湖南省岳阳市2015届高考信息卷数学(理)试题

合集下载

2015年普通高等学校招生统一考试 湖南省理数试卷(有答案)

2015年普通高等学校招生统一考试 湖南省理数试卷(有答案)

2015年普通高等学校招生全国统一考试(湖南卷)(理科)本试题包括选择题,填空题和解答题三部分,共6页,时间120分钟,满分150分.一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()211i i z-=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --2.设A,B 是两个集合,则”A B A = ”是“A B ⊆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.执行如图1所示的程序框图,如果输入3n =,则输出的S =( ) A.67 B.37 C.89 D.494.若变量,x y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.-7B.-1C.1D.25.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A.奇函数,且在(0,1)上是增函数B. 奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D. 偶函数,且在(0,1)上是减函数6.已知5的展开式中含32x 的项的系数为30,则a =( )7.在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( ) A.2386 B.2718 C.3413 D.4772附:若2(,)X N μσ ,则()0.6826P μσμσ-≤+=(22)0.9544P μσμσ-≤+=8.已知点A,B,C 在圆221x y +=上运动,且AB BC ⊥.若点P 的坐标为(2,0),则PA PB PC ++的最大值为( )A.6B.7C.8D.99.将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x的图像,若对满足12()()2f x g x -=的12,x x ,有12min 3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πD.31)π二、填空题:本大题共5小题,每小题5分,共25分.11.20(1)x dx ⎰-= . 12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图4所示. 若将运动员按成绩由好到差编为135 号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .13.设F 是双曲线C :22221x y a b-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 .14.设n S 为等比数列{}n a 的前项和,若11a =,且1233,2,S S S 成等差数列,则n a = .15.已知函数32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 . 三、解答题16.(本小题满分12分)本小题设有Ⅰ,Ⅱ,Ⅲ三个选做题,请考生任选两题作答,并将解答过程写在答题卡中相应题号的答题区域内。

2015年高考数学湖南理

2015年高考数学湖南理

2015年普通高等学校招生全国统一考试(湖南卷)数学(理科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知-=1+i z2(1i )(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.-1i + D. -1i -答案:D解析:2(1)22(1)1.112i i i z i i i ---+====--++ 2.设,A B 是两个集合,则“A B A = ”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:{}|,A B x x A x B A ⋂=∈∈=且,得A B ⊆,反之,当A B ⊆时,A B A ⋂=,故为充要条件。

3.执行如图1所示的程序框图.如果输入3n =,则输出的S =( )A.67B.37C.89D.49答案:B解析:执行程序框图,进入循环后,的值依次为:123,2;,3;,4;357S i S i S i ======退出循环,输出37S =。

4.若变量,x y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.7-B. 1-C.1D.2答案:A解析:作出可行域,为图中三角形ABC 内部(包括边界),平行直线30x y -=,过点(2,1)A -,取最小值-7。

5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A.奇函数,且在()0,1上是增函数B.奇函数,且在()0,1上是减函数C.偶函数,且在()0,1上是增函数D.偶函数,且在()0,1上是减函数答案:A解析:函数的定义域为(1,1)-,()ln(1)ln(1)()f x x x f x -=--+=-,故函数()f x 为奇函数,当01x <<时,'11()011f x x x=+>+-,故函数()f x 在(0,1)上是增函数。

2015湖南高考数学(理)试题及答案

2015湖南高考数学(理)试题及答案

2015湖南高考数学(理)试题及答案满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共10小题)1.已知(为虚数单位),则复数=()A.B.C .D .2.设A,B是两个集合,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.执行如图所示的程序框图,如果输入,则输出的()A.B.C.D.4.若变量满足约束条件,则的最小值为()A.-7B.-1C.1D.25.设函数,则是()A.奇函数,且在上是增函数B.奇函数,且在上是减函数C.偶函数,且在上是增函数D.偶函数,且在上是减函数6.已知的展开式中含的项的系数为30,则()A.B.C.6D.-67.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若,则,.A.2386B.2718C.3413D.47728.已知点A,B,C在圆上运动,且.若点P的坐标为(2,0),则的最大值为()A.6B.7C.8D.99.将函数的图像向右平移个单位后得到函数的图像,若对满足的,有,则()A.B.C.D.10.某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C.D.二、填空题(共5小题)11._________。

