初中数学竞赛:奇数与偶数
奇数与偶数的性质与判断总结
奇数与偶数的性质与判断总结奇数和偶数是数学中的基本概念,它们在数学运算、问题解决以及日常生活中都有着重要的作用。
本文将总结奇数和偶数的性质,并介绍如何判断一个数是奇数还是偶数。
1. 奇数的性质:奇数是自然数中不可被2整除的数。
奇数的特点包括:- 奇数可以用2n+1的形式表示,其中n为整数。
- 任何奇数的个位数字都是1、3、5、7或9。
- 两个奇数相加等于偶数,两个奇数相乘等于奇数。
- 奇数与偶数相乘得到的结果是偶数。
2. 偶数的性质:偶数是自然数中能被2整除的数。
偶数的特点包括:- 偶数可以用2n的形式表示,其中n为整数。
- 任何偶数的个位数字都是0、2、4、6或8。
- 两个偶数相加等于偶数,两个偶数相乘等于偶数。
- 奇数与偶数相乘得到的结果是偶数。
3. 如何判断奇数和偶数:判断一个数是奇数还是偶数有多种方法,以下是常用的两种方法:- 余数法:将一个数除以2,如果余数为0,则该数为偶数;如果余数为1,则该数为奇数。
- 数字特性法:判断一个数的个位数字,如果是1、3、5、7或9,则该数为奇数;如果是0、2、4、6或8,则该数为偶数。
4. 奇数与偶数在实际问题中的应用:奇数和偶数在日常生活中经常被用于问题的解决,以下是一些例子:- 分工问题:如果有偶数个任务需要分配给一群人,可以确保每个人分到相同数量的任务,而如果任务数为奇数,就会有一个人少分到一个任务。
- 计数问题:通过统计奇数和偶数出现的次数,可以得到一些有用的信息,如统计考试成绩中奇数分数和偶数分数的平均分,从而了解成绩的分布情况。
- 数字游戏:一些数字游戏中,奇数和偶数被用于规则制定,如猜数字游戏中提示猜测的数字是奇数还是偶数。
综上所述,奇数和偶数在数学中具有一系列的性质和判断方法。
准确理解奇数和偶数的特点对于数学运算、问题解决和日常生活都具有重要意义。
通过这篇文章的总结,读者能够更好地掌握奇数和偶数的性质,并能够准确判断一个数是奇数还是偶数。
初中数学竞赛整数的性质及应用(一) 奇数与偶数
整数的性质及应用(一) 奇数与偶数全体整数可以分为两大类,一类是奇数,一类是偶数。
任何一个整数不是偶数就是奇数,奇数和偶数,有以下几条性质:一、性质1:任何奇数不可能与偶数相等。
性质2:奇数±奇数=偶数 偶数±偶数=偶数 奇数±偶数=奇数性质3:奇数X 奇数=奇数 奇数X 偶数=偶数 偶数X 偶数=偶数性质4:整数a 的a n 幂与a 的奇偶性相同 性质5:两个连续整数的积是偶数。
二、例题:例1.设4个正整数之和为9,求证:它们的立方和不可能为100例2.若n 是大于1的整数,那么数2)1(12)1(n n n p ---+=的值一定是偶数?一定是奇数?还是可以是偶数也可以是奇数。
例3.是否有满足x 2-y 2=1986的整数解x 和y?例4.平面上有15个点,任意三点不共线,试问能不能从每个点都引三条线段,且仅引三条线段和其余的某三点相连?证明你的结论。
例5.设有n 盏亮着的灯,规定每次拉动n-1个拉线开关,试问:能否将所有的灯都关闭?证明你的结论。
例6.用15个由4个小方格组成的L 字形纸片和1个田字形纸片,能否盖满1个8X8的方格棋盘 例7.设a 1,a 2,…,a n 是一组数,它们中的每一个数都取1或-1,而且013221=+++a a a a a a n ,证明:n 必是4的倍数。
例8. 在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?例9 设a ,b 是自然数,且满足关系式(11111+a)(11111-b)=123456789.求证:a-b 是4的倍数. 例10 某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数.*例11.是否存在整数m,n,使得5m 2-6mn+7n 2=1987*例12.设正整数d 不等于2,5,13,证明从数2,5,13,d 中可以找到两个数a,b,使得ab-1不是整数的平方。
数的奇数与偶数知识点总结
数的奇数与偶数知识点总结数学中,我们经常遇到奇数与偶数的概念。
奇数指不能被2整除的整数,例如1、3、5等;而偶数指可以被2整除的整数,例如2、4、6等。
本文将对数的奇数与偶数进行知识点总结。
一、奇数的特点1. 奇数可以用数学表达式2n+1来表示,其中n为任意整数。
这个表达式保证了奇数必定是整数。
2. 奇数与奇数相加、相减,结果仍为奇数。
示例:奇数+奇数=偶数+1=奇数奇数-奇数=奇数-奇数=0=偶数3. 奇数与偶数相加、相减,结果为奇数。
示例:奇数+偶数=奇数+偶数=奇数奇数-偶数=奇数-偶数=奇数4. 奇数乘以奇数,结果仍为奇数示例:奇数*奇数=奇数*奇数=奇数二、偶数的特点1. 偶数可以用数学表达式2n来表示,其中n为任意整数。
这个表达式保证了偶数必定是整数。
2. 偶数与偶数相加、相减,结果仍为偶数。
示例:偶数+偶数=偶数+偶数=偶数偶数-偶数=偶数-偶数=0=偶数3. 偶数与奇数相加、相减,结果为奇数。
示例:偶数+奇数=偶数+奇数=奇数偶数-奇数=偶数-奇数=偶数4. 偶数乘以偶数,结果仍为偶数。
