的值.(2)另一种循环语句就是UNTIL 型.按UNTIL 型语句改写出程序.【试题解析】(1)本程序所用的循环语句是WHILE 循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL 语句改写程序如下:k=1sum=0DOsum=sum+k ∧2k=k+1LOOP UNTIL k>=10PRINT sumEND24.见解析【解析】试题分析:在两个不同的条件下批发金额公式不同,只需编写一个条件语句即可实现.试题程序框图如下图所示.程序如下:i=input(“批发双数i=”);if i<300T=2.5* i;elseT=2.2* i;endprint(%io(2),T);25.(1)直方图见解析;(2)67分,65分.【分析】(1)由统计表算出各频率,作出频率分布直方图;(2)取各组数据中间值乘以频率再相加可得总平均值,求出频率0.5对应的成绩(此成绩在[60,70)之间].【详解】(1)根据统计表,作出这些数据的频率分布直方图如图:(2)由表中数据可知,这60名参赛学生成绩的平均数550.3650.4750. 15850.1950.0567x =⨯+⨯+⨯+⨯+⨯=分.因为这60名参赛学生成绩在[50,60)的频率为0.30.5<,成绩在[50,70)的频率为0.70.5>,所以这60名.参赛学生成绩的中位数在[60,70)之间.设这60名参赛学生成绩的中位数为x ,则()0.04600.2x ⨯-=,解得65x =, 故这60名参赛学生成绩的中位数为65分.【点睛】本题考查频率分布直方图,考查由频率分布直方图求均值和中位数.考查了学生的数据处理能力,运算求解能力,属于中档题.26.(1)0.02a =;(2)骑手应选择方案(2),理由见解析;(3)该骑手每天的平均业务量至少应达到73单.【分析】(1)利用所有直方图的面积之和为1可求得a 的值;(2)利用频率分布直方图计算出每天骑手的人均业务量的平均值,进而可计算出两种方案中骑手的日均工资,由此可选择合适的方案;(3)由频率分布直方图可得前4个小组的频率之和为0.6,前5个小组的频率之和为0.8,从而可知该骑手的平均业务量应在[)65,75内,设他的平均业务量为x ,结合题意可得出关于x 的不等式,进而可求得结果.【详解】(1)依题意,各组的频率之和为:100.005100.00510100.0310100.015100.05a a +⨯+⨯+⨯+⨯+⨯+⨯⨯故0.6201a +=,解得0.02a =;(2)快递公司人均每日完成快递数量的平均数是:300.05400.05500.2600.3700.2800.15900.0562+⨯+⨯+⨯+⨯+⨯+⨯=⨯, ∴方案(1)日工资为50623236+⨯=,方案(2)日工资约为()15062445240236+-⨯=>,故骑手应选择方案(2); (3)该骑手要使自己的收入在公司众骑手中处于前100名内,则平均业务量应超过的75%的骑手.前五个小组的频率分别为0.05、0.05、0.2、0.3、0.2.前四个小组的频率之和为0.050.050.20.30.6+++=;前五个小组的频率之和为0.050.050.20.30.20.8++++=;故该骑手的平均业务量应在区间[)65,75内.设他的平均业务量为x ,则()0.6650.020.75x +-⨯≥,解得:72.5x ≥,又x N *∈,故x 的最小值为73.所以,该骑手每天的平均业务量至少应达到73单.【点睛】本题考查利用频率分布直方图求参数、平均数,考查计算能力,属于中等题.。

【翼教版】高中数学必修三期末一模试卷(带答案)(1)

【翼教版】高中数学必修三期末一模试卷(带答案)(1)

一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .343.4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为( ) A .49B .427C .364D .3324.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .53175.正整数N 除以正整数m 后的余数为n ,记为()N n MODm ≡,例如()2516MOD ≡.如图所示程序框图的算法源于“中国剩余定理”,若执行该程序框图,当输入49N =时,则输出结果是( )A .58B .61C .66D .766.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S7.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤8.执行如图所示的程序框图,输出的S 值为( )A.1 B.-1 C.0 D.-29.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已9,11的学生人数为25,则n的值为()知学习时长在[)A.40 B.50 C.80 D.10010.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A.中位数B.平均数C.方差D.极差11.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .0815 12.根据如下样本数据得到的回归方程为y bx a =+,则( ) A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >0二、填空题13.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.14.已知△ABC 的两边AB =4,AC =7,D 点为边BC 上一点,且AD 平分∠BAC ,现随机将一粒豆子撒在△ABC 内,则豆子落在△ABD 内的概率是_____.15.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.16.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a =,29.6a =,39.3a = 49.4a =,59.4a =,69.3a = 79.3a =,89.7a =,99.2a = 109.5a =,119.3a =,129.6a = 17.程序如下:以上程序输出的结果是_________________18.如图所示的程序框图,输出的结果是_________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AOI大小分为六级.某地区一监测站记录自2019年9月起连续n天空气质量状况,得如下频数统计表及频率分布直方图.空气质量指数(AOI)(0,50](50,100](100,150](150,200](200,250](250,)+∞空气质量等级优良轻度污染中度污染重度污染严重污染频数(天)2540m1050(Ⅰ)求m ,n 的值,并完成频率分布直方图;(Ⅱ)由频率分布直方图,求该组数据的平均数与中位数;(Ⅲ)在空气质量指数分别为(50,100]和(100,150]的监测数据中,用分层抽样的方法抽取6天,再从中任意选取2天,求事件“两天空气质量等级不同”发生的概率. 22.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据: 零件数x (个) 1020304050加工时间y (分钟)62 68 75 82 88(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y 与零件数x 具有相关关系,求y 关于x 的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆniii ni i x x y y bx x ==--=-∑∑,^^a yb x =-)23.某林业部门为了保证植树造林的树苗质量,对甲、乙两家供应的树苗进行根部直径检测,现从两家供应的树苗中各随机抽取10株树苗检测,测得根部直径如下(单位:mm ): 甲 27 11 21 10 19 09 22 13 15 23 乙15202717211416182418(1)画出甲、乙两家抽取的10株树苗根部直径的茎叶图,并根据茎叶图对甲、乙两家树苗进行比较,写出两个统计结论;(2)设抽测的10株乙家树苗根部直径的平均值为x ,将这10株树苗直径依次输入程序框图中,求输出的S 的值,并说明其统计学的意义.24.指出下列程序框图表示的算法,并将最后输出的结果表示出来,指出相应的循环结构,并用另一种循环结构画出这个算法的程序框图.25.某食品厂为了检测某批袋装食品的质量,从该批食品中抽取了一个容量为100的样本,测量它们的质量(单位:克).根据数据分为[)92,94,[)94,96,[)96,98,[)99,100,[)100,102,[)102,104,[]104,106七组,其频率分布直方图如图所示.(1)根据频率分布直方图,估计这批袋装食品质量的中位数.(保留一位小数) (2)记产品质量在[)98,102内为优等品,每袋可获利5元;产品质量在[)92,94内为不合格品,每袋亏损2元;其余的为合格品,每袋可获利3元.若该批食品共有10000袋,以样本的频率代替总体在各组的频率,求该批袋装食品的总利润.26.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ) 0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为22正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.3.D解析:D 【分析】先求出基本事件总数n ,再求出每项活动至少有一名同学参加,包含的基本事件个数,由此能求出每项活动至少有一名同学参加的概率. 【详解】因为4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,所以基本事件总数n =44,每项活动至少有一名同学参加,因此4名同学分别参加一项活动,共有44A 种不同的情况.因此:每项活动至少一名同学参加的概率为:4443432A p ==. 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归的能力,属于中档题.4.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩,此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.5.B解析:B 【分析】该程序框图的作用是求被3和5除后的余数为1的数,根据所给的选项,得出结论. 【详解】模拟程序的运行,可得49N =,50N =, 不满足条件()13N MOD ≡,51N =; 不满足条件()13N MOD ≡,52N =;满足条件()13N MOD ≡,不满足条件()15N MOD ≡,53N =;不满足条件()13N MOD ≡,54N =;不满足条件()13N MOD ≡,55N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,56N =;不满足条件()13N MOD ≡,57N =;不满足条件()13N MOD ≡,58N =; 满足条件()13N MOD ≡,不满足条件()15N MOD ≡,59N =;不满足条件()13N MOD ≡,60N =;不满足条件()13N MOD ≡,61N =; 满足条件()13N MOD ≡,满足条件()15N MOD ≡,输出61N =. 故选:B. 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.6.C解析:C 【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件. 【详解】第一次循环:1S =,不满足条件,2i =; 第二次循环:3S =,不满足条件,3i =; 第三次循环:6S =,不满足条件,4i =; 第四次循环:10S =,不满足条件,5i =; 第五次循环:15S =,不满足条件,6i =; 第六次循环:21S =,不满足条件,7i =;第七次循环:28S =,满足条件,输出的值为7. 所以判断框中的条件可填写“28S ”. 故选C . 【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.7.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0; 当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.B解析:B 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=;此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.9.B解析:B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解. 【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =, 所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B . 【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.10.A解析:A 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.11.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.12.D解析:D 【解析】分析:利用公式求出ˆb,ˆa ,即可得出结论. 详解:样本平均数x =5.5,y =﹣0.25, ∴()()61i i i x x y y =--∑=23,621()i i x x =-∑=17.5,∴ˆb=2317.5=4635>0, ∴ˆa =﹣0.25﹣4635•5.5<0, 故选:D .点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,n ni i i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.二、填空题13.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率;【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.14.【分析】由角平分线性质得出线段的比高相同得出面积之比进而得概率【详解】点为边上一点且平分;由内角平分线性质可得:;所以根据几何概型可知豆子落在△ABD 内的概率故答案为:【点睛】本题主要考查了几何概型解析:411. 【分析】由角平分线性质得出线段的比,高相同,得出面积之比,进而得概率. 【详解】4AB =,7AC =,D 点为边BC 上一点,且AD 平分BAC ∠;由内角平分线性质可得:AB BD AC DC=⇒47BD DC =⇒411BD BC =; ∴411ADB ABC S S ∆∆=. 所以根据几何概型可知,豆子落在△ABD 内的概率411ADB ABC S S P ∆∆==. 故答案为:411【点睛】本题主要考查了几何概型,将基本事件“几何化”,实际问题转化为数学问题,属于中档题.15.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径,即2R =,即R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为343π⨯=,则该点取自四棱锥P ABCD -的内部的概率89P π==,故答案为9π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.16.【分析】分析程序框图的功能在于寻找和输出一组数据的最大值观察该题所给的数据可知其最大值为M 的值即为取最大时对应的脚码从而求得结果【详解】仔细分析程序框图的作用和功能所解决的问题是找出一组数据的最大值 解析:9.7,8【分析】分析程序框图的功能,在于寻找和输出一组数据的最大值,观察该题所给的数据,可知其最大值为9.7,M 的值即为取最大时对应的脚码,从而求得结果. 【详解】仔细分析程序框图的作用和功能, 所解决的问题是找出一组数据的最大值,并指明其为第几个数,观察数据得到第八个数是最大的,且为9.7, 所以答案是9.7,8. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有框图的作用和功能,观察所给的数据,从而得到结果,所以要读取框图的作用非常关键.17.24【解析】考点:程序框图专题:图表型分析:由程序中循环的条件为i≤4我们易得到最后一次循环时i=4又由循环变量i的初值为2故我们从2开始逐步模拟循环的过程即可得到结论解答:解:模拟程序的运行结果:解析:24【解析】考点:程序框图.专题:图表型.分析:由程序中循环的条件为i≤4,我们易得到最后一次循环时i=4,又由循环变量i的初值为2,故我们从2开始逐步模拟循环的过程,即可得到结论.解答:解:模拟程序的运行结果:i=2时,t=2,i=3时,t=6,i=4时,t=24,故答案为24点评:本题考查的知识点是程序框图及程序代码,在写程序运行结果时,模拟程序的运行过程是解答此类问题最常用的方法,模拟时要分析循环变量的初值,步长和终值18.1【解析】试题分析:根据程序框图可知该程序执行的是所以输出的的值为1考点:本小题主要考查程序框图的执行和对数的运算点评:高考中程序框图的题目一般离不开循环结构要分清是当型循环还是直到型循环要搞清楚退解析:1【解析】试题分析:根据程序框图可知,该程序执行的是34103410lg2lg lg lg lg(2)lg101239239b=++++=⋅⋅⋅⋅==,所以输出的的值为1.考点:本小题主要考查程序框图的执行和对数的运算.点评:高考中程序框图的题目一般离不开循环结构,要分清是当型循环还是直到型循环,要搞清楚退出循环的条件,避免多执行或少执行一步.19.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容解析:21【解析】【分析】根据系统抽样的特征,求出分段间隔即可.【详解】根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为210021 100=,故答案是21.【点睛】该题所考查的是有关系统抽样的组距问题,应用总体除以样本容量等于组距,得到结果,属于简单题目.20.【解析】依次选取两个数字为237593211504……所以选出来的第个个体的编号为15 解析:15【解析】依次选取两个数字为23,75,93,21,15,04,…… 所以选出来的第3个个体的编号为15.三、解答题21.(Ⅰ)20m =,100n =,直方图见解析;(Ⅱ)90,81.25;(Ⅲ)815. 【分析】(Ⅰ)由频率的计算公式,即可求得参数,m n ,根据表格中数据,即可补全直方图; (Ⅱ)根据频率分布直方图中平均数和中位数的求解方法,即可容易求得;(Ⅲ)先用分层抽样求得6天中在区间(50,100]和(100,150]的天数,列举出所有任取2天的可能性,找出满足题意的可能性,根据古典概型的概率求解公式即可求得结果. 【详解】(Ⅰ)由题知100.00250n⨯=,解得100n =,所以20m =. 频率分布直方图如图:(Ⅱ)平均数为[250.005750.0081250.0041750.0022250.001]50⨯+⨯+⨯+⨯+⨯⨯6.25302517.511.2590=++++=;中位数为0.50.25505081.250.4-+⨯= ; (Ⅲ)按分层抽样在(50,100]和(100,150]中抽取分别抽取4天和2天,在所抽取的6天中,将空气质量指数为(50,100]的4天分别记为1A ,2A ,3A ,4A ,空气质量指数为(100,150]的2天分别记为1B ,2B , 从中任取2天的基本事件为()()()()()()()()()()(){1213142324341112212231,,,,,,,,,,,,,,,,,,,,,A A A A A A A A A A A A AB A B A B A B A B()()()()}32414212,,,,,,,A B A B A B B B 共15个,其中事件M “两天空气质量等级不同”发生基本事件包括8个, 所以概率8()15P M =. 【点睛】本题考查频率的计算,频率分布直方图的绘制,以及由频率分布直方图计算中位数和平均数,古典概型的概率计算,涉及分层抽样,属综合中档题. 22.(1)710(2)108分钟. 【分析】(1)利用列举法和古典概型的概率公式计算可得;(2)根据公式计算可得回归方程,根据回归公式计算可得答案. 【详解】 解:(1)6268758288755y ++++==记:“两组数据中至少有一组数据小于加工时间的均值” 为事件A ,基本事件:(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88),(75,82),(75,88),(82,88)共10种,其中事件A :(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88)共7个,所以7()10P A =. (2)由题,1020304050305x ++++==,()5214001001004001000ii x x =-=+++=∑()()5126070070260660iii x x y y =--=++++=∑()()()121ˆ0.66,niii ni i x x y y bx x ==--==∴-∑∑ˆˆ55.2a y bx=-= 所以回归方程为ˆ0.6655.2yx =+. 80x =时,ˆ0.668055.2108yx =⨯+=,即预测其加工80个零件需要108分钟. 【点睛】本题考查了利用列举法和古典概型概率公式计算概率,考查了求线性回归方程,考查了运算求解能力,属于中档题.23.(1)见解析(2)15,见解析【分析】(1)由题意画出茎叶图,根据茎叶图写出两条合理结论即可;(2)计算出x ,根据程序框图的功能是计算出数据方差,计算方差,说出方差的统计学意义即可得解.【详解】(1)茎叶图如图所示:结论有:①甲家树苗的平均直径小于乙家树苗的平均直径;②乙家树苗比甲家树苗长的更均匀; ③甲家树苗的中位数是17,乙家树苗的中位数是18.(答案合理即可给分,写出两条即可).(2)由题意()1151714161818202721241910x =+++++++++=, 因为该程序框图的算法功能是求数据方差, 所以2221[(1519)(1719)(2419)]1510S =-+-++-=,S 是10株树苗根部直径的方差,是描述离散程度的量,S 越小,长得越整齐,S 越大,长得越粗细不均.【点睛】本题考查了茎叶图和程序框图的应用,考查了数据方差的概念和计算,属于中档题. 24.见解析【解析】【分析】该程序框图表示的算法是计算1×3×5×…×97的值,采用的是直到型循环结构,所以另一种循环结构为当型循环;当型循环结构的特点是先判断条件,当条件满足时执行循环体,所以应把条件改为i<99,并且把判断条件放在循环题的前面.【详解】程序框图表示的算法是计算1×3×5×…×97的值,采用的是直到型循环结构.利用当型循环结构表示为:【点睛】本题考查程序框图的应用和计算,直到型循环、当型循环的联系与区别,属于基础题. 25.(1)99.6;(2)35600元.【分析】(1)根据频率分布直方图中的中位数在长方形面积为0.5的地方取得得解.(2)求出批食品中优等品、不合格品、合格品的袋数得总利润.【详解】(1)因为(0.020.040.12)20.360.5,0.360.0920.540.5++⨯=<+⨯=>, 所以样本质量的中位数在[98,100)内.设样本质量的中位数为m ,则980.0920.360.52m -⨯⨯+=, 解得99.6m ≈,故这批袋装食品质量的中位数为99.6.(2)由题意可得,这批食品中优等品有10000(0.090.10)23800⨯+⨯=袋, 这批食品中不合格品有100000.022400⨯⨯=袋,这批食品中合格品有1000038004005800--=袋.故该批袋装食品的总利润为3800558003400235600⨯+⨯-⨯=元.【点睛】频率分布直方图中的中位数求法在长方形面积为0.5的地方取得是解题关键,属于基础题. 26.(1)答案见解析;(2)35. 【解析】【试题分析】(1)借助题设中提供的频率分布直方图,算出0-50的频率为0.004500.2⨯=,进而求出样本容量200.2100n =÷=,从而求出25m =,最后完成频率分布直方图;(2)先运用分层抽样的方法求出空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,即将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,算出从中任取2天的基本事件数为10种和其中事件A “两天空气都为良”包含的基本事件数为6种,进而算得事件A “两天都为良”发生的概率是()63105P A ==: (1)由频率分布直方图可知0-50的频率为0.004500.2⨯=,所以200.2100n =÷=,从而25m =,频率分布直方图补充如下图所示.(2)在空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,在所抽取的5天中,将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,从中任取2天的基本事件分别为:(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种.其中事件A “两天空气都为良”包含的基本事件为:(),a b ,(),a c ,(),a d ,(),b c ,(),b d 共6种,所以事件A “两天都为良”发生的概率是()63105P A ==.。

【人教版】高中数学必修三期末一模试题(附答案)(1)

【人教版】高中数学必修三期末一模试题(附答案)(1)

一、选择题1.将曲线22x yx y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8π B .16π C .18π-D .116π-3.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .19364.在二项式42nx x 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( ) A .16B .14C .512D .135.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列6.执行如图所示的程序框图,输出S 的值为( )A .1B .0C .1D .27.执行如图所示的程序框图,若输人的n 值为2019,则S =A .B .C .D .8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .2910.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.9111.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2B.s1=s2C.s1<s2D.不确定12.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A.40 B.45 C.48 D.50二、填空题13.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.14.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____15.已知7个实数1,2,4,,,,a b c d -依次构成等比数列,若从这7个数中任取2个,则它们的和为正数的概率为___________.16.若45a =,则以下程序运行后的结果是_____.17.运行下边的流程图,输出的结果是__________.18.阅读如图所示的流程图,运行相应的程序,则输出n 的值为______.19.某地区共有4所普通高中,这4所普通高中参加2018年高考的考生人数如下表所示: 学校 A 高中B 高中C 高中D 高中参考人数80012001000600现用分层抽样的方法在这4所普通高中抽取144人,则应在D 高中中抽取的学生人数为_______.20.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.三、解答题21.手机支付也称为移动支付(Mobile Payment ),是当今社会比较流行的一种付款方式.某金融机构为了了解移动支付在大众中的熟知度,对15—65岁的人群作了问题为“你会使用移动支付吗?”的随机抽样调查,把回答“会”的100个人按照年龄分成5组,绘制成如图所示的频数分布表和频率分布直方图.(1)求x ,a 的值;(2)若从第1,3组中用分层抽样的方法抽取5人,求两组中分别抽取的人数; (3)在(2)抽取的5人中再随机抽取2人,求所抽取的2人来自同一个组的概率. 22.我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标x y z ω=++的值评定人工种植的青蒿的长势等级:若4ω≥,则长势为一级;若23ω≤≤,则长势为二级;若01ω≤≤,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果: 种植地编号1A2A3A 4A 5A(),,x y z ()0,1,0 ()1,2,1 ()2,1,1 ()2,2,2 ()0,1,1(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一地,其综合指标为m ,从长势等级不是一级的人工种植地中任取一地,其综合指标为n ,记随机变量X m n =-,求X 的分布列.23.写出一个求解任意二次函数()20y ax bx c a =++≠的最值的算法.24.某城市规定,在法定工作时间内每小时的工资是8元,在法定工作时间外每小时的加班工资为16元,某人在一周内工作60小时,其中加班20小时.编写程序,计算这个人这一周所得的工资.25.据了解,温带大陆性气候,干燥,日照时间长,昼夜温差大,有利于植物糖分积累.某课题研究组欲研究昼夜温差大小()/x ℃与某植物糖积累指数()/y GI 之间的关系,得到如下数据:下的2组数据进行检验,假设这剩下的2组数据恰好是第一组与第六组数据.(1)求y 关于x 的线性回归方程ˆˆˆybx a =+(2)若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2.58,则认为得到的线性回归方程是理想的,试问(1)中所得线性回归方程是否理想?(参考公式:回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计()()()211ˆˆˆ,iii ni ni x x y y bay bx x x ==--==--∑∑ 26.经营费用指流通企业对在经营过程中发生除经营成本以外的所有费用,如管理费用、财务费用、法律费用等,这些费用没有直接用于生产产品或提供服务,但它是影响公司收益的重要因素.某创业公司从2014年开始创业到2019年每年的经营费用y (万元)、年份及其编号t ,有如下统计资料:t 1 2 3 4 5 6 y9.512.214.617.419.6m已知该公司从2014年到2019年年平均经营费用为16万元,且经营费用y 与年份编号t 呈线性相关关系.(1)求2019年该公司的经营费用;(2)y 关于t 的回归方程为 2.6y t a =+,求a ,并预测2020年所需要支出的经营费用; (3)该公司对2019年卖出的产品进行质量指标值检测,由检测结果得如图所示频率分布直方图:预计2020年生产产品质量指标值分布与上一年一致,将图表中频率作为总体的概率.当每件产品质量指标值不低于215时为优质品,指标值在185到215之间是合格品,指标值低于185时为次品.出售产品时,每件优质品可获利1.5万元,每件合格品可获利0.7万元,次品不仅全额退款,还要对客户进行赔付,所以每件次品亏损1.3万元.若2020年该公司的产量为500台,请你预测2020年该公司的总利润(总利润=销售利润-经营费用).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.3.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93()76,68、()76,72、()76,73、()76,85、()76,89、()76,93 ()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.4.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.5.A解析:A 【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能. 【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A . 【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.6.C解析:C 【分析】 由函数()πsin2xf x =,可求周期为4,()(1)(2)(3)40+++=f f f f ,由题意可知()(1)(2)(2021)=2021(1)1=+++==S f f f f f【详解】由函数()πsin 2x f x =的周期为2π4π2T ==, ()π1sin 12f ==,()2π2sin 02f ==,()3π3sin12f ==-,()4π4sin 02f ==,()(1)(2)(3)40+++=f f f f ()(1)(2)(2021)=2021(1)1∴=+++==S f f f f f .故选:C 【点睛】本题考查了程序框图求和,正弦型三角函数的周期等基本知识,考查了运算求解能力和逻辑推理能力,属于一般题目.7.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6n 2019k 1 2 (2018)2019S …k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.8.C解析:C 【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案. 【详解】由题意可知,执行如图所示的程序框图,可知: 第一循环:134,2146n S =+==⨯+=; 第二循环:437,26719n S =+==⨯+=; 第三循环:7310,2191048n S =+==⨯+=, 要使的输出的结果为48,根据选项可知8k ,故选C.【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=, 故21252835275m++++=,26m ∴=.故选:A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.10.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.11.C解析:C 【分析】先求均值,再根据标准差公式求标准差,最后比较大小. 【详解】乙选手分数的平均数分别为7885848192767780949384,84,55++++++++====因此s 1<s 2,选C. 【点睛】本题考查标准差,考查基本求解能力.12.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.二、填空题13.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:5 6【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305. 366=【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.14.【分析】先求对立事件概率:三门科目考试成绩都不是A再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A的概率为所以这位考生至少得1个A的概率为故答案为:【点睛】本题考查利用对立事件求解析:191 192【分析】先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【详解】这位考生三门科目考试成绩都不是A的概率为5731 (1)(1)(1)684192 ---=,所以这位考生至少得1个A的概率为1191 1192192 -=故答案为:191 192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.15.【分析】根据前几项可知数列的首项为公比为由此求得的值基本事件的总数有和为正数分成两种情况一种是取出的两个数都是正数另一种是一个正数一个负数由此计算出和为正数的方法数根据古典概型概率计算公式求得概率的解析:47【分析】根据前几项可知,数列的首项为1,公比为2-,由此求得,,,a b c d 的值.基本事件的总数有27C .和为正数分成两种情况,一种是取出的两个数都是正数,另一种是一个正数一个负数,由此计算出和为正数的方法数,根据古典概型概率计算公式求得概率的值. 【详解】由题意得,这7个实数为1,2,48,16,32,64---①所选2个数均为正数:246C =(种);②所选2个数一正一负:2,4-、2,16-、2,64-、8,16-、8,64-、32,64-,共6(种)276647P C +∴==,故填4.7【点睛】本小题主要考查古典概型的概率计算,考查了等比数列的概念.在计算古典概率的过程中,首先求得分母,也即是基本事件的总数,由于抽取时没有顺序,故用组合数来计算.然后考虑分子,分子是符合题意事件的个数,要用分类加法计数原理分成两种情况来求解.中档题.16.5【分析】根据条件就是求a 除以10的整数减去a 除以10的商加上a 除以10的余数【详解】【点睛】本题考查除法与取整同余等概念考查基本求解能力解析:5 【分析】根据条件就是求a 除以10 的整数减去a 除以10 的商加上a 除以10 的余数. 【详解】4545\10/1010[]54 4.55 4.5.1010a a aMOD -+=-+=-+= 【点睛】本题考查除法与取整、同余等概念,考查基本求解能力.17.94【解析】不成立执行不成立执行成立所以输出解析:94 【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立, 执行33119450a =⨯+=>,成立, 所以输出94.a =18.4【解析】不成立;不成立;不成立;成立输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是解析:4 【解析】()1,0,0111,2n S S S ===+-⨯=-≥ 不成立; ()22,1121,2n S S ==-+-⨯=≥ 不成立;()33,1132,2n S S ==+-⨯=-≥ 不成立;()44,2142,2n S S ==-+-⨯=≥ 成立,输出4n = ,故答案为4 .【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.24【分析】计算出高中人数占总人数的比例乘以得到在高中抽取的学生人数【详解】应在高中抽取的学生人数为【点睛】本小题主要考查分层抽样考查频率的计算属于基础题解析:24 【分析】计算出D 高中人数占总人数的比例,乘以144得到在D 高中抽取的学生人数. 【详解】应在D 高中抽取的学生人数为6001442480012001000600⨯=+++.【点睛】本小题主要考查分层抽样,考查频率的计算,属于基础题.20.6【解析】n 为18+12+6=36的正约数因为18:12:6=3:2:1所以n 为6的倍数因此因为当样本容量为时若采用系统抽样法则需要剔除1个个体所以n+1为35的正约数因此解析:6 【解析】n 为18+12+6=36的正约数,因为18:12:6=3:2:1,所以n 为6的倍数,因此6,12,18,24,30,36n =因为当样本容量为1n +时,若采用系统抽样法,则需要剔除1个个体,所以n+1为35的正约数,因此6n =三、解答题21.(1)20x,0.03a =;(2)第1组抽取的人数为2,第3组抽取的人数为3;(3)25. 【分析】(1)由频率计算出x 后可得y ,从而得频率分布图中的a ;(2)由总体比例可得各组抽取人数;(3)把抽取的人编号,用列举法写出任取2人的所有基本事件,并得出2人来自同一组的基本事件,计数后可计算概率. 【详解】(1)由题意可知,0.021010020x =⨯⨯=, 所以100(2035123)30y =-+++=, 从而11300.0310010a =⨯⨯=. (2)第1,3组共有50人,所以抽取的比例是110, 则从第1组抽取的人数为120210⨯=, 从第3组抽取的人数为130310⨯=. (3)设第1组抽取的2人为1A ,2A ,第3组抽取的3人为1B ,2B ,3B , 则从这5人中随机抽取2人有如下种情形:12(,)A A ,11(,)A B ,12(,)A B ,13(,)A B ,21(,)A B ,22(,)A B ,23(,)A B ,12(,)B B ,13(,)B B ,23(,)B B 共有10个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有12(,)A A ,12(,)B B ,13(,)B B ,23(,)B B 共4个基本事件,所以抽取的2人来自同一个组的概率42105P ==. 【点睛】本题考查频率分布直方图,频数分布表,考查分层抽样和古典概型,列举法是求解古典概型的常用方法.本题考查了学生的数据处理能力,运算求解能力,属于中档题. 22.(1)25;(2)分布列见解析 【分析】()1由表可知:空气湿度指标为0的有A 1,空气湿度指标为1的有A 2,A 3,A 5,A 8,A9,A10,空气湿度指标为2的有A4,A6,A7,由此能求出这两地的空气温度的指标z 相同的概率;()2由题意得长势等级是一级()4ω≥有A2,A 3,A4,A6,A7,A9,长势等级不是一级(4)ω<的有A 1,A 5,A 8,A10,从而随机变量X 的所有可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出X 的分布列和()E X . 【详解】(1)由表可以知道:空气湿度指标为0的有1A ,空气湿度指标为1的有2A ,3A ,5A ,8A ,9A ,10A ,空气湿度指标为2的有4A ,6A ,7A ,在这10块青蒿人工种植地中任取两地,基本事件总数21045n C ==,这两地的空气温度的指标z 相同包含的基本事件个数226318m C C =+=,所以这两地的空气温度的指标z 相同的概率182455m p n ===. (2)根据题意得10块青蒿人工种植的综合指标如下表:其中长势等级是一级4ω≥有2A ,3A ,4A ,6A ,7A ,9A ,共6个, 长势等级不是一级()4ω<的有1A ,5A ,8A ,10A ,共4个, 随机变量X 的所有可能取值为1,2,3,4,5,()11321164114C C P X C C ===,()1111312211647224C C C C P X C C +===, ()11111131122111647324C C C C C C P X C C ++===,()111121111164148C C C C P X C C +===, ()111111641524C C P X C C ===, 所以X 的分布列为:本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用. 23.见解析 【分析】由二次函数的性质知,当0a >时,二次函数()20y ax bx c a =++≠开口方向向上,函数有最小值为244ac b a -;当0a <时, 二次函数()20y ax bx c a =++≠开口方向向下,函数有最大值为244ac b a-. 【详解】第一步,输入a ,b ,c第二步,计算244ac b m a-=;第三步,若0a >,min y m =,否则, max y m =. 【点睛】本题考查算法步骤的书写和一元二次函数的最值问题;同时让学生体会算法在解决数学问题中的作用;求解本题的关键是对一元二次函数最值情况必须熟悉;属于中档题. 24.见解析; 【解析】试题分析: 先利用INPUT 语句输入法定工作时间以及加班工作时间,再分别赋值法定工作时间工资,加班工作时间工资以及总工资,最后输出一周所得的工资. 试题 程序如下:点睛:25.(1)171277y =⨯;(2)该小组所得线性回归方程是理想的. 【分析】(1)根据数据求出ˆb与ˆa 的值,即可求出y 关于x 的线性回归方程; (2)分别计算出1月份和6月份对应的预测值,与检验数据作差取绝对值,再与2.58进行比较即可得到结论.【详解】(1)由表中2月至5月份的数据, 得11(1113128)11,(24302818)2544x y =+++==+++=,故有()()520(1)2513(3)(7)34iii x x y y =--=⨯-+⨯+⨯+-⨯-=∑,()5222222021(3)14i i x x =-=+++-=∑,34171712,251114777b a y bx ∴===-=-⨯=-, 即y 关于x 的线性回归方程为171277y =⨯; (2)由171277y =⨯,当10x =时,171215810777y =⨯-=, 1581820 2.5877-=<, 当6x =时,1712906777y =⨯=, 901515 2.5877-=<, 则该小组所得线性回归方程是理想的. 【点睛】方法点睛:该题考查的是有关回归分析的问题,解题方法如下:(1)结合题中所给的数据,根据最小二乘法系数公式起的ˆb与ˆa 的值,得到回归直线方程;(2)将相应的变量代入,得到的值域题中条件比较,得到结论. 26.(1)22.7万元;(2)6.9;25.1万元;(3)254.9万元. 【分析】(1)根据均值定义列式计算;(2)求出t ,代入方程可得a ,令7t =代入可得估计值;(3)由频率分布直方图是三种产品的概率,得三种产品的件数,根据各产品赢利可计算出总赢利,注意减去(2)中估计的经营费用. 【详解】 (1)9.512.214.617.419.6166my +++++==.解得22.7m =,即2019年该公司的经营费用为22.7万元. (2) 3.5t =,16y =,所以 2.6 6.9a y t =-=,取7t =,代入得25.1y =,预测2020年所需要支出的经营费用为25.1万元. (3)由图可得生产优质品的概率是0.1,生产合格品的概率是0.79,生产次品的概率是0.11,则预测该公司2020年的总利润为1.50.15000.70.79500 1.30.1150025.1254.9⨯⨯+⨯⨯-⨯⨯-=(万元).【点睛】本题考查线性回归方程及其应用,考查频率分布直方图及其期望,考查学生的数据处理能力,运算求解能力,属于中档题.。