12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示。

若将运动员按成绩由好到差编为号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是。

13.设F是双曲线C:的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为。

14.设为等比数列的前项和,若,且成等差数列,则。

15.已知,若存在实数,使函数有两个零点,则的取值范围是。

2015年湖南省高考数学试题及答案(理科)【解析版】

2015年湖南省高考数学试题及答案(理科)【解析版】

2015年湖南省高考数学试题及答案(理科)【解析版】D2.(5分)(2015•湖南)设A 、B 是两个集合,则“A ∩B=A ”是“A ⊆B ”的( ) A . 充分不必要条件 B .必要不充分条件C . 充要条件D . 既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑. 分析: 直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答: 解:A 、B 是两个集合,则“A ∩B=A ”可得“A ⊆B ”,“A ⊆B ”,可得“A ∩B=A ”.所以A 、B 是两个集合,则“A ∩B=A ”是“A ⊆B ”的充要条件. 故选:C .点评: 本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A .B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B 点评: 本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)(2015•湖南)若变量x 、y 满足约束条件,则z=3x ﹣y 的最小值为( ) A . ﹣7 B .﹣1 C .1 D .2 考点: 简单线性规划.专题: 不等式的解法及应用. 分析: 由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A ,联立,解得C (0,﹣1).由解得A (﹣2,1),由,解得B (1,1)∴z=3x ﹣y 的最小值为3×(﹣2)﹣1=﹣7. 故选:A .点评: 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B 点.5.(5分)(2015•湖南)设函数f (x )=ln (1+x )﹣ln (1﹣x ),则f (x )是( )A . 奇函数,且在(0,1)上是增函数B . 奇函数,且在(0,1)上是减函数 C . 偶函数,且在(0,1)上是增函数D . 偶函数,且在(0,1)上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用. 分析: 求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答: 解:函数f (x )=ln (1+x )﹣ln (1﹣x ),函数的定义域为(﹣1,1),函数f (﹣x )=ln (1﹣x )﹣ln (1+x )=﹣[ln (1+x )﹣ln (1﹣x )]=﹣f (x ),所以函数是奇函数.排除C ,D ,正确结果在A ,B ,只需判断特殊值的大小,即可推出选项,x=0时,f (0)=0;x=时,f ()=ln (1+)﹣ln (1﹣)=ln3>1,显然f (0)<f (),函数是增函数,所以B 错误,A 正确. 故选:A .点评: 本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x 的项的系数为30,则a=( )A .B . ﹣C . 6D .﹣6考点:二项式定理的应用.专题:二项式定理. 分析: 根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x 的指数为求得r ,再代入系数求出结果. 解答: 解:根据所给的二项式写出展开式的通项, T r+1==;展开式中含x 的项的系数为30, ∴,∴r=1,并且,解得a=﹣6.故选:D .点评: 本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) 附“若X ﹣N=(μ,a 2),则 P (μ﹣σ<X ≤μ+σ)=0.6826. p (μ﹣2σ<X ≤μ+2σ)=0.9544.A . 2386B .2718 C .3413 D .4772 考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析: 求出P (0<X ≤1)=×0.6826=0.3413,即可得出结论.解解:由题意P(0<X ≤1)=×0.6826=0.3413,答: ∴落入阴影部分点的个数的估计值为10000×0.3413=3413, 故选:C . 点评: 本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)(2015•湖南)已知A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||的最大值为( ) A . 6 B .7 C .8 D .9 考点: 圆的切线方程.专题: 计算题;直线与圆.分析: 由题意,AC 为直径,所以||=|2+|=|4+|.B 为(﹣1,0)时,|4+|≤7,即可得出结论. 解答: 解:由题意,AC 为直径,所以||=|2+|=|4+|.所以B为(﹣1,0)时,|4+|≤7.所以||的最大值为7.故选:B.点评:本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min =,则φ=()A .B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.解答:解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min =,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.点评:本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A .B.C.D.考点:简单空间图形的三视图.专题:创新题型;空间位置关系与距离;概率与统计.分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.解解:根据三视图可判断其为圆锥,答:∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x 2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A点本题很是新颖,知识点融合的很好,把立体评:几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=0.考点:定积分.专题:导数的概念及应用.分析:求出被积函数的原函数,代入上限和下限求值.解答:解:(x﹣1)dx=(﹣x)|=0;故答案为:0.点评:本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.解答:解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.点评:本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设F(c,0),P(m,n),(m<0),设PF 的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.解答:解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)(2015•湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = 3n ﹣1 .考点:等差数列与等比数列的综合.专题:等差数列与等比数列. 分析: 利用已知条件列出方程求出公比,然后求解等比数列的通项公式.解答: 解:设等比数列的公比为q ,S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,可得4S 2=S 3+3S 1,a 1=1, 即4(1+q )=1+q+q 2+3,q=3. ∴a n =3n ﹣1.故答案为:3n ﹣1.点评: 本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)(2015•湖南)已知函数f (x )=若存在实数b ,使函数g (x )=f (x )﹣b 有两个零点,则a 的取值范围是 {a|a <0或a >1} .考点:函数的零点.专题:计算题;创新题型;函数的性质及应用. 分析: 由g (x )=f (x )﹣b 有两个零点可得f (x )=b 有两个零点,即y=f (x )与y=b 的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围 解答: 解:∵g (x )=f (x )﹣b 有两个零点, ∴f (x )=b 有两个零点,即y=f (x )与y=b的图象有两个交点, 由x 3=x 2可得,x=0或x=1①当a >1时,函数f (x )的图象如图所示,此时存在b ,满足题意,故a >1满足题意②当a=1时,由于函数f(x)在定义域R 上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a <0或a >1 故答案为:{a|a <0或a >1}点评: 本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O 中,相较于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相较于点F ,证明: (1)∠MEN+∠NOM=180° (2)FE •FN=FM •FO .考点:相似三角形的判定.专题:选作题;推理和证明.分析:(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.解答:证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.点评:本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l :(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:(1)曲线的极坐标方程即ρ2=2ρcos θ,根据极坐标和直角坐标的互化公式得x 2+y 2=2x ,即得它的直角坐标方程; (2)直线l 的方程化为普通方程,利用切割线定理可得结论. 解答: 解:(1)∵ρ=2cos θ,∴ρ2=2ρcos θ,∴x 2+y 2=2x ,故它的直角坐标方程为(x ﹣1)2+y 2=1;(2)直线l :(t 为参数),普通方程为,(5,)在直线l 上,过点M 作圆的切线,切点为T ,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18. 点评: 本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲 18.(2015•湖南)设a >0,b >0,且a+b=+.证明:(ⅰ)a+b ≥2;(ⅱ)a 2+a <2与b 2+b <2不可能同时成立.考点:不等式的证明.专题:不等式的解法及应用.分析:(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b <2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.解答:证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.点评:本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.考点:正弦定理.专题:解三角形.分析:(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA <,化简可得sinA+sinC=﹣2(sinA ﹣)2+,由二次函数区间的最值可得.解答:解:(Ⅰ)由a=btanA 和正弦定理可得==,∴sinB=cosA,即sinB=sin (+A)又B 为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin (﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA ﹣)2+,∵A∈(0,),∴0<sinA <,∴由二次函数可知<﹣2(sinA ﹣)2+≤∴sinA+sinC 的取值范围为(,]点评:本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 考点: 离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析: (1)记事件A 1={从甲箱中摸出一个球是红球},事件A 2={从乙箱中摸出一个球是红球},事件B 1={顾客抽奖1次获一等奖},事件A 2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A 1,A 2相互独立,,互斥,B 1,B 2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X ~B .求出概率,得到X 的分布列,然后求解期望. 解答: 解:(1)记事件A 1={从甲箱中摸出一个球是红球},事件A 2={从乙箱中摸出一个球是红球},事件B 1={顾客抽奖1次获一等奖},事件A 2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A 1,A 2相互独立,,互斥,B 1,B 2互斥,且B 1=A 1A 2,B 2=+,C=B 1+B 2,因为P (A 1)=,P (A 2)=,所以,P (B 1)=P (A 1)P (A 2)==,P (B 2)=P ()+P ()=+==,故所求概率为:P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X ~B .于是,P (X=0)==,P (X=1)==,P (X=2)==,P (X=3)==.故X 的分布列为: X0 1 2 3 PE (X )=3×=. 点评:期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q 分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A 的余弦值为,求四面体ADPQ的体积.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q (6,y2,0),设平面PQD 的法向量为,根据即可表示,平面AQD 的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.解答:解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD 1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB 1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y 1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD 的一个法向量为;又二面角P﹣QD﹣A 的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ =.点评:考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)(2015•湖南)已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:+=1(a >b >0)的一个焦点.C 1与C 2的公共弦长为2. (Ⅰ)求C 2的方程;(Ⅱ)过点F 的直线l 与C 1相交于A 、B 两点,与C 2相交于C 、D 两点,且与同向. (ⅰ)若|AC|=|BD|,求直线l 的斜率; (ⅱ)设C 1在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,△MFD 总是钝角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;圆锥曲线中的最值与范围问题. 分析: (Ⅰ)根据两个曲线的焦点相同,得到a 2﹣b 2=1,再根据C 1与C 2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(ⅰ)根据向量的关系,得到(x 1+x 2)2﹣4x 1x 2=(x 3+x 4)2﹣4x 3x 4,设直线l 的方程,分别与C 1,C 2构成方程组,利用韦达定理,分别代入得到关于k 的方程,解得即可;(ⅱ)根据导数的几何意义得到C 1在点A 处的切线方程,求出点M 的坐标,利用向量的乘积∠AFM 是锐角,问题得以证明. 解答: 解:(Ⅰ)抛物线C 1:x 2=4y 的焦点F 的坐标为(0,1),因为F 也是椭圆C 2的一个焦点,∴a 2﹣b 2=1,①,又C 1与C 2的公共弦长为2,C 1与C 2的都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为(±,), 所以=1,②,联立①②得a 2=9,b 2=8, 故C 2的方程为+=1.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),A (x 4,y 4),(ⅰ)因为与同向,且|AC|=|BD|, 所以=,从而x 3﹣x 1=x 4﹣x 2,即x 1﹣x 2=x 3﹣x 4,于是 (x 1+x 2)2﹣4x 1x 2=(x 3+x 4)2﹣4x 3x 4,③ 设直线的斜率为k ,则l 的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x 3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k 2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(ⅱ)由x 2=4y得y′=x,所以C 1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x 1x﹣x12,令y=0,得x=x 1,M(x 1,0),所以=(x 1,﹣1),而=(x 1,y1﹣1),于是•=x 12﹣y1+1=x12+1>0,因此∠AFM 是锐角,从而∠MFD=180°﹣∠AFM 是钝角,故直线l 绕点F 旋转时,△MFD 总是钝角三角形.点评:本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k 的方程,计算量大,属于难题.23.(13分)(2015•湖南)已知a >0,函数f (x )=e ax sinx (x ∈[0,+∞]).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点.证明: (Ⅰ)数列{f (x n )}是等比数列; (Ⅱ)若a ≥,则对一切n ∈N *,x n <|f (x n )|恒成立. 考点: 利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题: 创新题型;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分(Ⅰ)求出导数,运用两角和的正弦公式化析: 简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证; (Ⅱ)由sin φ=,可得对一切n ∈N *,x n <|f (x n )|恒成立.即为n π﹣φ<e a(n π﹣φ)恒成立⇔<,①设g (t )=(t >0),求出导数,求得最小值,由恒成立思想即可得证. 解答: 证明:(Ⅰ)f ′(x )=e ax (asinx+cosx )=•e ax sin(x+φ),tan φ=,0<φ<,令f ′(x )=0,由x ≥0,x+φ=m π,即x=m π﹣φ,m ∈N *,对k ∈N ,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x <(2k+2)π﹣φ, 则f ′(x )<0,因此在((m ﹣1)π,m π﹣φ)和(m π﹣φ,m π)上f ′(x )符号总相反.于是当x=n π﹣φ,n ∈N *,f (x )取得极值,所以x n =n π﹣φ,n ∈N *,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a (nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N *,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n ≥2时,n π﹣φ≥2π﹣φ>>,因此对n ∈N *,ax n =≠1,即有g (ax n )>g(1)=e=,故①亦恒成立. 综上可得,若a ≥,则对一切n ∈N *,x n <|f (x n )|恒成立. 点评:本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分 1.(5分)(2015•湖南)已知=1+i (i 为虚数单位),则复数z=( ) A . 1+i B .1﹣i C .﹣1+i D .﹣1﹣i2.(5分)(2015•湖南)设A 、B 是两个集合,则“A ∩B=A ”是“A ⊆B ”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=( )A .B .C .D .4.(5分)(2015•湖南)若变量x 、y 满足约束条件,则z=3x ﹣y 的最小值为( ) A . ﹣7 B .﹣1 C .1 D .25.(5分)(2015•湖南)设函数f (x )=ln (1+x )﹣ln (1﹣x ),则f (x )是( )A . 奇函数,且在(0,1)上是增函数B . 奇函数,且在(0,1)上是减函数C . 偶函数,且在(0,D . 偶函数,且在(0,1)上是增函数1)上是减函数6.(5分)(2015•湖南)已知(﹣)5的展开式中含x 的项的系数为30,则a=( )A .B .﹣ C .6 D .﹣67.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) 附“若X ﹣N=(μ,a 2),则 P (μ﹣σ<X ≤μ+σ)=0.6826. p (μ﹣2σ<X ≤μ+2σ)=0.9544.A . 2386B .2718 C .3413 D .47728.(5分)(2015•湖南)已知A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC ,若点P 的坐标为(2,0),则||的最大值为( ) A . 6 B .7 C .8 D .99.(5分)(2015•湖南)将函数f (x )=sin2x 的图象向右平移φ(0<φ<)个单位后得到函数g (x )的图象.若对满足|f (x 1)﹣g (x 2)|=2的x 1、x 2,有|x 1﹣x 2|min =,则φ=( ) A . B .C .D .10.(5分)(2015•湖南) 某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )A .B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q 分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A 的余弦值为,求四面体ADPQ的体积.。