示例:偶数*偶数=偶数*偶数=偶数三、奇数与偶数的应用1. 奇数与偶数的判定:一个数除以2,余数为0时,为偶数;余数为1时,为奇数。
2. 奇数与偶数的乘积:任意奇数与任意偶数相乘,结果为偶数。
3. 奇数与偶数的除法:任意偶数除以任意奇数,结果为非整数。
因为奇数不能整除偶数。
4. 序列中的奇数与偶数:在自然数的序列中,每隔一个数就会出现奇数和偶数的交替。
四、数的奇偶性的实际应用1. 计算机编程:在计算机编程中,奇偶数的概念应用广泛,可以用来进行一些判断和运算。
2. 统计学:在统计学中,奇偶数可以用来进行数据的分组和分析。
3. 数论:在数论中,对奇数和偶数的研究有着重要的意义,例如素数的奇偶性质等。
综上所述,本文总结了数的奇数与偶数的特点及其应用。
通过对奇数和偶数的研究,我们可以更好地理解数学中的各种概念和运算规律。
初中数学拔尖材料07奇数与偶数性质及其应用
初中数学拔尖材料07 奇数与偶数性质及其应用在整数中,能被2整除的数叫做偶数,如:0,2±,4±,…;不能被2整除的数叫做奇数,如:1±,3±,5±,….通常偶数用2k 表示,奇数用21k +或21k -表示,这里k 是整数.在整数分析中,奇偶分析也是一把十分锋利的剑....,用好此剑,尽显智慧. 一、奇数和偶数的性质1.奇偶性:一个数是奇数就不能是偶数,是偶数就不能再是奇数.一个数是偶数还是奇数,是这个数自身的属性,此称为奇偶性.2.运算性质:(这些必须熟悉,并能运用自如)①奇数+奇数=偶数;偶数+偶数=偶数;奇数+偶数=奇数.②+++=奇数个奇数奇数奇数奇数;+++=偶数个奇数奇数奇数偶数.③奇数-奇数=偶数;偶数-偶数=偶数;奇数-偶数=奇数;偶数-奇数=奇数. ④奇数×奇数=奇数;偶数×偶数=偶数;奇数×偶数=偶数.⑤若a b 、是整数,则a b +与a b -有相同的奇偶性.(* 特别有用)⑥两个连续的整数中,必有一个是奇数另一个是偶数;三个连续的整数中,至少有一个奇数和一个偶数.3.奇偶分析:上述性质看似浅显,若能巧妙运用,可解决一些看上去很难下手的问题.这种利用奇、偶数的性质解题的方法叫做奇偶分析.二、典型例题例1.能不能将1010写成10个连续自然数之和?如果能,把它写出来;如果不能,说明理由.(例如75可写成10各连续自然数之和为:75=3+4+5+6+7+8+9+10+11+12)加强练习:小明买了一本共96页的练习本,并依次将它的各面编号(即由第一面一直编到第192面).小亮从该练习本中撕下某25页纸,并将写在它们上面的50个编号相加.试问:小亮所加的和数能否为2014?例2.如果先任意写三个自然数,然后擦去任意一个,换上未擦去的两个数的和减1,这样连续多次后,变成了199,2003,2014这三个数.那么,原来最先写的三个自然数都能是偶数吗?都能是奇数吗?加强练习2013个球无论多少人采用什么样的分法,最终每人都分得奇数个球的总人数不能是偶数,为什么?例3.元旦前同学们相互写信祝贺新年,如果每人只要接到对方来信就一定回信,那么写了奇数封信的学生人数是奇数个还是偶数个?加强练习如果两人每通一次电话,每人都记通话一次.问:通话次数是奇数的那些人的总数是奇数还是偶数?并说明理由.例4.在8个房间中,有7个房间开着灯,1个房间关着灯.如果每次同时拨动4个房间开关,能不能把全部房间的灯关上?为什么?加强练习有九只杯口向上的杯子放在桌上,每次将其中四只杯同时“翻转”,使其杯口向下,能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?例5.80个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边的两个数的和,这一行的最左边的几个数是这样的:0,1,3,8,21,…,最右边的一个数是奇数还是偶数?加强练习一次数学考试,某班学生共得48247分.试说明,这次考试得奇数分的总人数不能是偶数,为什么?例6.试题50道,规定答对一题得3分,不答得1分,答错扣1分,阅卷的结果,所有的学生的得分数都是偶数,这是偶然的吗?为什么?加强练习某校数学竞赛,共有20道填空题,评分标准是每做对一道题得5分,做错一道题倒扣3分,某题没做,该题得0分,结果小英得了69分,那么小英有多少道题没做?例7.某班49个同学,坐成7行7列(在数学里,习惯于把横排叫“行”竖排叫“列”)。
数学奇数和偶数
数学奇数和偶数在数学中,奇数和偶数是基本的数学概念。
奇数指的是不能被2整除的整数,而偶数指的是可以被2整除的整数。
在本文中,我们将探讨奇数和偶数的特性以及它们在数学中的应用。
一、奇数和偶数的定义奇数是指除以2的余数为1的整数,偶数是指除以2的余数为0的整数。
奇数和偶数是自然数的两个重要的分类。
二、奇数和偶数的性质1. 奇数加奇数:两个奇数相加,结果为偶数。
例如,3 + 5 = 8。
2. 偶数加偶数:两个偶数相加,结果为偶数。
例如,2 + 4 = 6。
3. 奇数加偶数:一个奇数与一个偶数相加,结果为奇数。
例如,3 +4 = 7。
4. 奇数乘奇数:两个奇数相乘,结果为奇数。
例如,3 × 5 = 15。
5. 偶数乘偶数:两个偶数相乘,结果为偶数。
例如,2 × 4 = 8。