【浙教版】高中数学必修三期末一模试卷带答案(1)

【浙教版】高中数学必修三期末一模试卷带答案(1)

一、选择题1.继刘徽之后,祖冲之为求得更精确的圆周率而作了艰苦卓绝的努力.据《惰书》记载,他已算得3.1415926 3.1415927π<<.他还得到圆周率的两个近似分数值355113和227,并称355113为密率,227为约率,他的圆周率小数值则被后世称为祖率.现用随机模拟的方法得到圆周率,从区间[0,1]随机抽取2000个数,构成1000个数对(,)x y ,其中两数的平方和小于1的数对(,)x y 共有785个,则用随机模拟的方法得到的π的近似值为( ) A .31411000B .355113C .15750D .2272.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5163.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.如图,过球心的平面和球面的交线称为球的大圆.球面几何中,球O 的三个大圆两两相交所得三段劣弧AB ,BC ,CA 构成的图形称为球面三角形ABC . AB 与AC 所成的角称为球面角A ,它可用二面角B OA C --的大小度量.若球面角3A π=,2B π=,2C π=,则在球面上任取一点P ,P 落在球面三角形ABC 内的概率为( )A.16B.18C.112D.1165.阅读下面的框图,运行相应的程序,输出S的值为________.A.2 B.4 C.-4 D.-8 6.执行如图所示的程序框图,若输入10n ,则输出的结果是()A.1111 4135717 P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭7.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A.5n≤B.6n≤C.7n≤D.8n≤8.执行如图所示的程序框图,若输入的,a b的值分别为1,2,则输出的S是()A.70 B.29 C.12 D.59.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[]200,480的人数为A.7 B.9 C.10 D.1210.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万 6.27.58.08.59.8元)根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元11.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16012.根据如下样本数据 x 3 4 5 6 7 8 y﹣4.0﹣2.50.5﹣0.52.03.0得到的回归方程为y bx a =+,则( ) A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >0二、填空题13.某班共有4个小组,每个小组有2人报名参加志愿者活动.现从这8人中随机选出4人作为正式志愿者,则选出的4人中至少有2人来自同一小组的概率为________. 14.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.15.在区间[0,1]中随机地取出两个数,则两数之和大于45的概率是______. 16.运行如图所示的程序框图,则输出的S 的值为________.17.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .18.如图所示的程序框图,输出S 的结果是__________.19.一组数据由小到大依次为2,4,5,7,,,12,13,14,15a b ,且平均数为9,则49a b的最小值为________.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了A ,B ,C 三种放假方案,调查结果如下:支持A 方案支持B 方案支持C 方案35岁以下 20 40 80 35岁以上(含35岁) 101040n ”的人中抽取了6人,求n 的值;(2)在“支持B 方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.22.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率. 23.已知辗转相除法的算法步骤如下:第一步:给定两个正整数m,n;第二步:计算m除以n所得的余数r;第三步:m n=,n r=;第四步:若0r=,则m,n的最大公约数等于m;否则,返回第二步.请根据上述算法画出程序框图.24.设计算法求111112233499100++++⨯⨯⨯⨯的值,要求画出程序框图,并用基本的算法语句编写程序.25.“湖广熟,天下足”,鱼米之乡的湖北是全国重要的农产品生产地.而受疫情影响,像莲藕、小龙虾等湖北很多优质农副产品近期都面临销售难题.为了让淜北尽快恢复正常,央视主持人朱广权化身直播带货官,和网红们一起为湖北产品做公益直播.在为湖北某地区的小龙虾进行带货时,需大致了解该地区小龙虾的产量,通过调查发现湖北某地区近几年的小龙虾产量统计如下表:年份201420152016201720182019年份代码t123456年产量y(万吨)6.6 6.97.47.788.4(1)根据表中数据,建立关于t的线性回归方程y bt a=+;(2)请你根据线性回归方程预测今年(2020年)该地区小龙虾的年产量.附:对于一组数据()11,t y ,()22,t y ,…,(),n n t y ,其回归直线y bt a =+的斜率和截距的最小二乘估计分别为:()()()121ˆniii ni i t t y y bt t ==--=-∑∑,a y bt =-.(参考数据:()()616.3ii i tty y =--=∑)26.某大学为了了解数学专业研究生招生的情况,对近五年的报考人数进行了统计,得到如下统计数据:(1)经分析,y 与x 存在显著的线性相关性,求y 关于x 的线性回归方程ˆˆˆybx a =+并预测2020年(按6x =计算)的报考人数;(2)每年报考该专业研究生的考试成绩大致符合正态分布()2,Nμσ,根据往年统计数据385μ=,2225σ=,录取方案:总分在400分以上的直接录取,总分在[]385,400之间的进入面试环节,录取其中的80%,低于385分的不予录取,请预测2020年该专业录取的大约人数(最后结果四舍五入,保留整数).参考公式和数据:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-,()()51360iii x x y y =--=∑.若随机变量()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先作出事件对应的平面区域,再利用几何概型和随机模拟求解.由题得0101x y ≤≤⎧⎨≤≤⎩,对应的区域为图中的正方形OABC 区域,事件A :2201011x y x y ≤≤⎧⎪≤≤⎨⎪+<⎩对应的区域为图中的扇形OAC 区域,由题得2117851574==10001150ππ⋅∴⨯,. 用随机模拟的方法得到的π的近似值为15750. 故选:C 【点睛】方法点睛:几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代几何概型的概率公式;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.2.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =. 故选:D .本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.C解析:C 【分析】根据球体的性质,利用面积比求出概率即可. 【详解】解:由题知,球面角3A π=,2B π=,2C π=,则得出球面三角形ABC 是112的球面,设球面三角形ABC 的面积为S , 则球面上任取一点P ,P 落在球面三角形ABC 内的概率为:1=12S P S =球.故选:C. 【点睛】本题考查面积型几何概型,通过面积比求概率,还考查球体的性质和应用,解题时需要认真审题和理解分析题目.5.C解析:C 【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.6.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可. 【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.7.B解析:B 【分析】根据框图,模拟程序运行即可求解. 【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=, 解得6i =,即7n =时结束程序, 所以6n ≤, 故选 :B 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju8.B解析:B 【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果. 【详解】 解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <;第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <, 故输出29S =. 故选B. 【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.9.C解析:C 【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果. 【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C . 【点睛】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.10.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.11.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题12.D解析:D 【解析】分析:利用公式求出ˆb,ˆa ,即可得出结论. 详解:样本平均数x =5.5,y =﹣0.25, ∴()()61i i i x x y y =--∑=23,621()i i x x =-∑=17.5,∴ˆb=2317.5=4635>0, ∴ˆa =﹣0.25﹣4635•5.5<0, 故选:D .点睛:求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,n ni i i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆybx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.二、填空题13.【分析】先求出从这8人中随机选出4人的选法总数再求出选出的4人中至少有2人来自同一小组的不同选法总数再求概率【详解】从这8人中随机选出4人作为正式志愿者有种不同的选法选出的4人中至少有2人来自同一小 解析:2735【分析】先求出从这8人中随机选出4人的选法总数,再求出选出的4人中至少有2人来自同一小组的不同选法总数,再求概率. 【详解】从这8人中随机选出4人作为正式志愿者有4870C =种不同的选法.选出的4人中至少有2人来自同一小组分为下列情况:(1)恰好有2人来自同一小组,有1211432248C C C C=种(2)4个人来自2个不同的小组(每个小组2个人)有246C=所以选出的4人中至少有2人来自同一小组有48654+=种选法.则选出的4人中至少有2人来自同一小组的概率为54277035 P==故选项为:27 35.【点睛】本题考查组合问题,求古典概率的问题,属于中档题.14.【分析】由题意从甲乙丙丁4位同学中选出2名代表参加学校的会议求得基本事件的总数再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中求得其包含的基本事件的个数即可求解【详解】由题意从甲乙丙丁4位解析:5 6【分析】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,求得基本事件的总数,再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,求得其包含的基本事件的个数,即可求解.【详解】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,则基本事件的总数为246n C==,又由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,其包含的基本事件的个数为221m C==,所以甲乙两人至少有一人被选中的概率为151166mpn=-=-=.故答案为56.【点睛】本题主要考查了古典概型及其概率的计算公式,以及对立事件的应用,其中解答中认真审题,合理选择方法,分别求得基本事件的总数和事件所包含的基本事件的个数是解答的关键,着重考查了推理与计算能力,属于基础题.15.【解析】分析:将原问题转化为几何概型的问题然后利用面积型几何概型公式整理计算即可求得最终结果详解:原问题即已知求的概率其中概率空间为如图所示的正方形满足题意的部分为图中的阴影部分所示其中结合面积型几解析:17 25【解析】分析:将原问题转化为几何概型的问题,然后利用面积型几何概型公式整理计算即可求得最终结果.详解:原问题即已知01,01x y ≤≤≤≤,求45x y +≥的概率, 其中概率空间为如图所示的正方形,满足题意的部分为图中的阴影部分所示, 其中4,05E ⎛⎫⎪⎝⎭,40,5F ⎛⎫ ⎪⎝⎭,结合面积型几何概型计算公式可得满足题意的概率值为:1441725511125p ⨯⨯=-=⨯.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.16.1011【分析】根据程序框图可得是对偶数求和是对奇数求和再根据循环条件可分别得出奇数偶数的个数从而得出答案【详解】依题意故故答案为:1011【点睛】本题考查算法与程序框图考查循环结构考查直观想象推理解析:1011 【分析】根据程序框图可得T 是对偶数求和,N 是对奇数求和,再根据循环条件可分别得出奇数、偶数的个数,从而得出答案. 【详解】依题意,024*********T =++++++,135720192021N =++++++,故()()()13254202120201011S N T =-=+-+-++-=.故答案为:1011 【点睛】本题考查算法与程序框图,考查循环结构,考查直观想象、推理论证的核心素养,属于中档题.17.5【分析】直接模拟程序即可得结论【详解】输入的值为2不满足所以故答案是:5【点睛】该题考查的是有关程序框图的问题涉及到的知识点有程序框图的输出结果的求解属于简单题目解析:5 【分析】直接模拟程序即可得结论. 【详解】输入x 的值为2,不满足1x ≤,所以3325y x =+=+=, 故答案是:5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.18.【解析】阅读流程图可得该流程图计算的数值为: 解析:【解析】阅读流程图可得,该流程图计算的数值为:13sin 0sin 1sin 5262626S ππππππ+⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 19.【分析】由已知可得利用基本不等式即可求出的最小值【详解】一组数据由小到大依次为且平均数为9故当且仅当时等号成立的最小值为故答案为:【点睛】本题考查基本不等式在最值中的应用关键要对1做代换属于中档题 解析:2518【分析】由已知可得18,712a b a b +=≤≤≤,利用基本不等式,即可求出49a b+的最小值. 【详解】一组数据由小到大依次为2,4,5,7,,,12,13,14,15a b , 且平均数为9,故18,712,118a ba b a b ++=≤≤≤=, 49149()()18a b a b a b+=++ 149125(13)(13236)181818b a a b =++≥+= 当且仅当3654,55a b ==时,等号成立,49a b+的最小值为2518.故答案为:2518【点睛】本题考查基本不等式在最值中的应用,关键要对“1”做代换,属于中档题.20.【解析】 三、解答题21.(1)40n =(2)25【分析】(1)根据分层抽样按比例抽取,列出方程,能求出n 的值;(2)35岁以下有4人,35岁以上(含35岁) 有1人.设将35岁以下的4人标记为1,2, 3, 4, 35岁以上(含35岁) 的1人记为a , 利用列举法能求出恰好有1人在35岁以上(含35岁) 的概率. 【详解】(1)根据分层抽样按比例抽取,得:61020204080101040n=++++++,解得40n =.(2)35岁以下:540450⨯=(人), 35岁以上(含35岁):510150⨯=(人) 设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a ,()()()()()()()()()(){}1,2,1,3, 1,4,1,,2,3,2,4,2,,3,4,3,,4,a a a a Ω=,共10个样本点.设A :恰好有1人在35岁以上(含35岁)()()()(){}1,,2,,3,,4,A a a a a =,有4个样本点,故()42105P A ==. 【点睛】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.22.(1)225人;(2)1415【分析】(1)根据频率分布直方图,分别算出男生自主学习不超过40分钟的人数和女生自主学习不超过40分钟的人数求和即可.(2)根据频率分布直方图可得选4名男生,2名女生,然后利用古典概型的概率求法,先列出任选2人的基本事件的数,再找出没有男生的基本事件数,最后用对立事件的概率求解. 【详解】(1)男生自主学习不超过40分钟的人数:0.0025401500150⨯⨯=人, 女生自主学习不超过40分钟的人数:0.0012540150075⨯⨯=人, 所以估计全区高三学生网上学习时间不超过40分钟的人数为225人.(2)在80名学生中,男生网上学习不超过40分钟的人数:400.0025404⨯⨯=人, 女生网上学习不超过40分钟的人数:400.00125402⨯⨯=人, 所以选4名男生,2名女生.4名男生设为1a ,2a ,3a ,4a ,2名女生设为12,b b ,任选2人有:12a a ,13a a ,14a a ,23a a ,24a a ,34a a ,12b b ,11a b ,21a b ,31a b ,41a b ,21b a ,22b a ,23b a ,24b a ,共15种.没有男生的有12b b ,共1种. 所以至少有一名男生的概率11411515P =-=. 【点睛】本题主要考查频率分布直方图样本估计总体以及古典概型的概率,还考查了运算求解的能力,属于中档题. 23.详见解析 【分析】根据辗转相除法的算法步骤画出程序框图得到答案. 【详解】 如图【点睛】本题考查了辗转相除法的程序框图,意在考查学生对于程序框图的理解和掌握.24.见解析【解析】【分析】根据已知条件,程序的功能可以利用循环结构来解答。

【浙教版】高中数学必修三期末一模试卷(带答案)(1)

【浙教版】高中数学必修三期末一模试卷(带答案)(1)

一、选择题1.已知sin y x =,在区间[],ππ-上任取一个实数x ,则y ≥12-的概率为( ) A .712B .23C .34 D .562.如图,长方形的四个顶点为(0,0)O ,(4,0)A ,(4,2)B ,(0,2)C ,曲线y x =经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域外的概率是( )A .13B .12C .23D .343.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .14.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .125.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N =,则图中①②应分别填入( )A.1Tk=,k N>B.1Tk=,k N≥C.TTk=,k N>D.TTk=,k N≥6.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是()A .94m >B .94m =C .35m =D .35m ≤7.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?8.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k 的值为( )A.4 B.5 C.6 D.79.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度10.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是()A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份11.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.14.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.15.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______. 16.运行如图所示的程序框图,则输出的S 的值为________.17.已知流程图如图,则输出的i =________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.已知一组样本数据1210,x x x ,且22212102020x x x +++=,平均数9=x ,则该组数据的标准差为__________.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.安庆市某中学教研室从高二年级随机抽取了50名学生的十月份语文成绩(满分100分,成绩均为不低于40分的整数),得到如图所示的频率分布直方图.(1)若该校高二年级共有学生1000人,试估计十月份月考语文成绩不低于60分的人数; (2)为提高学生学习语文的兴趣,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲乙恰好被安排在同一小组的概率.22.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y (单位:个)与一定范围内的温度x (单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑23.求两底面半径分别为2和4,高为5的圆台的表面积及体积.写出解决该问题的一个算法,并画出程序框图. 24.读下列程序:INPUT x 0IF x THEN < ^2y x = PRINT yELSE2*y x =PRINT y END IFEND(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值.25.某企业投资两个新型项目,投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,投资新型项目B 的投资额x (单位:十万元)与纯利润y (单位:万元)的散点图如图所示.(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,若A ,B 两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.26.画糖人是一种以糖为材料在石板上进行造型的民间艺术.某糖人师傅在公园内画糖人,每天卖出某种糖人的个数与价格相关,其相关数据统计如下表: 每个糖人的价格x (元) 910111213卖出糖人的个数y (个)54 50 46 43 39(1)根据表中数据求y 关于x 的回归直线方程;(2)若该种造型的糖人的成本为2元/个,为使糖人师傅每天获得最大利润,则该种糖人应定价多少元?(精确到1元)参考公式:回归直线方程^^^y b x a =+,其中^121()()()niii nii x x y y b x x ==--=-∑∑,^^^a y b x =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 求出满足12y ≥-的角x 的范围,由长度比,即可得到该几何概型的概率. 【详解】1sin ,[,]2y x x ππ=≥-∈-,5[,][,]66x ππππ∴∈--⋃-, 则满足12y ≥-的概率为: 5()()266()3P ππππππ---+--==--.故选:B. 【点睛】本题考查了三角不等式的求解,几何概型的计算,属于中档题.2.A解析:A 【分析】计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可. 【详解】由已知易得:34200216=42=8=[]|33S S x ⨯==⎰阴影长方形,,由面积测度的几何概型:质点落在图中阴影区域外的概率11=3S P S =-阴影长方形 故选:A 【点睛】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.3.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.4.B解析:B 【分析】 先化简()()22lg 2lg 3lg x yx y +=+,得到x y =或2x y =.利用列举法和古典概型概率计算公式可计算出所求的概率. 【详解】 由22320xxy y ,有()()20x y x y --=,得x y =或2x y =,则满足条件的(),x y 为()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,()2,1,()4,2,()6,3,所求概率为91364p == .故选B. 【点睛】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.5.C解析:C 【分析】根据题意计算结果直接判断即可解题. 【详解】 当①②分别是TT k=,k N >时, 首先初始化数据;10N =,1k =,0S =,1T =. 第一次循环,1TT k==,1S S T =+=,12k k =+=,此时不满足k N >;第二次循环,112T T k ==⨯,1112S S T =+=+⨯,13k k =+=,此时不满足k N >; 第三次循环,1123T T k ==⨯⨯,11112123S S T =+=++⨯⨯⨯,14k k =+=,此时不满足k N >; 一直循环下去,第十次循环,112310T T k ==⨯⨯⨯⨯, 11111212312310S S T =+=++++⨯⨯⨯⨯⨯⨯⨯,111k k =+=, 此时满足k N >,跳出循环. 故输出的11111212312310S =++++⨯⨯⨯⨯⨯⨯⨯.故选:C.【点睛】 本题考查根据计算补全程序框图,是基础题.6.B解析:B【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件.【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”.故选B.【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题. 7.B解析:B【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案.【详解】根据程序框图,运行如下:初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=;判断条件成立,得到11920S =+=,918k =-=;判断条件成立,得到20828S =+=,817k =-=;判断条件成立,得到28735S =+=,716k =-=;判断条件成立,得到35641S =+=,615k =-=;判断条件不成立,输出41S =,退出循环,即6k ≥符合题意.故选:B.【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.8.B解析:B【分析】模拟程序运行,依次计算可得所求结果【详解】当4a =,3b =,2c =时,12S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =;当6a =,5b =,4c =时,27124S =<,4k =;当7a =,6b =,5c =时,12S =>,5k =;故选B【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置9.A解析:A【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误.【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.10.D解析:D【分析】根据图形中给出的数据,对每个选项分别进行分析判断后可得错误的结论.【详解】对于选项A ,由图可得3月份的销售任务是400台,所以A 正确.对于选项B ,由图形得2018年月销售任务的平均值为1(3245810743413)10045012⨯+++++++++++⨯=,所以B 正确. 对于选项C ,由图形得第一季度的总销售量为130******** 1.28302⨯+⨯+⨯=台,所以C 正确.对于选项D ,由图形得销售量最大的月份是5月份,为800台,所以D 不正确. 故选D .【点睛】本题考查统计中的识图、用图和计算,解题的关键是从图中得到相关数据,然后再根据要求进行求解,属于基础题. 11.A解析:A【分析】由题意计算出加入新数据后的平均数,然后比较方差【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定故22s <故选A【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础 12.A解析:A【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D. 计算1169=(504712151923273136)1111x -++++++++++= 11228=(15615013212813011610489937654)111.641111y ++++++++++=≈ 将x 代入选项A ,得1692.352147.767111.6311ˆy =-⨯+=将x 代入选项B ,得1692.352127.76591.6311ˆy=-⨯+= 所以选项A 正确.故选A. 点睛:本题考查线性回归方程的求法与应用,一次项系数b 符号的判断和回归直线过样本中心点(,)x y 是解题关键.二、填空题13.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】 基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率.【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===. 故答案为:799. 【点睛】 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题. 14.【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线(2)一条面对角线和一条体对角线是异面直线由此分别计算出满足要求的方法数最后即可计算出相应概率【详解】由于4条体对角线都经过正方体的中心所 解析:920【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线,(2)一条面对角线和一条体对角线是异面直线,由此分别计算出满足要求的方法数,最后即可计算出相应概率.【详解】由于4条体对角线都经过正方体的中心,所选的两条对角线至少包含一条面对角线: ①两条对角线都是面对角线:任取1条面对角线,剩余的11条面对角线中,有5条与之异面,考虑重复选取,125302⨯∴=(种); ②一条面对角线一条体对角线:任取1条面对角线,有2条体对角线与之异面,∴12224⨯=(种)∴概率为2163024920C +=. 故答案为:920. 【点睛】本题考查异面直线的理解以及用排列组合的方法计算概率,难度一般.排列组合的方法计算相应概率时,可采用古典概型的概率计算方法:先计算出基本事件的总数,然后计算出满足要求的基本事件的数量,此时P =满足要求的基本事件数量基本事件的总数. 15.【解析】【分析】先算出基本事件总数再求出甲被选上包含的基本事件个数即可求得甲被选上的概率【详解】从甲乙丙丁四人中选人当代表基本事件总数甲被选上包含的基本事件个数则甲被选上的概率为故答案为【点睛】本题 解析:34【解析】【分析】先算出基本事件总数,再求出甲被选上包含的基本事件个数,即可求得甲被选上的概率【详解】从甲、乙、丙、丁四人中选3人当代表,基本事件总数344n C ==甲被选上包含的基本事件个数12133m C C == 则甲被选上的概率为34m p n == 故答案为34【点睛】 本题考查了古典概型及其概率计算公式的应用,属于基础题。

【浙教版】高中数学必修三期末第一次模拟试卷(含答案)(1)

【浙教版】高中数学必修三期末第一次模拟试卷(含答案)(1)

一、选择题1.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率( ) A .110B .310C .12D .7103.已知三个村庄,,A B C 所处的位置恰好位于三角形的三个顶点处,且6,8,10AB km BC km AC km ===.现在ABC ∆内任取一点M 建一大型的超市,则M 点到三个村庄,,A B C 的距离都不小于2km 的概率为( ) A .33+ B .12πC .213- D .1212π- 4.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 5.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤6.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?7.执行如图的程序框图,若输出的4n =,则输入的整数p 的最小值是( )A .4B .5C .6D .158.执行如图所示的程序框图,若输入的,a b 的值分别为1,2,则输出的S 是( )A .70B .29C .12D .59.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A.10 B.6 C.7 D.1610.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度11.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则()A.B.C.D.12.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.91二、填空题13.连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____.14.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________.15.在未来3天中,某气象台预报天气的准确率为0.8,则在未来3天中,至少连续2天预报准确的概率是______.16.若下面程序中输入的n值为2017,则输出的值为__________.17.下图给出了一个程序框图,其作用是输入x的值,输出相应的y值.若要使输入的x 值与输出的y值满足关系式y=-2x+4,则这样的x值___个.18.根据如图所示的程序框图,若输出的值为4,则输入的值为______________.19.已知下列命题:①在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好; ②两个变量相关性越强,则相关系数r 就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;⑥若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.20.目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.三、解答题21.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数;(2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表);(3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.22.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11 107a<<综合得分k的范围节排器等级节排器利润率85k≥一级品a7585k≤<二级品25a7075k≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;(2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()Eξ;②从长期来看,骰子哪种型号的节排器平均利润较大?23.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x 的值.24.由键盘输入三个整数a ,b ,c ,输出其中最大的数,画出其算法的程序框图,并写出程序. 25.庐江县统计局统计了该县2019年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元) 24466677810年饮食支出y (万元)1.0 1.5 1.62.0 1.8 1.9 1.8 2.0 2.1 2.3(1)由散点图可知y 与x 是线性相关的,求线性回归方程; (2)若某家庭年收入为9万元,预测其年饮食支出. 附:回归直线的斜率和截距的最小二乘估计公式分别为:1122211()ˆˆ).ˆ(,()nniii ii i nni i i i x x y y x y nxybay bx x x x nx ====---===---∑∑∑∑(参考数据:1010211115,406i ii i i x yx ====∑∑)26.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下: 机床甲109.81010.2机床乙10.1109.910如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.B解析:B 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.3.D解析:D 【分析】采用数形结合,计算ABC S ∆,以及“M 点到三个村庄,,A B C 的距离都不小于2km ”这部分区域的面积S ,然后结合几何概型,可得结果. 【详解】由题可知:222AB BC AC += 所以该三角形为直角三角形分别以,,A B C 作为圆心,作半径为2的圆 如图所以则 “M 点到三个村庄,,A B C 的距离都不小于2km ”该部分即上图阴影部分,记该部分面积为S11682422ABC S AB BC ∆=⨯⨯=⨯⨯=又三角形内角和为π,所以2122422ABC S S ππ∆=-⨯=- 设M 点到三个村庄,,A B C 的距离都不小于2km 的概率为P所以242122412ABCS P S ππ∆--=== 故选:D 【点睛】本题考查面积型几何概型问题,重点在于计算面积,难点在于计算阴影部分面积,考验理解能力,属基础题.4.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。

【浙教版】高中数学必修三期末第一次模拟试卷(附答案)(1)

【浙教版】高中数学必修三期末第一次模拟试卷(附答案)(1)