湖南省岳阳市高考数学信息卷 理

湖南省岳阳市高考数学信息卷 理

岳阳市2015届高考信息卷(理数)时量:120分钟 满分:150分一、选择题(本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项符合题目要求的). 1. 已知全集U =R ,集合{|2,R}x A y y x ==∈,{}|2B x x =≥,则下图中阴影部分所表示的集合为( C ) A .Æ B. {0,1} C. (0,2) D. (,2)-∞2. 若复数z 满足()12i z i +=-,则z i +=( B )A.1223. 用辗转相除法求294和84的最大公约数,则所求 最大公约数为 ( B ) A. 21 B. 42 C.84 D.1684. 若某几何体的三视图如图所示,则此几何体的直观图是( A )5. 已知等比数列{}n a 的各项均为正数,对k *∈N ,5k k a a a +=,1015k k a a b ++=,则1520k k a a ++=( B )A .2b a BC6. 在ABC ∆中,若2||AC AB AC ⋅>,则有( D )A .||||AC BC >u u u r u u u rB .||||BC AC > C .||||AC AB >D .||||AB BC >A BC D(第4题图)7. 设命题2:R,210p x ax x ∃∈-+<,则命题p 为假命题的一个充分不必要条件是( B )A. a ≥1B. a >1C. a ≤1D. a <28. 已知定义在R 的函数()f x 满足:①()()f x f x -=;②(2)()f x f x -=;③12,[0,1]x x "?(12x x ¹),2121()()0f x f x x x ->-.则( C )A .函数()f x 的图像关于直线12x =对称B .函数()f x 的图像关关于点1(,0)2对称 C .函数(1)f x +在区间[]2013,2014内单调递增 D .函数(1)f x +的最小正周期为19. 已知双曲线22221x y a b-=的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线分别交双曲线的左,右两支于点B ,C ,且2||||BC CF =,则双曲线的渐近线方程为( C ) A .3y x =±B.y =± C.1)y x =± D.1)y x =±10. 设函数22,0()log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,若对任意给定的(2,)y ∈+∞,都存在唯一的x R ∈,满足22(())2f f x a y ay =+,则正实数a 的最小值是( A )A.14 B.12C.2D.4二、填空题(本大题共6小题,考生作答5小题,每小题5分,满分25分,把答案填在答题卡中对应题号后的横线上.)(一)选做题(11~13题,考生只能从中选做二题,三题都做记前两题的得分)11. 如图,已知AB 是⊙O 的一条弦,AC 是⊙O 的直径,点P 为AB 延长线上一点,且PC为⊙O的一条切线,若AO =2PB =,则PCP12. 已知在直角坐标系xOy 中,曲线C 的参数方程为cos (2sin x y θθθ=⎧⎨=⎩为参数),点P 在曲线C 上,以Ox 为极轴建立极坐标系,点Q 的极坐标为2,)π,则P ,Q 两点距离的最大值为 2+13. 不等式33|21log (1)||21||log (1)|x x x x ---<-+-的解集是 (2,)+? .(二)必做题(14~16题)14. 各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有 180 种不同的填报专业志愿的方法(用数字作答). 15. 已知下面的数列通项和递推关系:①数列{})(n a a n n =有递推关系n n n a a a -=++122;②数列{})(2n b b n n =有递推关系n n n n b b b b +-=+++12333; ③数列{})(3n c c n n =有递推关系4321464n n n n n c c c c c ++++=-+-;④数列{}4()n n d d n =有递推关系n n n n n n d d d d d d +-+-=+++++12345510105;试猜测: 数列{}5()n n e e n =的类似的递推关系65432161520156n n n n n n n e e e e e e e ++++++=-+-+- .16. 设实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .已知1x y≤≤且三数1,,x y 能构成三角形的三边长,记11max ,,min ,,x x t y y x y x y ⎧⎫⎧⎫=⋅⎨⎬⎨⎬⎩⎭⎩⎭,求:(1)若2y x =,则t 的最小值为 1 ;(2)t 的取值范围是三、解答题(本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c , 向量(4,7),(,sin )m b n a A ==满足//m n .(Ⅰ)求sin B 的值;(Ⅱ)若,,a b c 成等差数列,且公差大于0,求cos cos A C -的值.【解析】(Ⅰ)∵(4,7),(,sin )m b n a A ==,//m n………………………5分 (Ⅱ)∵,,a b c 成等差数列,∴2a cb +=,①③ 又a b c <<,A B C <<,∴00090B <<,cos cos A C >,………………………12分 18.(本小题满分12分)有A ,B ,C 三个盒子,每个盒子中放有红,黄,蓝颜色的球各一个,所有的球仅有颜色上的区别. (Ⅰ)从每个盒子中任意取出一个球,记事件S 为“取得红色的三个球”,事件T 为“取得颜色互不相同的三个球”, 求P (S )和P (T );(Ⅱ)先从A 盒中任取一球放入B 盒,再从B 盒中任取一球放入C 盒,最后从C 盒中任取一球放入A 盒,设此时A 盒中红球的个数为ξ,求ξ的分布列与数学期望E ξ.【解析】(Ⅰ)271313131)(=⨯⨯=S P ,92)(131313111213==C C C C C C T P .…………………………4分(Ⅱ)ξ的可能值为2,1,0.①考虑0=ξ的情形,首先A 盒中必须取一个红球放入B 盒,相应概率为31,此时B 盒中有2红2非红;若从B 盒中取一红球放入C 盒,相应概率为21,则C 盒中有2红2非红,从C 盒中只能取一个非红球放入A 盒,相应概率为21;若从B 盒中取一非红球放入C 盒,相应概率为21,则C 盒中有1红3非红,从C 盒中只能取一个非红球放入A 盒,相应概率为43. 故2454321212131)0(=⎥⎦⎤⎢⎣⎡⨯+⨯⨯==ξP . ②考虑2=ξ的情形,首先A 盒中必须取一个非红球放入B 盒,相应概率为32,此时B 盒中有1红3非红;若从B 盒中取一红球放入C 盒,相应概率为41,则C 盒中有2红2非红,从C 盒中只能取一个红球放入A 盒,相应概率为21;若从B 盒中取一非红球放入C 盒,相应概率为43,则C 盒中有1红3非红,从C 盒中只能取一个红球放入A 盒,相应概率为41. 故2454143214132)2(=⎥⎦⎤⎢⎣⎡⨯+⨯⨯==ξP . ③1272452451)1(=--==ξP . ∴ξ的分布列为ξ 0 12P245 127 245ξ的数学期望1245212712450=⨯+⨯+⨯=ξE . …………………………12分19.(本题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1AB =,BC =,45ABC ∠=,点E 在PC 上,AE PC ⊥. (Ⅰ)证明:平面AEB ⊥平面PCD ;(Ⅱ)若二面角B AE D --的大小为150,求异面直线PD 与AB 所成角的大小.【解析】(Ⅰ)∵1AB =,BC =45ABC ∠=,∴2222cos 1AC AB BC AB BC ABC =+-仔=,1AC =,∴AB AC ⊥, ∵//AB CD ,∴CD AC ^,(第19题图)∵PA ⊥平面ABCD ,∴CD PA ^,又∵AC AP A =I , ∴CD ⊥平面PAC ,∵AE Ì平面PAC ,∴CD AE ⊥ , ∵AE PC ⊥,又∵PC CD C =I , ∴AE ⊥平面PCD , 又∵AE ⊂平面AEB∴平面AEB ⊥平面PCD . ………………………6分 (Ⅱ)如图,以A 为原点,AB ,AC ,AP 所在射线分别为x ,y ,z 轴的正半轴, 建立空间直角坐标系A -xyz ,设AP t =,(0,0,0)A ,(1,0,0)B ,(0,1,0)C ,(1,1,0)D -,(0,0,)P t (0t >).∵AB PC ⊥,AE PC ⊥,AB AE A =,∴PC ⊥平面ABE ,∴平面ABE 的一个法向量为(0,1,)n PC t ==-r u u u r.∵AE PC ⊥,∴AE =设EAC APC θ∠=∠=,∴sin θ=cos θ=∴222(0,,)11t tE t t ++. 设平面AED 的一个法向量为(,,)m x y z =u r ,∵222(0,,)11t tAE t t =++uu u r ,(1,1,0)AD =-u u u r,∴2220110t t y z t t x y ⎧⋅+⋅=⎪++⎨⎪-+=⎩,令1x =,得(1,1,)m t =-u r . ∵二面角B AE D --的大小为150,∴2|||cos ,||cos150|||||n m n m n m ⋅====o r u rr u r r u rt =∴在Rt PCD D中,PC =1CD =,∴60PDC ∠=.∵//AB CD ,∴异面直线PD 与AB 所成角为PDC Ð,∴异面直线PD 与AB 所成角的大小为60 ……………………………12分 20. (本小题满分13分)某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x 个月的利润函数()()()1, 120N *,1, 2160N *10x x f x x x x ⎧≤≤∈⎪=⎨≤≤∈⎪⎩(单位:万元).为了获得更多的利润,企业将每月获得的利润再投入到次月的经营中.记第x 个月的利润率为 ()x g x x =第个月的利润第个月的资金总和,例如()()()()338112f g f f =++.(Ⅰ)求()10g ;及第x 个月的当月利润率;(Ⅱ)求该企业经销此产品期间,哪一个月的当月利润率最大,并求出该月的当月利润率.【解析】(Ⅰ)依题意得()()()()12391f f f f =====,()()()()()101108112990f g f f f ∴==++++. ………………………3分当1x =时,()1181g =. 当120x <≤时,()()()()1211f f f x f x ===-==,则()()()()()18112180f x g x f f f x x==++++-+, 而1x =也符合上式,故当120x ≤≤时,()180g x x =+. 当2160x ≤≤时,()()()()()()()811220211f x g x f f f f f x =+++++++-()()()()2112101021208120211160010120x xx x x f f x x x ===-+++++--++, ∴,第x 个月的当月利润率为()21,120802,21601600x xg x x x x x ⎧≤≤⎪⎪+=⎨⎪≤≤⎪-+⎩.……………………8分(Ⅱ)当120x <≤时,()180g x x =+是减函数,此时()g x 的最大值为()1181g =. 当2160x ≤≤时,()222216001600791x g x x x x x==≤-++-,当且仅当1600x x=,即40*x N =∈时,()g x 有最大值为279.217981>,∴当40x =时,()g x 有最大值为279,即该企业经销此产品期间,第40个月的当月利润率最大,其当月利润率为279.………… 13分21. (本小题满分13分)设抛物线22(0)y px p =>的焦点为F ,线段FA 的中点在抛物线上. 设动直线:l y kx m =+与抛物线相切于点P ,且与抛物线的准线相交于点Q ,以PQ 为直径的圆记为圆C . (Ⅰ)求p 的值;(Ⅱ)证明:圆C 与x 轴必有公共点;(Ⅲ)在坐标平面上是否存在定点M ,使得圆C 恒过点M ?若存在,求出M 的坐标;若不存在,说明理由.【解析】,故线段FA 的中点的坐标为代入方程得,解得1p =. ……………………2分(Ⅱ)由(Ⅰ)得抛物线的方程为22y x =,从而抛物线的准线方程为, 由22y x y kx m⎧=⎨=+⎩得方程∴PQ 的中点C 的坐标为,圆心C 到x 轴距离,∴圆C 与x 轴总有公共点.(或,以线段PQ 为直径的方程为:令0y =得,所圆与x 轴总有公共点). ………………8分(Ⅲ)假设平面内存在定点M 满足条件,由抛物线对称性知点M 在x 轴上, 设点M 坐标为1(,0)M x ,∴ 111(,),(MP x MQ =-=--由0MP MQ ⋅=得,11()(x --,使得圆C 恒过点M . ……………………13分证法二:由(Ⅱ)知PQ 的中点C 的坐标为∴圆C 的方程为,, 上式对任意0k ≠均成立,,,使得圆C 恒过点M . ……………………13分 22. (本小题满分13已知函数()sin x f x e x =. (Ⅰ)求函数()f x 的单调区间; (Ⅱ)如果对于任意的[0,]2x π∈,()kx f x ≥总成立,求实数k 的取值范围;(Ⅲ)设函数()()cos x F x f x e x =+,20132015,22x ππ⎡⎤∈-⎢⎥⎣⎦. 过点1(,0)2M π-作函数()F x 图像的所有切线,令各切点的横坐标构成数列{}n x ,求数列{}n x 的所有项之和S 的值.【解析】(Ⅰ)由于()sin x f x e x =,∴'()sin cos (sin cos )sin()4x x x x f x e x e x e x x x π=+=+=+.当(2,2)4x k k ππππ+∈+,即3(2,2)44x k k ππππ∈-+时,'()0f x >; 当(2,22)4x k k πππππ+∈++,即37(2,2)44x k k ππππ∈++时,'()0f x <. ∴()f x 的单调递增区间为3(2,2)44k k ππππ-+,单调递减区间为37(2,2)44k k ππππ++()k Z ∈. …4分(Ⅱ)令()()sin x g x f x kx e x kx =-=-,要使()f x kx ≥总成立,只需[0,]2x π∈时min ()0g x ≥.对()g x 求导得()(sin cos )x g x e x x k '=+-,令()(sin cos )xh x e x x =+,则()2cos 0xh x e x '=>,((0,)2x π∈)∴()h x 在[0,]2π上为增函数,∴2()[1,]h x e π∈.对k 分类讨论:①当1k ≤时,()0g x '≥恒成立,∴()g x 在[0,]2π上为增函数,∴min ()(0)0g x g ==,即()0g x ≥恒成立; ②当21k e π<<时,()0g x '=在上有实根0x ,∵()h x 在(0,)2π上为增函数,∴当0(0,)x x ∈时,()0g x '<,∴0()(0)0g x g <=,不符合题意; ③当2k e π≥时,()0g x '≤恒成立,∴()g x 在(0,)2π上为减函数,则()(0)0g x g <=,不符合题意. 综合①②③可得,所求的实数k 的取值范围是(,1]-∞. (8)分 (Ⅲ)∵()()cos (sin cos )x x F x f x e x e x x =+=+,∴()2cos x F x e x '=, 设切点坐标为0000(,(sin cos ))x x e x x +,则斜率为000'()2cos x f x e x =,切线方程为000000(sin cos )2cos ()x x y e x x e x x x -+=⋅-,将1(,0)2M π-的坐标代入切线方程,得0000001(sin cos )2cos ()2x x e x x e x x π--+=⋅-001tan 12()2x x π---=--,即00tan 2()2x x π=-,令1tan y x =,22()2y x π=-,则这两个函数的图像均关于点(,0)2π对称, 它们交点的横坐标也关于2π对称成对出现,方程tan 2()2x x π=-,20112013[,]22x ππ∈-的根即所作的所有切线的切点横坐标构成的数列{}n x 的项也关于2π对称成对出现, 在20132015,22x ππ⎡⎤∈-⎢⎥⎣⎦内共构成1007对,每对的和为π, 因此数列{}n x 的所有项的和1007S π=.……………………13分。