6. 奇数乘偶数:一个奇数与一个偶数相乘,结果为偶数。
例如,3 ×4 = 12。
7. 奇数的平方:奇数的平方仍为奇数。
例如,3² = 9。
8. 偶数的平方:偶数的平方仍为偶数。
例如,2² = 4。
三、奇数和偶数的应用奇数和偶数在数学中具有广泛的应用,以下是其中几个例子:1. 质数分类:质数是只能被1和自身整除的正整数。
奇数可以是质数,如3、5、7,而偶数只有2是质数。
2. 奇偶校验:在计算机科学中,奇偶校验是一种错误检测方法。
通过判断二进制数中1的个数是奇数还是偶数,可以检测出数据传输中的错误。
3. 数字游戏:奇偶数在数字游戏中常被应用。
例如,石头剪刀布游戏中,奇数可以代表石头,偶数可以代表布。
4. 排列组合:奇数和偶数的排列组合具有特定的性质。
根据排列组合的原理,奇数个奇数的排列组合结果为奇数个;偶数个奇数的排列组合结果为偶数个。
五、结论奇数和偶数在数学中具有重要的地位,它们有着各自独特的特性和应用场景。
深入理解奇数和偶数的性质,可以帮助我们更好地应用数学知识。
无论是在计算机科学还是日常生活中,奇数和偶数都扮演着重要的角色。
数的奇数与偶数
数的奇数与偶数数学中的数可以分为奇数和偶数两种类型。
在这篇文章中,我们将探讨奇数和偶数的定义、性质以及它们在数学和日常生活中的应用。
一、定义与特性奇数是不能被2整除的自然数,可以用2n+1的形式表示,其中n 为任意整数。
相反,偶数是可以被2整除的自然数,可以用2n的形式表示,其中n为任意整数。
1. 奇数的特性:- 任意奇数加上一个偶数,结果为奇数。
- 任意奇数加上一个奇数,结果为偶数。
- 任意奇数乘以一个奇数,结果为奇数。
- 任意奇数乘以一个偶数,结果为偶数。
2. 偶数的特性:- 任意偶数加上一个偶数,结果为偶数。
- 任意偶数加上一个奇数,结果为奇数。
- 任意偶数乘以一个奇数,结果为偶数。
- 任意偶数乘以一个偶数,结果为偶数。
二、数的分类奇数和偶数的分类对于解决许多问题具有重要意义。
例如,在计算几何中,我们可以根据点、线和面的个数来判断图形的性质。
如果一个几何图形上有奇数个点,我们可以推断该图形是封闭的;而如果有偶数个点,它则是非封闭的。
在代数中,奇数和偶数也被广泛应用。
在方程的求解中,我们可以利用奇数和偶数的性质来简化计算过程。
例如,当我们需要解方程2x+1=5时,我们可以观察到等号两边的常数项都是奇数,因此x的值必定是偶数。
三、奇数和偶数在日常生活中的应用奇数和偶数的应用不仅仅局限于数学领域,它们在我们的日常生活中也起到重要的作用。
1. 时间和日期:我们使用的时间系统是以奇数和偶数为基础的。
例如,一小时可以分为两个半小时,这里的半小时是偶数。
同样,一个星期有七天,是一个奇数。
2. 聚会和座位:在举办聚会或安排座位时,奇数和偶数也是重要的考虑因素。
如果我们要邀请一组人用餐,往往需要准备奇数个座位,以便让每个人坐下并保持均衡。
3. 游戏和抽奖:奇数和偶数也经常在游戏和抽奖中发挥作用。
例如,轮流比赛时,我们通常会用抛硬币的方式来决定谁先开始,硬币的正反面就是奇数和偶数的体现。
四、结语奇数和偶数是数学中基本的概念,其定义和特性对于我们的数学理解和应用至关重要。
奇数与偶数知识点总结
奇数与偶数知识点总结一、基本概念1. 奇数:指除以2余数为1的整数,例如1、3、5、7、9等。
2. 偶数:指除以2余数为0的整数,例如0、2、4、6、8等。
二、数学性质1. 奇数与奇数相加的结果仍为奇数,如1+3=4。
2. 偶数与偶数相加的结果仍为偶数,如2+4=6。
3. 奇数与偶数相加的结果为奇数,如1+2=3。
4. 奇数与偶数相乘的结果为偶数,如1*2=2。
5. 奇数的平方为奇数,如3²=9。
6. 偶数的平方为偶数,如4²=16。
三、数轴表示1. 在数轴上,奇数通常位于偶数的两侧,如-5、-3、-1、1、3、5。
2. 奇数与偶数之间相隔一个单位,如-4、-2、0、2、4。
四、质数与合数1. 质数:指除了1和本身之外没有其他因数的自然数,例如2、3、5、7。
2. 合数:指除了1和本身之外还有其他因数的自然数,例如4、6、8、9。
3. 奇数中既有质数又有合数,如3、5、7是奇数的质数,而9、15、21是奇数的合数。
4. 偶数中只有2是质数,其他偶数均为合数。
五、数学运算1. 奇数与奇数相乘的结果仍为奇数,如3*3=9。
2. 偶数与奇数相乘的结果为偶数,如2*3=6。
3. 奇数与偶数相除的结果通常为小数,如3/2=1.5。
4. 0为偶数,可以整除任何偶数。
六、奇偶性质1. 奇数的个位数必为1、3、5、7、9。
2. 偶数的个位数必为0、2、4、6、8。
3. 一个数除以10的余数来判断奇偶性,如果余数为0、2、4、6、8,则该数为偶数;如果余数为1、3、5、7、9,则该数为奇数。
七、数学推理1. 两个奇数相加,结果是偶数,如3+5=8。
2. 两个偶数相加,结果是偶数,如8+2=10。
3. 一个奇数和一个偶数相加,结果是奇数,如3+2=5。
4. 两个奇数相乘,结果是奇数,如3*5=15。
5. 一个奇数和一个偶数相乘,结果是偶数,如3*2=6。