一、选择题1.一个不透明的袋中装有6个白球,4个红球球除颜色外,无任何差异.从袋中往外取球,每次任取1个,取出后记下颜色不放回,若为红色则停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量X ,则(22)P X ≤=( ). A .23B .512C .56D .5182.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .223.连续掷两次骰子,先后得到的点数,m n 为点(,)P m n 的坐标,那么点P 在圆2217x y +=内部的概率是( )A .13B .25C .29D .494.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I 卷,全国II 卷,全国III 卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为( )A .184 B .142C .128D .1145.执行如图所示的程序框图,输出的S 值为( )A .511B .512C .1022D .10246.某程序框图如图所示,该程序运行后输出S 的值是( )A .910B .1011C .1112D .1117.在如图算法框图中,若6a =,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是( )A .3k <B .3k >C .4k <D .4k >8.执行如图所示的程序框图,若输入的,a b 的值分别为1,2,则输出的S 是( )A .70B .29C .12D .59.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据丢失(如图),但甲得分的折线图完好,则下列结论正确的是()A.甲得分的极差是11B.乙得分的中位数是18.520,30上C.甲运动员得分有一半在区间[]D.甲运动员得分的平均值比乙运动员得分的平均值高10.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度11.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,200,480的人数为编号落入区间[]A.7 B.9 C.10 D.1212.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().7806657208026314294718219800 3204923449353623486969387481A .02B .14C .18D .29二、填空题13.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为__________. 14.如图,C 是以AB 为直径的半圆周上一点,已知在半圆内任取一点,该点恰好在ABC 内部的概率为1π,则ABC 的较小的内角为________.15.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.16.如图是一个算法流程图,则输出的S 的值为______.17.执行如图的程序框图,则输出的S =__________.18.运行下边的流程图,输出的结果是__________.19.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.20.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n+1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n为________.三、解答题21.“绿水青山就是金山银山”,为了响应国家政策,我市环保部门对市民进行了一次环境保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的50人的得分(满分:100分)数据,统计结果如表所示:组别[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)男1221096女055532若规定问卷得分不低于70分的市民称为“环境保护关注者”,则上图中表格可得22⨯列联表如下:(1)请完成上述22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环境保护达人”,现在从本次调查的“环境保护达人”中利用分层抽样的方法抽取4名市民参与环保知识问答,再从这4名市民中随机抽取2人参与座谈会,求抽取的2名市民中,既有男“环境保护达人”又有女“环境保护达人”的概率.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2.07222.某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是[100,110),[110,120),[120,130),[130,140),[140,150].(1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);(2)若这100名学生数学成绩分数段的人数y的情况如下表所示:分组区间[100,110)[110,120)[120,130)[130,140)[140,150] y154040m n且区间内英语人数与数学人数之比为,现从数学成绩在的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[140,150]的概率.23.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.24.某次数学考试中,其中一个小组的成绩为55,89,69,73,81,56,90,74,82.设计一个算法,用自然语言描述从这些成绩中搜索出小于75的成绩,并画出程序框图.25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(I )求a 的值;(Ⅱ)求被调查用户中,用电量大于250kW·h 的户数; (III )为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h )的建议,并简要说明理由.26.潜叶蝇是南方地区水稻容易遭受的虫害之一,成虫将虫卵产在叶片里,待虫卵孵化之后幼虫会在叶片中啃叶肉,使得秧苗的叶片呈现白色的状态,进而降低水稻产量.经研究,每只潜叶蝇的平均产卵数y 和夏季平均温度x 有关,现收集了某地区以往6年的数据,得到下面数据统计表格. 平均温度C i x ︒ 21 23 25 27 29 31 平均产卵数i y 个711212264115(Ⅰ)根据相关系数r 判断,潜叶蝇的平均产卵数y 与平均温度x 是否具有较强的线性相关关系,若有较强的线性相关关系,求出线性回归方程y bx a =+,若没有较强的线性相关关系,请说明理由(一般情况下,当0.75r >时,可认为变量有较强的线性相关关系);(Ⅱ)根据以往的统计,该地区夏季平均气温为()C ξ︒近似地服从正太分布()226.5,N σ,且()125282P ξ<≤=.当该地区某年平均温度达到28C ︒以上时,潜叶蝇快速繁殖引发虫害,需要进行一次人工治理,每次的人工治理成本为200元/公顷(其他情况均不需要人工治理),且虫害一定会导致水稻减产,对过往10次爆发虫害时的减产损失进行统计,结果如下: 每次虫害减产损失(元/公顷)1000 1400 频数46用样本的频率估计概率,预测未来2年,每公顷水稻可能因潜叶蝇虫害造成的经济损失Y (元)的数学期望.(经济损失=减产损失+治理成本) 参考公式和数据:()()ni i x xy yr --=∑()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-()()61700i i i x xy y =--=∑,6214126i i x ==∑,61240i i y ==∑,()6218816i i y y=-=∑,8.4≈786≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】X k =表示前k 个球为白球,第1k +个球为红球,则((0)(1)(2)P X P X P X P X ≤==+=+=.由此计算可得结论.【详解】X k =表示前k 个球为白球,第1k +个球为红球,42(0)105P X ===,644(1)10915P X ⨯===⨯,21643101(2)6A A P X A ===,所以2415((0)(1)(2)51566P X P X P X P X ≤==+=+==++=, 故选:C . 【点睛】本题考查古典概型概率计算,属于基础题,解题时要认真审题,注意列举法的合理运用.2.D解析:D【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.3.C解析:C 【分析】所有的点(,)P m n 共有6636⨯=个,用列举法求得其中满足2217x y +<的点(,)P m n 有8个,由此求得点P 在圆2217x y +=内部的概率.【详解】所有的点(,)P m n 共有6636⨯=个,点P 在圆2217x y +=内部,即点(,)P m n 满足2217x y +<,故满足此条件的点(,)P m n 有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故点P 在圆2217x y +=内部的概率是82369=, 故选C. 【点睛】该题考查的是有关古典概型概率的求解问题,涉及到的知识点有古典概型概率公式,在解题的过程中,正确找出基本事件的个数以及满足条件的基本事件数是关键.4.D解析:D【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案.【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C种可能,而3套题年份和编号都各不相同共有336A=种可能,于是所求概率为61=8414.选D.【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大. 5.C解析:C【分析】直接根据程序框图计算得到答案.【详解】根据程序框图知:92391012222 (22221022)12S-=++++==-=-.故选:C.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.6.B解析:B【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0)1,0k S,判断为否,进入循环结构,1)110,2122S k=+==⨯,判断为否,进入循环结构,2)11,3223S k=+=⨯,判断为否,进入循环结构,3)111,422334S k=++=⨯⨯,判断为否,进入循环结构,……9)111,10223910S k=+++=⨯⨯,判断为否,进入循环结构,10)1111,112239101011S k =++++=⨯⨯⨯,判断为是, 故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B.【点睛】 本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.7.C解析:C【分析】根据二项式(2+x )5展开式的通项公式,求出x 3的系数,模拟程序的运行,可得判断框内的条件.【详解】∵二项式5(2)x +展开式的通项公式是5152r r r r T C x -+=⋅⋅, 令3r =, 3233152T C x +∴=⋅⋅,332356(4)21408x x C x∴⨯⋅⋅=, ∴程序运行的结果S 为120,模拟程序的运行,由题意可得k=6,S=1不满足判断框内的条件,执行循环体,S=6,k=5不满足判断框内的条件,执行循环体,S=30,k=4不满足判断框内的条件,执行循环体,S=120,k=3此时,应该满足判断框内的条件,退出循环,输出S 的值为120.故判断框中应填入的关于k 的判断条件是k <4?故选:C【点睛】本题考查了二项式展开式的通项公式的应用问题,考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.8.B解析:B【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果.【详解】解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <, 故输出29S =.故选B.【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.9.D解析:D【分析】根据茎叶图和折线图依次判断每个选项得到答案.【详解】A. 甲得分的极差是28919-=,A 错误;B. 乙得分的中位数是161716.52+=,B 错误; C. 甲运动员得分在区间[]20,30上有3个,C 错误; D. 甲运动员得分的平均值为:912131315202628178+++++++=, 乙运动员得分的平均值为:914151617181920168+++++++=,故D 正确. 故选:D .【点睛】本题考查了茎叶图和折线图,意在考查学生的计算能力和理解能力. 10.A解析:A【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误.【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.11.C解析:C【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果.【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C .【点睛】 本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.12.D解析:D【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去.详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为: 08,02,14,29.∴第四个个体为29.选D .点睛:本题考查随机数表,考查对概念基本运用能力.二、填空题13.【解析】分析:由题意结合几何关系计算公式整理计算即可求得最终结果详解:由题意结合几何概型计算公式可知至少需要等待15秒才出现绿灯的概率:点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动 解析:58. 【解析】 分析:由题意结合几何关系计算公式整理计算即可求得最终结果.详解:由题意结合几何概型计算公式可知,至少需要等待15秒才出现绿灯的概率: 401525540408p -===. 点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.14.【分析】由几何概型中的面积型圆的面积公式三角形的面积公式及直角三角形的射影定理可得:设则又不妨设即所以得:所以所以得解【详解】过作设则由在半圆内任取一点该点恰好在内部的概率为则则即又不妨设即所以得: 解析:12π 【分析】 由几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理可得:设2AB a =,则22a S π=半圆,||2a CD =,又2||||||CD AD BD =⨯, 不妨设||||AD BD <,即CBA CAB ∠<∠,所以得:23||BD a +=,所以||tan 23||CD CBA BD ∠==-,所以12CBA π∠=,得解. 【详解】过C 作CD AB ⊥,设2AB a =, 则22a S π=半圆,由在半圆内任取一点,该点恰好在ABC ∆内部的概率为1π, 则212ABC S a ∆=, 则211||||22AB CD a =, 即||2a CD =, 又2||||||CD AD BD =⨯,不妨设||||AD BD <,即CBA CAB ∠<∠,所以得:23||BD +=, 所以||tan 23||CD CBA BD ∠== 所以12CBA π∠=, 故答案为:12π.【点睛】本题考查了几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理,属中档题.15.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角 解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率.【详解】由1cos x x -≤+≤π12sin 6x ⎛⎫-≤+≤ ⎪⎝⎭1πsin 26x ⎛⎫-≤+≤ ⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭. 【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.16.【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循 解析:7【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得1S =,1i =满足条件4i <,执行循环体,2S =,2i =满足条件4i <,执行循环体,4S =,3i =满足条件4i <,执行循环体,7S =,4i =此时,不满足条件4i <,退出循环,输出S 的值为7.故答案为7.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.88【解析】运行该程序即答案为88解析:88【解析】运行该程序,2,2;3,7;4,18;5,41;6,88;k S k S k S k S k S ========== 即答案为88.18.94【解析】不成立执行不成立执行成立所以输出解析:94【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立,执行33119450a =⨯+=>,成立,所以输出94.a =19.630【解析】每层的抽样比为女生抽了95人所以男生抽取105人因此共有男生人故填630解析:630【解析】 每层的抽样比为200112006=,女生抽了95人,所以男生抽取105人,因此共有男生1056630⨯=人,故填630.20.6【解析】n 为18+12+6=36的正约数因为18:12:6=3:2:1所以n 为6的倍数因此因为当样本容量为时若采用系统抽样法则需要剔除1个个体所以n+1为35的正约数因此解析:6【解析】n 为18+12+6=36的正约数,因为18:12:6=3:2:1,所以n 为6的倍数,因此6,12,18,24,30,36n =因为当样本容量为1n +时,若采用系统抽样法,则需要剔除1个个体,所以n+1为35的正约数,因此6n =三、解答题21.()122⨯列联表见解析,在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关;()21 2【分析】()1根据表中的数据重新整合,完成22⨯列联表,然后将列联表中的数据代入2K的公式计算求解,结合临界值表进行判断即可;()2列举出所有可能的情况和既有男“环境保护达人”又有女“环境保护达人”包含的情况,再利用古典概型的概率计算公式求解即可.【详解】()1由表中数据可得22⨯列联表如下,2K的观测值()25051025106.349 3.84115353020k⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关; ()2由题可知,利用分层抽样的方法可得,抽取4名市民中男环保达人3人,女环保达人1人,设男环保达人为,,A B C,女环保达人为a,从中抽取两人参与座谈会所有的情况为()()()()()(),,,,,,,,,,,A B A C A a B C B a C a共6种情况,既有男“环境保护达人”又有女“环境保护达人”包含的情况为()()(),,,,,A aB aC a共3种情况,由古典概型的概率计算公式可得,所求概率3162 P==.【点睛】本题考查独立性检验和古典概型概率计算公式;考查运算求解能力;注意所给数表的使用方法和题目设为方式和熟练掌握2K公式是求解本题的关键;属于基础题、常考题型.22.(1)这100名学生英语成绩的平均数和中位数分别为124,123.75(2)3 5(1)利用频率分布直方图求平均数,中位数的方法求解即可;(2)利用题设条件得出,m n 的值,再由古典概型的概率公式求解即可.【详解】(1)这100名学生英语成绩的平均数为1050.051150.31250.41350.21450.05124⨯+⨯+⨯+⨯+⨯=设这100名学生英语成绩的中位数为x直方图可知[100,110),[110,120),[120,130)对应的频率分别为0.05,0.3,0.40.050.30.40.750.5,0.5(0.30.05)0.15++=>-+=(120)0.040.15x ∴-⨯=,解得123.75x =则这100名学生英语成绩的中位数为123.75(2)区间[130,140)内英语人数为1000.220⨯=人∴区间[130,140)内数学人数为120210⨯=人 2,100(1540402)3m n ∴==-+++=设数学成绩在[130,140)的人记为12,a a ,数学成绩在[140,150]的人记为123,,b b b 则从数学成绩在[130,150]的学生中随机选取2人的所有情况为()()()()12111213,,,,,,,a a a b a b a b ,()()()212223,,,,,a b a b a b ,()()()121323,,,,,b b b b b b ,共10种,其中选出的2人中恰好有1人数学成绩在[140,150]有6种即选出的2人中恰好有1人数学成绩在[140,150]的概率为63105= 【点睛】本题主要考查了由频率分布直方图计算平均数,中位数以及古典概型概率的求解,属于中档题.23.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1END【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题.24.答案见解析【解析】试题分析:直接利用已知条件写出算法,再利用循环语句写出程序框图.试题算法如下:第一步,i=1;第二步,输入一个数a ;第三步,若a<75,则输出a ;第四步,i=i+1;第五步,若i>9,则结束算法,否则,执行第二步.程序框图如下:25.(I )0.006;(Ⅱ)18;(III )245.5 kW·h.【分析】(1)根据频率和为1计算出a 的值;(2)根据频率分布直方图计算出“用电量大于250kW·h”的频率,再将该频率乘以对应的总户数即可得到结果;(3)根据频率分布直方图计算出频率刚好为0.8时对应的月用电量,由此可得到第一档用电标准.【详解】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW·h”的频率为()0.00240.0012500.18+⨯=,所以用电量大于250kW·h 的户数为:1000.1818⨯=, 故用电量大于250kW·h 有18户; (3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>, 所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW·h. 故第一档用电标准为245.5 kW·h. 【点睛】本题考查频率分布直方图的综合应用,主要考查利用频率分布直方图进行相关计算,对学生读取图表信息和计算能力有一定要求,难度一般.26.(Ⅰ)具有较强的线性相关关系,10220y x =-;(Ⅱ)330元【分析】(Ⅰ)代入公式计算r ,再做判断,根据公式求,b a ,即得结果;(Ⅱ)先确定温度达到28C ︒以上时概率,再确定随机变量取法,分别求出对应概率,最后根据数学期望公式求结果.【详解】(Ⅰ)21232527293171121226411526,4066x y ++++++++++=======()()7000.75786n ii x x y y r --==>=>∑ 所以潜叶蝇的平均产卵数y 与平均温度x 具有较强的线性相关关系,()()()1217001070n i i i n i i x x y y b x x ==--===-∑∑,401026220a y bx =-=-⨯=- 10220y bx a x ∴=+=-;(Ⅱ)()12528,2P ξ<≤=()C ξ︒近似地服从正太分布()226.5,N σ, ()()12528128,24P P ξξ-<≤∴>== 0,1200,1600Y = 13141163(0)1,(1200),(1600)444101041020P Y P Y P Y ==-===⨯===⨯= 313()01200140033041020E Y =⨯+⨯+⨯=(元) 【点睛】本题考查线性回归方程、数学期望公式、正态分布,考查综合分析求解能力,属中档题.。

【浙教版】高中数学必修三期末一模试卷含答案(1)

【浙教版】高中数学必修三期末一模试卷含答案(1)

一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 3.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为 A 3B .31π-C .3πD .31π-4.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n =B .3n =C .4n =D .6n =5.如图是求样本数据方差S 的程序框图,则图中空白框应填入的内容为( )A.()28iS x xS+-=B.()2(1)8ii S x xS-+-=C.()2iS x xSi+-=D.()2(1)ii S x xSi-+-=6.执行如图的程序框图,若输入1t=-,则输出t的值等于( )A.3 B.5 C.7 D.157.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n项和的程序框图.执行该程序框图,输入10m=,则输出的S=()A .100B .140C .190D .2508.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k 的值为( )A .4B .5C .6D .79.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,810.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A .甲地:总体均值为3,中位数为4B .乙地:总体均值为1,总体方差大于0C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为311.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.从存放号码分别为1,2,⋯,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) A .0.53B .0.5C .0.47D .0.37二、填空题13.中国文化中有很多东西喜欢9或9的倍数.如:九连环、九阴白骨爪、降龙十八掌(1892=⨯)、三十六计(3694=⨯)、孙悟空七十二变(8972⨯=)、八十一难(9981⨯=)等.若一个三位数的各位数字之和为9,如207,126,则这样的三位数共有________.14.在高一某班的元旦文艺晚会中,有这么一个游戏:一盒子内装有6张大小和形状完全相同的卡片,每张卡片上写有一个成语,它们分别为意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河,从盒内随机抽取2张卡片,若这2张卡片上的2个成语有相同的字就中奖,则该游戏的中奖率为________.15.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.16.执行右面的程序框图,若输入的x 的值为0,则输出的y 的值是________.17.如图是一个算法的流程图,则输出的a 的值是___________.18.一个算法的程序框图如下图所示,若该程序输出的结果为,则判断框中应填入的条件是____.19.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=________.20.给出下列命题:①若函数()y f x =满足(1)(1)f x f x -=+,则函数()f x 的图象关于直线1x =对称; ②点(2,1)关于直线10x y -+=的对称点为(0,3);③通过回归方程y bx a =+可以估计和观测变量的取值和变化趋势;④正弦函数是奇函数,2()sin(1)f x x =+是正弦函数,所以2()sin(1)f x x =+是奇函数,上述推理错误的原因是大前提不正确. 其中真命题的序号是__________.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.某班组织“2人组”投篮比赛,每队2人,在每轮比赛中,每队中的两人各投篮1次,规定:每队中2人都投中则该队得3分;若只有1人投中,则该队得1分若没有人投中,则该队得-1分.A 队由甲、乙两名同学组成,甲投球一次投中的概率为35,乙投球一次投中的概率为34,且甲、乙投中与否互不影响,在各轮比赛中投中与否也互不影响. (Ⅰ)求A 队在一轮比赛中的得分不低于1分的概率;(Ⅱ)若共进行五轮比赛,记“A 队在一轮比赛中得分不低于1分”恰有X 次,求X 的期望和方差;(Ⅲ)若进行两轮比赛,求A 队两轮比赛中得分之和Y 的分布列和期望. 23.读下列程序:(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值.24.一次考试中,某同学的语文、数学、英语、物理、化学的成绩分别是,,,,a b c d e ,设计一个计算该同学的总分和平均分的算法,并画出程序框图25.某企业投资两个新型项目,投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,投资新型项目B 的投资额x (单位:十万元)与纯利润y (单位:万元)的散点图如图所示.(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,若A ,B 两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.26.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度C x ︒ 5-0 5 10 15 热饮杯数y1571271077237(1)求y 关于x 的线性回归直线方程;(2)如果某天的气温是–10C ︒,预测这天卖出的热饮杯数(四舍五入,取整数).附:对于线性回归直线方程ˆˆˆybx a =+,其中1122211()()ˆ()nnii i ii i nniii i xx y y x ynx yb xx xnx====---==--∑∑∑∑,ˆˆay bx =-,【参考答案】***试卷处理标记,请不要删除一、选择题 1.B【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】 由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=, 即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.2.B解析:B 【分析】利用复数模的公式可得点(),x y 在以()1,0为圆心,以1为半径的圆上及圆的内部,结合y x ≥表示的是图中直线上方且在圆内的弓形,求出圆的面积与弓形的面积利用几何概型【详解】因为()()1,,a x y x y R =-∈,且1a ≤, 所以()2211x y -+≤,∴点(),x y 在以()1,0为圆心,以1为半径的圆上及圆的内部,y x ≥表示的是图中直线上方且在圆内的弓形,而圆的面积为S π=,11=42S π-弓, y x ∴≥的概率为111142=42S P S πππ-==-弓, 故选:B. 【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A 的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.3.D解析:D 【分析】由半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解. 【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,所以该正十二边形的面积为21121sin 326S π=⨯⨯⨯=, 由几何概型的概率计算公式,可得所求概率31P π=-,故选D.本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A PN求解,着重考查了分析问题和解答问题的能力. 4.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X ==()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确; 对于选项C :4n =时,0,1,2,3i = ()351103636364P i ==++=,()442136369P i ==+=, ()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i =()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=, 所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.5.D解析:D 【分析】由题意知该程序的作用是求样本128,,,x x x 的方差,由方差公式可得. 【详解】由题意知该程序的作用是求样本128,,,x x x 的方差,所用方法是求得每个数与x 的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:()2(1)i i S x x S i-+-=故选:D 【点睛】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.6.C解析:C 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.7.C【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果. 【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行;第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行,第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行,第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行,第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行,第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行,第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行,第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行,第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行,第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =.故选:C 【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题. 8.B解析:B 【分析】模拟程序运行,依次计算可得所求结果 【详解】当4a =,3b =,2c =时,124S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =; 当6a =,5b =,4c =时,27124S =<,4k =;当7a =,6b =,5c =时,12S =>,5k =;【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置9.D解析:D 【分析】根据平均数的性质,方差的性质直接运算可得结果. 【详解】令23(1,2,,5)i i y x i =-=1234555x x x x x x ++++==,1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=,(也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D 【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.10.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差11.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.12.A解析:A【解析】分析:由题意结合统计表确定频数,然后确定频率即可.详解:由题意可知,取到卡片为奇数的频数为:1356181153++++=,取卡片的次数为100次,则取到号码为奇数的频率是530.53 100=.本题选择A选项.点睛:本题主要考查频率的定义及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】根据三位数的各位数字之和为9列举出所有符合要求的三位数即可【详解】三位数的各位数字之和为9符合要求的三位数如下所示:1081171261351441531621711802072162252解析:45【分析】根据三位数的各位数字之和为9,列举出所有符合要求的三位数即可.【详解】三位数的各位数字之和为9,符合要求的三位数如下所示:108,117,126,135,144,153,162,171,180,207,216,225,234,243,252,261,270,306,315,324,333,342,351,360,405,414,423,432,441,450,504,513,522,531,540603,612,621,630702,711,720,801,810,900,由以上可知符合各位数字之和为9的三位数共有45个故答案为:45【点睛】本题考查了列举法在求数字排列中的应用,属于中档题.14.【分析】先列举出总的基本事件在找出其中有2个成语有相同的字的基本事件个数进而可得中奖率【详解】解:先观察成语中的相同的字用字母来代替这些字气—A风—B马—C信—D河—E意—F用ABFBCFCDAED解析:2 5先列举出总的基本事件,在找出其中有2个成语有相同的字的基本事件个数,进而可得中奖率. 【详解】解:先观察成语中的相同的字,用字母来代替这些字,气—A ,风—B ,马—C ,信—D ,河—E ,意—F ,用ABF ,B ,CF ,CD ,AE ,DE 分别表示成语意气风发、风平浪静、心猿意马、信马由缰、气壮山河、信口开河, 则从盒内随机抽取2张卡片有()()()(),,,,,,,,ABF B ABF CF ABF CD ABF AE ()()()()()()()(),,,,,,,,,,,,,,,,ABF DE B CF B CD B AE B DE CF CD CF AE CF DE ()()(),,,,,CD AE CD DE AE DE 共15个基本事件,其中有相同字的有()()(),,,,,,ABF B ABF CF ABF AE (),,CF CD ()(),,,CD DE AE DE 共6个基本事件, 该游戏的中奖率为62155P ==, 故答案为:25. 【点睛】本题考查古典概型的概率问题,关键是要将符合条件的基本事件列出,是基础题.15.【分析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法其中能构成勾股数的有共三种所以所求概率为故答案为【点睛】本题考查古典概型与数学文化考查组合问题数据处理能力和应用意识解析:155【分析】由组合数结合古典概型求解即可 【详解】从11个数中随机抽取3个数有311C 种不同的方法,其中能构成勾股数的有共()()()3,4,5,6,8,10,5,12,13三种,所以,所求概率为3113155P C ==. 故答案为155【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.16.13【解析】点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的数学问【解析】2012,32113x x x y =⇒=⇒==⨯+=点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.17.9【解析】:试题分析:由题意可得a 是在不断变大的b 是在不断变小当程序运行两次时a=9b=5a>b 跳出程序输出a=9;考点:算法的流程图的计算解析:9 【解析】:试题分析:由题意可得,a 是在不断变大的,b 是在不断变小,当程序运行两次时,a=9,b=5,a>b,跳出程序,输出a="9;" 考点:算法的流程图的计算18.【解析】试题分析:由于第一次执行循环体之后条件成立第二次执行循环体之后条件成立第三次执行循环体之后条件成立第四次执行循环体之后条件成立第五次执行循环体之后条件不成立退出循环输出结果故判断框的条件考点 解析:6i <【解析】 试题分析:由于,第一次执行循环体之后,,条件成立,第二次执行循环体之后,,条件成立,第三次执行循环体之后,,条件成立,第四次执行循环体之后,,条件成立,第五次执行循环体之后,,条件不成立,退出循环,输出结果, 故判断框的条件.考点:程序框图的应用.19.1【分析】先根据数列为等差数列求出再根据方差公式可得【详解】因为数列为等差数列且所以所以该组数据的方差为故填01【点睛】考查方差的计算基础题解析:1 【分析】先根据数列2{()}i x a -为等差数列求出()521i i x a =-∑,再根据方差公式可得.【详解】因为数列2{()}i x a -为等差数列,且3x a -=()()52231550.1=ii x a x a =-=-=⨯∑ 0.5,所以该组数据的方差为()52110.15i i x a =-=∑.故填0.1. 【点睛】考查方差的计算,基础题.20.②③【解析】分析:根据函数的周期性可判断①;根据垂直平分线的几何特征可判断②;根据回归直线的实际意义可判断③;根据演绎推理及正弦函数的定义可判断④详解:①若函数满足则函数是周期为2的周期函数但不一定解析:②③ 【解析】分析:根据函数的周期性,可判断① ;根据垂直平分线的几何特征,可判断②;根据回归直线的实际意义,可判断③;根据演绎推理及正弦函数的定义,可判断④.详解:①若函数()y f x =满足()()11f x f x -=+,则函数()f x 是周期为2的周期函数,但不一定具有对称性,①错误;②点()()2,1?0,3确定直线的斜率为1-,与直线 10x y -+=垂直,且中点()1,2在直线10x y -+=上,故点()()2,1?0,3关于直线10x y -+=的对称,②正确; ③通过回归方程ˆˆˆy bx a =+可以估计和观测变量的取值和变化趋势,③正确;④正弦函数是奇函数,()()2sin 1f x x =+是正弦函数,所以()()2sin 1f x x =+是奇函数,上述推理错误的原因是小前提不正确,④错误,故答案为②③.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的周期性、点关于直线对称、以及回归分析与“三段论”,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题21.乙商场中奖的可能性大. 【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=,则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 22.(Ⅰ)910;(Ⅱ)92,920;(Ⅲ)分布列见解析,()175E Y =. 【分析】(Ⅰ)利用相互独立事件、互斥事件概率计算公式,计算出所求概率. (Ⅱ)利用二项分布期望和方差计算公式,计算出方差和期望. (Ⅲ)利用相互独立事件概率计算公式,计算出分布列并求得数学期望. 【详解】(Ⅰ)设事件“A 队在一轮比赛中的得分不低于1分”为B ,“甲在一轮中投中”为C ,“乙在一轮中投中”为D ,则C 、D 相互独立,B 包含CD ,CD ,C D ,且CD ,CD ,C D 两两互斥,()35P C =,()34P D =, ∴()()()()()910P B P CD CD CD P CD P CD P CD =++=++=. (Ⅱ)由(Ⅰ)知“A 队在一轮比赛中的得分不低于1分”的概率为910,故95,10XB ⎛⎫⎪⎝⎭,X 可以取0,1,2,3,4,5, ∴()995102E X =⨯=,()99951101020D X ⎛⎫=⨯⨯-= ⎪⎝⎭.(Ⅲ)Y 可以取2,0,2,4,6-,()2121125454100P Y =-=⨯⨯⨯=,()2131219025********P Y ⎛⎫==⨯⨯+⨯⨯= ⎪⎝⎭,()2312333211172254545454400P Y ⎛⎫==⨯+⨯+⨯⨯⨯⨯=⎪⎝⎭,()3123338142545454200P Y ⎛⎫⎛⎫==⨯+⨯⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()23381654400P Y ⎛⎫==⨯= ⎪⎝⎭. 所以Y 的分布列为 Y-2246P1100 9100 117400 81200 81400∴()5E Y =. 【点睛】本小题主要考查相互独立事件、互斥事件概率计算,考查二项分布期望和方差公式,考查分布列和数学期望的求法,属于中档题.23.(1)程序框图见解析;(2)2,02,0x x y x x ⎧<=⎨≥⎩,2x =±.【分析】(1)根据程序语句可知该程序是条件结构框图,并根据程序语句作出相应的程序框图; (2)根据程序语句得出当x 取不同范围内的值时,函数的解析式也不同,然后可根据程序框图结合x 的不同取值范围,得出函数的解析式,然后分0x <和0x ≥解方程4y =,从而可解出输入的x 的值. 【详解】(1)对应的程序框图如图所示:(2)该程序表示的函数是2,02,0x x y x x ⎧<=⎨≥⎩. 当0x <时,由24y x ==得2x =-;当0x ≥时,由24y x ==得2x =. 出当输出的4y =时,输入的x 的值是2x =±. 【点睛】本题考查条件程序框图的应用,同时考查了根据程序框图计算输入值,解题时要对x 的取值范围分段来讨论,考查分析问题和解决问题的能力,属于中等题. 24.见解析 【分析】利用顺序结构表达,首先输入各科成绩,,,,a b c d e ,然后计算总分S a b c d e =++++,平均分5Sω=,最后输出即可. 【详解】 算法步骤如下:第一步:输入该同学的语文、数学、英语、物理、化学的成绩:,,,,a b c d e , 第二步:计算S a b c d e =++++, 第三步:计算5S ω=, 第四步:输出S 和ω, 程序框图如下:25.(1) 1.60.2y x =+;(2)B 项目的收益更好. 【分析】(1)先利用平均数公式求出样本中心点的坐标, 再利用所给公式求出b 的值,最后将样本中心点的坐标代入回归方程求得a 的值即可;(2)分别利用所给关系式以及所求回归方程,求出A ,B 两个项目投资60万元,该企业所得纯利润的估计值,便可预测哪个项目的收益更好. 【详解】(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8, 所以1234535x ++++==,2357855y ++++==,22222212233547585351.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯, 则5 1.630.2a =-⨯=,故y 关于x 的线性回归方程为 1.60.2y x =+.(2)因为投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,所以若A 项目投资60万元,则该企业所得纯利润的估计值为1.760.59.7⨯-=万元; 因为y 关于x 的线性回归方程为 1.60.2y x =+,所以若B 项目投资60万元,则该企业所得纯利润的估计值为1.660.29.8⨯+=万元. 因为9.89.7>,所以可预测B 项目的收益更好.【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,n n i ii i i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势. 26.(1)ˆ 5.9129.5yx =-+;(2)189杯. 【分析】(1)根据表中数据计算可得所需数据,利用最小二乘法可求得回归直线方程; (2)代入10x =-即可求得预测值.【详解】(1)由表中数据得:505101555x -++++==,15712710772371005y ++++==, 517855357205551025i i i x y==-+++=∑,5212525*********i i x ==+++=∑, 102555100ˆ 5.9375525b -⨯⨯∴==--⨯,ˆ100 5.95129.5a ∴=+⨯=, y ∴关于x 的线性回归直线方程为:ˆ 5.9129.5y x =-+.(2)令10x =-,解得:188.5189y =≈,∴如果某天的气温是–10C ︒,预测这天卖出的热饮杯数为189杯.【点睛】本题考查利用最小二乘法求解回归直线、利用回归直线求解预测值的问题;关键是熟练掌握最小二乘法,考查学生的计算能力.。

2021-2022高中数学必修三期末第一次模拟试卷(附答案)(1)

2021-2022高中数学必修三期末第一次模拟试卷(附答案)(1)