2015年湖南省高考理科数学试卷及答案(全WORD版)

2015年湖南省高考理科数学试卷及答案(全WORD版)
1
D.9
π 9. 将函数 f(x)=sin2x 的图象向右平移 φ 0<φ< 个单位后得到函数 g(x)的图象,若对满足| f(x1)-g(x2)| 2 π =2 的 x1,x2,有| x1-x2|min= ,则 φ=( 3 5π A. 12 π B. 3 ) π C. 4 π D. 6
18.(本小题满分 12 分) 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有 4 个红球、6 个白球的甲箱和装有 5 个红球、5 个白球的乙箱中,各随机摸出 1 个球.在摸出的 2 球中,若都是红 球,则获一等奖;若只有 1 个红球,则获二等奖;若没有红球,则不获奖. (Ⅰ)求顾客抽奖 1 次能获奖的概率; (Ⅱ)若某顾客有 3 次抽奖的机会,记该顾客在 3 次抽奖中获一等奖的次数为 X,求 X 的分布列和数学 期望.
5
5
考点:三角函数的图象和性质. 10. 【解析】问题等价于圆锥的内接长方体的体积,如下图所示,则有 x 2-h = ,∴h=2-2x, 1 2 ∴长方体的体积为 x2h=(2x)2(2-2x)=4x· x· (2-2x) ≤4 x+x+2-2x3 32 2 = ,当且仅当 x=2-2x 即x= 时,等号成立, 3 27 3 32 27
2015 年普通高等学校招生全国统一考试(湖南卷)
理科数学
本试题包括选择题,填空题和解答题三部分,共 6 页,时间 120 分钟,满分 150 分.
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题 目要求的. (1-i)2 1.已知 =1+i( i 为虚数单位) ,则复数 z= ( z A. 1+i B.1-i ) D.-1-i )
2