八、现实生活中的应用1. 时间:我们通常将24小时的时间分为偶数和奇数,上午和下午各12小时,这是最基本的奇偶时间划分。
初中数学重点梳理:奇数和偶数
奇数和偶数知识定位奇数和偶数是初等数论中的一个重要内容,由于数论内涵丰富,因此数论问题灵活而富于变化,解答整除问题往往需要较强的分析能力与具备一定的数学素养。
正因为如此,奇数和偶数的有关问题常常是各层次数学竞赛的主要题源之一。
在处理有关奇数偶数问题时,除了要求会熟练地运用某些常用的方法外,更重要的是要善于分析,要学会抓问题的本质特征。
本节介绍一些常见题型和基本解题思想和技巧的方法来提高学生的解题能力,是完全必要的,也是比较符合中学生的认知规律的,本文主要介绍一些适合初中学生解答的奇数和偶数除问题。
知识梳理1、奇数偶数的性质整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数。
关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇偶性;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.m 的奇偶性相同(6)设m、n是整数,则m土n,n(7)设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法例题精讲【试题来源】“希望杯”邀请赛试题【题目】三个质数之和为86,那么这三个质数是【答案】(2,5,79)、(2,11,73)、(2,13,71)、(2,17,67)、(2,23,61)、(2,31,53)、(2,37,47)、(2,41,43)【解析】解:若三个质数都是奇数,则它们的和是奇数,则不等于86,所以三个数中必有一个偶数,偶数中只有2是质数,所以86-2=84,84=5+79=11+73=13+71=17+67=23+61=31+53=37+47=41+43,所以这三个质数是:(2,5,79)、(2,11,73)、(2,13,71)、(2,17,67)、(2,23,61)、(2,31,53)、(2,37,47)、(2,41,43)【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】3【试题来源】2001年TI杯全国初中数学竞赛题【题目】如果a、b、c是三个任意的整数,那么222accbba+++、、【答案】至少会有一个整数【解析】解:至少会有一个整数.根据整数的奇偶性:两个整数相加除以2可以判定三种情况:奇数+偶数=奇数,如果除以2,不等于整数.奇数+奇数=偶数,如果除以2,等于整数.偶数+偶数=偶数,如果除以2,等于整数.故讨论a,b,c 的四种情况:全是奇数:则a+b除以2,b+c除以2,c+a除以2 全是整数全是偶数:则a+b除以2,b+c除以2,c+a除以2 全是整数一奇两偶:则a+b除以2,b+c除以2,c+a除以2 一个整数一偶两奇:则a+b除以2,b+c除以2,c+a除以2 一个整数∴综上所述,所以至少会有一个整数【知识点】奇数和偶数数【适用场合】当堂练习【难度系数】4【试题来源】【题目】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?【答案】这不可能【解析】解:这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和7,是奇数,因此,不可能【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】3【试题来源】【题目】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?【答案】奇数【解析】解:两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数; 因此,所求代数和为奇数【知识点】奇数和偶数数【适用场合】当堂练习题【难度系数】3【试题来源】【题目】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论【答案】正确的【解析】 解:这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】3【试题来源】【题目】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由【答案】正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上【解析】 解:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动:第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上【知识点】奇数和偶数数【适用场合】当堂练习题【难度系数】4【试题来源】【题目】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的【答案】这6个数中至少有两个是相同的【解析】 解:设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值. 