一、选择题1.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p2.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为( ) A .435B .635C .1235D .18353.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .224.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为 A 3B .31C .3πD .31π-5.若执行如图所示的程序框图,输出S 的值为( )A.2log23 B.log27 C.3 D.2 6.若执行如图所示的程序框图,则输出S的值是()A.63 B.15 C.31 D.32 7.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为()A .6B .720C .120D .50408.执行如图的程序框图,则输出x 的值是 ( )A .2018B .2019C .12D .29.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .3310.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,811.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是( )A .华为的全年销量最大B .苹果第二季度的销量大于第三季度的销量C .华为销量最大的是第四季度D .三星销量最小的是第四季度12.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .160二、填空题13.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为__________. 14.过点(0,0)O 作直线与圆22(45)(8)169x y -+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________. 15.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.16.阅读如图所示的程序框图,若121log 3a =,2logb e =,ln 2c =,则输出的结果是________.17.执行右面的程序框图,若输入的x 的值为0,则输出的y 的值是________.18.如果执行如图所示的程序框图,那么输出的值k = .19.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若,αβ为第一象限角,且αβ>,则tan tan αβ>;③设一组样本数据12,,,n x x x ⋅⋅⋅的平均数是2,则数据1221,21,,21n x x x --⋅⋅⋅-的平均数为3;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).20.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示: 资金投入x 2 3 4 5 6 利润y0.40.611.21.8根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.三、解答题21.某学校有学生1000人,为了解学生对本校食堂服务满意程度,随机抽取了100名学生对本校食堂服务满意程度打分,根据这100名学生的打分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求频率分布直方图中a 的值,并估计该校学生满意度打分不低于70分的人数; (2)若打分的平均值不低于75分视为满意,判断该校学生对食堂服务是否满意?并说明理由(同一组中的数据用该组区间中点值为代表);(3)若采用分层抽样的方法,从打分在[40,60)的受访学生中随机抽取5人了解情况,再从中选取2人进行跟踪分析,求这2人至少有一人评分在[40,50)的概率.22.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22⨯列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:()()()()()22n ad bc K a b c d a c b d ⋅=++++.23.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开始由左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x (0≤x ≤7),左边部分的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.24.画出解关于x 的不等式0ax b +<的程序框图,并用语句描述.25.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.26.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下: 机床甲109.81010.2机床乙10.1109.910如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积, 故由几何概型可知202332p =⨯⨯, 解得000934.5 1.7327.791p p p π=≈⨯=.选C . 2.C解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035= 故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.3.D解析:D 【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.4.D解析:D【分析】由半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解. 【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,所以该正十二边形的面积为21121sin 326S π=⨯⨯⨯=, 由几何概型的概率计算公式,可得所求概率31P π=-,故选D. 【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A PN求解,着重考查了分析问题和解答问题的能力. 5.C解析:C 【解析】由题意,可得程序的功能是求S =log 23×log 34×log 45×log 56×log 67×log 78的值,原式=×××××==3.故选C.6.C解析:C 【分析】根据程序框图模拟程序计算即可求解. 【详解】模拟程序的运行,可得1S =,1i =; 满足条件5i <,执行循环体,3S =,2i =; 满足条件5i <,执行循环体,7=S ,3i =; 满足条件5i <,执行循环体,15S =,4i =; 满足条件5i <,执行循环体,31S =,5i =; 此时,不满足条件5i <,退出循环,输出S 的值为31. 故选:C 【点睛】本题主要考查了程序框图,循环结构,属于中档题.7.B解析:B【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案.【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==;第2次循环:满足判断条件,2,3S i ==;第3次循环:满足判断条件,6,4S i ==;第4次循环:满足判断条件,24,5S i ==;第5次循环:满足判断条件,120,6S i ==;第6次循环:满足判断条件,720,7S i ==;不满足判断条件,终止循环,输出720S =,故选B.【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题. 8.D解析:D【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解.【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==; 满足条件2019y <,执行循环体,1,4x y =-= ;…观察规律可知,x 的取值周期为3,由于20196733⨯=,可得:满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2.故选D .【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.9.D【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 10.D解析:D【分析】根据平均数的性质,方差的性质直接运算可得结果.【详解】令23(1,2,,5)i i y x i =-= 1234555x x x x x x ++++==, 1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=, (也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.11.A解析:A【分析】根据图象即可看出,华为在每个季度的销量都最大,从而得出华为的全年销量最大,从而得出A 正确;由于不知每个季度的销量多少,从而苹果、华为和三星在哪个季度的销量大或小是没法判断的,从而得出选项B ,C ,D 都错误.【详解】根据图象可看出,华为在每个季度的销量都最大,所以华为的全年销量最大;每个季度的销量不知道,根据每个季度的百分比是不能比较苹果在第二季度和第三季度销量多少的,同样不能判断华为在哪个季度销量最大,三星在哪个季度销量最小;B ∴,C ,D 都错误,故选A .【点睛】本题主要考查对销量百分比堆积图的理解.12.D解析:D【解析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数.【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题 二、填空题13.【解析】分析:由题意结合几何关系计算公式整理计算即可求得最终结果详解:由题意结合几何概型计算公式可知至少需要等待15秒才出现绿灯的概率:点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动 解析:58. 【解析】 分析:由题意结合几何关系计算公式整理计算即可求得最终结果.详解:由题意结合几何概型计算公式可知,至少需要等待15秒才出现绿灯的概率: 401525540408p -===. 点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.14.【分析】根据圆的性质可求得最长弦和最短弦的长度从而得到所有弦长为整数的直线条数从中找到长度不超过的直线条数根据古典概型求得结果【详解】由题意可知最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为: 解析:932【分析】根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过14的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:221326r =⨯=()0,0O 在圆内部且圆心到O 12=∴最短弦长为:210=∴弦长为整数的直线的条数有:()22510232⨯-+=条其中长度不超过14的条数有:()2141019⨯-+=条∴所求概率:932p =本题正确结果:932【点睛】 本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况. 15.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π- 【解析】【分析】先求出满足题意的体积,运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=,满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-. 【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础16.【分析】首先分析程序框图的作用是输出三个数中的最大值从而比较三个数的大小求得结果【详解】根据题中所给的程序框图可以判断出其作用是输出三者中的最大出那个数因为而所以其最大值是故答案是:【点睛】该题考查 解析:a【分析】首先分析程序框图的作用是输出三个数中的最大值,从而比较三个数的大小,求得结果.【详解】根据题中所给的程序框图,可以判断出其作用是输出三者中的最大出那个数, 因为12221log log 3log 13a eb ==>=>,而ln 21c =<, 所以其最大值是a ,故答案是:a .【点睛】该题考查的是有关程序框图的输出结果的求解问题,属于简单题目.17.13【解析】点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的数学问解析:13【解析】2=⇒=⇒==⨯+=x x x y012,32113点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.4【分析】模拟执行程序框图依次写出每次循环得到的S的值当S=2059k=4时不满足条件S<100退出循环输出k的值为4【详解】模拟执行程序框图可得k=0S=0满足条件S<100S=1k=1满足条件S解析:4【分析】模拟执行程序框图,依次写出每次循环得到的S的值,当S=2059,k=4时,不满足条件S <100,退出循环,输出k的值为4.【详解】模拟执行程序框图,可得k=0S=0满足条件S<100,S=1,k=1满足条件S<100,S=3,k=2满足条件S<100,S=11,k=3满足条件S<100,S=2059,k=4不满足条件S<100,退出循环,输出k的值为4.故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.①③【分析】求解的值判断①;举例说明②错误;求解平均数判断③;利用函数图象的平移变换判断④【详解】解:对于①函数的一个对称中心为故①正确;对于②取为第一象限角且但故②错误;对于③一组样本数据的平均数解析:①③【分析】 求解5()12f π-的值判断①;举例说明②错误;求解平均数判断③;利用函数图象的平移变换判断④.【详解】解:对于①,55()4cos()4cos()012632f ππππ-=-+=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确; 对于②,取94πα,3πβ=,α,β为第一象限角,且αβ>,但tan tan αβ<,故②错误; 对于③,一组样本数据1x ,2x ,⋯,n x 的平均数是2,则数据121x -,221x -,⋯,21n x -的平均数为22132⨯-=,故③正确; 对于④,函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)cos242y x x x ππ=+=+=的图象,故④错误. ∴正确命题的序号是①③.故答案为:①③.【点睛】本题考查命题的真假判断与应用,考查三角函数的图象与性质,训练了平均数的求法,属于中档题. 20.【分析】根据线性回归方程过样本数据中心点可求出b 代入即可求解【详解】由表中数据可得所以过点代入可得所以当时即获得利润大约为万元故答案为:【点睛】本题主要考查了线性回归方程样本数据中心点线性回归方程的 解析:4.74【分析】根据线性回归方程过样本数据中心点,可求出b ,代入15x =即可求解.【详解】由表中数据可得4,1x y ==,所以0.36ˆˆybx =-过点(4,1), 代入可得0.34b =,所以ˆˆ0.340.36yx =-, 当15x =时,0.34150.34ˆ6 4.7y=⨯-=, 即获得利润大约为4.74万元.故答案为:4.74【点睛】本题主要考查了线性回归方程,样本数据中心点,线性回归方程的应用,属于中档题.三、解答题21.(1)0.006a =,不低于70分的人数为680人;(2)该校学生对食堂服务满意,理由见解析;(3)710. 【分析】(1)由频率分布直方图中所有频率的和为1可计算出a 值,求出不低于70分的频率可估计出人数;(2)取各组数据中点值为估计值乘以频率相加可得平均值,从而得结论;(3)由频率得抽取的5人中在[40,50)和[50,60)上的人数,分别编号后用列举法写出所有基本事件,并得出两人都在[50,60)内的可能结果从而结合对立事件的概率公式可得结论.【详解】解:由频率分布直方图可知, (0.0040.0180.02220.028)101a +++⨯+⨯=,解得0.006a =.该校学生满意度打分不低于70分的人数为1000(0.280.220.18)680⨯++=人. (2)打分平均值为:450.04550.06650.22750.28850.22950.1876.275x =⨯+⨯+⨯+⨯+⨯+⨯=>. 所以该校学生对食堂服务满意.(3)由频率分布直方图可知:打分在[40,50)和[50,60)内的频率分别为0.04和0.06,抽取的5人采用分层抽样的方法,在[40,50)内的人数为2人,在[50,60)内的人数为3人.设[40,50)内的2人打分分别为12,,[50,60)a a 内的3人打分分别为123,,A A A ,则从[40,60)的受访学生中随机抽取2人,2人打分的基本事件有:()()()121112,,,,,a a a A a A ,()()()()()()()13212223121323,,,,,,,,,,,,,a A a A a A a A A A A A A A ,共10种.其中两人都在[50,60)内的可能结果为()()()121323,,,,,A A A A A A ,则这2人至少有一人打分在[40,50)的概率3711010P =-=. 【点睛】关键点点睛:本题考查频率分布直方图,考查分层抽样与古典概型.在频率分布直方图中所有频率之和为1,由此可求得频率分布直方图缺少的数据.古典概型问题中如果事件空间中基本事件的个数不是太多的可以 用列举法写出所有基本事件,从而计算出概率.如果事件的个数较多,不便于列举,可以利用计数原理计数,从而得出概率.22.(1)填表见解析;有90%的把握认为“对线上教学是否满意与性别有关”;(2)3 5 .【分析】(1)根据题目所给出的数据填写22⨯列联表,计算K的观测值,对照题目中的表格,得出统计结论.(2)由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,女生3人,分别标号,列出所有的基本事件,再利用古典概型的概率公式即可得出结果.【详解】解:(1)22⨯列联表如下:又()22100301045153.03 2.70675254555K⨯-⨯=≈>⨯⨯⨯,这说明有90%的把握认为“对线上教学是否满意与性别有关”.(2)方法一:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为A、B;女生3人设为,,a b c,则从这5名学生中抽取2名学生的基本事件有:(),A B,(),A a,(),A b,(),A c,(),B a,(),B b,(),B c,(),a b,(),a c,(),b c,共10个基本事件,其中抽取一名男生与一名女生的事件有(),A a,(),A b,(),A c,(),B a,(),B b,(),B c,共6个基本事件,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为63 105=.方法二:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为;女生3人,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为11222563105 C CC==【点睛】本题考查了独立性检验的应用问题,考查了古典概型的概率公式,也考查了计算能力的应用问题,是基础题.23.221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【分析】根据直线l 将梯形分割的左边部分的形状进行分类讨论,求出函数关系式,即可根据条件结构画出程序框图,并写出程序.【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2 cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x =; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩ . 程序框图如下:程序:INPUT“x=”;xIF x>=0 AND x<=2 THENy=0.5 *x^2ELSEIF x<=5 THENy=2*x-2ELSEy =-0.5*(x-7) ^2+10END IFEND IFPRINT yEND【点睛】本题主要考查分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考查学生分类讨论思想和算法语句的理解和书写.24.见解析【详解】解:流程图如下:程序如下:INPUT a,bIF a=0 THENIF b<0 THENPRINT“任意实数”ELSEPRINT“无解”ELSEIF a>0 THENPRINT“x<“;﹣b/aELSEPRINT“x>“;﹣b/aENDIFENDIFENDIFEND点睛:解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、交汇在一起,用条件结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②条件出错;③计算出错.25.(1)见解析;(2)174.5cm;(3)0.3.【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为.26.机床乙的零件质量更符合要求,运算见解析.【详解】 先考虑各自的平均数:设机床甲的平均数、方差分别为211x s 、; 机床乙的平均数、方差分别为222x s 、. 1109.81010.2104x +++==,210.1109.910104x +++== ∴两者平均数相同,再考虑各自的方差: 2222211[(1010)(9.810)(1010)(10.210)]0.024s =-+-+-+-= 2222221[(1010)(10.110)(1010)(9.910)]0.0054s =-+-+-+-= ∵2212s s >,∴机床乙的零件质量较稳定,乙更符合要求.。

2021-2022高中数学必修三期末一模试卷(及答案)(1)

2021-2022高中数学必修三期末一模试卷(及答案)(1)

一、选择题1.在OMN 中,1OM =,3ON =,2MN =,在OMN 内任取一点,该点到点M 的距离大于1的概率为( )A .39π B .319π-C .318π D .3118π-2.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .653.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .494.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+5.执行如图所示的程序框图,则输出s 的值为( )A .34B .56C .1324D .771206.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤7.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-28.执行如图所示的程序框图,若输出的结果为5,则输入的实数a 的范围是( )A .[)6,24B .[)24,120C .(),6-∞D .()5,249.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( )A.成绩B.视力C.智商D.阅读量a a>得到一组新10.一组数据的平均数为x,方差为2s,将这组数据的每个数都乘以()0数据,则下列说法正确的是()A.这组新数据的平均数为x B.这组新数据的平均数为a x+C.这组新数据的方差为2as D.这组新数据的标准差为2a s11.如果在一次试验中,测得(x,y)的四组数值分别是A(1,3),B(2,3.8),C(3,5.2),D(4,6),则y与x之间的回归直线方程是 ()A.y=x+1.9 B.y=1.04x+1.9C.y=1.9x+1.04 D.y=1.05x-0.912.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.160二、填空题13.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.14.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.15.如图,M是半径为R的圆周上一个定点,在圆周上等可能的任取一点N,连接MN,则弦MN的长度不超过3R的概率是__________.16.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a=,29.6a=,39.3a=49.4a=,59.4a=,69.3a=79.3a=,89.7a=,99.2a=109.5a=,119.3a=,129.6a=17.根据如图所示的伪代码可知,输出的结果为______.18.某程序框图如图所示,该程序运行后输出的S 为____________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.已知函数()f x ax b =+,分别在下列条件下,求函数图象经过第二、三、四象限的概率.(1)设,{2,1,1,2}a b ∈--且a b ;(2)实数,a b 满足条件11,1 1.a b -⎧⎨-⎩22.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据: 零件数x (个)1020304050加工时间y (分钟)6268 75 82 88(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y 与零件数x 具有相关关系,求y 关于x 的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆniii ni i x x y y bx x ==--=-∑∑,^^a yb x =-)23.写出一个求解任意二次函数()20y ax bx c a =++≠的最值的算法.24.已知某算法的程序框图如图所示,若将输出的(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),… (1)若程序运行中输出的一个数组是(9,t ),求t 的值. (2)程序结束时,共输出(x ,y )的组数为多少? (3)写出程序框图的程序语句.25.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z 服从正态分布()2,N μσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.26.某地区不同身高的未成年男性的体重平均值如下表: 身高/cm6070 80 90 100 110 120 130 140 150 160 170 体重/kg 6.137.909.9012.1515.0217.5020.9226.8631.1138.8547.2555.05(1)根据散点图判断,y a bx =+与x y a b =⋅哪一个能比较近似地反映这个地区未成年男性体重kg y 与身高cm x 的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及下表中数据,建立y 关于x 的回归方程(表中ln i i u y =,0.66 1.93e ≈,0.22 1.02e ≈).xyu()1221ii x x =-∑()()121iii x x y y =--∑ ()()121iii x x u u =--∑11524.0532.9614200 6143.3 284参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---⋅==--∑∑∑∑,a y b x =-⋅.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】在OMN ∆内任取一点,该点到点M 的距离大于1的区域是OMN ∆中去掉扇形MOC 的剩余部分,由几何概型能求出该点到点M 的距离大于1的概率. 【详解】解:以M 为原点,以1为半径作圆,交MN 于点C , 在OMN ∆中,1OM =,3ON =,2MN =,MO NO∴⊥,60OMC ∠=︒,21166OMC S ππ∴=⨯⨯=扇形,13132MON S ∆=⨯⨯=.在OMN ∆内任取一点,该点到点M 的距离大于1的区域是OMN ∆中去掉扇形MOC 的剩余部分,∴由几何概型得该点到点M 的距离大于1的概率为:332613MON OMCMONS S P S ππ∆∆--===-扇形.故选:B .【点睛】本题考查概率的求法,考查几何概型等基础知识,考查运算求解能力,是基础题.2.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.3.C解析:C 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=,巧板④ 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .4.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯,等边ABC ∆的面积为212sin 23π⨯⨯=23π- 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222233πππ⎛+⨯=- ⎝ ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.5.D解析:D 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的s的值. 【详解】由0s =,1k =满足条件, 则3k =,14s =,满足条件; 5k =,1154612s =+=,满足条件; 7k =,511312824s =+=,满足条件; 9k =,131772410120s =+=,不满足条件, 此时输出77120s =. 故选:D. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件.【详解】解析 当x =-3时,y =3;当x =-2时,y =0; 当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.B解析:B 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.8.A解析:A 【解析】 【分析】模拟程序的运行,依次写出每次循环得到的x ,n 的值,由题意判断退出循环的条件即可得解. 【详解】模拟程序的运行,可得 n =1,x =1不满足条件x >a ,执行循环体,x =1,n =2 不满足条件x >a ,执行循环体,x =2,n =3 不满足条件x >a ,执行循环体,x =6,n =4 不满足条件x >a ,执行循环体,x =24,n =5此时,由题意应该满足条件x >a ,退出循环,输出n 的值为5. 可得:6≤a <24. 故选:A . 【点睛】本题考查的知识点是循环结构的程序框图的应用,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.9.D解析:D 【解析】试题分析:由表中数据可得 表1:()25262210140.00916362032K ⨯⨯-⨯=≈⨯⨯⨯;表2: ()2524201216 1.76916362032K ⨯⨯-⨯=≈⨯⨯⨯;表3: ()252824128 1.316362032K ⨯⨯-⨯=≈⨯⨯⨯;表4: ()25214302623.4816362032K ⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D 正确. 考点:独立性检验.10.D解析:D 【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍. 【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s , 则平均值为()12341n ax ax ax ax ax ax n++++⋯+=, ()()()()()22222212341n s x x x xx xx xx x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦,()()()()()222222212341n ax axax axax axax axax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦故选:D. 【点睛】本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题.11.B解析:B 【解析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是回归直线方程. 详解:123+4=2.54x ++=, 3 3.8 5.264.5,4y +++==∴这组数据的样本中心点是(2.5,4.5)把样本中心点代入四个选项中,只有y =1.04x +1.9成立,故选B.点睛:这是一道关于考查回归直线方程的题目,关键掌握回归直线必过样本中心点的特点,首先分析题目,由四组数据可得,x y ,进而得到样本中心点的坐标,接下来根据回归直线必过样本中心点,即可解答此题.12.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题二、填空题13.【分析】将甲乙到达时间设为(以为0时刻单位为分钟)则相见需要满足:画出图像根据几何概型公式得到答案【详解】根据题意:将甲乙到达时间设为(以为0时刻单位为分钟)则相见需要满足:画出图像:根据几何概型公解析:11 36【分析】将甲、乙到达时间设为,x y(以4:00为0时刻,单位为分钟).则相见需要满足:10y x-≤画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为,x y(以4:00为0时刻,单位为分钟)则相见需要满足:10y x-≤画出图像:根据几何概型公式:2500111360036P=-=【点睛】本题考查了几何概型的应用,意在考查学生解决问题的能力.14.【分析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法其中能构成勾股数的有共三种所以所求概率为故答案为【点睛】本题考查古典概型与数学文化考查组合问题数据处理能力和应用意识解析:155【分析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有311C种不同的方法,其中能构成勾股数的有共()()()3,4,5,6,8,10,5,12,13三种,所以,所求概率为3113155PC==.故答案为155【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.15.【分析】先根据题意先找出弦的长度不超过对应的点其构成的区域是点M 两侧各圆周既而求得概率【详解】根据题意满足条件弦的长度不超过对应的点其构成的区域是点M 两侧各圆周所以弦MN 的长度不超过的概率是故答案为解析:23【分析】先根据题意,先找出弦MN 对应的点,其构成的区域是点M 两侧各13圆周,既而求得概率. 【详解】根据题意,满足条件“弦MN ”对应的点,其构成的区域是点M 两侧各13圆周,所以弦MN 的概率是23P 故答案为23【点睛】本题主要考查了几何概型的意义,关键是找出满足条件弦MN 的图形测度,再带入公式求解.16.【分析】分析程序框图的功能在于寻找和输出一组数据的最大值观察该题所给的数据可知其最大值为M 的值即为取最大时对应的脚码从而求得结果【详解】仔细分析程序框图的作用和功能所解决的问题是找出一组数据的最大值 解析:9.7,8【分析】分析程序框图的功能,在于寻找和输出一组数据的最大值,观察该题所给的数据,可知其最大值为9.7,M 的值即为取最大时对应的脚码,从而求得结果. 【详解】仔细分析程序框图的作用和功能, 所解决的问题是找出一组数据的最大值,并指明其为第几个数,观察数据得到第八个数是最大的,且为9.7, 所以答案是9.7,8. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有框图的作用和功能,观察所给的数据,从而得到结果,所以要读取框图的作用非常关键.17.72【分析】模拟程序的运行依次写出每次循环得到的的值可得当时不满足条件退出循环输出的值为72【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循环体;满足条件执行循环体;满足条件执行循环体;不解析:72 【分析】模拟程序的运行,依次写出每次循环得到的S i ,的值,可得当9i = 时不满足条件8i <,退出循环,输出S 的值为72. 【详解】模拟程序的运行,可得10,i S ==, 满足条件8i <,执行循环体,39;i S ==,满足条件8i <,执行循环体,524i S ==, ; 满足条件8i <,执行循环体,745i S ==, ; 满足条件8i <,执行循环体,9i =,72S =; 不满足条件8i <,退出循环,输出S 的值为72, 故答案为72 【点睛】本题考查循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟执行程序的方法解决,属于基础题.18.【分析】列出前几次循环找出该算法循环的周期性然后利用周期性求出输出结果的值【详解】成立执行第一次循环;成立执行第二次循环;成立执行第三次循环;成立执行第四次循环;成立执行第五次循环由上可知该算法循环解析:13. 【分析】列出前几次循环,找出该算法循环的周期性,然后利用周期性求出输出结果S 的值. 【详解】12011i =≤成立,执行第一次循环,12312S +==--,112i =+=; 22011i =≤成立,执行第二次循环,()()131132S +-==---,213i =+=; 32011i =≤成立,执行第三次循环,11121312S ⎛⎫+- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭,314i =+=;42011i =≤成立,执行第四次循环,1132113S +==-,415i =+=; 52011i =≤成立,执行第五次循环,12312S +==--,516i =+=.由上可知,该算法循环是以4次为一个循环周期,执行完最后一次循环,2012i =,201255024=⨯+,因此,输出的结果S 的值为13,故答案为13.【点睛】本题考查算法的周期性,解题时要结合算法程序框图得出算法循环的周期性,考查推理能力与计算能力,属于中等题.19.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容 解析:21【解析】 【分析】根据系统抽样的特征,求出分段间隔即可. 【详解】根据系统抽样的特征,得:从2100名学生中抽取100个学生,分段间隔为210021100=, 故答案是21. 【点睛】该题所考查的是有关系统抽样的组距问题,应用总体除以样本容量等于组距,得到结果,属于简单题目.20.是不相等的正整数即可【解析】∵甲班人数为平均分为乙班人数为平均分为∴甲乙两班的数学平均分为∵∴当时∴该命题是假命题时应满足是不相等的正整数故答案为:是不相等的正整数解析:,a b 是不相等的正整数即可 【解析】∵甲班人数为m ,平均分为a ,乙班人数为()n n m ≠,平均分为b ∴甲、乙两班的数学平均分为ma nbm n++ ∵m n ≠ ∴当a b =时,2ma nb a bm n ++=+ ∴该命题是假命题时,应满足,a b 是不相等的正整数 故答案为:,a b 是不相等的正整数三、解答题21.(1)16;(2)14【分析】(1)分别求出从{2,1,1,2}--中任取两个不同的数所构成的直线条数及满足图象经过第二、三、四象限的直线条数,由古典概型概率公式求解; (2)由题意画出图形,再由测度比是面积比得答案. 【详解】(1)从{2,1,1,2}--中任取两个不同的数,所构成直线()f x ax b =+的条数为2412A =条,满足图象经过第二、三、四象限的直线有21y x =--与2y x =--两条,∴所求概率21126P ==; (2)满足约束条件1111a b -⎧⎨-⎩的区域的面积为224⨯=,若函数()f x ax b =+的图象经过第二、三、四象限,则1010a b -<⎧⎨-<⎩,所占区域面积为111⨯=.∴所求概率为14P =.【点睛】本题考查古典概型与几何概型的概率计算,考查数形结合思想和数据处理能力. 22.(1)710(2)108分钟. 【分析】(1)利用列举法和古典概型的概率公式计算可得;(2)根据公式计算可得回归方程,根据回归公式计算可得答案. 【详解】 解:(1)6268758288755y ++++==记:“两组数据中至少有一组数据小于加工时间的均值” 为事件A ,基本事件:(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88),(75,82),(75,88),(82,88)共10种,其中事件A :(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88)共7个,所以7()10P A =. (2)由题,1020304050305x ++++==,()5214001001004001000i i x x =-=+++=∑()()5126070070260660iii x x y y =--=++++=∑()()()121ˆ0.66,niii nii x x y y bx x ==--==∴-∑∑ˆˆ55.2a y bx=-= 所以回归方程为ˆ0.6655.2yx =+. 80x =时,ˆ0.668055.2108yx =⨯+=,即预测其加工80个零件需要108分钟. 【点睛】本题考查了利用列举法和古典概型概率公式计算概率,考查了求线性回归方程,考查了运算求解能力,属于中档题. 23.见解析 【分析】由二次函数的性质知,当0a >时,二次函数()20y ax bx c a =++≠开口方向向上,函数有最小值为244ac b a -;当0a <时, 二次函数()20y ax bx c a =++≠开口方向向下,函数有最大值为244ac b a-. 【详解】第一步,输入a ,b ,c第二步,计算244ac b m a-=;第三步,若0a >,min y m =,否则, max y m =. 【点睛】本题考查算法步骤的书写和一元二次函数的最值问题;同时让学生体会算法在解决数学问题中的作用;求解本题的关键是对一元二次函数最值情况必须熟悉;属于中档题. 24.(1)-4;(2)1009;(3)答案见解析. 【解析】 试题分析:(1)利用所给的程序框图运行程序可得当x=9时,y=-4,则t 的值为-4. (2)结合程序的算法和循环结构的特点可知共输出(x ,y )的组数为1009;(3)将所给的程序框图翻译为算法语句,利用循环语句设计相应的程序即可,注意循环语句应设计为DO 语句的形式.试题(1)由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x ,y )的组数为20182=1 009. (3)程序框图的程序语句如下:x =1y =0n =1DOPRINT (x ,y )n =n +2x =3*xy =y -2LOOP UNTIL n >2 017END点睛:程序框图的条件结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.输入、输出和赋值语句是任何一个算法必不可少的语句,一个语句可以输出多个表达式.在赋值语句中,一定要注意其格式的要求,如“=”的右侧必须是表达式,左侧必须是变量;一个语句只能给一个变量赋值;变量的值始终等于最近一次赋给它的值,先前的值将被替换.25.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题26.(1)x y a b =⋅;(2) 1.93 1.02x y =⨯.【分析】(1)根据散点图的趋势可以判断回归方程类型.(2)令ln u y =,由x y a b =⋅,得()1212ln ,ln u c x c c b c a =+==,由公式计算可得回归方程.【详解】(1)根据散点图判断,x y a b =⋅能比较近似地反映这个地区未成年男性体重kg y 与身高cm x 的回归方程类型.(2)令ln u y =,由x y a b =⋅,得()1212ln ,ln u c x c c b c a =+==,()()()121112212840.0214200i ii ii x x u u c x x ====--=-∑∑, 而 2.96u =,所以21 2.960.021150.66c u c x =-⋅=-⨯=, 0.020.66u x =+,所以0.020.660.660.02 1.93 1.02x x x y e e e +==⨯=⨯, y 关于x 的回归方程为 1.93 1.02x y =⨯.【点睛】本题考查由散点图辨别回归方程的类型,求回归方程,属于中档题.。

2021-2022高中数学必修三期末一模试卷含答案(1)

2021-2022高中数学必修三期末一模试卷含答案(1)