2015年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)解析版

2015年普通高等学校招生全国统一考试(湖南卷)数学试题 (理科)解析版

2015年高考湖南卷理数试题解析(精编版)(解析版)一.选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的.1.已知()211i i z-=+(i 为虚数单位),则复数z =( ) A. 1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运 算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数 的乘法则是按多项式的乘法法则进行处理.2.设A ,B 是两个集合,则“A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】C.【考点定位】1.集合的关系;2.充分必要条件.【名师点睛】本题主要考查了集合的关系与充分必要条件,属于容易题,高考强调集合作为工具与其他知 识点的结合,解题的关键是利用韦恩图或者数轴求解,充分,必要条件的判断性问题首要分清条件 和结论,然后找出条件和结论之间的推出或包含关系.3.执行如图所示的程序框图,如果输入3n =,则输出的S =( )A.67 B.37 C.89 D.49【答案】B.【考点定位】1程序框图;2.裂项相消法求数列的和.【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题, 解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图 问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规 律,若循环次数较少可以全部列出.4.若变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.-7B.-1C.1D.2【答案】A.而可知当2-=x ,1=y 时,min 3(2)17z =⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的范围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A .奇函数,且在(0,1)上是增函数 B. 奇函数,且在(0,1)上是减函数 C. 偶函数,且在(0,1)上是增函数 D. 偶函数,且在(0,1)上是减函数 【答案】A.【考点定位】函数的性质.【名师点睛】本题主要考查了以对数函数为背景的单调性与奇偶性,属于中档题,首先根据函数奇偶性的 判定可知其为奇函数,判定时需首先考虑定义域关于原点对称是函数为奇函数的必要条件,再结合复合函 数单调性的判断,即可求解.6.已知5x x 的展开式中含32x 的项的系数为30,则a =( )33- D .-6【答案】D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.7.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386B.2718C.3413D.4772 附:若2(,)XN μσ,则6826.0)(=+≤<-σμσμX P ,9544.0)22(=+≤<-σμσμX P【答案】C.【考点定位】1.正态分布;2.几何概型.【名师点睛】本题主要考查正态分布与几何概型等知识点,属于容易题,结合参考材料中给出的数据,结 合正态分布曲线的对称性,再利用几何概型即可求解,在复习过程中,亦应关注正态分布等相对冷门的知 识点的基本概念.8.已知点A ,B ,C 在圆221x y +=上运动,且AB BC ⊥,若点P 的坐标为(2,0),则P A P B P C ++的最大值为( )A.6B.7C.8D.9【答案】B.【考点定位】1.圆的性质;2.平面向量的坐标运算及其几何意义.【名师点睛】本题主要考查向量的坐标运算,向量的几何意义以及点到圆上点的距离的最值问题,属于中 档题,结合转化思想和数形结合思想求解最值,关键是把向量的模的最值问题转化为点与圆上点的距离的 最值问题,即圆221x y +=上的动点到点)0,6(距离的最大值.9.将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min 3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π【答案】D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以 )sin()(ϕω+=x A x f 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三 角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.34(21)πD.321)π【答案】A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.【名师点睛】本题主要考查立体几何中的最值问题,与实际应用相结合,立意新颖,属于较难题,需要考生从实际应用问题中提取出相应的几何元素,再利用基本不等式求解,解决此类问题的两大核心思路:一是化立体问题为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,或利用导数或利用基本不等式,求其最值.二.填空题:本大题共5小题,每小题5分,共25分.11.20(1) x dx⎰-= .【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .【答案】4.【考点定位】1.系统抽样;2.茎叶图.【名师点睛】本题主要考查了系统抽样与茎叶图的概念,属于容易题,高考对统计相关知识的考查,重点在于其相关的基本概念,如中位数,方差,极差,茎叶图,回归直线等,要求考生在复习时注意对这些方面的理解与记忆.13.设F是双曲线C:22221x ya b-=的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为 . 【答案】5.【考点定位】双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用222b a c +=,焦点坐标,渐近线方程等性质, 也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.14.设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = . 【答案】13-n .【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列 基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.15.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .【答案】),1()0,(+∞-∞ .【考点定位】1.函数与方程;2.分类讨论的数学思想.【名师点睛】本题主要考查了函数的零点,函数与方程等知识点,属于较难题,表面上是函数的零点问题,实际上是将问题等价转化为不等式组有解的问题,结合函数与方程思想和转化思想求解函数综合问题,将函数的零点问题巧妙的转化为不等式组有解的参数,从而得到关于参数a 的不等式,此题是创新题,区别于其他函数与方程问题数形结合转化为函数图象交点的解法,从另一个层面将问题进行转化,综合考查学生的逻辑推理能力.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:(1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查 的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.(Ⅱ)已知直线35:132x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M 的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易 题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程, 实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极 坐标与参数方程中同样适用.(Ⅲ)设0,0a b >>,且11a b a b+=+. (1)2a b +≥;(2)22a a +<与22b b +<不可能同时成立. 【答案】(1)详见解析;(2)详见解析.【考点定位】1.基本不等式;2.一元二次不等式;3.反证法.【名师点睛】本题主要考查了不等式的证明与反证法等知识点,属于中档题,第一小问需将条件中的式子 作等价变形,再利用基本不等式即可求解,第二小问从问题不可能同时成立,可以考虑采用反证法证明, 否定结论,从而推出矛盾,反证法作为一个相对冷门的数学方法,在后续复习时亦应予以关注.17.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.【答案】(1)详见解析;(2)9]8. 【解析】【考点定位】1.正弦定理;2.三角恒等变形;3.三角函数的性质.【名师点睛】本题主要考查了利用正弦定理解三角形以及三角恒等变形等知识点,属于中档题,高考解答题对三角三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,在三角函数求值问题中,一般运用恒等变换,将未知角变换为已知角求解,在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式求解,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小.18.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望. 【答案】(1)107;(2)详见解析.【考点定位】1.概率的加法公式;2.离散型随机变量的概率分布与期望.【名师点睛】本题主要考查了离散型随机变量的概率分布与期望以及概率统计在生活中的实际应用,这一 直都是高考命题的热点,试题的背景由传统的摸球,骰子问题向现实生活中的热点问题转化,并且与统计 的联系越来越密切,与统计中的抽样,频率分布直方图等基础知识综合的试题逐渐增多,在复习时应予以 关注.19.如图,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,且1AA ⊥底面ABCD ,点P ,Q 分别在棱1DD ,BC 上.(1)若P 是1DD 的中点,证明:1AB PQ ⊥;(2)若//PQ 平面11ABB A ,二面角P QD A --的余弦值为37,求四面体ADPQ 的体积.【答案】(1)详见解析;(2)24.【考点定位】1.空间向量的运用;2.线面垂直的性质;3.空间几何体体积计算. 【名师点睛】本题主要考查了线面垂直的性质以及空间几何体体积计算,属于中档题,由于空间向量工具的引入,使得立体几何问题除了常规的几何法之外,还可以考虑利用向量工具来解决,因此有关立体几何的问题,可以建立空间直角坐标系,借助于向量知识来解决,在立体几何的线面关系中,中点是经常使用的一个特殊点,无论是试题本身的已知条件,还是在具体的解题中,通过找“中点”,连“中点”,即可出现平行线而线线平行是平行关系的根本,在垂直关系的证明中线线垂直是核心,也可以根据已知的平面图形通过计算的方式证明线线垂直,也可以根据已知的垂直关系证明线线垂直.20.已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为(1)求2C 的方程; (2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形【答案】(1)22198y x+=;(2)(i)6±,(ii)详见解析.【考点定位】1.椭圆的标准方程及其性质;2.直线与椭圆位置关系.【名师点睛】本题主要考查了椭圆的标准方程及其性质以及直线与椭圆的位置关系,属于较难题,解决此 类问题的关键:(1)结合椭圆的几何性质,如焦点坐标,对称轴,222c b a +=等;(2)当看到题目中出现 直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条 件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整 体代换到后面的计算中去,从而减少计算量.21.已知0a >,函数()sin ([0,))ax f x e x x =∈+∞,记n x 为()f x 的从小到大的第n *()n N ∈个极值点,证明:(1)数列{()}n f x 是等比数列(2)若21a e ≥-,则对一切*n N ∈,|()|n n x f x <恒成立. 【答案】(1)详见解析;(2)详见解析.【考点定位】1.三角函数的性质;2.导数的运用;3.恒成立问题.【名师点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.。

2015年普通高等学校招生全国统一考试 数学(理科)(湖南卷).doc

2015年普通高等学校招生全国统一考试 数学(理科)(湖南卷).doc

2015年普通高等学校招生全国统一考试(湖南卷)(理科)本试题包括选择题,填空题和解答题三部分,共6页,时间120分钟,满分150分. 一.选择题:本大题共10小题,每小题5分,共50分,贼每小题给出的四个选项中,只有一项是复合题目要求的.1.已知()211i i z-=+(i 为虚数单位),则复数z =( )A.1i +B.1i -C.1i -+D.1i --2.设A,B 是两个集合,则”A B A =I ”是“A B ⊆”的( ) A.充分不必要条件 B.必要不充分条件C.冲要条件D.既不充分也不必要条件3.执行如图1所示的程序框图,如果输入3n =,则输出的S =( ) A.67 B.37 C.89 D.494.若变量,x y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.-7B.-1C.1D.25.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A.奇函数,且在(0,1)上是增函数B. 奇函数,且在(0,1)上是减函数C. 偶函数,且在(0,1)上是增函数D. 偶函数,且在(0,1)上是减函数6.已知5x x ⎛- ⎪⎝⎭的展开式中含32x 的项的系数为30,则a =( )A.3B.3-C.6 D-67.在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386B.2718C.3413D.47728.已知点A,B,C 在圆221x y +=上运动,且AB BC ⊥.若点P 的坐标为(2,0),则PA PB PC ++u u u r u u u r u u u r的最大值为( )A.6B.7C.8D.99.将函数()2f x isn x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的12,x x ,有12min3x x π-=,则ϕ=( )A.512π B.3π C.4π D.6π10.某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.34(21)-D.312(21)π-二、填空题:本大题共5小题,每小题5分,共25分. 11.20(1)x dx ⎰-= .12.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图4所示.若将运动员按成绩由好到差编为135:号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是 .13.设F 是双曲线C :22221x y a b-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 .14.设n S 为等比数列{}n a 的前项和,若11a =,且1233,2,S S S 成等差数列,则n a = .15.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则的取值范围是.三、解答题16.(Ⅰ)如图,在圆O中,相交于点E的两弦AB、CD的中点分别是M、N,直线MO与直线CD相交于点F,证明:(1)0180MEN NOM∠+∠=;(2)FE FN FM FO•=•(Ⅱ)已知直线352:132xly t⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cosρθ=.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为3),直线l与曲线C 的交点为A,B,求||||MA MB•的值.(Ⅲ)设0,0a b>>,且11a ba b+=+.(1)2a b+≥;(2)22a a+<与22b b+<不可能同时成立.17.设ABC∆的内角A,B,C的对边分别为a,b,c,tana b A=,且B为钝角》(1)证明:2B Aπ-=(2)求sin sinA C+的取值范围18.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.19.如图,已知四棱台1111ABCD A B C D -上、下底面分别是边长为3和6的正方形,16AA =,且1AA ⊥底面ABCD ,点P 、Q 分别在棱1DD 、BC 上. (1)若P 是1DD 的中点,证明:1AB PQ ⊥; (2)若PQ//平面11ABB A ,二面角P-QD-A 的余弦值为37,求四面体ADPQ 的体积.20.已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为6(1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A 、B 两点,与2C 相交于C 、D 两点,且AC u u u r 与BD u u u r同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形21.已知0a >,函数()sin ([0,))axf x e x x =∈+∞. 记n x 为()f x 的从小到大的第n *()n N ∈个极值点,证明: (1)数列{()}n f x 是等比数列(2)若a ≥*n N ∈,|()|n n x f x <恒成立.。