于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同. 所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】5【试题来源】【题目】已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定【答案】A【解析】 解:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .【知识点】奇数和偶数数【适用场合】当堂练习题【难度系数】3【试题来源】【题目】游戏机的“方块”中共有下面7种图形.每种“方块”都由4个l×l 的小方格组成.现用这7种图形拼成一个7×4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?【答案】要拼成7×4的长方形,最多可以用这7种图形方块中的6种【解析】解:用其中的六种不同的图形方块可以拼成7×4的长方形,如图①仅出示一种.下面证明不能7种图形方块各有一次,将7×4的长方形的28个小方格黑白相间染色.则如图②所示,黑白格各14个,若7×4的长方形能用7个不同的方块拼成,则每个方块用到一次且只用一次,其中“品字形”如图③必占3个黑格,1个白格或3个白格1个黑格,其余6个方块各占2个黑格2个白格,7个不同的方块占据的黑格总数,白格总数都是奇数个,不会等于14.矛盾,因此不存在7种图形方块每个各用一次,拼成7×4的长方形的方法.所以,要拼成7×4的长方形,最多可以用这7种图形方块中的6种.【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】5【试题来源】【题目】已知x1、x2、x3、…、x n都是+1或﹣1,并且,求证:n是4的倍数【答案】如下解析【解析】证明:,,…不是1就是﹣1,设这n个数中有a个1,b个﹣1,则a+b=n,a×1+b×(﹣1)=a﹣b=0,所以得:n=2b,又(•…)=1,即1a•(﹣1)b=1,由此得b为偶数,又b=2m,∴n=2b=4m,故n是4的倍数【知识点】奇数和偶数数【适用场合】当堂练习题【难度系数】4【试题来源】【题目】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)(a2﹣2)(a9﹣9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003【答案】如下解析【解析】解:(1)用反证法.假设(a1﹣1)(a2﹣2)…(a9﹣9)为奇数,则a1﹣1,a2﹣2,…,a9﹣9都为奇数,则a1,a3,a5,a7,a9为偶数,a2,a4,a6,a8为奇数,而1﹣9是5个奇数、4个偶数,奇偶数矛盾,因此假设不成立.(2)∵11,22,33,44,54,…20022002,20032003,与1,2,3,4,5,…2002,2003的奇偶性相同,∴在11,22,33,44,54,…20022002,20032003的任意数前加“+”或“﹣”的奇偶性与在1,2,3,4,5,…2002,2003的任意数前加“+”或“﹣”的奇偶性相同,∵两个整数的和与差的奇偶性相同,且1+2+3+4+5+…+2003=2003×(2003+1)÷2=2003×1002是偶数,∴这个代数式的和应为偶数,即这个代数式的和必定不等于2003.【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】5【试题来源】【题目】对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?【答案】经过9次操作变为1的数有55个【解析】解:通过1次操作变为1的数为2,再经过一次操作变为2的数为4、1,即通过两次操作变为1的数为4、1,再经过1次操作变为4的数有两个为3、8、2,即通过3次操作变为1的数有两个为3,8,…,经过1、2、3、4、5…次操作变为1的数依次为1、2、3、5、8…,这即为斐波拉契数列,后面的数依次为:13+8=21,21+13=34,34+21=55.即经过9次操作变为1的数有55个【知识点】奇数和偶数数【适用场合】当堂例题【难度系数】4习题演练【试题来源】【题目】(1)是否有满足方程x2﹣y2=1998的整数解x和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?【答案】如下解析【解析】解:(1)x2﹣y2=1998,1998=2×3×3×3×37若x,y同为偶数,则(x+y),(x﹣y)同为偶数,→(x+y)(x﹣y)=4×…不合若x,y同为奇数,则(x+y),(x﹣y)同为偶数,→(x+y)(x﹣y)=4×…不合若x,y一奇一偶,则(x+y),(x﹣y)同为奇数,→(x+y)(x﹣y)=不含因数2∴方程x2﹣y2=1998没有整数解.9992﹣9982=(999+998)(999﹣998)=1997×1=199710002﹣9992=(1000+999)(1000﹣999)=1999×1=19991997lt;1998lt;1999,∴方程x2﹣y2=1998没有整数解(2)所标的14个数的和能否为0.