一、选择题1.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A .521B .1021C .1121D .12.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设36DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .37B .217C .413D .213133.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.514.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为( )A .15B .25C .35D .455.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m =D .35m ≤6.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .67.执行如图所示的程序框图,若输入的,a b 的值分别为1,2,则输出的S 是( )A .70B .29C .12D .58.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤9.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A .45,75,15B .45,45,45C .45,60,30D .30,90,1510.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定11.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,812.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30B .25C .20D .15二、填空题13.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.14.已知集合{1,U =2,3,⋯,}n ,集合A 、B 是集合U 的子集,若A B ⊆,则称“集合A 紧跟集合B ”,那么任取集合U 的两个子集A 、B ,“集合A 紧跟集合B ”的概率为______. 15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.已知某程序框图如图所示,则执行该程序后输出的结果是_____17.已知一个算法的程序框图如图所示,当输入的1x =-与1x =时,则输出的两个y 值的和为__________.18.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________. 19.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若,αβ为第一象限角,且αβ>,则tan tan αβ>;③设一组样本数据12,,,n x x x ⋅⋅⋅的平均数是2,则数据1221,21,,21n x x x --⋅⋅⋅-的平均数为3;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上). 20.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.三、解答题21.我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标x y z ω=++的值评定人工种植的青蒿的长势等级:若4ω≥,则长势为一级;若23ω≤≤,则长势为二级;若01ω≤≤,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果: 种植地编号1A2A3A 4A 5A(),,x y z()0,1,0()1,2,1()2,1,1()2,2,2()0,1,1种植地编号6A7A8A9A10A(),,x y z()1,1,2 ()2,1,2 ()2,0,1 ()2,2,1 ()0,2,1(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一地,其综合指标为m ,从长势等级不是一级的人工种植地中任取一地,其综合指标为n ,记随机变量X m n =-,求X 的分布列. 22.某高校在2019的自主招生考试中,考生笔试成绩分布在[]160,185,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为[)160165,,第2组成绩为[)165170,,第3组成绩为[)170175,,第4组成绩为[)175,180,第5组成绩为[]180,185,样本频率分布直方图如下:(1)估计全体考生成绩的中位数;(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.23.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开始由左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x (0≤x ≤7),左边部分的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.24.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),请在图中判断框内①处和执行框中的②处填上合适的语句,使之能完成该题算法功能.25.为提高某作物产量,种植基地对单位面积播种数与每棵作物的产量之间的关系进行了研究,收集了10块试验田的数据,得到下表: 试验田编号 1 2 3 4 5 6 7 8 9 10 (棵2/m ) 3.5 4 5.1 5.7 6.1 6.9 7.5 8 9.1 11.2 (斤/棵)0.330.320.30.280.270.250.250.240.220.15技术人员选择模型21y a bx =+作为y 与x 的回归方程类型,令2i i u x =,1i i v y =. (1)由最小二乘法得到线性回归方程v u βα=+,求y 关于x 的回归方程; (2)利用(1)得出的结果,计算当单位面积播种数x 为何值时,单位面积的总产量w xy =的预报值最大?(计算结果精确到0.01)附:对于一组数据()11,u v ,()22,u v …(),n n u v 其回归直线v u βα=+的斜率和截距的最小二乘法估计分别为1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-.参考数据:1500nii u==∑,140ni i v ==∑,12321n i i i u v ==∑,2135642ni i u ==∑30 5.48≈.26.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由从共有15个球中任取2个球,共有215C 种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C 种不同的取法,再利用古典概型及其概率的计算公式,即可求解.【详解】由题意,从共有15个除了颜色外完全相同的球,任取2个球,共有215C 种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C 种不同的取法,所以概率为11510215501010521C C C ==,故选B. 【点睛】本题主要考查了排列、组合的应用,以及古典概型及其概率的应用,其中解答中认真审题,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2.A解析:A 【分析】根据题意,分析可得233EFA πππ∠=-=,由三角形面积公式计算可得△DEF 和△ACF 的面积,进而可得△ABC 的面积,由几何概型公式计算可得答案. 【详解】根据题意,DEF 为等边三角形,则3EFD π∠=,则233EFA πππ∠=-=, DEF 中,6DF =,其面积1166sin 23S π=⨯⨯⨯= ACF 中,2AF =,8CF EF EC =+=,其面积21228sin 23S π=⨯⨯⨯= 则ABC的面积123S S S =+=故在大等边三角形中随机取一点,则此点取自小等边三角形的概率137S P S ===, 故选:A . 【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A 的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.3.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.4.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析, 基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.5.B解析:B由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件. 【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”. 故选B. 【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.6.C解析:C 【分析】根据框图模拟程序运算即可. 【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环, 第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环, 第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C. 【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.7.B解析:B 【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果. 【详解】 解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <, 故输出29S =. 故选B. 【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.8.B解析:B【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.9.C解析:C 【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 10.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】 由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定 故选:A . 【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.11.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图12.C解析:C 【详解】 抽取比例为150130000200=, 1400020200∴⨯=, 抽取数量为20,故选C.二、填空题13.【分析】先求事件的总数再求选出的2名同学中至少有1名女同学的事件数最后根据古典概型的概率计算公式得出答案【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务共有种情况若选出的2名学生恰有1名女解析:710. 【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案. 【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况. 若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况, 所以所求的概率为6171010+=. 【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.14.【解析】【分析】由题意可知集合U 的子集有个然后求出任取集合U 的两个子集AB 的个数m 及时AB 的所有个数n 根据可求结果【详解】解:集合23的子集有个集合AB 是集合U 的子集任取集合U 的两个子集AB 的所有个解析:3()4n【解析】 【分析】由题意可知集合U 的子集有2n 个,然后求出任取集合U 的两个子集A 、B 的个数m ,及A B ⊆时A 、B 的所有个数n ,根据nP m=可求结果. 【详解】 解:集合{1,U =2,3,⋯,}n 的子集有2n 个,集合A 、B 是集合U 的子集,∴任取集合U 的两个子集A 、B 的所有个数共有22n n ⨯个,A B ⊆,①若A =∅,则B 有2n 个,②若A 为单元数集,则B 的个数为112n nC -⨯个, ⋯同理可得,若{1,A =2,3}n ⋯,则B =只要1个即012n n C =⨯,则A 、B 的所有个数为112202222(12)3nn n n n n n n n C C C --+⨯+⨯+⋯+⨯=+=个,集合A 紧跟集合B ”的概率为33()224n nn n P ==⨯.故答案为3()4n【点睛】本题考查古典概率公式的简单应用,解题的关键是基本事件个数的确定.15.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:56【解析】 【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C =中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解. 【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C =中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法, 所以取出的2个数之差的绝对值小于或等于2的概率为15166P =-=. 【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.16.-1【分析】计算的值找出周期根据余数得到答案【详解】依次计算得:…周期为32019除以3余数为0故答案为-1【点睛】本题考查了程序框图的相关知识计算数据找到周期规律是解题的关键解析:-1 【分析】计算a 的值,找出周期,根据余数得到答案. 【详解】 依次计算得:2,1a i ==1,22a i ==1,3a i =-=2,4a i == ….周期为32019除以3余数为0,1a =- 故答案为-1 【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.17.【解析】时时输出的两个值的和为故答案为解析:54【解析】1x =-时,11124y --==,1x =时,()2log 111y =+=,15144∴+=,输出的两个y 值的和为54,故答案为54. 18.【解析】依据用秦九韶算法的算理可得:将代入可得其函数值为故应填答案点睛:解答本题的关键是准确理解秦九韶算法的算法原理和算法步骤先算出再算然后算出进而后算出最后算出 解析:1559【解析】依据用秦九韶算法的算理可得:()()()()()f x x 357911x x x x =+-+-+,将x 4=代入可得其函数值为1559,故应填答案1559。

【人教版】高中数学必修三期末模拟试卷带答案(1)

【人教版】高中数学必修三期末模拟试卷带答案(1)

一、选择题1.“二进制”来源于我国古代的《易经》,该书中有两类最基本的符号:“─”和“﹣﹣”,其中“─”在二进制中记作“1”,“﹣﹣”在二进制中记作“0”.如符号“☱”对应的二进制数011(2)化为十进制的计算如下:011(2)=0×22+1×21+1×20=3(10).若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为( ) A .12B .13C .23D .142.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-3.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4134.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数2sin8y x π=的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为4π,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.116D.185.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.1 27.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A .5n ≤B .6n ≤C .7n ≤D .8n ≤8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为1910.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8011.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.如图,在长方形OABC 内任取一点(,)P x y ,则点P 落在阴影部分BCD 内的概率为________.14.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M _____17.已知某程序框图如图所示,则该程序运行后输出S的值为__________.18.如图,程序框图中,语句1被执行的次数为__________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.20.对具有线性相关关系的变量x ,y ,有一组观察数据(,)(1,2,9)i i x y i =⋅⋅⋅,其回归直线方程是:2y x a =+,且919ii x==∑,9118i i y ==∑,则实数a 的值是__________.三、解答题21.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求: (1)从中任取一球,得到黑球、黄球、绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少?22.“绿水青山就是金山银山”,为了响应国家政策,我市环保部门对市民进行了一次环境保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的50人的得分(满分:100分)数据,统计结果如表所示: 组别 [40,50)[50,60)[60,70)[70,80)[80,90)[90,100)男 1 2 2 10 9 6 女55532若规定问卷得分不低于70分的市民称为“环境保护关注者”,则上图中表格可得22⨯列联表如下:(1)请完成上述22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环境保护达人”,现在从本次调查的“环境保护达人”中利用分层抽样的方法抽取4名市民参与环保知识问答,再从这4名市民中随机抽取2人参与座谈会,求抽取的2名市民中,既有男“环境保护达人”又有女“环境保护达人”的概率.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2.07223.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.24.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.25.零部件生产水平是评判一个国家高端装备制造能力的重要标准之一,其中切割加工技术是一项重要技术某精密仪器制造商研发了一种切割设备,用来生产高精度的机械零件,经过长期生产检验,可以认为该设备生产的零件尺寸服从正态分布N(μ,σ2).某机械加工厂购买了该切割设备,在正式投入生产前进行了试生产,从试生产的零件中任意抽取10件作为样本,下面是样本的尺寸x i(i=1,2,3,…,10,单位:mm):100.03100.499.92100.5299.98100.3599.92100.44100.66100.78用样本的平均数x作为μ的估计值,用样本的标准差s作为σ的估计值.(1)按照技术标准的要求,若样本尺寸均在(μ﹣3σ,μ+3σ)范围内,则认定该设备质量合格,根据数据判断该切割设备的质量是否合格.(2)该机械加工厂将该切割设备投入生产,对生产的零件制定了两种销售方案(假设每种方案对销售量没有影响):方案1:每个零件均按70元定价销售;方案2:若零件的实际尺寸在(99.7,100.3)范围内,则该零件为A级零件,每个零件定价100元,否则为B级零件,每个零件定价60元.哪种销售方案的利润更大?请根据数据计算说明.附:1021iix=∑≈100601.8,样本方差()22221111n ni ii is x x x nxn n==⎛⎫=-=-⎪⎝⎭∑∑.若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6827,P(μ﹣2σ<X<μ+2σ)=0.9545 26.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z服从正态分布()2,Nμσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分类计算得到从两类符合中任取2个符号排列,则组成不同的十进制数为0,1,2,3,即可计算得到概率. 【详解】根据题意,不同符号可分为三类:第一类:由两个“─”组成,其二进制为:11(2)=3(10); 第二类:由两个“﹣﹣“组成,其二进制为:00(2)=0(10);第三类:由一个“─”和一个“﹣﹣”组成,其二进制为:10(2)=2(10),01(2)=1(10), 所以从两类符号中任取2个符号排列,则组成不同的十进制数为0,1,2,3, 则得到的二进制数所对应的十进制数大于2的概率P 14=. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,以及转化的应用,意在考查学生的计算能力和应用能力,属于中档试题.2.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e.故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.3.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.4.D解析:D 【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可. 【详解】由已知,可得大圆的直径为y =3sin 8πx 的周期,由T 2168ππ==,可知大圆半径为8, 则面积为S =64π,一个小圆的周长242l r r π==∴= 故小圆的面积S ′=π•22=4π, 在大圆内随机取一点,此点取自阴影部分的概率为: P 2'81648S S ππ===, 故选:D . 【点睛】本题考查了几何概型的概率计算问题,关键是明确测度比为面积比,是基础题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =,则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环;3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环;6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =.故选:A .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.D解析:D【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值.【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=; 第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D.【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.7.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 8.C解析:C【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案.【详解】由题意可知,执行如图所示的程序框图,可知:第一循环:134,2146n S =+==⨯+=;第二循环:437,26719n S =+==⨯+=;第三循环:7310,2191048n S =+==⨯+=,要使的输出的结果为48,根据选项可知8k,故选C. 【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题. 9.C解析:C【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义10.C解析:C【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人.故选C .11.A解析:A【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.5 12.B解析:B【解析】分析:先根据散点图确定函数趋势,再结合五个选择项函数图像,进行判断选择.详解:从散点图知,样本点分布在开口向右的抛物线(上支)附近或对数曲线(上部分)的附近,所以y=d 或y =p +q ln x 较适宜,故选B .点睛:本题考查散点图以及函数图像,考查识别能力.二、填空题13.【分析】利用微积分基本定理先计算出阴影部分的面积根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率即可计算出概率值【详解】由几何概型的知识可知:阴影部分的面积与长方形的面积之比等于所 解析:1e【分析】利用微积分基本定理先计算出阴影部分的面积,根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率,即可计算出概率值.【详解】由几何概型的知识可知:阴影部分的面积与长方形OABC 的面积之比等于所求概率, 记阴影部分面积为1S ,长方形面积为2S , 所以()11100111x xS e e dx e e e e =⨯-=-=--=⎰,21S e e =⨯=, 所以所求概率为121S P S e ==. 故答案为:1e. 【点睛】 本题考查几何概型中的面积模型以及利用微积分基本定理求解定积分的值,属于综合型问题,难度一般.几何概型中的面积模型的计算公式:()A A P =构成事件的区域面积全部试验结果所构成的区域面积. 14.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲 解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题. 15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案.【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===;当2n =时,执行程序框图得,22512,5,12M a b =+⨯===;当3n =时,不满足判断条件框,直接输出 12M =.故答案为12.【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.17.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si 解析:12- 【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】执行程序框图,有S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5…观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-.本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.18.34【解析】循环次数=(循环终值-循环初值)/步长+1又循环的初值为退出循环时终值为步长为故循环次数次故答案为解析:34【解析】循环次数=(循环终值-循环初值)/步长+1,又循环的初值为1,退出循环时终值为100,步长为3,故循环次数10011343-=+=次,故答案为34. 19.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.20.0【解析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值详解:根据回归直线方程过样本中心点即答案为0点睛:本题考查了线性回归方程过样本中心点的应用问题是基础题解析:0【解析】 分析:根据回归直线方程过样本中心点x y (,), 计算平均数代入方程求出a 的值. 详解:根据回归直线方程ˆ2y x a =+过样本中心点x y (,),191191,99i i x x ==∑=⨯= 191118299i i y y ==∑=⨯=, 22210a y x ∴=-=-⨯=;即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.三、解答题21.(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【分析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由已知列出()()()P A P B P C、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案.【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由于A,B,C为互斥事件,根据已知,得()()()()()()()()()()59231 P A B P A P BP B C P B P CP A B C P A P B P C⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得() () ()132949P AP BP C⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4,从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个,于是,两个球同色的概率为3165 3618 ++=,则两个球颜色不相同的概率是513 11818 -=.【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A1、A2、…、A n彼此互斥,那么事件A1+A2+…+A n发生(即A1、A2、…、A n中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).22.()122⨯列联表见解析,在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关;()21 2【分析】()1根据表中的数据重新整合,完成22⨯列联表,然后将列联表中的数据代入2K的公式计算求解,结合临界值表进行判断即可;()2列举出所有可能的情况和既有男“环境保护达人”又有女“环境保护达人”包含的情况,再利用古典概型的概率计算公式求解即可.【详解】()1由表中数据可得22⨯列联表如下,2K的观测值()25051025106.349 3.84115353020k⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关; ()2由题可知,利用分层抽样的方法可得,抽取4名市民中男环保达人3人,女环保达人1人,设男环保达人为,,A B C,女环保达人为a,从中抽取两人参与座谈会所有的情况为()()()()()(),,,,,,,,,,,A B A C A a B C B a C a共6种情况,既有男“环境保护达人”又有女“环境保护达人”包含的情况为()()(),,,,,A aB aC a共3种情况,由古典概型的概率计算公式可得,所求概率3162 P==.【点睛】本题考查独立性检验和古典概型概率计算公式;考查运算求解能力;注意所给数表的使用方法和题目设为方式和熟练掌握2K公式是求解本题的关键;属于基础题、常考题型. 23.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1WENDEND【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题.24.见解析【解析】试题分析:根据算法的概念和算法的流程为一个循环结构的算法,可把该算法分为五步,即可写出算法.试题第一步,两个小孩将船划到右岸.第二步,他们中一个上岸,另一个划回来.第三步,小孩上岸,一个士兵划过去.第四步,士兵上岸,让小孩划回来.第五步,如果左岸没有士兵,那么结束,否则转第一步点睛:本题考查了算法的一个实际应用问题,解题时要主语熟练掌握循环结构算法的性质和应用是解答的关键,算法时新课标中新增内容,也一直是命题的一个热点,试题比较基础,属于基础题.25.(1)合格,理由见解析;(2)方案2,理由见详解.【分析】(1)求得10个数据的平均数和标准差,根据题意,即可判断;(2)设出方案2中零件价格的随机变量,结合正态分布求得零件价格的分布列和数学期望,即可比较大小,则问题得解.【详解】(1)由表格中数据可得: x 1011100.310i i x ===∑, ()101022221111(10)0.091010i i i i s x x x x ===-=-=∑∑.故可得:100.3μ=,0.3σ=.因为所有样本都在区间()99.4,101.2,故该切割设备质量合格.(2)对方案2,设零件价格的随机变量为X ,故X 可取60,100,根据(1)中所求,可得()()()10099.7100.320.47725P X P x P x μσμ==<<=-<<=;()()6011000.52275P X P X ==-==.故()600.522751000.47725600.51000.477770E X =⨯+⨯>⨯+⨯=>.又方案1中,每个零件售价均为70,故可得方案2的利润更大.【点睛】本题考查平均数和方差标准差的计算,涉及正态分布,随即变量数学期望的求解,属综合中档题.26.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题。

2021-2022高中数学必修三期末第一次模拟试卷(含答案)(1)

2021-2022高中数学必修三期末第一次模拟试卷(含答案)(1)

一、选择题1.在OMN 中,1OM =,3ON =,2MN =,在OMN 内任取一点,该点到点M 的距离大于1的概率为( )A .39π B .319π-C .318π D .3118π-2.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .353.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3B .0.36C .0.49D .0.514.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O 为大圆圆心,线段AB 为小圆直径.△AOB 的三边所围成的区域记为I ,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .123p p p >>B .123p p p =+C .213p p p >>D .123p p p =>5.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <6.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y 的值为2,则输入的x 的值为( )A .74B .5627C .2D .164817.执行如图所示的程序框图,则输出的n 值是( )A.5B.7C.9D.11)8.执行如图所示程序框图,当输入的x为2019时,输出的y(A.28B.10C.4D.29.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为()A.600 B.1225 C.1530 D.185510.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是( )A .24B .48C .56D .6411.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数( )A .40B .45C .48D .5012.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表: 时间周一 周二 周三 周四 周五 车流量x (万辆) 100 102 108 114 116 浓度y (微克)7880848890根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 二、填空题13.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,若个体a 前两次未被抽到,则第三次被抽到的概率为_____.14.某班共有4个小组,每个小组有2人报名参加志愿者活动.现从这8人中随机选出4人作为正式志愿者,则选出的4人中至少有2人来自同一小组的概率为________. 15.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a .现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cos α=_____________.16.执行如图所示的程序框图,输出的值为__________.17.根据如图所示的程序框图,若输出的值为4,则输入的值为______________.18.执行如图所示的程序框图,输出的T =______.19.水痘是一种传染性很强的病毒性疾病,易在春天爆发.市疾控中心为了调查某校高年级学生注射水症疫苗的人数,在高一年级随机抽取5个班级,每个班抽取的人数互不相同,若把每个班级抽取的人数作为样本数据.已知样本平均数为7,样本方差为4,则样本数据中的最小值是______.20.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.三、解答题21.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:学生1A2A3A4A5A数学8991939597物理8789899293(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.22.某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是[100,110),[110,120),[120,130),[130,140),[140,150].(1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);(2)若这100名学生数学成绩分数段的人数y的情况如下表所示:分组区间[100,110)[110,120)[120,130)[130,140)[140,150] y154040m n且区间内英语人数与数学人数之比为,现从数学成绩在的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[140,150]的概率.23.已知数列{}n a的递推公式111n nna aa--=+,且11a=,请画出求其前10项的流程图.24.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图.25.峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以[100,300),[300500),,[500700),,[700900),,[9001100),,[]11001300,(单位:度)分组的频率分布直方图如下图:若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表: 月平均用电量(度) [)100,300 [)300,500 [)500,700 [)700,900 [)900,1100 []11001300, 使用峰谷电价的户数3913721值作代表);(2)(i )将“一般用户”和“大用户”的户数填入下面22⨯的列联表:一般用户 大用户使用峰谷电价的用户 不使用峰谷电价的用户“使用峰谷电价”有关?()2P K k ≥0.025 0.010 0.001 k 5.0246.63510.828附:()22()()()()n ad bc K a b c d a c b d -=++++,26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】在OMN ∆内任取一点,该点到点M 的距离大于1的区域是OMN ∆中去掉扇形MOC 的剩余部分,由几何概型能求出该点到点M 的距离大于1的概率. 【详解】解:以M 为原点,以1为半径作圆,交MN 于点C , 在OMN ∆中,1OM =,3ON =,2MN =, MONO ∴⊥,60OMC ∠=︒,21166OMC S ππ∴=⨯⨯=扇形,13132MON S ∆=⨯⨯=.在OMN ∆内任取一点,该点到点M 的距离大于1的区域是OMN ∆中去掉扇形MOC 的剩余部分,∴由几何概型得该点到点M 的距离大于1的概率为:332613MON OMCMONS S P S ππ∆∆--===-扇形.故选:B .【点睛】本题考查概率的求法,考查几何概型等基础知识,考查运算求解能力,是基础题.2.B解析:B 【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果. 【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C A A A A A ⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C C C A C C A A A ⋅=种分法, ∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.3.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.4.D解析:D 【解析】 【分析】设OA =2,则AB 22= 【详解】设OA =2,则AB 22=12222AOBS=⨯⨯=, 以AB 中点为圆心的半圆的面积为21(2)2ππ⨯=,以O 为圆心的大圆面积的四分之一为2124ππ⨯=, 以AB 为弦的大圆的劣弧所对弓形的面积为π﹣2, 黑色月牙部分的面积为π﹣(π﹣2)=2, 图Ⅲ部分的面积为π﹣2. 设整个图形的面积为S ,则p 12S =,p 22S =,p 32S π-=. ∴p 1=p 2>p 3, 故选D .【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.5.C解析:C 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=, 5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 6.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.7.C解析:C 【分析】根据程序框图列出算法循环的每一步,结合判断条件得出输出的n 的值. 【详解】执行如图所示的程序框图如下:409S =≥不成立,11S 133==⨯,123n =+=; 1439S =≥不成立,1123355S =+=⨯,325n =+=; 2459S =≥不成立,2135577S =+=⨯,527n =+=; 3479S =≥不成立,3147799S =+=⨯,729n =+=. 4499S =≥成立,跳出循环体,输出n 的值为9,故选C. 【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.8.C解析:C 【分析】x 的变化遵循以2-为公差递减的等差数列的变化规律,到0x <时结束,得到1x =-,然后代入解析式,输出结果. 【详解】0x ≥时,每次赋值均为2x -x 可看作是以2019为首项,2-为公差的等差数列{}n x()()20191220212n x n n ⇒=+-⨯-=-当0x <时输出,所以0n x <,即202120n -< 20212n ⇒>即:10100x >,10110x < 10112021210111x ⇒=-⨯=-1314y ∴=+=本题正确选项:C 【点睛】本题结合等差数列考查程序框图问题,关键是找到程序框图所遵循的规律.9.C解析:C 【分析】根据系统抽样所得的编号为等差数列,再用等差数列的求和公式求解即可. 【详解】由系统抽样的定义可知,在区间[201,319]内抽取的编号数构成以205为首项,公差为20的等差数列,并且项数为6,所以6(61)62052015302⨯-⨯+⨯=. 故选:C 【点睛】本题考查系统抽样的知识,考查数据处理能力和应用意识.10.B解析:B 【分析】根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解. 【详解】 由直方图可知,从左到右的前3个小组的频率之和为1(0.01250.0375)510.250.75-+⨯=-=, 又前3个小组的频率之比为1:2:3,所以第二组的频率为20.750.256⨯=, 所以学生总数120.2548n =÷=,故选B. 【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.11.C解析:C 【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数.【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.12.B解析:B 【解析】 【分析】利用最小二乘法做出线性回归直线的方程的系数,写出回归直线的方程,得到结果. 【详解】由题意,b=22222210078102801088411488116905108841001021081141165108⨯+⨯+⨯+⨯+⨯-⨯⨯++++-⨯=0.72, a=84﹣0.72×108=6.24,∴y =0.72x+6.24, 故选:B . 【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算211,,,nnii i i i x y x x y ==∑∑的值;③计算回归系数ˆˆ,ab ;④写出回归直线方程为ˆˆˆy bx a =+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.二、填空题13.【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是 解析:110【详解】第一-次没有抽到且第二次没有抽到第三次被抽到的概率是14.【分析】先求出从这8人中随机选出4人的选法总数再求出选出的4人中至少有2人来自同一小组的不同选法总数再求概率【详解】从这8人中随机选出4人作为正式志愿者有种不同的选法选出的4人中至少有2人来自同一小解析:27 35【分析】先求出从这8人中随机选出4人的选法总数,再求出选出的4人中至少有2人来自同一小组的不同选法总数,再求概率.【详解】从这8人中随机选出4人作为正式志愿者有4870C=种不同的选法.选出的4人中至少有2人来自同一小组分为下列情况:(1)恰好有2人来自同一小组,有1211432248C C C C=种(2)4个人来自2个不同的小组(每个小组2个人)有246C=所以选出的4人中至少有2人来自同一小组有48654+=种选法.则选出的4人中至少有2人来自同一小组的概率为54277035 P==故选项为:27 35.【点睛】本题考查组合问题,求古典概率的问题,属于中档题.15.【分析】设正方形边长为可得出每个直角三角形的面积为由几何概型可得出四个直角三角形的面积之和为可求出由得出并得出的值再利用降幂公式可求出的值【详解】设正方形边长为则直角三角形的两条直角边分别为和则每个解析:1 4 +【分析】设正方形边长为1,可得出每个直角三角形的面积为1sin24α,由几何概型可得出四个直角三角形的面积之和为34,可求出3sin24α=,由04πα<<得出cos20α>并得出cos2α的值,再利用降幂公式21cos2cos2αα+=可求出cosα的值.【详解】设正方形边长为1,则直角三角形的两条直角边分别为sinα和cosα,则每个直角三角形的面积为11sin cos sin224ααα=,由题意知,阴影部分正方形的面积为14,所以,四个直角三角形的面积和为114sin2144α⨯=-,即3sin24α=,由于α是较小的锐角,则04πα<<,022πα∴<<,所以,27cos 21sin 24αα=-=, 因此,711cos 2827714cos 22164αα++++====,故答案为714+. 【点睛】本题考查余弦值的计算,考查几何概型概率的应用,解题的关键就是求出sin 2α和cos2α的值,并通过二倍角升幂公式求出cos α的值,考查计算能力,属于中等题. 16.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出故答案为 解析:42【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值. 【详解】输入0,2,1S a i ===, 第一次循环,2,4,2S a i ===; 第二次循环,6,6,3S a i ===; 第三次循环,12,8,4S a i ===; 第四次循环,20,10,5S a i ===; 第五次循环,30,12,6S a i ===; 第六次循环,42,14,7S a i ===, 退出循环,输出42S =,故答案为42. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.或1【解析】试题分析:根据已知中的程序框图可得:该程序的功能是计算并输出分段函数的函数值分段讨论满足y=4的x 值最后综合讨论结果可得答案考点:(1)流程图;(2)分段函数解析:或1【解析】试题分析:根据已知中的程序框图可得:该程序的功能是计算并输出分段函数的函数值,分段讨论满足y=4的x 值,最后综合讨论结果可得答案. 考点:(1)流程图;(2)分段函数.18.16【解析】第一次运行:;第二次运行:;第三次运行:此时程序结束所以输出的解析:16 【解析】第一次运行:1,145,123,134T S S n T ===+==+==+=;第二次运行:45,549,325,459T S S n T =<==+==+==+=;第三次运行:9,9413,527,9716T S S n T ===+==+==+=.此时1613T S =>=,程序结束,所以输出的16T =19.4【分析】首先设个班抽取的人数由小到大分别为根据题意得到再求数据中的最小值即可【详解】设个班抽取的人数由小到大分别为由题知:即若时则则四个数为:或此时一定有相同的数与已知矛盾若时则则四个数为:此时为解析:4 【分析】首先设5个班抽取的人数由小到大分别为12345,,,,x x x x x ,根据题意得到()()()()()22222123457777720x x x x x -+-+-+-+-=,再求数据中的最小值即可.【详解】设5个班抽取的人数由小到大分别为12345,,,,x x x x x ,由题知:()()()()()222221234517777745x x x x x ⎡⎤-+-+-+-+-=⎣⎦, 即()()()()()22222123457777720x x x x x -+-+-+-+-=. 若13x =时,则()()()()2222234577774x x x x -+-+-+-=, 则()()()()222223457,7,7,7x x x x ----四个数为:1,1,1,1或4,0,0,0, 此时2345,,,x x x x 一定有相同的数,与已知矛盾.若14x =时,则()()()()22222345777711x x x x -+-+-+-=, 则()()()()222223457,7,7,7x x x x ----四个数为:1,0,1,9, 此时12345,,,,x x x x x 为4,6,7,8,10,符合题意. 故答案为:4 【点睛】本题主要考查方差的定义,熟记定义为解题的关键,属于中档题.20.92【解析】【分析】由题可得进而可得再计算出从而得出答案【详解】5个样本成份的平均值为标准差为所以即解得因为所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数解题的关键是求解析:92 【解析】 【分析】由题可得1234540x x x x x ++++=,()()()22212520x x x x x x -+-++-=进而可得222125340x x x +++=,再计算出125y y y +++,从而得出答案.【详解】5个样本12345,,,,x x x x x 成份A 的平均值为8g ,标准差为2g ,所以1234540x x x x x ++++=,()()()22212520x x x x x x -+-++-=,即()22221251252520x x x x x x x x +++-++++=,解得222125340x x x +++=因为2(20)20y x x x x =-=-, 所以()()22212512512520460y y y x x x x x x +++=+++-+++=所以这批中成药的药物功效的平均值460925y ==药物单位 【点睛】本题考查求几个数的平均数,解题的关键是求出222125x x x +++,属于一般题.三、解答题21.(Ⅰ)数学平均分为93, 方差为8;物理平均分为90,方差为245,物理成绩比数学成绩稳定;(Ⅱ)710. 【分析】(Ⅰ)根据公式直接计算平均值和方差得到答案.(Ⅱ)列出所有情况共有10个,满足条件的共有7个,得到概率. 【详解】(Ⅰ)5名学生数学成绩的平均分为:()18991939597935++++=, 5名学生数学成绩的方差为:()()()()()2222218993919393939593979385⎡⎤-+-+-+-+-=⎣⎦, 5名学生物理成绩的平均分为:()18789899293905++++=,5名学生物理成绩的方差为:()()()()()222221248790899089909290939055⎡⎤-+-+-+-+-=⎣⎦,因为样本的数学成绩方差比物理成绩方差大,所以估计高三(1)班总体物理成绩比数学成绩稳定.(Ⅱ)设选中的学生中至少有一个物理成绩高于90分为事件A ,5名学生中选2人包含基本事件有:12A A ,13A A ,41A A ,15A A ,23A A ,24A A ,25A A ,34A A ,35A A ,45A A ,共10个.事件A 包含基本事件有:41A A ,15A A ,24A A ,25A A ,34A A ,35A A ,45A A ,共7个. 则()710P A =所以5名学生中选2人,选中的学生中至少有一个物理成绩高于90分的概率为710. 【点睛】本题考查了平均值和方差,概率的计算,意在考查学生的计算能力和应用能力. 22.(1)这100名学生英语成绩的平均数和中位数分别为124,123.75(2)35【分析】(1)利用频率分布直方图求平均数,中位数的方法求解即可; (2)利用题设条件得出,m n 的值,再由古典概型的概率公式求解即可. 【详解】(1)这100名学生英语成绩的平均数为1050.051150.31250.41350.21450.05124⨯+⨯+⨯+⨯+⨯= 设这100名学生英语成绩的中位数为x直方图可知[100,110),[110,120),[120,130)对应的频率分别为0.05,0.3,0.40.050.30.40.750.5,0.5(0.30.05)0.15++=>-+= (120)0.040.15x ∴-⨯=,解得123.75x =则这100名学生英语成绩的中位数为123.75 (2)区间[130,140)内英语人数为1000.220⨯=人∴区间[130,140)内数学人数为120210⨯=人 2,100(1540402)3m n ∴==-+++=设数学成绩在[130,140)的人记为12,a a ,数学成绩在[140,150]的人记为123,,b b b 则从数学成绩在[130,150]的学生中随机选取2人的所有情况为()()()()12111213,,,,,,,a a a b a b a b ,()()()212223,,,,,a b a b a b ,()()()121323,,,,,b b b b b b ,共10种,其中选出的2人中恰好有1人数学成绩在[140,150]有6种 即选出的2人中恰好有1人数学成绩在[140,150]的概率为63105= 【点睛】本题主要考查了由频率分布直方图计算平均数,中位数以及古典概型概率的求解,属于中档题.23.流程图见解析【分析】由数列的递推公式可知,该数列由前项推出后项,可用循环结构的流程图来表示.在画流程图之前,先将上述流程分解为若干比较明确的步骤,并确立这些步骤之间的关系即可画出流程图.【详解】流程图如图:【点睛】本题考查的知识要点:数列的递推关系式,流程图,主要考查学生的转换能力及思维能力,属于基础题型.24.见解析【解析】试题分析:分析程序中各变量、各语句的作用,再根据循环语句找到能被15整除的正整n>时结束循环体,由此设计算法及画出框图.数,在1000试题算法如下:S1n=1;S2若n≤66,则执行S3,否则执行S6;S3a=15n;S4输出a;S5n=n+1,重复执行S2;S6结束.程序框图如图所示.25.(1)众数600度,平均数640度(2)(i)见解析;(ii)不能有99%的把握认为“用电量的高低”与“使用峰谷电价”有关.【分析】(1)由频率分布直方图计算出众数与平均数(2)完善列表联并计算出是否有关【详解】(1)根据频率分布直方图的得到100度到300度的频率为:10.0012000.00152000.00122000.00062000.00022000.1-⨯-⨯-⨯-⨯-⨯=,估计所抽取的50户的月均用电量的众数为:500+700=6002(度);估计所抽取的50户的月均用电量的平均数为:(2000.00054000.0016000.00158000.001210000.000612000.0002)200640 =⨯+⨯+⨯+⨯+⨯+⨯⨯=x(度)(2)依题意,22⨯列联表如下一般用户大用户使用峰谷电价的用户2510不使用峰谷电价的用户5102K的观测值50(2510510)4006.349 6.6353515302063k⨯⨯-⨯==≈<⨯⨯⨯所以不能有99%的把握认为“用电量的高低”与“使用峰谷电价”有关.【点睛】本题考查了频率分布直方图,并完善列表联计算线性相关性,较为基础,需要掌握解题方法26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率;(2)利用频率分布直方图估计样本平均值的方法可得得答案;(3)完善列联表,由公式计算卡方的值,从而查表即可, 【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=;该市一天的空气质量等级为2的概率为:5101227100100++=;该市一天的空气质量等级为3的概率为:67821100100++=; 该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:25.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。