2015年湖南省高考数学试卷理科

2015年湖南省高考数学试卷理科

2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.25.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6 D.﹣67.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.47728.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.99.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A. B.C.D.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A. B. C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.七、标题19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.【解答】解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.【点评】本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.【分析】列出循环过程中S与i的数值,满足判断框的条件即可结束循环.【解答】解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B.【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.2【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.【点评】本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6 D.﹣6【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.4772【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.9【分析】由题意,AC为直径,所以||=|2+|.B为(﹣1,0)时,|2+|≤7,即可得出结论.【解答】解:由题意,AC为直径,所以||=|2+|所以B为(﹣1,0)时,|2+|≤7.所以||的最大值为7.另解:设B(cosα,sinα),|2+|=|2(﹣2,0)+(cosα﹣2,sinα)|=|(cosα﹣6,sinα)|==,当cosα=﹣1时,B为(﹣1,0),取得最大值7.故选:B.【点评】本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A. B.C.D.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.另解:f(x)=sin2x,g(x)=sin(2x﹣2φ),设2x1=2kπ+,k∈Z,2x2﹣2φ=﹣+2mπ,m∈Z,x1﹣x2=﹣φ+(k﹣m)π,由|x1﹣x2|min=,可得﹣φ=,解得φ=,故选:D.【点评】本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A. B. C.D.【分析】根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.【解答】解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A.【点评】本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(x﹣1)dx=0.【分析】求出被积函数的原函数,代入上限和下限求值.【解答】解:(x﹣1)dx=(﹣x)|=0;故答案为:0.【点评】本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4.【分析】根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.【解答】解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).故答案为:4.【点评】本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.【分析】设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.【解答】解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=3n﹣1.【分析】利用已知条件列出方程求出公比,然后求解等比数列的通项公式.【解答】解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.【点评】本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1} .【分析】由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围【解答】解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b 有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}【点评】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.【分析】(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.【解答】证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.【点评】本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【分析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.【分析】(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.【解答】证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.【点评】本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.七、标题19.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【分析】(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA﹣)2+,由二次函数区间的最值可得.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]【点评】本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.【分析】(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A 1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.【解答】解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件B2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A 1,A2相互独立,,互斥,B 1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X0123PE(X)=3×=.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.【分析】(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q(6,y2,0),设平面PQD的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ 的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.【解答】解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ =V三棱锥P﹣ADQ=.【点评】考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(1)若|AC|=|BD|,求直线l的斜率;(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.【分析】(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(1)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;(2)根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.【解答】解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),所以=1,②,联立①②得a2=9,b2=8,故C2的方程为+=1.(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),(1)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(2)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),所以=(x1,﹣1),而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.【点评】本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.23.(13分)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.【分析】(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.【解答】证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π﹣φ,mπ﹣φ)和(mπ﹣φ,(m+1)π﹣φ)上f′(x)符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.【点评】本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.。

2015年湖南省高考数学试卷(理科)

2015年湖南省高考数学试卷(理科)

2015年湖南省高考数学试卷(理科)一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.25.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A. B.﹣C.6 D.﹣67.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0。

6826.p(μ﹣2σ<X≤μ+2σ)=0.9544.A.2386 B.2718 C.3413 D.47728.(5分)(2015•湖南)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6 B.7 C.8 D.99.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()A.B.C.D.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx=.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n=.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4—1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.(13分)(2015•湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(ⅰ)若|AC|=|BD|,求直线l的斜率;(ⅱ)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.(13分)(2015•湖南)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法法则,求得z的值.【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】集合;简易逻辑.【分析】直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.【解答】解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.【点评】本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.【考点】程序框图.【分析】列出循环过程中S与i的数值,满足判断框的条件即可结束循环.【解答】解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B【点评】本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7 B.﹣1 C.1 D.2【考点】简单线性规划.【专题】不等式的解法及应用.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0; x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.【点评】本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A. B.﹣C.6 D.﹣6【考点】二项式定理的应用.【专题】二项式定理.【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=0.6826.p(μ﹣2σ<X≤μ+2σ)=0。

2015年湖南高考理科数学试题及答案word精校版(湖南卷)

2015年湖南高考理科数学试题及答案word精校版(湖南卷)
2015年普通高等学校招生全国统一考试(湖南卷)(理科)
本试题包括选择题,填空题和解答题三部分,共6页,时间120分钟,满分150分.
一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合
题目要求的.
1.已知
1i2
z
1i(i为虚数单位),则复数z=(

A.1iB.1iC.1iD.1i
A.2386B.2718C.3413D.4772
附:若XN(,2),则
A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数
a53
x
A.3B.3C.6D-6
7.在如图2所示的正方形中随机投掷10000个点,则落入阴影部分(曲
线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()
2.设A,B是两个集合,则”ABA”是“AB”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3.执行如图1所示的程序框图,如果输入n3,则输出的S()
384
B.C.D.
7799
xy1
y1
A.-7B.-1C.1D.2
5.设函数f

2015年高考湖南理科数学试题及答案(详解纯word版)

2015年高考湖南理科数学试题及答案(详解纯word版)