则有7个+1,7个﹣1.但可以知道,1个面有5个数,无论怎么放,都只有2或4个﹣1.所以不可能出现7个﹣1.故:所标的14个数的和不能为0.【知识点】奇数和偶数数【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】若按奇偶性分类,则12+22+32+…+20022002是数【答案】奇数【解析】解:12,22,32,…,20022002,与1,2,3,••,2002的奇偶性相同,因此在12,22,32,…,20022002,前面放上“+”号,这些数的和的奇偶性与1+2+3+…+2002的奇偶性相同.而1+2+3+…+2002=×2002×(2002+1)=1001×2003是奇数,因而12+22+32+…+20022002是奇数【知识点】奇数和偶数数【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有名选手参加【答案】45【解析】解:设共有n个选手参加比赛,每个选手都要与(n﹣1)个选手比赛一局,共计n (n﹣1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为局.由于每局共计2分,所以全部选手得分总共为=n(n﹣1)分.显然(n﹣1)与n为相邻的自然数,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,∴总分只能是1980,∴由n(n﹣1)=1980,得n2﹣n﹣1980=0,解得n1=45,n2=﹣44(舍去).∴参加比赛的选手共有45人.【知识点】奇数和偶数数【适用场合】随堂课后练习【难度系数】4【试题来源】【题目】π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1﹣a2)(a3﹣a4)…(a23﹣a24)为()A.奇数B.偶数C.奇数或偶数D.质数【答案】B【解析】解:在这24个数字中,有13个奇数,11个偶数,随意地逐个抽取1个数字,假设恰好a1,a2,…a24一奇一偶排列,则必然有两个奇数相连,设是a23,a24,则(a1﹣a2)、(a3﹣a4)、(a5﹣a6)…为奇数,而(a23﹣a24)为偶数,由此可得(a1﹣a2)(a3﹣a4)…(a23﹣a24)为偶数,除此之外无论两个偶数或奇数相连,必然保证其中的一个因式为偶数,其积一定为偶数;【知识点】奇数和偶数数【适用场合】随堂课后练习【难度系数】41。
初一奥数数学竞赛第十五讲 奇数与偶数
初一奥数数学竞赛第十五讲奇数与偶数通常我们所说的“单数”、“双数”,也就是奇数和偶数,即±1,±3,±5,…是奇数,0,±2,±4,±6,…是偶数.用整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数.通常奇数可以表示为2k+1(或2k-1)的形式,其中k为整数,偶数可以表示为2k的形式,其中k是整数.奇数和偶数有以下基本性质:性质1奇数≠偶数.性质2奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数.性质3奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.性质4奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数.性质5若干个奇数的乘积是奇数,偶数与整数的乘积是偶数.性质6如果若干个整数的乘积是奇数,那么其中每一个因子都是奇数;如果若干个整数的乘积是偶数,那么其中至少有一个因子是偶数.性质7如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数一定是一奇一偶.性质8两个整数的和与差的奇偶性相同.性质9 奇数的平方除以8余1,偶数的平方是4的倍数.性质1至性质6的证明是很容易的,下面我们给出性质7至性质9的证明.性质7的证明设两个整数的和是偶数,如果这两个整数为一奇一偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数.同理两个整数的和(或差)是奇数时,这两个数一定是一奇一偶.性质8的证明设两个整数为X,y.因为(x+y)+(x-y)=2x为偶数,由性质7便知,x+y与x-y同奇偶.性质9的证明若x是奇数,设x=2k+1,其中k为整数,于是x2=(2k+1)2=4k3+4k+1=4k(k+1)+1.因为k与k+1是两个连续的整数,它们必定一奇一偶,从而它们的乘积是偶数.于是,x2除以8余1.若y是偶数,设y=2t,其中t为整数,于是y2=(2t)2=4t2所以,y2是4的倍数.例1在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?解由性质8知,这最后运算所得的奇偶性同1+2+3+…+1998=999×1999的奇偶性是相同的,即为奇数.