2021-2022高中数学必修三期末第一次模拟试卷含答案(1)

2021-2022高中数学必修三期末第一次模拟试卷含答案(1)

一、选择题1.已知sin y x =,在区间[],ππ-上任取一个实数x ,则y ≥12-的概率为( ) A .712B .23C .34 D .562.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .653.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2πC .3πD .2π4.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O 为大圆圆心,线段AB 为小圆直径.△AOB 的三边所围成的区域记为I ,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .123p p p >>B .123p p p =+C .213p p p >>D .123p p p =>5.执行如图所示的程序框图,则输出的a=( )A .-9B .60C .71D .816.如图所示的程序框图输出的结果是( )A .34B .55C .78D .897.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为10,14,则输出的a =( )A .6B .4C .2D .08.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020219.网上大型汽车销售某品牌A 型汽车,在2017年“双十一”期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系 价格(万元) 25 23.5 22 20.5 销售量(辆)30333639已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:8ˆ0ˆybx =+,若A 型汽车价格降到19万元,预测月销量大约是( ) A .39B .42C .45D .5010.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元11.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1312.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A.40 B.45 C.48 D.50二、填空题13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.从正方体六个面的对角线中任取两条作为一对,这对对角线所成的角为60︒的概率为________15.某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线2222x y1a b-=的离心率e5>的概率是______.16.一个算法的伪代码如下图所示,执行此算法,若输出的y值为1,则输入的实数x的值为________.17.如果执行如图所示的程序框图,那么输出的值为__________.18.执行右边的程序框图,若,则输出的________.19.已知由样本数据集合(){}11,1,2,3,...,x y i n =,求得的回归直线方程为1.2308ˆ.0y x =+,且ˆ4x =,若去掉两个数据点 (4.1,5.7)和(3.9,4.3)后重新求得的回归直线方程l 的斜率估计值为1.2,则此回归直线l 的方程为_______.20.某种活性细胞的存活率(%)y 与存放温度()x C ︒之间具有线性相关关系,样本数据如下表所示: 存放温度()x C ︒ 10 4 -2 -8 存活率(%)y20445680经计算得回归直线的斜率为-3.2.若存放温度为6C ︒,则这种细胞存活率的预报值为__________%.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.某高校在2019的自主招生考试中,考生笔试成绩分布在[]160,185,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为[)160165,,第2组成绩为[)165170,,第3组成绩为[)170175,,第4组成绩为[)175,180,第5组成绩为[]180,185,样本频率分布直方图如下:(1)估计全体考生成绩的中位数;(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率. 23.已知辗转相除法的算法步骤如下: 第一步:给定两个正整数m ,n ; 第二步:计算m 除以n 所得的余数r ; 第三步:m n =,n r =;第四步:若0r =,则m ,n 的最大公约数等于m ;否则,返回第二步. 请根据上述算法画出程序框图.24.试编写程序确定S=1+4+7+10+…中至少加到第几项时S ≥300.25.某食品厂为了检测某批袋装食品的质量,从该批食品中抽取了一个容量为100的样本,测量它们的质量(单位:克).根据数据分为[)92,94,[)94,96,[)96,98,[)99,100,[)100,102,[)102,104,[]104,106七组,其频率分布直方图如图所示.(1)根据频率分布直方图,估计这批袋装食品质量的中位数.(保留一位小数) (2)记产品质量在[)98,102内为优等品,每袋可获利5元;产品质量在[)92,94内为不合格品,每袋亏损2元;其余的为合格品,每袋可获利3元.若该批食品共有10000袋,以样本的频率代替总体在各组的频率,求该批袋装食品的总利润.26.某玻璃工艺品加工厂有2条生产线用于生产其款产品,每条生产线一天能生产200件该产品,该产品市场评级规定:评分在10分及以上的为A 等品,低于10分的为B 等品.厂家将A 等品售价定为2000元/件,B 等品售价定为1200元/件. 下面是检验员在现有生产线上随机抽取的16件产品的评分: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,()1616222211110.0451616i i i i s x x x x ===-=-=∑∑,其中i x 为抽取的第i 件产品的评分,1,2,,16i =⋅⋅⋅.该厂计划通过增加生产工序来改进生产工艺,已知对一条生产线增加生产工序每年需花费1500万元,改进后该条生产线产能不变,但生产出的每件产品评分均提高0.05.已知该厂现有一笔1500万元的资金.(1)若厂家用这1500万元改进一条生产线,根据随机抽取的16件产品的评分. (i )估计改进后该生产线生产的产品中A 等品所占的比例; (ii )估计改进后该厂生产的所有产品评分的平均数和方差.(2)某金融机构向该厂推销一款年收益率为8.2%的理财产品,请你利用所学知识分析,将这1500万元用于购买该款理财产品所获得的收益,与通过改进一条生产线使产品评分提高所增加的收益相对比,一年后哪种方案的收益更大? (一年按365天计算)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 求出满足12y ≥-的角x 的范围,由长度比,即可得到该几何概型的概率. 【详解】1sin ,[,]2y x x ππ=≥-∈-,5[,][,]66x ππππ∴∈--⋃-, 则满足12y ≥-的概率为: 5()()266()3P ππππππ---+--==--.故选:B. 【点睛】本题考查了三角不等式的求解,几何概型的计算,属于中档题.2.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.3.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果.【详解】因为四棱锥的体积为423,设球半径为R,则4211222332R R R R=⨯⨯⨯⨯∴=因此所求概率为3421314(2)23ππ=⨯,故选:A【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题. 4.D解析:D【解析】【分析】设OA=2,则AB22=,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=2,则AB22=,12222AOBS=⨯⨯=,以AB中点为圆心的半圆的面积为21(2)2ππ⨯=,以O为圆心的大圆面积的四分之一为2124ππ⨯=,以AB为弦的大圆的劣弧所对弓形的面积为π﹣2,黑色月牙部分的面积为π﹣(π﹣2)=2,图Ⅲ部分的面积为π﹣2.设整个图形的面积为S,则p12S=,p22S=,p32Sπ-=.∴p1=p2>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.5.C解析:C 【分析】根据程序框图,模拟运算即可求解. 【详解】第一次执行程序后,1a =-,i=2; 第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71. 故选:C 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.C解析:C 【分析】由程序框图,先判断,后执行,直到求出符合题意的a . 【详解】由题意,可知10a =,14b =, 满足a b ,不满足a b >,则14104b =-=, 满足ab ,满足a b >,则1046a =-=,满足a b ,满足a b >,则642a =-=, 满足a b ,不满足a b >,则422b =-=, 不满足a b ,输出2a =.故选C.【点睛】本题考查了算法和程序框图,考查了学生对循环结构的理解和运用,属于基础题.8.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯,11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭,111113355720172019S ∴=++++⨯⨯⨯⨯11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.9.B解析:B 【解析】分析:先求均值,确定ˆb,再求自变量为19对应函数值得结果. 详解:因为2523.52220.5330333639122,344442x y ++++++====,所以1348022,3224ˆb-==- 所以19(2)8042y =⨯-+=选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .10.B解析:B 【详解】试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程11.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.12.C【分析】根据频数关系,求出前三段每段的频数,由直方图求出四五组的频率,进而求出前三组的频率和,从而可求该校报名学生的总人数. 【详解】从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,∴从左到右3个小组的频数分别为6,12,18,共有36人,第4,5小组的频率之和为()0.03750.012550.25+⨯=, 则前3小组的频率之和为10.250.75-=, 则该校报名学生的总人数为360.7548÷=,故选C. 【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.二、填空题13.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲 解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果 【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14.【解析】【分析】正方体的面对角线共有12条能够数出每一条对角线和另外的8条构成8对直线所成角为60°得共有12×8对对角线所成角为60°并且容易看出有一半是重复的得正方体的所有对角线中所成角是60° 解析:811【分析】正方体的面对角线共有12条,能够数出每一条对角线和另外的8条构成8对直线所成角为60°,得共有12×8对对角线所成角为60°,并且容易看出有一半是重复的,得正方体的所有对角线中,所成角是60°的有48对,根据古典概型概率公式求解即可. 【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,与上平面A 1B 1C 1D 1中一条对角线A 1C 1成60°的直线有:A 1D ,B 1C ,A 1B ,D 1C ,BC 1,AD 1,C 1D ,B 1A 共八对直线,总共12条对角线; ∴共有12×8=96对面对角线所成角为60°,而有一半是重复的;∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有48对. 而正方体的面对角线共有12条,所以概率为:212488C 11=故答案为811【点睛】本题考查正方体面对角线的关系,考查了古典概型的概率问题,而对于本题知道96对直线中有一半是重复的是求解本题的关键.15.【分析】基本事件总数由双曲线的离心率得利用列举法求出双曲线的离心率包含的基本事件有6个由此能求出双曲线的离心率的概率【详解】某同学同时掷两颗骰子得到点数分别为ab 基本事件总数双曲线的离心率解得双曲线解析:16【分析】基本事件总数n 6636=⨯=,由双曲线2222x y 1a b -=的离心率e 5>,得b 2a >,利用列举法求出双曲线2222x y 1a b-=的离心率e 5>()a,b 有6个,由此能求出双曲线2222x y 1a b -=的离心率e >【详解】某同学同时掷两颗骰子,得到点数分别为a ,b , 基本事件总数n 6636=⨯=,双曲线2222x y 1a b-=的离心率e >c a ∴=>,解得b 2a >, ∴双曲线2222x y 1a b-=的离心率e >()a,b 有:()1,3,()1,4,()1,5,()2,5,(1,6),()2,6,共6个,则双曲线2222x y 1a b -=的离心率e >61p 366==. 故答案为16. 【点睛】本题考查概率的求法,考查古典概型、列举法、双曲线性质等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.16.3【解析】【分析】执行该算法后输出y =令y =1求出对应x 值即可【详解】执行如图所示的算法知该算法输出y =当x≥1时令y =x2﹣2x ﹣2=1解得x =3或x =﹣1(不合题意舍去);当x <1时令y ==1此解析:3 【解析】 【分析】执行该算法后输出y =222,11,11x x x x x x ⎧--≥⎪⎨+<⎪-⎩,令y =1求出对应x 值即可.【详解】执行如图所示的算法知,该算法输出y =222,11,11x x x x x x ⎧--≥⎪⎨+<⎪-⎩当x ≥1时,令y =x 2﹣2x ﹣2=1,解得x =3或x =﹣1(不合题意,舍去);当x <1时,令y =11x x +-=1,此方程无解; 综上,则输入的实数x 的值为3.故答案为3. 【点睛】本题考查算法与应用问题,考查分段函数的应用问题,是基础题.17.0【解析】第一次循环:满足条件;第二次循环:满足条件;第三次循环:满足条件;第四次循环:满足条件;第五次循环:满足条件;第六次循环:满足条件;第七次循环:满足条件;可得的值以为周期进行循环所以最后输解析:0 【解析】第一次循环:1cos32n S S π=+=,满足条件2018,12n n n <=+=;第二次循环:cos 03n S S π=+=,满足条件2018,13n n n <=+=;第三次循环:cos 13n S S π=+=-,满足条件2018,14n n n <=+=;第四次循环:3cos 32n S S π=+=-,满足条件2018,15n n n <=+=;第五次循环:cos 13n S S π=+=-,满足条件2018,16n n n <=+=;第六次循环:cos 03n S S π=+=,满足条件2018,17n n n <=+=;第七次循环:1cos32n S S π=+=,满足条件2018,18n n n <=+=;...,可得S 的值以6为周期进行循环,所以最后输出的S 的值为0,故答案为0.18.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图 解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯ 1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图19.【解析】【分析】由题意求出样本中心点然后求解新的样本中心利用回归直线的斜率估计值为求解即可得到答案【详解】有样本数据点集合求得的回归直线方程为且去掉两个数据点和重新求得的回归直线的斜率估计值为回归直解析: 1.20.2y x ∧=+. 【解析】 【分析】由题意求出样本中心点,然后求解新的样本中心,利用回归直线l 的斜率估计值为1.2,求解即可得到答案 【详解】 有样本数据点集合(){}11123,...,x y i n =,,,,求得的回归直线方程为 1.2308ˆ.0y x =+,且ˆ4x=, 1.2340.0ˆ85y=⨯+=, 去掉两个数据点()4.15.7,和()3.94.3,,ˆ4x =,ˆ5y =, 重新求得的回归直线l 的斜率估计值为1.2,回归直线方程设为 1.2ˆyx a =+,代入()45,,解得0.2a = ∴回归直线l 的方程为 1.2.2ˆ0yx =+ 故答案为 1.2.2ˆ0yx =+ 【点睛】本题主要考查的是数据的回归直线方程,利用回归直线方程恒过样本中心点是关键。

【人教版】高中数学必修三期末第一次模拟试题附答案

【人教版】高中数学必修三期末第一次模拟试题附答案

一、选择题1.中国是发现、研究和运用勾股定理最古老的国家之一,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,他创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,已知四个直角三角形的两条直角边的长度之比为12,若向大正方形中随机投入一点,则该点落入小正方形的概率为()A.125B.19C.15D.132.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是()A.518B.718C.716D.5163.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x,y,则满足()()22lg2lg3lgx y x y+=+的概率为()A.18B.14C.13D.124.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A .123p p p >>B .123p p p =+C .213p p p >>D .123p p p =>5.执行如图的程序框图,若输出的6n =,则输入整数p 的最大值是( )A .15B .16C .31D .326.执行如图所示的程序框图,输出s 的值为( )A .1B 20181C 20191D 202017.若执行如图所示的程序框图,则输出S 的值为( )A .9-B .16-C .25-D .36-8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .7210.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .081511.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16012.为了考察两个变量x 和y 之间的线性相关性,甲.乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( ) A .直线l 1和l 2有交点(s ,t)B .直线l 1和l 2相交,但是交点未必是点(s ,t)C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.15.从一堆产品(正品与次品都多于2件)中任取2件,观察正品件数和次品件数,则下列说法:①“恰好有1件次品”和“恰好2件都是次品”是互斥事件②“至少有1件正品”和“全是次品”是对立事件③“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件④“至少有1件次品”和“全是正品”是互斥事件也是对立事件其中正确的有______(填序号).16.某程序框图如图所示,则该程序运行后输出的S值是_____________.17.执行右边的程序框图,若,则输出的________.18.一个算法的程序框图如图所示,则该程序运行后输出的结果是.19.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.20.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bcKa b c d a c b d-=++++.优秀非优秀合计甲班10乙班30合计11022.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:方案一:一次性...抽取两球,若颜色相同,则获得奖品;方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品.(1)写出按方案一抽奖的试验的所有基本事件;(2)哪种方案获得奖品的可能性更大?23.设计算法流程图,要求输入自变量x的值,输出函数()5,0 20,0,3,02x xf x xx xππ⎧->⎪⎪==⎨⎪⎪+<⎩的值,并用复合if语句描述算法.24.设计算法输出1 000以内既能被3整除又能被5整除的所有正整数,画出程序框图. 25.某企业投资两个新型项目,投资新型项目A的投资额m(单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m=-,投资新型项目B的投资额x(单位:十万元)与纯利润y(单位:万元)的散点图如图所示.(1)求y关于x的线性回归方程;(2)根据(1)中的回归方程,若A,B两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a=+的斜率和截距的最小二乘估计分别为1221ni iiniix y nx ybx nx==-=-∑∑,a y bx=-.26.某大学为了了解数学专业研究生招生的情况,对近五年的报考人数进行了统计,得到如下统计数据:年份20152016201720182019x12345报考人数y3060100140170(1)经分析,y 与x 存在显著的线性相关性,求y 关于x 的线性回归方程ˆˆˆybx a =+并预测2020年(按6x =计算)的报考人数;(2)每年报考该专业研究生的考试成绩大致符合正态分布()2,Nμσ,根据往年统计数据385μ=,2225σ=,录取方案:总分在400分以上的直接录取,总分在[]385,400之间的进入面试环节,录取其中的80%,低于385分的不予录取,请预测2020年该专业录取的大约人数(最后结果四舍五入,保留整数).参考公式和数据:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-,()()51360iii x x y y =--=∑.若随机变量()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由已知的线段的长度比,得出两正方形的面积,运用概率公式可得选项. 【详解】设直角三角形的两直角边分别为1和2所以小正方形的边长为211-=,面积为1,大正方形的面积为25=. 所以飞镖落在小正方形内的概率为15. 故选:C. 【点睛】本题考查几何概型,关键在于由长度的关系得出大正方形和小正方形的面积,属于中档题.2.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =. 故选:D . 【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.3.B解析:B 【分析】 先化简()()22lg 2lg 3lg x yx y +=+,得到x y =或2x y =.利用列举法和古典概型概率计算公式可计算出所求的概率. 【详解】 由22320xxy y ,有()()20x y x y --=,得x y =或2x y =,则满足条件的(),x y 为()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,()2,1,()4,2,()6,3,所求概率为91364p == .故选B. 【点睛】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.4.D解析:D 【解析】 【分析】设OA =2,则AB = 【详解】设OA =2,则AB =12222AOBS=⨯⨯=,以AB 中点为圆心的半圆的面积为212ππ⨯=, 以O 为圆心的大圆面积的四分之一为2124ππ⨯=, 以AB 为弦的大圆的劣弧所对弓形的面积为π﹣2, 黑色月牙部分的面积为π﹣(π﹣2)=2,图Ⅲ部分的面积为π﹣2. 设整个图形的面积为S ,则p 12S =,p 22S =,p 32S π-=. ∴p 1=p 2>p 3, 故选D .【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.5.C解析:C 【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可. 【详解】根据程序框图可知,1,0n S == 则11021,2S n -=+==21123,3S n -=+== 31327,4S n -=+== 417215,5S n -=+== 5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31 故选:C 【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.6.D解析:D 【分析】根据程序框图,模拟程序运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】第一次执行循环体后,2,01)n S ==+,第二次执行循环体后,3,0n S ==+,⋯第n 次执行循环体后, 1,0(1n n S n =+=++++,因为2019n <输出S ,所以01)S =+++++⋯+01)=+++++⋯+1=,故选:D 【点睛】本题主要考查了程序框图,解题时模拟程序运行过程即可,属于中档题.7.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•;第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案. 【详解】由题意可知,执行如图所示的程序框图,可知:第一循环:134,2146n S =+==⨯+=; 第二循环:437,26719n S =+==⨯+=; 第三循环:7310,2191048n S =+==⨯+=, 要使的输出的结果为48,根据选项可知8k ,故选C.【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.9.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.10.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.11.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81= 12816,因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D.【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题12.A解析:A【分析】由题意知,两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,所以两组数据的样本中心点是(s,t),回归直线经过样本的中心点,得到直线l1和l2都过(s,t).【详解】∵两组数据变量x的观测值的平均值都是s,对变量y的观测值的平均值都是t,∴两组数据的样本中心点都是(s,t)∵数据的样本中心点一定在线性回归直线上,∴回归直线l1和l2都过点(s,t)∴两条直线有公共点(s,t)故选A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113p ==⨯. 【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【解析】【分析】列举出所有的结果选出的所有的结果根据古典概型概率公式可求出函数是增函数的概率【详解】所有取值有:共12个值当时为增函数有共有6个所以函数是增函数的概率为故答案为【点睛】本题主要考查古解析:12【解析】 【分析】 列举出ab所有的结果,选出1a b >的所有的结果,根据古典概型概率公式可求出函数()log a bf x x =是增函数的概率.【详解】a b 所有取值有:135713571157,,,,,,,,,,,222244446266共12个值, 当1a b >时,()f x 为增函数,有357577,,,,,222446共有6个, 所以函数()log a bf x x =是增函数的概率为61122=,故答案为12. 【点睛】本题主要考查古典概型概率公式的应用以及对数函数的性质,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率. 15.【分析】运用不能同时发生的两个事件为互斥事件如果两个事件为互斥事件且其中必有一个发生即为对立事件对选项一一判断即可得到正确结论【详解】恰好有1件次品和恰好2件都是次品不能同时发生是互斥事件故正确;至 解析:①②④【分析】运用不能同时发生的两个事件为互斥事件,如果两个事件为互斥事件,且其中必有一个发生,即为对立事件,对选项一一判断,即可得到正确结论. 【详解】①“恰好有1件次品”和“恰好2件都是次品”不能同时发生,是互斥事件,故①正确;②“至少有1件正品”和“全是次品”,不能同时发生,是互斥事件也是对立事件,故②正确;③“至少有1件正品”和“至少有1件次品”存在恰有一件正品和一件次品,不是互斥事件但不是对立事件,故③不正确;④“至少有1件次品”和“全是正品”不能同时发生,是互斥事件也是对立事件,④正确.故答案为①②④. 【点睛】本题考查命题的真假判断,主要是互斥事件和对立事件的判断,考查判断和分析能力,属于基础题.16.【分析】按照程序框图运行程序可确定输出结果利用裂项相消法可求得结果【详解】由程序框图运行程序输入则循环;循环;……输出结果故答案为:【点睛】本题考查根据程序框图计算输出结果涉及到裂项相消法求和的问题 解析:20152016【分析】按照程序框图运行程序可确定输出结果111122320152016S =++⋅⋅⋅+⨯⨯⨯,利用裂项相消法可求得结果. 【详解】由程序框图运行程序,输入1k =,0S = 则112S =⨯,2k =,循环;111223S =+⨯⨯,3k =,循环;……111122320152016S =++⋅⋅⋅+⨯⨯⨯,2016k =,输出结果 11111111112232015201622320152016S ∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-⨯⨯⨯12015120162016=-=故答案为:20152016【点睛】本题考查根据程序框图计算输出结果,涉及到裂项相消法求和的问题,属于基础综合题.17.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图 解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯ 1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图18.4【分析】执行程序当时循环结束即可得出【详解】因为第一次进入循环后;第二次进入循环后;第三次进入循环后;第四次进入循环后循环结束所以输出的结果为4【点睛】本题主要考查了程序框图求输出的值做题时要仔细解析:4 【分析】执行程序,当4K =时循环结束,即可得出 【详解】因为第一次进入循环后1,1S K ==; 第二次进入循环后3,2S K ==; 第三次进入循环后11,3S K ==;第四次进入循环后2059,4S K ==,循环结束,所以输出的结果为4 【点睛】本题主要考查了程序框图求输出的值,做题时要仔细点,属于基础题.19.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35 解析:【解析】,解得,根据中位数为,可知,故.20.【解析】依次选取两个数字为237593211504……所以选出来的第个个体的编号为15 解析:15【解析】依次选取两个数字为23,75,93,21,15,04,…… 所以选出来的第3个个体的编号为15.三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K ⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个. 所以P (A )=736,即抽到9号或10号的概率为736. 【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题. 22.(1)见解析(2)方案二获得奖品的可能性更大. 【分析】(1)根据题意,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B ,利用列举法一一列举出来即可;(2)方案一二中,根据古典概型,分别求出两种方案的概率,即可得出结论. 【详解】(1)方案一中,设三个红球分别为:123,,A A A ,两个黄球分别为12,B B , 则方案一所有可能的基本事为:{}{}{}{}{}{}{}{}{}{}12131112232122313212,,,,,,,,,A A A A A B A B A A A B A B A B A B B B共10个基本事件.(2)方案二中,设两次抽查取的球所标的数字分别为x 、y ,则所有可能的基本事件对应的二元有序数组(),x y 表示如下表,共25个基本事件:且每个基本事件发生的可能性均相同,故它们都是古典概型. 方案一,设事件A :两球颜色相同,则A 包含{}12A A 、{}13A A 、{}23A A 、{}12B B 共4个基本事件, 故()42105P A ==. 方案二中,设事件B :两球所标数字之和大于5,则B 包含()1,5、()2,4、()2,5、()3,3、()3,4、()3,5、()4,2、()4,3、()4,4、()4,5()5,1、()5,2、()5,3、()5,4、()5,5共15个基本事件,故()153255P B ==. 因为()()P A P B <,所以选择方案二获得奖品的可能性更大. 【点睛】本题考查古典概型以及概率在生活中的应用等知识点,同时考查推理论证能力以及考查逻辑推理与数据分析素养. 23.见解析 【详解】 试题分析:结合题意,将分段函数利用流程图设计为条件结构即可,然后结合流程图即可写出具体的算法语句,注意if 与else 的灵活准确应用. 试题输入x;if x < 0,then f(x)= π/2∙x+3;else if x = 0,then f(x)=0;else f(x)= π/2∙x-5.输出f(x).24.见解析【解析】试题分析:分析程序中各变量、各语句的作用,再根据循环语句找到能被15整除的正整n>时结束循环体,由此设计算法及画出框图.数,在1000试题算法如下:S1n=1;S2若n≤66,则执行S3,否则执行S6;S3a=15n;S4输出a;S5n=n+1,重复执行S2;S6结束.程序框图如图所示.25.(1) 1.60.2y x =+;(2)B 项目的收益更好. 【分析】(1)先利用平均数公式求出样本中心点的坐标, 再利用所给公式求出b 的值,最后将样本中心点的坐标代入回归方程求得a 的值即可;(2)分别利用所给关系式以及所求回归方程,求出A ,B 两个项目投资60万元,该企业所得纯利润的估计值,便可预测哪个项目的收益更好. 【详解】(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8, 所以1234535x ++++==,2357855y ++++==,22222212233547585351.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,则5 1.630.2a =-⨯=,故y 关于x 的线性回归方程为 1.60.2y x =+.(2)因为投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,所以若A 项目投资60万元,则该企业所得纯利润的估计值为1.760.59.7⨯-=万元; 因为y 关于x 的线性回归方程为 1.60.2y x =+,所以若B 项目投资60万元,则该企业所得纯利润的估计值为1.660.29.8⨯+=万元. 因为9.89.7>,所以可预测B 项目的收益更好. 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nniiii i x y x x y==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.26.(1)ˆ368yx =-;208人;(2)90. 【分析】(1)由已知表格中的数据求得ˆb与ˆa 的值,则线性回归方程可求,取6x =求得y 值即可;(2)研究生的考试成绩大致符合正态分布(385N ,215),求出(400)P X >,乘以208可得直接录取人数,再求出[385,400]之间的录取人数,则答案可求. 【详解】 解:(1)()11234535x =++++=()130601001401701005y =++++= 可求:()25110i i x x =-=∑, 由()()()121360ˆ3610ni ii n i i x x y y b x x ==--===-∑∑, ˆˆ1003638ay bx =-=-⨯=- ∴y 关于x 的线性回归方程是ˆ368yx =-. 当2020年即6x =时,ˆ3668208y=⨯-=人 即2020年的报考人数大约为208人(2)研究生的考试成绩大致符合正态分布()2385,15N , 则400=385+15,()10.68264000.15872P x ->==, 直接录取人数为2800.158733.0133⨯=≈人[]385,400之间的录取人数为0.68262800.856.8572⨯⨯=≈ 所以2020年该专业录取的大约为33+57=90人【点睛】 本题考查线性回归方程的求法,考查正态分布曲线的特点及所表示的意义,考查运算求解能力,属于中档题.。