2015年普通高等学校招生全国统一考试〔XX 卷〕数学〔理科〕本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i zi +=-1)1(2(i 是虚数单位),则复数z= A. i +1 B. i -1C. i +-1D. i --12.设A 、B 是两个集合,则“A B A = 〞是“B A ⊆〞的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.执行如图所示的程序框图,如果输入的3=n ,则输出的S =A.76B. 73 C. 98D. 944.若变量x, y 满足约束条件⎪⎩⎪⎨⎧≤≤--≥+1121y y x y x ,则y x z -=3的最小值为A. 7-B. 1-C. 1D. 25. 设函数)1ln()1ln()(x x x f --+=,则)(x f 是A. 奇函数,且在)1,0(是增函数B. 奇函数,且在)1,0(是减函数C. 偶函数,且在)1,0(是增函数D. 偶函数,且在)1,0(是减函数 6.已知5)(xax -的展开式中含23x 的项的系数为30,则=aA.3B.3-C. 6D. 6-7. 在如图2所示的正方形中随机投掷10000个点,则落入阴影部分〔曲线C 为正态分布)1,0(N 的密度曲线〕的点的个数的估计值为 A. 2386B.2718C. 3413D. 4772附:若),(~2σμN X ,则6826.0)(=+≤<-σμσμX P , 9544.0)22(=+≤<-σμσμX P .8.已知点A, B, C 在圆122=+y x 上运动,且BC AB ⊥ . 若点P 的坐标为)0,2(, 则||PC PB PA ++的最大值为A. 6B. 7C. 8D. 9 9.将函数x x f 2sin )(=的图象向右平移ϕ)20(πϕ<<个单位后得到函数)(x g 的图象,若对满足2|)()(|21=-x g x f 的1x ,2x ,有3||min 21π=-x x ,则=ϕA. 125πB. 3πC. 4πD.6π 10. 某工件的三视图如图所示,现将该工件通过切削,加工成体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为〔材料的利用率原工件的体积新工件的体积=〕 A.π98 B. π916 C.π2124)-( D.π21212)-(二、填空题:本大题共5小题,每小题5分,共25分. 11.⎰=-2)1(dx x __________.12. 在一次马拉松比赛中,35名运动员的成绩〔单位:分钟〕茎叶图如图所示若将运动员按成绩由好到差编为1-35号,再用系统抽样的方法从中抽取7人,则其中成绩在区间]151,139[上的运动员的人数是_________.13. 设F 是双曲线C 1:2222=-by a x 的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为________.14.设n S 为等比数列}{n a 的前n 项和,若11=a ,且321,2,3S S S 成等差数列,则=n a ___________.15. 已知函数⎪⎩⎪⎨⎧>≤=.,,,)(23a x x a x x x f 若存在实数b ,使函数b x f x g -=)()(有两个零点,则a 的取值X 围是___________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)俯视图侧视图正视图222121本小题有Ⅰ、Ⅱ、Ⅲ三个选做题,请考生任选两题作答,并将解答过程写在答题纸中相应题号的答题区域内,如果全做,则按所做的前两题计分. Ⅰ.〔本小题满分6分〕选修4-1 几何证明选讲如图,在⊙O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明:〔i 〕180=∠+∠NOM MEN ; 〔ii 〕FO FM FN FE ⋅=⋅.Ⅱ.〔本小题满分6分〕选修4-4 坐标系与参数方程已知直线l ⎪⎪⎩⎪⎪⎨⎧+=+=.213,235:t y t x 〔t 为参数〕,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 2=. 〔i 〕将曲线C 的极坐标方程化为直角坐标方程;〔ii 〕设点M 的直角坐标为)3,5(,直线l 与曲线C 的交点为A ,B ,求||||MB MA ⋅的值.Ⅲ.〔本小题满分6分〕选修4-5 不等式选讲 设0,0>>b a ,且ba b a 11+=+,证明: 〔i 〕2≥+b a ;〔ii 〕22<+a a 与22<+b b 不可能同时成立.17. (本小题满分12分)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,A b a tan =,且B 为钝角.F(Ⅰ) 证明:2π=-A B ;(Ⅱ) 求C A sin sin +的取值X 围.18. (本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖. 每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球. 在摸出的2球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(Ⅰ) 求顾客抽奖1次能获奖的概率; (Ⅱ) 若某顾客有3次抽奖的机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.19. (本小题满分13分)如图,在四棱台1111D C B A ABCD -的上、下底面分别是边长为3和6的正方形,61=AA ,且⊥1AA 底面ABCD ,点P ,Q 分别在棱1DD ,BC 上. (Ⅰ) 若点P 是1DD 的中点,证明:PQ AB ⊥1; (Ⅱ) 若//PQ 平面11A ABB ,二面角A QD P --的余弦值为73,求四面体ADPQ 的体积.20. (本小题满分13分)BDQ已知抛物线1C y x 4:2=的焦点F 也是椭圆2C )0(1:2222>>=+b a bx a y 的一个焦点,1C 与2C 的公共弦长为62. (Ⅰ) 求2C 的方程;(Ⅱ) 过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向.〔i 〕 若||||BD AC =,求直线l 的斜率;〔ii 〕设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. (本小题满分13分)已知0>a ,函数)),0[(sin )(∞+∈=x x e x f ax,记n x 为)(x f 的从小到大的第n *)(N n ∈个极值点. 证明: (Ⅰ) 数列)}({n x f 是等比数列; (Ⅱ) 若112-≥e a ,则对一切*N n ∈,|)(|n n x f x <恒成立.2015年高考XX 卷理科数学参考答案一、选择题D C B A A D C B D A 二、填空题11. 0 12. 4 13. 5 14. 13-n 15. ),1()0,(∞+-∞ 三、解答题16. Ⅰ.证明:(i )如图,因为M ,N 分别是两弦AB ,CD的中点,所以AB OM ⊥, CD ON ⊥,即90=∠=∠ONE OME ,因此 180=∠+∠ONE OME ,又四边形的内角和等于 360,故 180=∠+∠NOM MEN .(ii ) 由〔i 〕知, O ,M ,E ,N 四点共圆,故由割线定理即得FO FM FN FE ⋅=⋅.Ⅱ.解: (i )θρcos 2=等价于 θρρcos 22=,将222y x +=ρ,x =θρcos 代入上式即得曲线C 的直角坐标方程是0222=-+x y x .(ii ) 将⎪⎪⎩⎪⎪⎨⎧+=+=.213,235t y t x 代入0222=-+x y x 得018352=++t t .设这个方程的 两个实根分别为21,t t ,则由参数t 的几何意义知||||MB MA ⋅=.18||21=t tⅢ.证明: 由abba b a b a +=+=+11,0,0>>b a 得 1=ab 〔i 〕由基本不等式与1=ab ,有22=≥+ab b a ,即2≥+b a .(ii ) 设22<+a a 与22<+b b 可同时成立,则由22<+a a 与0>a 可得10<<a ,同理 10<<b ,从而10<<ab 这与1=ab 相矛盾,故22<+a a 与22<+b b 不可能同时成立.17. 解:〔Ⅰ〕由A b a tan =与正弦定理,得BAb a A A sin sin cos sin ==,所以A B cos sin =,即)2sin(sin A B +=π. 又B 为钝角,),2(2πππ∈+A ,故A B +=2π,即2π=-A B . (Ⅱ) 由〔Ⅰ〕知 022)(>-=+-=A B A C ππ, 所以)4,0(π∈A . 于是 )22sin(sin sin sin A A C A -+=+πA A 2cos sin +=.89)41(sin 2sin 21sin 22+--=-+=A A A因为40π<<A ,所以 22sin 0<<A ,因此8989)41(sin 2222≤+--<A . 由此可得C A sin sin +的取值X 围是]89,22(.F18. 解:〔Ⅰ〕记事件1A ={从甲箱中摸出的一个球是红球},2A ={从乙箱中摸出的一个球是红球},1B ={顾客抽奖一次获一等奖},2B ={顾客抽奖一次获二等奖},C ={顾客抽奖一次能获奖}.由题意1A 与2A 相互独立,21A A 与21A A 互斥,1B 与2B 互斥,且211A A B =,2B =21A A +21A A ,21B B C +=. 又因为52104)(1==A P ,21105)(2==A P ,所以 512152)()()()(21211=⨯===A P A P A A P B P , )()()()(212121212A A P A A P A A A A P B P +=+=2121)521()211(52)()()()(2121=⨯-+-⨯=+=A P A P A P A P ,故所求概率为1072151)()()()(2121=+=+=+=B P B P B B P C P .(Ⅱ)顾客抽奖3次可视为3次独立重复实验,由〔Ⅰ〕知,顾客抽奖1次获一等奖的概率为51,所以)51,3(~B X ,于是 )3,2,1,0()54()51()(33===-K C K X P K K KX 的数学期望为553)(=⨯=X E .19.解法一:〔Ⅰ〕如图,取1AA 的中点R ,连结PR BR ,, 因为1AA ,1DD 是梯形D D AA 11的两腰,点P 是1DD 的中点,所以AD PR //,于是由BC AD //知,BC PR //,所以C B R P ,,,四点共面. 由题设知 AB BC ⊥,1AA BC ⊥,A AA AB =1 ,所以 ⊥BC 平面11A ABB ,⊂1AB 平面11A ABB ,因此 1AB BC ⊥.因为11111tan 63tan AB A AA B A AB AR ABR ∠====∠,所以11AB A ABR ∠=∠,因此901111=∠+∠=∠+∠BAB AB A BAB ABR , 于是 1AB BR ⊥, 又已证得1AB BC ⊥,所以⊥1AB 平面BRPC ,显然有⊂PQ 平面BRPC , 故 PQ AB ⊥1.(Ⅱ) 如下图,过点P 作1//AA PM 交AD 于点M ,则//PM 平面11A ABB , 因为⊥1AA 底面ABCD,所以⊥PM 底面ABCD ,过点M 作QD MN ⊥于点N ,连结PN ,则QD PN ⊥,PNM ∠是二面角A QD P --的平面角. 所以DB73cos =∠PNM ,即 73=PN MN , 从而340=MN PM . 连结MQ ,由//PQ 平面11A ABB 与//PM 平面11A ABB 知,平面//PQM 平面11A ABB ,所以AB MQ //,又ABCD 是正方形,所以ABQM 是矩形,故MQ=AB=6. 设MD =t ,则.366222ttMD MQ MD MQ MN +=+⋅=过点1D 作A A E D 11//交AD 于点E ,则E D AA 11是矩形,所以 611==AA E D ,311==D A AE ,因此 3=-=AE AD DE . 于是 21==DEED MD PM , 所以t MD PM 22==,从而t t t MN PM 63623402+⨯==,解得2=t ,所以4=PM . 故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .解法二:由题设知AB AD AA ,,1G 两两垂直,以A为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y轴,z 轴,建立空间直角坐标系,如图,则相关各点的坐标为)0,0,0(A ,)6,0,3(1B ,)0,6,0(D ,)6,3,0(1D , )0,,6(m Q ,其中m BQ =,60≤≤m .(Ⅰ) 若点P 是1DD 的中点,则)3,29,0(P ,)3,29,6(--=m PQ ,又)6,0,3(1=AB ,于是018181=-=⋅PQ AB , 所以PQ AB ⊥1,即PQ AB ⊥1.(Ⅱ) 由题设知,)0,6,6(-=m DQ , )6,3,0(1-=DD 是平面PQD 内两个不共线的向量,设),,(1z y x n =是平面PQD 的一个法向量,则 ⎪⎩⎪⎨⎧=⋅=⋅0,0111DD n DQ n 即⎩⎨⎧=+-=-+063,0)6(6z y y m x 取6=y ,得)3,6,6(1m n -=. 又平面AQD 的一个法向量是)1,0,0(2=n ,所以45)6(336)6(3||||,cos 2222212121+-=++-=⋅>=<m m n n n n ,而二面角A QD P --的余弦值为73,所以7345)6(32=+-m ,解得m=4或m=8(舍去),此时)0,4,6(Q . 再设)10(1≤<=λλDD DP ,而)6,3,0(1-=DD ,由此得到)6,36,0(λλ-P ,)6,23,6(λλ--=PQ . 因为//PQ 平面11A ABB ,且平面11A ABB 的一个法向量是)0,1,0(3=n ,所以 0233=-=⋅λn PQ ,32=λ,从而)4,4,0(P .于是,将四面体ADPQ 视为ADQ ∆为底面的三棱锥ADQ P -,其高4=h ,故四面体ADPQ 的体积 24466213131=⨯⨯⨯⨯=⋅=∆PM S V ADQ .20. 解:(Ⅰ) 由1C y x 4:2=知其焦点F 的坐标为〔0,1〕,因为F 也是椭圆2C 的一个焦点,所以 122=-b a 〔1〕又1C 与2C 的公共弦长为62,1C 与2C 都关于y 轴对称,且1C 的方程为y x 42=,由此易知1C 与2C 的公共点坐标为)23,6(±,所以164922=+ba 〔2〕 联立〔1〕〔2〕得8,922==b a ,故2C 的方程为18922=+x y . (Ⅱ)如图,设),(11y x A ,),(22y x B ,),(33y x C ,),(44y x D .(i )因AC 与BD 同向,且||||BD AC =,所以 BD AC =,从而 2413x x x x -=-,即4321x x x x -=-,于是43243212214)(4)(x x x x x x x x -+=-+. 〔3〕 设直线l 的斜率为k ,则l 的方程为1+=kx y .由⎩⎨⎧=+=y x kx y 4,12 得0442=--kx x ,而21,x x 是这个方程的两根,所以 4,42121-==+x x k x x 〔4〕 由⎪⎩⎪⎨⎧=++=189,122x y kx y 得06416)89(22=-++kx x k ,而43,x x 是这个方程的两根,所以2212438964,8916k x x k k x x +-=+-=+ 〔5〕 将(4)(5)代入(3)得 22222289644)89(16)1(16k k k k +⨯++=+,即22222)89()1(916)1(16k k k ++⨯=+, 所以 916)89(22⨯=+k ,解得 46±=k ,即直线l 的斜率为46±. (ii )由 y x 42=得 2'xy =,所以1C 在点A 处的切线方程为)(2111x x x y y -=-,即42211x x x y -=,令0=y 得21x x =,即)0,2(1x M ,所以)1,2(1-=xFM ,而)14,(211-=x x FA ,于是014)14(2212121>+=--=⋅x x x FA FM ,因此AFM ∠总是锐角,从而AFM MFD ∠-=∠180是钝角. 故直线l 绕点F 旋转时,MFD ∆总是钝角三角形.21. 解:(Ⅰ))cos sin (cos sin )('x x a e x ex ae x f ax axax +=+=)sin(12ϕ+⋅+=x e a ax ,其中a 1tan =ϕ,20πϕ<<.令 0)('=x f ,由0≥x 得 πϕm x =+,即*,N m m x ∈-=ϕπ. 对N k ∈,若πϕπ)12(2+<+<k x k ,即ϕπϕπ-+<<-)12(2k x k ,则0)('>x f ;若πϕπ)22()12(+<+<+k x k ,即ϕπϕπ-+<<-+)22()12(k x k ,则0)('<x f . 因此,在区间),)1((ϕππ--m m 与),(πϕπm m -上,)('x f 的符号总相反,于是,当*,N m m x ∈-=ϕπ时,)(x f 取得极值,所以*,N n n x n ∈-=ϕπ. 此时,)(1)()1()sin()(ϕπϕπϕπ-+--=-=n a n n a n e n e x f ,易知0)(≠n x f ,且πϕπϕπa n a n n a n n n e ee xf x f -=--=-+-+++)(1])1[(21)1()1()()(是常数,故数列)}({n x f 是首项为ϕϕπsin )()(1-=a e x f ,公比为πa e -的等比数列.(Ⅱ) 由(Ⅰ)知,11sin 2+=a ϕ,于是对一切*N n ∈,|)(|n n x f x <恒成立,即)(211ϕπϕπ-+<-n a e a n 恒成立,等价于)(1)(2ϕπϕπ-<+-n a e a a n a 〔*〕恒成立〔因为a>0〕. 设)0()(>=t t e t g t ,则0)1()('2=-=tt e t g t 得1=t ,当10<<t 时,0)('<t g ,所以)(t g 在)1,0(上单调递减;当1>t 时,0)('>t g ,所以)(t g 在),1(∞+上单调递增.从而当1=t 时,函数)(t g 取得最小值e g =)1(. 因此,要使〔*〕式恒成立,只需e g aa =<+)1(12,即只需112->e a . 而当112-=e a 时,由311tan 2>-==e a ϕ且由20πϕ<<知,23πϕπ<<. 于是1322-<<-e πϕπ,且当2≥n 时,12322->>-≥-e n πϕπϕπ,因此,对一切*N n ∈,112≠--=e n ax n ϕπ,所以aa e g ax g n 1)1()(2+==>,故〔*〕式也恒成立. 综上所述,若112-≥e a ,则对一切*N n ∈,|)(|n n xf x <恒成立.。