例2设1,2,3,…,9的任一排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是一个偶数.证法1因为(a1-1)+(a2-2)+(a3-3)+…+(a9-9)=(a1+a2+...+a9)-(1+2+ (9)=0是偶数,所以,(a1-1),(a2-2),…,(a9-9)这9个数中必定有一个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4矛盾),从而由性质5知(a1-1)(a2-2)…(a9-9)是偶数.证法2由于1,2,…,9中只有4个偶数,所以a1,a3,a5,a7,a9中至少有一个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9至少有一个是偶数,从而(a1-1)(a2-2)…(a9-9)是偶数.例3有n个数x1,x2,…,x n,它们中的每一个数或者为1,或者为-1.如果x1x2+x2x3+…+x n-1x n+x n x1=0,求证:n是4的倍数.证我们先证明n=2k为偶数,再证k也是偶数.由于x1,x2,…,x n。
偶数与奇数知识点
偶数与奇数知识点整数是数学中最基本的概念之一,而其中的奇数与偶数更是我们日常生活中常常遇到的概念。
简单来说,奇数是指不能被2整除的整数,而偶数则是可以被2整除的整数。
在本文中,我们将探讨奇数与偶数的一些基本知识点。
1. 奇数与偶数的定义在数学中,奇数与偶数是针对整数的性质进行划分的。
一个整数是奇数,当且仅当它不能被2整除;一个整数是偶数,当且仅当它可以被2整除。
2. 奇数与偶数的性质(1)奇数加奇数等于偶数:两个奇数相加的结果一定是偶数。
例如,3 + 5 = 8。
(2)奇数加偶数等于奇数:一个奇数与一个偶数相加的结果一定是奇数。
例如,3 + 4 = 7。
(3)偶数加偶数等于偶数:两个偶数相加的结果一定是偶数。
例如,4 + 6 = 10。
(4)奇数乘奇数等于奇数:两个奇数相乘的结果一定是奇数。
例如,3 × 5 = 15。
(5)奇数乘偶数等于偶数:一个奇数与一个偶数相乘的结果一定是偶数。
例如,3 × 4 = 12。
(6)偶数乘偶数等于偶数:两个偶数相乘的结果一定是偶数。
例如,4 × 6 = 24。
3. 奇数与偶数的应用奇数与偶数的概念在数学中有许多应用。
(1)在整数除法中,一个整数被2整除的余数为0,则该数是偶数;余数为1,则该数是奇数。
(2)在排列组合中,奇数个元素与奇数个元素的组合结果为奇数个;偶数个元素与偶数个元素的组合结果为偶数个。
(3)在数论中,素数指的是只能被1和自身整除的正整数。
奇数中除了数字1以外,只有素数能够满足这个条件。
4. 奇数与偶数的应用实例(1)在日常生活中,我们常常使用奇偶校验位来检测或纠正信息传输中的错误。
通过在数据中增加一个奇偶校验位,可以验证传输过程中是否有误。
(2)在计算机科学中,奇偶校验位也常用于校验存储器和通信设备中的数据是否正确。
总结:奇数与偶数是整数中的基本概念,根据能否被2整除来进行划分。
它们具有一些特殊的性质,在数学的不同领域中有广泛的应用。
奇数与偶数(初中数学竞赛教案)
课题:数的整除性、质数和合数的复习与奇偶分析授课时间:2006-10-22一、本课知识点和能力目标1.知识点:①数的整除性、质数与合数的复习;②奇数与偶数.2.能力目标:通过典型例题的分析,提高学生的逻辑思维能力,培养学生的分析、解决问题的能力.二、数学思想与方法分类与讨论、转化与化归、反证法.三、本次授课节次及内容安排第1课时:数的整除性、质数与合数的复习.第2课时:奇数与偶数.第3课时:典型例题剖析.第4课时:课堂反馈.四.课外延伸、思维拓展第一课时【知识要点】1.整数的整除性复习;2.质数与合数的复习.【经典例题】例1 (第六届“汉江杯”数学竞赛)三个质数p、q、r满足p+q=r,且1<p<q,求p的值.解:∵p+q=r,p、q,r均为质数,∴r必为奇数,从而p、q中必有一个为2.又∵1<p<q,∴p=2.例2 设n是大于1的正整数,求证:n4+4是合数.证我们只需把n4+4写成两个大于1的整数的乘积即可.n4+4=n4+4n2+4-4n2=(n2+2)2-4n2=(n2-2n+2)(n2+2n+2),因为n2+2n+2>n2-2n+2=(n-1)2+1>1,所以n4+4是合数.例3a、b是整数,求证:a b-、ab中,至少有一个是3的倍数.+、a b证明若a、b中有一个数是3的倍数,则显然ab显然是3的倍数;若a、b被3除余1或余2,则a b-是3的倍数;若a、b被3除的余数不同,则a b+是3的倍数.【尝试练习】1.在自然数1,2,3,…,100中,能被2整除,但不能被3整除的数的个数是( B )A.33;B.34;C.35;D.36.提示:在1,2,3,…,100中,能被2整除的有50个,能被2整除,且能被3整除的有16个,故能被2整除,但不能被3整除的数的个数为34个。