【人教版】高中数学必修三期末第一次模拟试题含答案

【人教版】高中数学必修三期末第一次模拟试题含答案

一、选择题1.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为()A.435B.635C.1235D.18352.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅3.将一枚质地均匀的硬币连掷三次,设事件A:恰有1次正面向上;事件B:恰有2次正面向上,则()P A B+=()A.23B.14C.38D.344.已知0.5log5a=、3log2b=、0.32c=、212d⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m,使函数()32123x mx xf x=+++有极值点的概率为()A.14B.12C.34D.15.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.如图所示的程序框图输出的结果是()A.34 B.55 C.78 D.89 7.某程序框图如图所示,则该程序运行后输出的值是()A.3B.3C3D38.执行如下的程序框图,则输出的S是()A .36B .45C .36-D .45-9.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为=50+80x ,下列判断不正确的是( )A .劳动生产率为1000元时,工资约为130元B .工人月工资与劳动者生产率具有正相关关系C .劳动生产率提高1000元时,则工资约提高130元D .当月工资为210元时,劳动生产率约为2000元10.某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277; ②5,9,100,107,121,180,195,221,265,299; ③11,41,71,101,131,161,191,221,251,281; ④31,61,91,121,151,181,211,241,271,299. 关于上述样本的下列结论中,正确的是( ) A .②④都不能为分层抽样 B .①③都可能为分层抽样 C .①④都可能为系统抽样 D .②③都不能为系统抽样11.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >12.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____15.从正方体六个面的对角线中任取两条作为一对,这对对角线所成的角为60︒的概率为________16.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.17.如图所示的程序框图的算法思路源于宋元时期数学名著《算法启蒙》中的“松竹并生”问题.若输入的a ,b 的值分别为7,3,则输出的n 的值为____________.18.执行右边的程序框图,若,则输出的________.19.下表为生产A 产品过程中产量x (吨)与相应的生产耗能y (吨)的几组相对应数据:x34 5 6y 23.55 5.5根据上表提供的数据,得到y 关于x 的线性回归方程为0.7y x a =+,则a =__________. 20.已知下列命题:①在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好; ②两个变量相关性越强,则相关系数r 就越接近于1;③在回归直线方程0.52y x ∧=-+中,当解释变量x 每增加一个单位时,预报变量y ∧平均减少0.5个单位;④两个模型中残差平方和越小的模型拟合的效果越好.⑤回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;⑥若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;⑦从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误. 其中正确命题的序号是__________.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考前学生的紧张程度与性别是否有关系,现随机抽取某校500名学生进行了调查,结果如表所示: 心情 性别 男 女 总计 正常 30 40 70 焦虑 270 160 430 总计300200500(1)根据该校调查数据,能否在犯错误的概率不超过0.01的前提下,认为“该学校学生的考前焦虑情况与性别有关”?(2)若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,再从被抽取的7人中随机抽取2人,求这两人中有女生的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d +++=. ()20P K k ≥ 0.25 0.15 0.10 0.05 0.025 0.010 0k1.3232.0722.7063.8415.0246.63523.已知底面半径为r ,高为h 的圆柱和一正方体的体积相等,试设计一个程序分别求圆柱的表面积和正方体的表面积,并画出程序框图(π=3. 14). 24.下面给出了一个问题的算法: 第一步,输入x .第二步,若x ≥4,则执行第三步,否则执行第四步. 第三步,y =2x -1,输出y . 第四步,y =x 2-2x +3,输出y . 问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多大时,输出的数值最小?25.如表为某中学近5年被卓越大学联盟录取的学生人数.记2015年的年份序号为1,2016年的年份序号为2,…,2019年的年份序号为5.(1)求y 关于x 的线性回归方程,并估计2020年该中学被卓越大学联盟录取的学生人数.(2)若在2015年和2019年被卓越大学联盟录取的学生中分层抽样7人,再从这7人中任选2人,求这2人恰好来自同一年份的概率.参考数据:521ii x=∑=55,51i ii x y =∑=2920.参考公式:b =1221ni ii nii x ynx y xnx==--∑∑,a y bx =-26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个, ∴所求的概率是24127035= 故选:C . 【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.2.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为4620 81010C C C⋅故选:C【点睛】本题主要考查了计算古典概型的概率,属于中档题.3.D解析:D【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A与事件B的事件个数,分别求出其概率,最后再相加即可.【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A:恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A=;满足事件B:恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B=;因此,3()()()4P A B P A P B+=+=.故选:D.【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.4.B解析:B【分析】求出函数的导数,根据函数的极值点的个数求出m的范围,通过判断a,b,c,d的范围,得到满足条件的概率值即可.【详解】f′(x)=x2+2mx+1,若函数f(x)有极值点,则f′(x)有2个不相等的实数根,故△=4m2﹣4>0,解得:m>1或m<﹣1,而a=log0.55<﹣2,0<b=log32<1、c=20.3>1,0<d=(12)2<1,满足条件的有2个,分别是a,c,故满足条件的概率p21 42 ==,故选:B.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.D解析:D 【分析】该框图的功能是计算:234562017sinsin sin sin sin sin sin3333333πππππππ+++++++,再根据正弦函数的周期性以及特殊角的三角函数值计算可得答案. 【详解】该框图的功能是计算:234562017sinsinsin sin sin sin sin3333333πππππππ+++++++.因为7132017sinsinsin sin 3333ππππ=====28142012sinsin sin sin33332ππππ=====, 39152013sinsin sin sin03333ππππ=====,410162014sin sin sin sin 3333ππππ=====,511172015sinsin sin sin33332ππππ=====-, 612182016sinsin sin sin 03333ππππ=====, 所以234562017sin sinsin sin sin sin sin3333333πππππππ+++++++3373363360336(336()336022222=⨯+⨯+⨯+⨯-+⨯-+⨯=. 故选:D 【点睛】本题考查了程序框图的循环结构,考查了三角函数的周期性以及特殊角的三角函数值,理解程序框图的功能是解题关键,属于基础题.8.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=;48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=;58i=≤成立,执行第五次循环,()52i=+=;101515S=+-⨯=-,516i=≤成立,执行第六次循环,()6268S=-+-⨯=,617151621i=+=;i=+=;i=≤成立,执行第七次循环,()7278211728S=+-⨯=-,718i=≤成立,执行第八次循环,()82i=+=;88S=-+-⨯=,819281836i=≤不成立,跳出循环体,输出S的值为36,故选A.98【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.9.C解析:C【解析】试题分析:根据线性回归方程=50+80x的意义,对选项中的命题进行分析、判断即可.解:根据线性回归方程为=50+80x,得;劳动生产率为1000元时,工资约为50+80×1=130元,A正确;∵=80>0,∴工人月工资与劳动者生产率具有正相关关系,B正确;劳动生产率提高1000元时,工资约提高=80元,C错误;当月工资为210元时,210=50+80x,解得x=2,此时劳动生产率约为2000元,D正确.故选C.考点:线性回归方程.10.B解析:B【分析】根据系统抽样和分层抽样的定义分别进行判断即可.【详解】若采用简单随机抽样,根据简单随机抽样的特点,1~300之间任意一个号码都有可能出现;若采用分层抽样,则1~120号为一年级,121~210为二年级,211~300为三年级.且根据分层抽样的概念,需要在1~120之间抽取4个,121~210与211~300之间各抽取3个;若采用系统抽样,根据系统抽样的概念,需要在1~30,31~60,61~90,91~ 120,121~150,151~180,181~210,211~240,241~270,271~300之间各抽一个.①项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以①项为系统抽样或分层抽样;②项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,可能为分层抽样;③项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以③项为系统抽样或分层抽样;④项,第一个数据大于30,所以④项不可能为系统抽样,并且④项不满足分层抽样的条件.综上所述,B 选项正确. 故选:B. 【点睛】本题主要考查系统抽样和分层抽样,掌握系统抽样和分层抽样的定义是解题的关键,属于基础题.(1)系统抽样适用于总体容量较大的情况.将总体平均分成若干部分,按事先确定的规则在各部分中抽取,在起始部分抽样时采用简单随机抽样;(2)分层抽样适用于已知总体是由差异明显的几部分组成的.将总体分成互不交叉的层,然后分层进行抽取,各层抽样时采用简单随机抽样或系统抽样.11.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差 【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定 故22s < 故选A 【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础12.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】 由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定故选:A.【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.二、填空题13.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42解析:2 5【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5故答案为2 5 .14.【分析】先求对立事件概率:三门科目考试成绩都不是A再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A的概率为所以这位考生至少得1个A的概率为故答案为:【点睛】本题考查利用对立事件求解析:191 192【分析】先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【详解】这位考生三门科目考试成绩都不是A的概率为5731 (1)(1)(1)684192 ---=,所以这位考生至少得1个A的概率为1191 1192192 -=故答案为:191 192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.15.【解析】【分析】正方体的面对角线共有12条能够数出每一条对角线和另外的8条构成8对直线所成角为60°得共有12×8对对角线所成角为60°并且容易看出有一半是重复的得正方体的所有对角线中所成角是60° 解析:811【解析】 【分析】正方体的面对角线共有12条,能够数出每一条对角线和另外的8条构成8对直线所成角为60°,得共有12×8对对角线所成角为60°,并且容易看出有一半是重复的,得正方体的所有对角线中,所成角是60°的有48对,根据古典概型概率公式求解即可. 【详解】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,与上平面A 1B 1C 1D 1中一条对角线A 1C 1成60°的直线有:A 1D ,B 1C ,A 1B ,D 1C ,BC 1,AD 1,C 1D ,B 1A 共八对直线,总共12条对角线; ∴共有12×8=96对面对角线所成角为60°,而有一半是重复的;∴从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有48对. 而正方体的面对角线共有12条,所以概率为:212488C 11故答案为811【点睛】本题考查正方体面对角线的关系,考查了古典概型的概率问题,而对于本题知道96对直线中有一半是重复的是求解本题的关键.16.【解析】分析:由已知中的程序框图可知该程序的功能是利用循环结构计算并输出变量的值模拟程序运行过程分析循环变量值的变化规律即可求解答案详解:执行如图所示的程序框图:第一次循环:满足条件;第二次循环:满解析:【解析】分析:由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序运行过程,分析循环变量值的变化规律,即可求解答案. 详解:执行如图所示的程序框图: 第一次循环:11,,124S m n ===,满足条件; 第二次循环:11,,248S m n ===,满足条件; 第三次循环:11,,3816S m n ===,满足条件; 第四次循环:11,,41632S m n ===,满足条件; 第五次循环:11,,53264S m n ===,满足条件; 第六次循环:11,,664128S m n ===,不满足条件,推出循环,此时输出6n =; 点睛:本题主要考查了循环结构的程序框图的运行与结果出的输出问题,解题是应模拟程序框图的运行过程,以便得出正确的计算结果,同时注意判断框的条件是解答的关键,着重考查了推理与运算能力.17.3【解析】输入进入循环不满足执行循环不满足执行循环满足输出故答案为3解析:3 【解析】输入7,3,1a b n === 进入循环,21,2622a a ab b =+===,不满足a b ≤ 执行循环,6312,,21224a n n a ab b =+==+===,不满足a b ≤ 执行循环,18913,,22428a n n a ab b =+==+===,满足a b ≤,输出3n = 故答案为318.【解析】试题分析:程序执行中的数据变化为:不成立输出考点:程序框图 解析:【解析】试题分析:程序执行中的数据变化为:17,1,0,17,2,,27,3,23p n s n s n ===<==<=⨯1111167,7,,772334233478s n s =+<==+++<⨯⨯⨯⨯⨯不成立,输出111113233478288s =+++=-=⨯⨯⨯ 考点:程序框图19.【解析】分析:首先求得样本中心点然后利用回归方程的性质求得实数a 的值即可详解:由题意可得:线性回归方程过样本中心点则:解得:点睛:本题主要考查线性回归方程的性质及其应用等知识意在考查学生的转化能力和 解析:0.85【解析】分析:首先求得样本中心点,然后利用回归方程的性质求得实数a 的值即可. 详解:由题意可得:34569==42x +++,2 3.55 5.544y +++==, 线性回归方程过样本中心点9,42⎛⎫⎪⎝⎭,则:940.72a =⨯+,解得:0.85a =.点睛:本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.20.①③④⑦【分析】根据线性回归分析的概念进行分析即可【详解】在线性回归模型中相关指数越接近于1表示回归效果越好①正确;两个变量相关性越强则相关系数r 的绝对值就越接近于1②错误;③正确;两个模型中残差平解析:①③④⑦ 【分析】根据线性回归分析的概念进行分析即可. 【详解】在线性回归模型中,相关指数2R 越接近于1,表示回归效果越好,①正确;两个变量相关性越强,则相关系数r 的绝对值就越接近于1,②错误;③正确;两个模型中残差平方和越小的模型拟合的效果越好,④正确;回归直线ˆˆˆybx a =+恒过样本点的中心(),x y ,不一定过样本点,⑤错误;若2K 的观测值满足2K ≥6.635,我们有99%的把握认为吸烟与患肺病有关系,并不能说在100个吸烟的人中必有99人患有肺病,⑥错误;从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,⑦正确.故答案为①③④⑦. 【点睛】本题考查线性回归分析的有关概念,掌握相关概念是解题基础,属于基础题.三、解答题21.乙商场中奖的可能性大. 【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=, 则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 22.(1)能;(2)67【分析】(1)根据题意,计算可得2K 的观测值,结合独立性检验的知识分析可得答案.(2)根据题意,分析可得抽取7人,其中有3名男生,4名女生.由组合数公式计算可得”从7人中任意抽取2人”和”抽取的两人中有女生”的选法数目,由古典概型公式计算可得答案. 【详解】解:(1)根据题意,由22⨯列联表可得:2K的观测值2500(3016027040)300009.967 6.63543070300200301k ⨯⨯-⨯==≈>⨯⨯⨯ 故能在犯错误的概率不超过0.01的前提下,认为该学校学生的考前焦虑情况与性别有关. (2)根据题意,若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,其中有3名男生,4名女生.从7人中任意抽取2人,有2721C =种情况.其中抽取的两人中有女生的抽法有211443+18C C C =种选法.故其概率186217P ==. 【点睛】本题考查了独立性检验,考查了古典概型.在进行独立性检验时,一般步骤为:假设无关,画列联表,求2K 的值,下结论.这里正确计算出2K 的近似值是关键.对于求古典概型概率问题,可列出所有的基本事件,也可以用排列组合的思想计算个数.23.见解析;【解析】试题分析: 先利用INPUT语句输入半径以及高的值,再分别赋值圆柱的表面积和正方体的表面积,最后输出圆柱的表面积和正方体的表面积试题程序如下:INPUT“r,h=”;r,hS=3. 14*r^2m=2*3. 14*r*hS1=2*S+mV=3. 14*r^2*ha=V^(1/3)S2=6*a^2PRINT“圆柱、正方体的表面积分别为”;S1,S2END程序框如图所示.点睛:24.(1)见解析(2)当输入的x 的值为1时,输出的数值最小. 【解析】试题分析:本题考查了一个条件分支结构的算法,可分为4x ≥和4x <,执行不同的计算,即可得到结论. 试题(1)这个算法解决的问题是求分段函数()()221x 4y x 23x 4x x ⎧-≥⎪=⎨-+<⎪⎩的函数值的问题. (2)本问的实质是求分段函数最小值的问题. 当x≥4时,y =2x -1≥7;当x<4时,y =x 2-2x +3=(x -1)2+2≥2. ∴函数最小值为2,当x =1时取到最小值. ∴当输入x 的值为1时,输出的数值最小.点睛:本题主要考查了一个条件分支结构的算法的应用问题,解答中涉及到分段函数的性质,其中程序填空是重点考查的题型,这种试题考试的重点:①分支条件;②循环的条件;③变量的赋值;④变量的输出,其中前两个是考试的重点,正确理解算法的流程,读懂题意是解答的关键.25.(1)3759y x =+;281;(2)1121. 【分析】(1)由题意计算平均数,代入公式求出回归系数,写出线性回归方程,再利用线性回归方程计算6x =时的值即可;(2)由分层抽样求出抽取的人数,再利用概率公式求出对应的概率即可. 【详解】(1)由表格可求()11234+5=35x =+++,()1100130170200+250=1705y =+++,且521i i x=∑=55,51i i i x y =∑=2920, 所以12221292053170375553n i ii n i i x y nx y xnx b ==--⨯⨯==-⨯-=∑∑,17037359a y bx =-=-⨯=, 所以y 关于x 的线性回归方程为3759y x =+,当6x =时,37659281y =⨯+=,所以2020年该中学被卓越大学联盟录取的学生人数约为281;(2)由分层抽样可知7人中有10072100250⨯=+ 人来自2015年,有25075100250⨯=+人来自2019年,从中随机抽取两人共有21种结果,抽取的两人恰好来自同一年的有11种,所以所求概率为1121P =. 【点睛】本题主要考查线性回归方程和古典概型求概率,属于中档题.26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案;(3)完善列联表,由公式计算卡方的值,从而查表即可,【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=; 该市一天的空气质量等级为2的概率为:5101227100100++=; 该市一天的空气质量等级为3的概率为:67821100100++=; 该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。

2021-2022高中数学必修三期末第一次模拟试卷含答案

2021-2022高中数学必修三期末第一次模拟试卷含答案

一、选择题1.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( )A .13B .12C .23D .342.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .353.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()23323ππ-- B ()323π- C ()323π+ D ()3323π+4.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间不多于15分钟的概率为( ) A .13B .14C .15D .165.阅读如图所示的程序框图,当输入5n =时,输出的S =( )A.6 B.4615C.7 D.47156.执行如图所示的程序框图,则输出S的值为()A.-1010 B.-1009 C.1009 D.1010 7.如图,执行程序框图后,输出的结果是()A .140B .204C .245D .3008.某程序框图如图所示,若运行该程序后输出S =( )A .53B .74C .95D .1169.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元12.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .13二、填空题13.某学校高三年级有A 、B 两个自习教室,甲、乙、丙3名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.14.连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____.15.在未来3天中,某气象台预报天气的准确率为0.8,则在未来3天中,至少连续2天预报准确的概率是______.16.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .17.执行如图所示的程序框图,若输入的,a k 分别是89,2,则输出的数为__________.18.执行如图所示的程序框图,输出S的值为___________.19.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.20.一个项目由15个专家评委投票表决,剔除一个最高分96,一个最低分58后所得到的平均分为92,方差为16,那么原始得分的方差为______________.三、解答题21.党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份200名游客购买水果的情况,得到如图所示的频率分布直方图:(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;(2)从(1)中的5人中抽取2人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率;(3)为吸引顾客,该村特推出两种促销方案,方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案更优惠.22.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a << 综合得分k 的范围节排器等级 节排器利润率85k ≥ 一级品 a 7585k ≤< 二级品 25a7075k ≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?23.设计算法流程图,要求输入自变量x 的值,输出函数()5,020,0,3,02x x f x x x x ππ⎧->⎪⎪==⎨⎪⎪+<⎩的值,并用复合if 语句描述算法.24.已知函数y=21,0,1,0,x xx x ⎧>⎪⎪⎨⎪<⎪⎩设计一个算法的程序框图,计算输入x 的值,输出y 的值.25.“湖广熟,天下足”,鱼米之乡的湖北是全国重要的农产品生产地.而受疫情影响,像莲藕、小龙虾等湖北很多优质农副产品近期都面临销售难题.为了让淜北尽快恢复正常,央视主持人朱广权化身直播带货官,和网红们一起为湖北产品做公益直播.在为湖北某地区的小龙虾进行带货时,需大致了解该地区小龙虾的产量,通过调查发现湖北某地区近几年的小龙虾产量统计如下表:(1)根据表中数据,建立关于t 的线性回归方程y bt a =+; (2)请你根据线性回归方程预测今年(2020年)该地区小龙虾的年产量.附:对于一组数据()11,t y ,()22,t y ,…,(),n n t y ,其回归直线y bt a =+的斜率和截距的最小二乘估计分别为:()()()121ˆniii ni i t t y y bt t ==--=-∑∑,a y bt =-.(参考数据:()()616.3ii i tty y =--=∑)26.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分? 附:线性回归方程y bx a =+,其中121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】从四个字母中取2个,列举出所有的基本事件,即得所求的概率.【详解】从四个字母中取2个,所有的基本事件为:,,,bo bk oo ok,共有4个;其中“取到的2个字母不相同”含有,,bo bk ok3个,故所求概率为3 4 .故选:D.【点睛】本题考查古典概型,属于基础题.2.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C ApC C AA==.故选:B.【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.3.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.4.B解析:B 【分析】由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于15分钟的事件包含的时间长度是15,利用时间的长度比即可求出所求. 【详解】解:由题意知这是一个几何概型, ∵电台整点报时,∴事件总数包含的时间长度是60,∵满足他等待的时间不多于15分钟的事件包含的时间长度是15,由几何概型公式得到151604P ==, 故选B . 【点睛】本题主要考查了几何概型,本题先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.5.D解析:D 【分析】根据程序框图,依次运行程序即可得出输出值. 【详解】输入5n =时,1,1,1,5S i a i ===≤,2,3,2a S i ===,5i ≤222,5,32a S i =⨯===,5i ≤ 2442,5,4333a S i =⨯==+=,5i ≤ 42242,5,534333a S i =⨯==++=,5i ≤224424,5,635153315a S i =⨯==+++=,输出424457331515S =+++= 故选:D 【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件.6.D解析:D 【分析】根据程序框图,先计算出N 和T 的含义,再根据S N T =-即可求得输出值.或利用等差数列的求和公式求解. 【详解】依题意:得1352019N =+++⋯+,02462018T =++++⋯+. 解法一:(10)(32)(54)(20192018)1010S N T =-=-+-+-++-=,故选:D.解法二:(12019)1010101010102N +⨯==⨯,(02018)1010100910102T +⨯==⨯,所以10101010101010091010(10101009)1010S N T =-=⨯-⨯=⨯-=,【点睛】本题考查了程序框图的简单应用,数列求和公式的应用,属于中档题.7.B解析:B 【分析】根据程序框图列举出算法的每一步,可得出输出结果. 【详解】18n =>不成立,执行第一次循环,211b ==,011s =+=,112n =+=;28n =>不成立,执行第二次循环,224b ==,145s =+=,213n =+=; 38n =>不成立,执行第三次循环,239b ==,5914s =+=,314n =+=; 48n =>不成立,执行第四次循环,2416b ==,141630s =+=,415n =+=; 58n =>不成立,执行第五次循环,2525b ==,302555s =+=,516n =+=; 68n =>不成立,执行第六次循环,2636b ==,553691s =+=,617n =+=; 78n =>不成立,执行第七次循环,2749b ==,9149140s =+=,718=+=n ; 88n =>不成立,执行第八次循环,2864b ==,14064204s =+=,819n =+=; 98n =>成立,跳出循环体,输出s 的值为204,故选B. 【点睛】本题考查程序框图运行结果的计算,一般利用算法程序框图将算法的每一步列举出来,考查计算能力,属于中等题.8.D解析:D 【分析】通过分析可知程序框图的功能为计算211n S n +=+,根据最终输出时n 的值,可知最终赋值S 时5n =,代入可求得结果. 【详解】根据程序框图可知其功能为计算:()111111111211111112231223111n S n n n n n n +=+++⋅⋅⋅+=+-+-+⋅⋅⋅+-=+-=⨯⨯++++初始值为1n =,当6n =时,输出S 可知最终赋值S 时5n = 25111516S ⨯+∴==+ 本题正确选项:D 【点睛】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时n 的取值.9.A【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =+++++,后来平均数234817x x x x x '=+++()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确 ③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.10.C解析:C 【解析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A :根据b 的正负即可判断正负相关关系.线性回归方程为0.47.6y x =-+,b=﹣0.7<0,负相关.对于B :根据表中数据:x =9.可得y =4.即()16+3244m ++=,解得:m=5. 对于C :相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D :由线性回归方程一定过(x ,y ),即(9,4). 故选:C .点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.11.B解析:B 【详解】试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程12.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.二、填空题13.【分析】利用乘法计数原理可计算出甲乙丙名学生各自随机选择其中一个教室自习共有种利用分步乘法计数原理计算出甲乙两人不在同一教室上自习的排法种数然后利用古典概型的概率公式可计算出所求事件的概率【详解】由 解析:12【分析】利用乘法计数原理可计算出甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,利用分步乘法计数原理计算出甲、乙两人不在同一教室上自习的排法种数,然后利用古典概型的概率公式可计算出所求事件的概率. 【详解】由题意可知,甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,甲、乙两人不在同一教室上自习,可先考虑甲在A、B两个自习教室选一间教室自习,然后乙在另一间教室自习,则丙可在A、B两个自习教室随便选一间自习教室自习,由分步计数原理可知,有224⨯=种选择.因此,甲、乙两人不在同一教室上自习的概率为41 82 =.故答案为:1 2 .【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了分步计数原理的应用,考查计算能力,属于中等题.14.;【分析】利用分步计数原理连续拋掷同一颗骰子3次则总共有:6×6×6=216种情况再列出满足条件的所有基本事件利用古典概型的计算公式计算可得概率【详解】每一次拋掷骰子都有123456六种情况由分步计解析:25 216;【分析】利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:6×6×6=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.【详解】每一次拋掷骰子都有1,2,3,4,5,6,六种情况,由分步计数原理:连续抛掷同一颗骰子3次,则总共有:6×6×6=216种情况,则3次掷得的点数之和为9的基本事件为25种情况即:(1,2,6),(1,3,5),(1,4,4),(1,5,3),(1,6,2),(2,1,6),(2,2,5),(2,3,4),(2,4,3),(2,5,2),(2,6,1),(3,1,5),(3,2,4),(3,3,3),(3,4,2),(3,5,1),(4,1,4),(4,2,3),(4,3,2),(4,4,1),(5,1,3),(5,2,2),(5,3,1),(6,1,2),(6,2,1),共25个基本事件,所以25216 P=.【点睛】本题考查分步计数原理和古典概型概率计算,计数过程中如果前两个数固定,则第三个数也相应固定.15.768【分析】至少连续2天预报准确包含3种情况:①三天都预报准确;②第一二天预报准确第三天预报不准确;③第一天预报不准确第二三天预报准确分别求解后根据互斥事件的概率加法公式求解即可【详解】至少连续2解析:768【分析】至少连续2天预报准确包含3种情况:①三天都预报准确;②第一二天预报准确,第三天预报不准确;③第一天预报不准确,第二三天预报准确.分别求解后根据互斥事件的概率加法公式求解即可. 【详解】至少连续2天预报准确包含3种情况: ①三天都预报准确,其概率为30.80.512=;②第一二天预报准确,第三天预报不准确,其概率为20.80.20.128⨯=; ③第一天预报不准确,第二三天预报准确,其概率为20.20.80.128⨯=. ∴在未来3天中,至少连续2天预报准确的概率是0.5120.1280.1280.768P =++=. 即所求概率为0.768. 【点睛】本题考查独立事件同时发生的概率的求法和互斥事件的概率,解答类似问题时首先要分清概率的类型,然后在选择相应的公式求解.某些事件若含有较多的互斥事件,可考虑其对立事件的概率,这样可减少运算量,提高准确率.要注意“至多”“至少”等题型的转化.16.5【分析】直接模拟程序即可得结论【详解】输入的值为2不满足所以故答案是:5【点睛】该题考查的是有关程序框图的问题涉及到的知识点有程序框图的输出结果的求解属于简单题目解析:5 【分析】直接模拟程序即可得结论. 【详解】输入x 的值为2,不满足1x ≤,所以3325y x =+=+=, 故答案是:5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.17.1011001【解析】模拟程序框图的运行过程如下;输入a=89k=2q=89÷2=44…1;a=44k=2q=44÷2=22…0;a=22k=2q=22÷2=11…0;a=11k=2a=11÷2=5解析:1011001 【解析】模拟程序框图的运行过程,如下; 输入a=89,k=2,q=89÷2=44…1; a=44,k=2,q=44÷2=22…0; a=22,k=2,q=22÷2=11…0; a=11,k=2,a=11÷2=5…1; a=5,k=2,q=5÷2=2…1; a=2,k=2,q=2÷2=1…0; a=1,k=2,q=1÷20…1;则输出的数为1011001. 故答案为:1011001.18.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48 【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立 第2次运行,2,2,224,4i S S i ===⨯=<成立 第3次运行,3,4,3412,4i S S i ===⨯=<成立 第3次运行,4,12,41248,4i S S i ===⨯=<不成立, 故输出S 的值为4819.【分析】先分别求出这3组的人数再利用分层抽样的方法即可得出答案【详解】第3组的人数为第4组的人数为第5组的人数为所以这三组共有60名志愿者所以利用分层抽样的方法在60名志愿者中抽取6名志愿者第三组应 解析:3【分析】先分别求出这3组的人数,再利用分层抽样的方法即可得出答案. 【详解】第3组的人数为10050.0630⨯⨯=, 第4组的人数为10050.0420⨯⨯=, 第5组的人数为1000.02510⨯⨯=, 所以这三组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,第三组应抽取306360⨯=名, 故答案为:3. 【点睛】关键点点睛:该题考查的是有关频率分布直方图的识别以及分层抽样某层抽取个数的问题,正确解题的关键是掌握在抽取过程中每个个题被抽到的机会均等.20.【解析】分析:根据方差与均值的关系求解即可详解:剔除最高分和最低分后的则原始平均分 原始原始方差即原始方差为88点睛:本题考查方差与均值的关系属基础题 解析:88【解析】分析:根据方差与均值的关系()()()22D xE x E x ⎡⎤=-⎣⎦求解即可.详解:剔除最高分和最低分后的222()()()92168480,E x E x D x =+=+=22()8480(152)110240,x E x n ∑=⨯=⨯-=则原始平均分()921?3? 96? 589015E x ;⨯++==原始 22229658()8188,15x E x ∑++==原始方差 222()?()?()81889088.D x E X E X =-=-=原始原始 即原始方差为 88 .点睛:本题考查方差与均值的关系,属基础题.三、解答题21.(1)2;(2)710;(3)应该选择方案二更优惠. 【分析】(1)由题意可求出金额在[)80,100“水果达人”的人数30人和消费金额在[]100,120“水果达人”的人数20人,然后利用分层抽样的比求出5人中消费金额不低于100元的人数为20523020⨯=+人;(2)由(1)可知抽取的5人中消费金额在[)80,100的有3人,分别记为A ,B ,C ,消费金额在[]100,120的有2人,记为a ,b ,即可列出所有的基本事件共有10种,其中满足条件的有7种,从而可求出概率;(3)由题意可得该游客要购买110元水果,分别计算两种方案所需支付金额,即可得解. 【详解】解:(1)由图可知,消费金额在[)80,100“水果达人”的人数为:200200.007530⨯⨯=人, 消费金额在[]100,120“水果达人”的人数为:200200.00520⨯⨯=人,分层抽样的方法从样本的“水果达人”中抽取5人,这5人中消费金额不低于100元的人数为:20523020⨯=+人;(2)由(1)得,消费金额在[)80,100的3个“水果达人”记为A ,B ,C , 消费金额在[]100,120的2个“水果达人”记为a ,b , 所有基本事件有:(),A B ,(),A C ,(),B C ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,(),a b 共10N =种,2人中至少有1人购买金额不低于100元的有7n =种,所求概率为710n N ==. (3)依题可知该游客要购买110元的水果, 若选择方案一,则需支付()80830102-+=元,若选择方案二,则需支付50300.9200.8100.7100+⨯+⨯+⨯=元, 所以应该选择方案二更优惠. 【点睛】此题考查了频率分布直方图,古典概型,函数等基础知识,考查了数据分析能力,运算求解能力,考查了化归与转化思想,属于中档题. 22.(1)23 ;(2)①分布列见解析,34;②投资乙型号节排器的平均利润率较大. 【分析】(1)由已知及频率分布直方图中的信息知,甲型号节排器中的一级品的概率为0.6,根据分层抽样,计算10件节排器中一级品的个数,再利用互斥事件概率加法公式能求出至少 2件一级品的概率;(2)①由已知及频率分布直方图中的信息知,乙型号节排器中的一级品的概率为710,二级品的概率14,三级品的概率为120,若从乙型号节排器随机抽取3件,则二级品数ξ所有可能的取值为0,1,2,3,且1(3,)4B ξ,由此能求出ξ的分布列和数学期望.②由题意分别求出甲型号节排器的利润的平均值和乙型号节排器的利润的平均值,由此求出投资乙型号节排器的平均利润率较大. 【详解】(1)由已知及频率分布直方图中的信息知,甲型号节排器中的一级品的概率为0.6, 分层抽样的方法抽取10件,则抽取一级品为100.66⨯=(件) 则至少有2件一级品的概率,21364631023C C C P C +== (2)①由已知及频率分布直方图中的信息知,乙型号节排器中的一级品的概率为710,二级品的概率14,三级品的概率为120,若从乙型号节排器随机抽取3件,则二级品数ξ所有可能的取值为0,1,2,3,且1(3,)4B ξ,所以3033127(0)4464P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,21133127(1)4464P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭1223319(2)4464P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,0333311(3)4464P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 所以,ξ的分布列为ξ0 1 2 3P2764 2764 964 1642727913()0123646464644E ξ=⨯+⨯+⨯+⨯= ②由题意知,甲型号节排器的利润的平均值221323=52555E a a a a +⨯=+乙型号节排器的利润的平均值 2222711137=5104201010E a a a a a +⨯+=+ 2127171=1010107E E a a a a ⎛⎫--=- ⎪⎝⎭,又11107a << 所以投资乙型号节排器的平均利润率较大. 【点睛】本题考查(1)概率加法公式(2)离散型随机变量的分布列和数学期望,考查计算能力,属于中等题型 23.见解析 【详解】 试题分析:结合题意,将分段函数利用流程图设计为条件结构即可,然后结合流程图即可写出具体的算法语句,注意if 与else 的灵活准确应用. 试题输入x ;if x < 0,then f (x )= π/2∙x +3;else if x = 0,then f (x )=0;else f (x )= π/2∙x -5.输出f (x ).24.答案见解析【解析】【试题分析】主要结构是有一个选择结构,当0x >时为1x ,当0x <时为21x ,当0x =时直接退出程序.【试题解析】根据题意,其自然语言算法如下.第一步,输入x.第二步,判断x>0是否成立.若成立,则输出y=1x,结束算法; 若不成立,则判断x<0是否成立.若成立,则输出y=21x ,结束算法;若不成立,也结束算法. 程序框图如右:【点睛】画程序框图的规则如下:(1)一个完整的程序框图必须有起止框,用来表示程序的开始和结束.(2)使用标准的图形符号表示操作,带箭头的流程线表示算法步骤的先后顺序,框图一般按从上到下、从左到右的方向画(3)算法中间要处理数据或计算,可分别写在不同的处理框中.(4)如果一个流程由于纸面等原因需要分开画.要在断开处画上连结点,并标出连结的号码.如图一.实际 上它们是同一点,只是化不才分开画.用连结点可避免流程线的交叉或过长,使流程图清晰.(5)注释框不是流程图必需的部分,只是为了提示用户 一部分框图的作用以及对某些框图的操作结果进行说明.它帮助阅读流程图的用户更好的理解流程图的来龙去脉.(6)在图形符号内用于描述的语言要非常简练清楚25.(1)0.36 6.24y x =+;(2)8.76万吨.【分析】(1)由题意求得知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,运用公式求得b ,代入可求得y 关于t 的线性回归方程. (2)由(1)得的线性回归方程,代入年份代码7t =计算,可预测2020年该地区小龙虾的年产量.【详解】(1)由题知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,()()()61621 6.30.3617.5ˆi ii i i t t y y b t t ==--===-∑∑, 又 6.24=-=a y bt .所以,y 关于t 的线性回归方程为0.36 6.24y x =+.(2)由(1)得,当年份为2020年时,年份代码7t =,此时0.367 6.248.76=⨯+=y .所以,可预测,2020年该地区小龙虾的年产量为8.76万吨.【点睛】本题考查线性回归方程的求解,利用线性回归方程对总体进行估计,属于中档题. 26.(1)不同的样本的个数为432418C C .(2)①分布列见解析,()E ξ97=. ②线性回归方程为0.6533.60y x =+.可预测该同学的物理成绩为96分.【分析】(1)按比例抽取即可,再用乘法原理计算不同的样本数.(2)7名学生中物理和数学都优秀的有3名学生,任取3名学生,都优秀的学生人数ξ服从超几何分布,故可得其概率分布列及其数学期望.而线性回归方程的计算可用给出的公式计算,并利用得到的回归方程预测该同学的物理成绩.【详解】(1)依据分层抽样的方法,24名女同学中应抽取的人数为724442⨯=名, 18名男同学中应抽取的人数为718342⨯=名, 故不同的样本的个数为432419C C .(2)①∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴()34374035C P C ξ===,()21433711835C C C P ξ===,。