2015年全国各地高考数学试题湖南理

2015年全国各地高考数学试题湖南理

2015年全国各地高考数学试题(湖南卷)数学(理科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知-=1+i z2(1i )(i 为虚数单位),则复数z =( )A.1i +B.1i -C.-1i +D. -1i -答案:D解析:2(1)22(1)1.112i i i z i i i ---+====--++ 2.设,A B 是两个集合,则“AB A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C解析:{}|,A B x x A x B A ⋂=∈∈=且,得A B ⊆,反之,当A B ⊆时,A B A ⋂=,故为充要条件。

3.执行如图1所示的程序框图.如果输入3n =,则输出的S =( )A.67B.37C.89D.49答案:B解析:执行程序框图,进入循环后,的值依次为:123,2;,3;,4;357S i S i S i ======退出循环,输出37S =。

4.若变量,x y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.7-B. 1-C.1D.2答案:A解析:作出可行域,为图中三角形ABC 内部(包括边界),平行直线30x y -=,过点(2,1)A -,取最小值-7。

5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A.奇函数,且在()0,1上是增函数B.奇函数,且在()0,1上是减函数C.偶函数,且在()0,1上是增函数D.偶函数,且在()0,1上是减函数答案:A解析:函数的定义域为(1,1)-,()ln(1)ln(1)()f x x x f x -=--+=-,故函数()f x 为奇函数,当01x <<时,'11()011f x x x=+>+-,故函数()f x 在(0,1)上是增函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岳阳市2015届高考信息卷(理数)
时量:120分钟 满分:150分
一、选择题(本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项符合题目要求的). 1. 已知全集U =R ,集合{|2,R}x A y y x ==∈,{}|2B x x =≥,则下图中阴影部分所
表示的集合为( C )
A .Æ B. {0,1} C. (0,2) D. (,2)-∞
2. 若复数z 满足()12i z i +=-,则z i +=( B )
A.
12
B.2
C.2
3. 用辗转相除法求294和84的最大公约数,则所求 最大公约数为 ( B ) A. 21 B. 42 C.84 D.168
4. 若某几何体的三视图如图所示,则此几何体的直观图是( A )
5. 已知等比数列{}n a 的各项均为正数,对k *
∈N ,5k k a a a +=,1015k k a a b ++=,则
1520k k a a ++=
( B )
A .2b a B
C
.a D
6. 在ABC ∆中,若2
||AC AB AC ⋅> ,则有( D )
A .||||AC BC >u u u r u u u r
B .||||B
C AC > C .||||AC AB >
D .||||AB BC >
7. 设命题2:R,210p x ax x ∃∈-+<,则命题p 为假命题的一个充分不必要条件是( B )
(第4题图)
A B
C
D
A. a ≥1
B. a >1
C. a ≤1
D. a <2
8. 已知定义在R 的函数()f x 满足:①()()f x f x -=;②(2)()f x f x -=;
③12,[0,1]x x "?(12x x ¹),
2121
()()
0f x f x x x ->-.则( C )
A .函数()f x 的图像关于直线1
2
x =对称
B .函数()f x 的图像关关于点1
(,0)
2
对称
C .函数(1)f x +在区间[]2013,2014内单调递增
D .函数(1)f x +的最小正周期为1
9.
已知双曲线22
221x y a b
-=的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线分别
交双曲线的左,右两支于点B ,C ,且2||||BC CF =,则双曲线的渐近线方程为( C ) A .3y x =±
B
.y =± C
.1)y x =± D
.1)y x =±
10. 设函数22,0()log ,0
x x f x x x ⎧≤⎪
=⎨>⎪⎩,若对任意给定的(2,)y ∈+∞,都存在唯一的x R ∈,满足
22(())2f f x a y ay =+,则正实数a 的最小值是( A )
A.
14 B.1
2
C.2
D.4
二、填空题(本大题共6小题,考生作答5小题,每小题5分,满分25分,把答案填在答题卡中对应题号后的横线上.)
(一)选做题(11~13题,考生只能从中选做二题,三题都做记前两题的得分) 11. 如图,已知AB 是⊙O 的一条弦,AC 是⊙O 的直径,点
为延长线上一点,且PC 为
⊙O 的一条切线,若
AO =,2PB =,则PC P
A
12. 已知在直角坐标系xOy 中,曲线C 的参数方程为cos (2sin x y θ
θθ=⎧⎨=⎩
为参数),点P 在曲线C 上,
以Ox 为极轴建立极坐标系,点Q 的极坐标为2
,)π
,则P ,Q 两点距离的最大值为
13. (二)必做题(14. 15. ;

16. }n x .已知
,x y y ⎫⎬⎭

17)A 满足(Ⅰ)求
5分 (Ⅱ)∵分 18.”,事件T 为“取得C 盒,最后从C 盒中任E ξ.
43
1
,此时B 盒C 盒中有2红2非B 盒中取一非红球放入A 盒,
②考虑2=ξ的情形,首先A 盒中必须取一个非红球放入B 盒,相应概率为3
2
,此时B 盒中有1红3非红;若从B 盒中取一红球放入C 盒,相应概率为4
1
,则C 盒中有2红2非红,从C 盒中只能取一个红球放入A 盒,相应概率为2
1
;若从B 盒中取一非红球放入C 盒,相应概率为4
3
,则C 盒中有1红3非红,从C 盒中只能取一个红球放入A 盒,相应概率为
4
1. 故245
4143214132)2(=
⎥⎦⎤⎢⎣⎡⨯+⨯⨯=
=ξP . ③12
7
2452451)1(=
--==ξP . ∴ξ的分布列为
ξ的数学期望1
24
5212712450=⨯+⨯+⨯
=ξE . …………………………12分
19.(本题满分12分)
如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为平行四边形,1AB =,BC =45ABC ∠= ,点E 在PC 上,AE PC ⊥. (Ⅰ)证明:平面AEB ⊥平面PCD ; (Ⅱ)若二面角B AE D --的大小为150
,求异面直线PD 与AB 所成角的大小.

⊥平面
………………………6分
(Ⅱ)如图,
设平面的一个法向量为,∵,
成角为
所成角的大小为
……………………………12分
)
某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这
.为了获得
更多的利润,企业将每月获得的利润再投入到次月的经营中.
利润率为
(Ⅱ)求该企业经销此产品期间,哪一个月的当月利润率最大,并求出该月的当月利润率.
【解析】
………………………3分
……………………8分
当且仅当,即时,有最大值为
最大值为
即该企业经销此产品期间,第40个月的当月利润率最大,其当月利润率为

21. (本小题满分13分)
的焦点为,点,线段
物线上. 设动直抛物线相切于点
(Ⅲ)在坐标平面上是否存在定使得过
明理由.
【解析】
标为,代入方程得,解得
……………………2分
(Ⅱ)由(Ⅰ)得抛物线的方程从而抛物线的准线方程为


.
(或法二:,:
. ………………8分
(Ⅲ)假设平面内存在定点足条件,由抛物线对称性知点
∴.
∴平面上存在定点,使得圆恒过点
……………………13分
由(Ⅱ)



∴平面上存在定点,使得圆恒过点
……………………13分
22. (
的取值范围;
(Ⅲ)设函数,. 过点作函数
.
【解析】
…4分
(Ⅱ)令,要使总成立,只时
.
……………………8分
它们交点的横坐标也关称成对出现,方
1007
因此数列的所有项的和.
……………………13分。

相关文档
最新文档