2021-2022高中数学必修三期末第一次模拟试题及答案(1)

2021-2022高中数学必修三期末第一次模拟试题及答案(1)

一、选择题1.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为()A .13B.49C.59D.232.抛掷一枚质地均匀的骰子,记事件A为“向上的点数是偶数”,事件B为“向上的点数不超过3”,则概率()P A B=()A.12B.13C.23D.563.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅4.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O被函数2sin8y xπ=的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为4π,现从大圆内随机取一点,则此点取自阴影部分的概率为()A.136B.118C.116D.185.执行如图所示的程序框图,则输出的S=()A .1-B .2-C .2D .126.执行如图所示的程序框图,输出的S 值为( )A .511B .512C .1022D .10247.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .68.对任意非零实数a 、b ,若a b ⊗的运算原理如图所示,则121log 43-⎛⎫⊗ ⎪⎝⎭的值为( )A .13B .1C .43D .29.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .3310.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >11.为了考察两个变量x 和y 之间的线性相关性,甲.乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( ) A .直线l 1和l 2有交点(s ,t)B .直线l 1和l 2相交,但是交点未必是点(s ,t)C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合12.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,则该45名学生的数学成绩的中位数为( )A .127B .128C .128.5D .129二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.如图,在长方形OABC 内任取一点(,)P x y ,则点P 落在阴影部分BCD 内的概率为________.15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.16.执行下面的程序框图,如果输入的0.02t =,则输出的n =_______________.17.执行右边的程序框图,若,则输出的________.18.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.20.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.三、解答题21.手机支付也称为移动支付(Mobile Payment),是当今社会比较流行的一种付款方式.某金融机构为了了解移动支付在大众中的熟知度,对15—65岁的人群作了问题为“你会使用移动支付吗?”的随机抽样调查,把回答“会”的100个人按照年龄分成5组,绘制成如图所示的频数分布表和频率分布直方图.(1)求x,a的值;(2)若从第1,3组中用分层抽样的方法抽取5人,求两组中分别抽取的人数;(3)在(2)抽取的5人中再随机抽取2人,求所抽取的2人来自同一个组的概率. 22.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:日期2日7日15日22日30日温度x/℃101113128产卵数y/2224292516(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑23.已知辗转相除法的算法步骤如下: 第一步:给定两个正整数m ,n ; 第二步:计算m 除以n 所得的余数r ;第三步:m n =,n r =;第四步:若0r =,则m ,n 的最大公约数等于m ;否则,返回第二步. 请根据上述算法画出程序框图.24.已知函数2()32,(3)(5)f x x x f f =--+-求的值,设计一个算法并画出算法的程序框图.25.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)当20b ∧=-时,求回归直线方程y b x a ∧∧∧=+;(2)预计在今后的销售中,销量与单价服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)26.某科研课题组通过一款手机APP 软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表:人数100120130180220150603010(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:注意:请用2B铅笔在答题卡上作图,并将所作条形图涂黑.(2)根据以上图表数据,试求样本的中位数(保留一位小数).(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:周跑量小于20公里20公里到40公里不小于40公里类别休闲跑者核心跑者精英跑者装备价格(单位:元)250040004500根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可.【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C.【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.2.D解析:D 【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况,得到答案. 【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况, 故5()6P AB =. 故选:D . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.3.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.4.D解析:D 【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可. 【详解】由已知,可得大圆的直径为y =3sin 8πx 的周期,由T 2168ππ==,可知大圆半径为8, 则面积为S =64π,一个小圆的周长242l r r π==∴= 故小圆的面积S ′=π•22=4π, 在大圆内随机取一点,此点取自阴影部分的概率为: P 2'81648S S ππ===,故选:D . 【点睛】本题考查了几何概型的概率计算问题,关键是明确测度比为面积比,是基础题.5.D解析:D 【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值. 【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=;第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D. 【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.6.C解析:C 【分析】直接根据程序框图计算得到答案. 【详解】根据程序框图知:92391012222 (2222102212)S -=++++==-=-.故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力,确定程序框图表示的意义是解题的关键.7.C解析:C【分析】根据框图模拟程序运算即可.【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环,第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环,第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C.【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题. 8.B解析:B【解析】 模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b a a b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值, ∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭. 本题选择B 选项. 9.D解析:D【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 10.A解析:A【分析】由题意计算出加入新数据后的平均数,然后比较方差【详解】()18138x x +⋯+=,()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定故22s <故选A【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础 11.A解析:A【分析】由题意知,两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,所以两组数据的样本中心点是(s ,t ),回归直线经过样本的中心点,得到直线l 1和l 2都过(s ,t ).【详解】∵两组数据变量x 的观测值的平均值都是s ,对变量y 的观测值的平均值都是t ,∴两组数据的样本中心点都是(s ,t )∵数据的样本中心点一定在线性回归直线上,∴回归直线l 1和l 2都过点(s ,t )∴两条直线有公共点(s ,t )故选A .【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.12.D解析:D【解析】分析:由茎叶图得出45名学生的数学成绩,从而求出中位数.详解:根据茎叶图得出45名学生的数学成绩,可知中位数为129.故选D.点睛:本题考查了茎叶图的应用问题,解题时应根据茎叶图中的数据,进行解答,属基础题..二、填空题13.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42 解析:25【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5 故答案为25. 14.【分析】利用微积分基本定理先计算出阴影部分的面积根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率即可计算出概率值【详解】由几何概型的知识可知:阴影部分的面积与长方形的面积之比等于所 解析:1e【分析】利用微积分基本定理先计算出阴影部分的面积,根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率,即可计算出概率值.【详解】由几何概型的知识可知:阴影部分的面积与长方形OABC 的面积之比等于所求概率, 记阴影部分面积为1S ,长方形面积为2S , 所以()11100111x xS e e dx e e e e =⨯-=-=--=⎰,21S e e =⨯=, 所以所求概率为121S P S e ==. 故答案为:1e. 【点睛】 本题考查几何概型中的面积模型以及利用微积分基本定理求解定积分的值,属于综合型问题,难度一般.几何概型中的面积模型的计算公式:()A A P =构成事件的区域面积全部试验结果所构成的区域面积. 15.【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有28种所 解析:725【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -所有可能情况,代入公式得到结果。

【浙教版】高中数学必修三期末一模试题含答案(1)

【浙教版】高中数学必修三期末一模试题含答案(1)

一、选择题1.《九章算术》勾股章有一“引葭[jiā] 赴岸”问题:“今有池方一丈,葭生其中央,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”其意思是:有一水池一丈见方,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,该植物有多长?其中一丈为十尺.若从该葭上随机取一点,则该点取自水下的概率为()A.2129B.2329C.1112D.12132.一个不透明的袋中装有6个白球,4个红球球除颜色外,无任何差异.从袋中往外取球,每次任取1个,取出后记下颜色不放回,若为红色则停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量X,则(22)P X≤=().A.23B.512C.56D.5183.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为()A.435B.635C.1235D.18354.在一个棱长为3cm的正方体的表面涂上颜色,将其适当分割成棱长为1cm的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A.49B.827C.29D.1275.运行下图所示的程序框图,如果输入的2020n=,则输出的n=()A .6B .7C .63D .646.执行如图所示的程序框图,若输出S 的值为511,则判断框内可填入的条件是( )A .4i ≤B .5i ≤C .5i <D .6i ≤7.如图所示程序框图是德国数学家科拉茨1937年提出的一个著名猜想.根据猜想,不断重复程序运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.按照这种运算,若输出k 的值为9,则输入整数N 的值可以为( )A .3B .5C .6D .108.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A .17B .34C .36D .689.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .3310.某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277; ②5,9,100,107,121,180,195,221,265,299; ③11,41,71,101,131,161,191,221,251,281; ④31,61,91,121,151,181,211,241,271,299. 关于上述样本的下列结论中,正确的是( ) A .②④都不能为分层抽样 B .①③都可能为分层抽样 C .①④都可能为系统抽样D .②③都不能为系统抽样11.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生12.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.已知△ABC 的两边AB =4,AC =7,D 点为边BC 上一点,且AD 平分∠BAC ,现随机将一粒豆子撒在△ABC 内,则豆子落在△ABD 内的概率是_____.15.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.16.下图所示的算法流程图中,输出的S 表达式为__________.17.执行如图所示的程序框图,若输入的1,7S K ==则输出的k 的值为_______.18.根据如图所示算法流程图,则输出S的值是__.19.下表记录了某公司投入广告费x与销售额y的统计结果,由表可得线性回归方程为^^^y b x a=+,据此方程预报当6x=时,y=__.x4235y49263954附:参考公式:^1122211()()()n ni i i ii in ni ii ix x y y x y nx ybx x x nx====---==--∑∑∑∑,^^^a yb x=-20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22⨯列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;满意 不满意 合计男生 女生合计100中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:22()()()()()n ad bc K a b c d a c b d -=++++. ()2P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.8222.某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标x 和y ,制成下图,其中“*”表示男同学,“+”表示女同学. 若00.6x <<,则认定该同学为“初级水平”,若0.60.8x ≤≤,则认定该同学为“中级水平”,若0.81x <≤,则认定该同学为“高级水平”;若100y ≥,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.(1)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;(2)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;(3)试比较这100名同学中,男、女生指标y 的方差的大小(只需写出结论). 23.写出一个算法,求底面边长为42,侧棱长为5的正四棱锥的体积.24.某批发部出售袜子,当购买少于300双时,每双批发价为2.5元;不少于300双时,每双批发价为2.2元.试分别画出程序框图和用程序语言编写计算批发金额.25.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.x3 4 5 6 7 8 9y 66 69 73 81 89 90 91 该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-26.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表: 年科研费用x (百万元) 12345企业所获利润y (百万元) 2 3 4 4 7(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:设水深为x 尺,利用勾股定理求出水深,结合葭长13尺,代入几何概型概率计算公式,可得答案. 详解: 设水深为x 尺, 则(x+2)2=x 2+52, 解得x=214, 即水深214尺. 又葭长294尺, 则所求概率为2129. 故选A .点睛:本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.2.C解析:C 【分析】X k =表示前k 个球为白球,第1k +个球为红球,则(22)(0)(1)(2)P X P XP X P X ≤==+=+=.由此计算可得结论.【详解】X k =表示前k 个球为白球,第1k +个球为红球,42(0)105P X ===,644(1)10915P X ⨯===⨯,21643101(2)6A A P X A ===,所以2415(22)(0)(1)(2)51566P X P X P X P X ≤==+=+==++=, 故选:C . 【点睛】本题考查古典概型概率计算,属于基础题,解题时要认真审题,注意列举法的合理运用.3.C解析:C 【分析】本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是48C ,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得. 【详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是4870C =,以A 为顶点的四个面都是直角三角形的三棱锥有:111111111111,,,,,A A D C A A B C A BB C A BCC A DCC DD C A ------共6个.同理以1111,,,,,,B C D A B C D 为顶点的也各有6个, 但是,所有列举的三棱锥均出现2次,∴四个面都是直角三角形的三棱锥有186242⨯⨯=个,∴所求的概率是24127035= 故选:C .【点睛】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.4.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C . 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5.A解析:A 【分析】根据题中所给的框图,模拟执行程序框图,求得结果. 【详解】输入2020100n =>,且不是奇数,赋值1010100n =>,且不是奇数, 赋值505100n =>,且是奇数,赋值252100n =>,且不是奇数, 赋值126100n =>,且不是奇数,赋值63100n =<, 赋值()2log 6316n =+=,输出6. 故选:A 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,属于简单题目.6.B解析:B 【分析】模拟运行程序1i =,满足条件,1013S =+⨯,2i =,满足条件,进入循环体,反复操作,直到输出511S =,核对满足的条件即可. 【详解】1i =,满足条件,1013S =+⨯; 2i =,满足条件,111335S =+⨯⨯; 3i =,满足条件,111133557S =++⨯⨯⨯; 4i =,满足条件,111113355779S =+++⨯⨯⨯⨯; 5i =,满足条件,11111115(1)1335577991121111S =++++=-=⨯⨯⨯⨯⨯; 6i =,不满足条件,输出511S =. 故选:B. 【点睛】本题考查了对程序框图的理解与应用,由程序运行结果,补充条件,数列求和的裂项相消法,属于中档题.7.C解析:C 【分析】模拟程序的运行,可以从N 为1出发,按照规则,逆向求解即可求出N 的所有可能的取值. 【详解】解:模拟程序的运行,可知输出时,1,9N k ==,逆向运行程序得:2,8N k ==⇐4,7N k ==⇐8N =或1(舍去),6k =⇐16,5N k ==⇐5,4N k ==⇐10,3N k ==⇐20N =或3,2k =⇐40N =或6,1k =.故选:C. 【点睛】本题考查的知识点是程序框图的应用,推理与证明,考查新定义,考查学生分析解决问题的能力,属于中档题.8.B解析:B 【分析】根据程序框图进行模拟运算即可得出. 【详解】根据程序框图,输入的102a =,238b =,因为ab ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B . 【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用. 9.D解析:D 【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 10.B解析:B 【分析】根据系统抽样和分层抽样的定义分别进行判断即可. 【详解】若采用简单随机抽样,根据简单随机抽样的特点,1~300之间任意一个号码都有可能出现;若采用分层抽样,则1~120号为一年级,121~210为二年级,211~300为三年级.且根据分层抽样的概念,需要在1~120之间抽取4个,121~210与211~300之间各抽取3个; 若采用系统抽样,根据系统抽样的概念,需要在1~30,31~60,61~90,91~ 120,121~150,151~180,181~210,211~240,241~270,271~300之间各抽一个.①项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以①项为系统抽样或分层抽样;②项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,可能为分层抽样;③项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以③项为系统抽样或分层抽样;④项,第一个数据大于30,所以④项不可能为系统抽样,并且④项不满足分层抽样的条件.综上所述,B 选项正确. 故选:B. 【点睛】本题主要考查系统抽样和分层抽样,掌握系统抽样和分层抽样的定义是解题的关键,属于基础题.(1)系统抽样适用于总体容量较大的情况.将总体平均分成若干部分,按事先确定的规则在各部分中抽取,在起始部分抽样时采用简单随机抽样;(2)分层抽样适用于已知总体是由差异明显的几部分组成的.将总体分成互不交叉的层,然后分层进行抽取,各层抽样时采用简单随机抽样或系统抽样.11.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.12.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.二、填空题13.②④【分析】根据题意结合古典概型的概率计算公式逐项进行判定即可求解【详解】设申请法学院的男生人数为女生人数为则法学院的录取率为设申请商学院的男生人数为女生人数为则商学院的录取率为由该值的正负不确定所解析:②④【分析】根据题意,结合古典概型的概率计算公式,逐项进行判定,即可求解. 【详解】设申请法学院的男生人数为x ,女生人数为y ,则200x y +=,法学院的录取率为0.50.70.50.7(200)0.70.001200200x y x x x ++⨯-==-,设申请商学院的男生人数为m ,女生人数为n ,则300m n +=,商学院的录取率为0.60.90.60.9(300)0.90.001200200m n m m m ++⨯-==-,由()()0.90.0010.70.0010.20.001()0.001(200)m x m x m x ---=--=-+, 该值的正负不确定,所以①错误,④正确; 这两个学院所有男生的录取率为0.50.6x mx m++,这两个学院所有女生的录取率为0.70.9y ny n++,因为0.50.60.70.90.20.40.10.30()()x m y n xy xn my nmx m y n x m y n +++++-=<++++,所以②正确;③错误. 故答案为:②④. 【点睛】本题主要考查了古典概型的概率公式的应用,其中解答中正确理解题意,结合古典概型的概率计算公式求得相应的概率是解答的关键,着重考查数学阅读能力,属于基础题.14.【分析】由角平分线性质得出线段的比高相同得出面积之比进而得概率【详解】点为边上一点且平分;由内角平分线性质可得:;所以根据几何概型可知豆子落在△ABD 内的概率故答案为:【点睛】本题主要考查了几何概型解析:411. 【分析】由角平分线性质得出线段的比,高相同,得出面积之比,进而得概率. 【详解】4AB =,7AC =,D 点为边BC 上一点,且AD 平分BAC ∠;由内角平分线性质可得:AB BD AC DC=⇒47BD DC =⇒411BD BC =;∴411ADB ABC S S ∆∆=. 所以根据几何概型可知,豆子落在△ABD 内的概率411ADB ABC S S P ∆∆==. 故答案为:411【点睛】本题主要考查了几何概型,将基本事件“几何化”,实际问题转化为数学问题,属于中档题.15.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径,即2R =,即R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为343π⨯=, 则该点取自四棱锥P ABCD -的内部的概率8P ==,【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.16.【分析】根据流程图知当满足条件执行循环体依此类推当不满足条件退出循环体从而得到结论【详解】满足条件执行循环体满足条件执行循环体满足条件执行循环体…依此类推满足条件执行循环体不满足条件退出循环体输出故 解析:112399++++【分析】根据流程图知当1i =,满足条件100i <,执行循环体,1S =,依此类推,当100i =,不满足条件100i <,退出循环体,从而得到结论. 【详解】1i =,满足条件100i <,执行循环体,1S = 2i =,满足条件100i <,执行循环体,12S =+3i =,满足条件100i <,执行循环体,123S =++…依此类推99i =,满足条件100i <,执行循环体,1299S =++⋯+,100i =,不满足条件100i <,退出循环体,输出1112399S S ==+++⋯+,故答案为112399++++.【点睛】本题主要考查了循环结构应用问题,此循环是先判断后循环,属于中档题.17.5【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到的知识点解析:5 【分析】模拟执行程序框图,依次写出每次循环得到的,S K 的值,当5,58S K ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S K ==;771,688S K =⋅==;763,5874S K =⋅==;355,5468S K =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.18.9【解析】【分析】该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得S =0n =1满足条件n <6执行循环体S =1n =3满足条解析:9 【解析】 【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得 S =0,n =1满足条件n <6,执行循环体,S =1,n =3 满足条件n <6,执行循环体,S =4,n =5 满足条件n <6,执行循环体,S =9,n =7此时,不满足条件n <6,退出循环,输出S 的值为9. 故答案为:9. 【点睛】本题考查程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.19.5【分析】根据表中数据先求出回归方程然后将代入可得到答案【详解】由题意故回归方程为当时【点睛】本题考查了回归方程的求法考查了学生的计算求解能力属于基础题解析:5 【分析】根据表中数据,先求出回归方程,然后将6x =代入,可得到答案. 【详解】 由题意,2345 3.54x +++==,49263954424y +++==,4144492263395544 3.54263558847i ii x y xy =-=⨯+⨯+⨯+⨯-⨯⨯=-=∑,2211649254 3.5 3.55nii xnx =-=+++-⨯⨯=∑,479.45ˆb==,42ˆˆ9.4 3.59.1ay bx =-=-⨯=,故回归方程为9.194ˆ.y x =+, 当6x =时,9.19.4665.5y =+⨯=. 【点睛】本题考查了回归方程的求法,考查了学生的计算求解能力,属于基础题.20.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其 解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果. 【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43. 【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(1)填表见解析;有90%的把握认为“对线上教学是否满意与性别有关”;(2)35. 【分析】(1)结合男女学生抽样比和满意与否学生人数即可完善二联表,结合2K 公式计算即可判断;(2)先计算出男女生抽样数,再结合列举法或组合公式,由古典概型公式计算即可 【详解】(1)22⨯列联表如下:又2100(30104515) 3.03 2.70675254555K ⨯-⨯=≈>⨯⨯⨯,这说明有90%的把握认为“对线上教学是否满意与性别有关”.(2)方法一:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为A 、B ;女生3人设为,,a b c ,则从这5名学生中抽取2名学生的基本事件有:(,)A B ,(A,a),(A,b),(,)A c ,(,a)B ,(,b)B ,(,)B c ,(,)a b ,(,)a c ,(,)b c ,共10个基本事件,其中抽取一名男生与一名女生的事件有(A,a),(A,b),(,)A c ,(,a)B ,(,b)B ,(,)B c ,共6个基本事件,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为63105=. 方法二:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生, 其中男生2人,女生3人,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为11223563105C C C ==【点睛】本题考查二联表的填写,2K 的计算,分层抽样中具体事件概率值的求解,属于中档题 22.(I ) 310P =.(Ⅱ)15P =.(Ⅲ)这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【分析】(I )由图知,在50名参加测试的女同学中,指标x <0.6的有15人,由此能求出该同学为“初级水平”的概率;(Ⅱ)利用古典概型概率公式即可得到结果;(Ⅲ)由图可知,这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【详解】(I )由图知,在50名参加测试的女同学中,指标0.6x <的有15人, 所以,从50名女同学中随机选出一名,该名同学为“初级水平”的概率为1535010P ==. (Ⅱ)男同学“不具备明显艺术发展潜质的中级或高级水平”共有6人,其中“中级水平”有3人,分别记为1A ,2A ,3A .“高级水平”有3人,分别记为1B ,2B ,3B ,所有可能的结果组成的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}23,A B ,{}31,A B ,{}32,A B ,{}33,A B ,{}12,B B ,{}13,B B ,{}23,B B ,共15个,其中两人均为“高级水平”的共有3个,所以,所选2人均为“高级水平”的概率31155P ==. (Ⅲ)由图可知,这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 23.见解析 【解析】试题分析:求解正四棱锥的体积,先求出棱锥的高与底面面积和高,再利用体积公式求出体积. 试题第一步,令a =4,l =5.第二步,计算R a 2.第三步,计算h . 第四步,计算S =a 2. 第五步,计算V =13Sh . 第六步,输出运算结果V .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高级中学2004—2005年学年度第二学期期末考试模拟试题一一、选择题:(本题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是 A 、最大数 B 、最小数 C 、既不最大也不最小 D 、不确定2、甲、乙、丙三名同学站成一排,甲站在中间的概率是A 、16B 、12C 、13D 、233、某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是A 、6,12,18B 、7,11,19C 、6,13,17D 、7,12,17 4、甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是A 、甲B 、乙C 、甲、乙相同D 、不能确定5、从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是A 、16B 、14C 、13D 、126、如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为A 、34B 、38C 、14D 、187、阅读下列程序:输入x ;if x <0, then y :=32x π+;else if x >0, then y :=52x π-+;else y :=0; 输出 y .如果输入x =-2,则输出结果y 为A 、3+πB 、3-πC 、π-5D 、-π-5 8、一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为8180,则此射手的命中率是 A 、31B 、32 C 、41 D 、529、根据下面的基本语句可知,输出的结果T 为i:=1; T:=1;For i:=1 to 10 do; Begin T:=T+1; End 输出TA 、10B 、11C 、55D 、5610、在如图所示的算法流程图中,输出S 的值为 A 、11 B 、12 C 、13 D 、15二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上)11、一个容量为20的样本数据,分组后,组距与频数如下:(]10,20,2;(]20,30, 3;(]30,40,4;(]40,50,5;(]50,60,4 ;(]60,70,2。

则样本在区间[)50,+∞上的频率为___0.3____。

12、有一个简单的随机样本:10, 12, 9, 14, 13,则样本平均数x =______ ,样本方差2s =______ 。

13、管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中。

10天后,再捕上50条,发现其中带标记的鱼有2条。

根据以上数据可以估计该池塘有___ _____条鱼。

14、若连续掷两次骰子,第一次掷得的点数为m ,第二次掷得的点数为n ,则点(,)P m n 落在圆x 2+y 2=16内的概率是 。

三、解答题:(本题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15、某班有50名学生,在学校组织的一次数学质量抽测中,如果按照抽测成绩的分数段[60,65),[65,70),…[95,100) 进行分组,得到的分布情况如图所示.求:Ⅰ、该班抽测成绩在[70,85)之间的人数; Ⅱ、该班抽测成绩不低于85分的人数占全班总人数的百分比。

(12分)16、袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:Ⅰ、3只全是红球的概率;Ⅱ、3只颜色全相同的概率;Ⅲ、3只颜色不全相同的概率.(14分)17、10根签中有3根彩签,若甲先抽一签,然后由乙再抽一签,求下列事件的概率:1、甲中彩;2、甲、乙都中彩;3、乙中彩(12分)18哪种小麦长得比较整齐?(14分)19、抛掷两颗骰子,计算:(14分)(1)事件“两颗骰子点数相同”的概率;(2)事件“点数之和小于7”的概率;(3)事件“点数之和等于或大于11”的概率。

20、为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:[)10.95,11.0513;[)11.05,11.1516;10.85,10.959;[)10.75,10.853;[)[)11.35,11.457;[)11.45,11.554;11.25,11.3520;[)11.15,11.2526;[)[)11.55,11.652;(14分)1、列出频率分布表含累积频率、;2、画出频率分布直方图以及频率分布折线图;10.95,11.35范围内的可能性是百分之几?3、据上述图表,估计数据落在[)4、数据小于11、20的可能性是百分之几?高级中学2004-2005年学年度第二学期期末考试模拟试题一参考答案一、选择题答题处:二、填空题答题处:11、0.3 12、11.6,3.4 13、750 14、2 9三、解答题:(本题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15、某班有50名学生,在学校组织的一次数学质量抽测中,如果按照抽测成绩的分数段[60,65),[65,70),…[95,100)进行分组,得到的分布情况如图所示.求:Ⅰ、该班抽测成绩在[70,85)之间的人数;Ⅱ、该班抽测成绩不低于85解:从分布图可以看出,抽测成绩各分数段的人数依次为:[60,65)1人;[65,70)2人;[70,75)10人;[75,80)16人;[80,85)12人;[85,90)6人;[90,95)2人;[95,100)1人.因此,Ⅰ、该班抽测成绩在[70,85)之间的人数为38人;Ⅱ、该班抽测成绩不低于85分的占总人数的18%。

16、袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:Ⅰ、3只全是红球的概率; Ⅱ、3只颜色全相同的概率;Ⅲ、3只颜色不全相同的概率。

(14分)解法一:由于是有放回地取球,因此袋中每只球每次被取到的概率均为12.Ⅰ、3只全是红球的概率为P 1=12·12·12=18.Ⅱ、3只颜色全相同的概率为P 2=2·P 1=2·18=14.Ⅲ、3只颜色不全相同的概率为P 3=1-P 2=1-14=34.解法二:利用树状图我们可以列出有放回地抽取3次球的所有可能结果:⎧⎪⎪⎨⎪⎪⎩红-红红-黄红黄-红黄-黄,⎧⎪⎪⎨⎪⎪⎩红-红红-黄黄-红黄-黄黄 由此可以看出,抽取的所有可能结果为8种.所以Ⅰ、3只全是红球的概率为P 1=18.Ⅱ、3只颜色全相同的概率为P 2=28=14.Ⅲ、3只颜色不全相同的概率为P 3=1-P 2=1-14=34.17、10根签中有3根彩签,若甲先抽一签,然后由乙再抽一签,求下列事件的概率:1、甲中彩;2、甲、乙都中彩;3、乙中彩 (12分)解:设A={甲中彩} B={乙中彩} C={甲、乙都中彩} 则C=AB1、3()10P A =;2、321()()10915P C P AB ==⨯=3、1733()()()()1510910P B P AB AB P AB P AB =+=+=+⨯=。

18解:由题中条件可得:121314151016131115111310x +++++++++==甲1116171413196810161310x +++++++++==乙2222(1213)(1313)(1113) 3.610s-+-++-== 甲2222(1113)(1613)(1613)15.810s-+-++-== 乙∵22,x x s s =<甲乙甲乙∴乙种小麦长得比较整齐。

19、抛掷两颗骰子,计算: (14分) (1)事件“两颗骰子点数相同”的概率; (2)事件“点数之和小于7”的概率;(3)事件“点数之和等于或大于11”的概率。

(1)记“两颗骰子点数相同”为事件A ,则事件A 有6个基本事件,∴61()366P A == (2)记“点数之和小于7”为事件B ,则事件B 有15个基本事件,∴155()3612P B == (3)记“点数之和等于或大于11”为事件C ,则事件C 有3个基本事件,∴31()3612P C == 20、为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:[)10.95,11.0513;[)11.05,11.1516;10.85,10.959;[)10.75,10.853;[)[)11.45,11.554;11.35,11.457;[) 11.15,11.2526;[)11.25,11.3520;[)[)11.55,11.652;1、列出频率分布表含累积频率、;2、画出频率分布直方图以及频率分布折线图;3、据上述图表,估计数据落在[)10.95,11.35范围内的可能性是百分之几?4、数据小于11、20的可能性是百分之几?(14分)3、由上述图表可知数据落在[)10.95,11.35范围内的频率为:10.95,11.35范围内的可能性是75%。

0.870.120.7575%-==,即数据落在[)4、数据小于11、20的可能性即数据小于11、20的频率,也就是数据在11、20处的累积频率。

设为x,则:()()()()x-÷-=-÷-,0.4111.2011.150.670.4111.2511.15所以0.410.130.54x x-=⇒=,从而估计数据小于11、20的可能性是54%。

欢迎访问。

相关文档
最新文档