2.若2001是两个质数的和,则这两个质数的乘积是 3998 .3.(第5届希望杯·94)已知199219931994199319941995N =⨯⨯+⨯⨯199419951996199519961997+⨯⨯+⨯⨯,则N 的末位数字是 4 .(提示:第一项的末位数字是4,其他三项的末位数字都是0)4.若a 是正整数,证明:(1)1a a ++不是完全平方数.证明:由于两个连续的正整数的平方数之间,不存在完全平方数. 而22(1)1(1)a a a a <++<+,故(1)1a a ++不是完全平方数.第二课时【知识要点】在整数中能被2整除的数叫做偶数,通常用2k 表示;不能被2整除的数叫做奇数,通常用21k +(或21k -)表示。
初中数学《奇数与偶数》讲义及练习
本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k+1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶模块一、奇数偶数基本概念及基本加减法运算性质【例 1】 1231993++++……的和是奇数还是偶数?【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【巩固】2930318788+++++……得数是奇数还是偶数? 【解析】 偶数。
原式中共有60个连续自然数,奇数开头偶数结尾说明有30个奇数,为偶数个。
【巩固】 (200201202288151152153233++++-++++……)(……)得数是奇数还是偶数?【解析】 200至288共89个数,其中偶数比奇数多1,44个奇数的和是偶数;151至233共83个数,奇数比偶数多1,42个奇数,为偶数;偶数减去偶数仍为偶数。
5-1-1_奇数与偶数.题库学生版.doc
35-1奇数与偶数教学目标本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算”,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
知识点拨一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b与a-b同奇或同偶例题精讲模块一、奇数偶数基本概念及基本加减法运算性质【例 1】的和是奇数还是偶数?【巩固】得数是奇数还是偶数?【巩固】得数是奇数还是偶数?【例 1】的计算结果是奇数还是偶数,为什么?【巩固】的和是奇数还是偶数?为什么?【巩固】东东在做算术题时,写出了如下一个等式:,他做得对吗?【例2】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由⑴1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10⑵1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27【例3】能否从四个3,三个5,两个7中选出5个数,使这5个数的和等于22.【巩固】能否从四个6,三个10,两个14中选出5个数,使这5个数的和等于44.【例4】一个自然数数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?【巩固】一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?【例5】多米诺骨牌是由塑料制成的1×2长方形,共28张,每张牌上的两个1×1正方形中刻有“点”,点的个数分别为0,1,2,…,6个不等,其中7张牌两端的点数一样,即两个0,两个1,…,两个6;其余21张牌两端的点数不一样,所谓连牌规则是指:每相邻两张牌必须有一端的点数相同,且以点数相同的端相连,例如:现将一付多米诺骨牌按连牌规则连成一条链,如果在链的一端为6点,那么在链的另一端为多少点?并简述你的理由.【巩固】一条线段上分布着n个点,这些点的颜色不是黑的就是白的,它们将线段分为n+1段,已知线段两端的两个点都是黑的,而中间的每一个点的两边各有一黑一白.那么白点的数目是奇数还是偶数?模块二、奇偶运算性质综合及代数分析法【例 6】是否存在自然数a和b,使得ab(a+b)=115?【巩固】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?【巩固】a、b、c三个数的和与它们的积的和为奇数,问这三个数中最多可以有几个奇数?【例7】已知a,b,c中有一个是511,一个是622,一个是793。
系列2奇数与偶数
整理ppt
3
二.例题分析:
例1. 在1,2,3, …,2006每一个数前任意添 加一个正号或负号,他们的代数和是奇数还 是偶数?
拓展:你能在1,2,3…,2006前添加正号和负 号,使其代数和等于1吗?等于0吗?还能等于 其他的值吗?试一试?
(1)如果这41名运动员任意站成一排,是否 存在任意相邻的两位运动员的号码数之和 都是质数?
(2)能否让这41名运动员站成一个圆圈, 使得任意相邻的两位运动员的号码数之 和也都是质数?
整理ppt
9
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理ppt
4
2.设a,b,c中有两个奇 数,一个偶数,试说明 (a+1)(b+2)(c+3)一定 为偶数.
整理ppt
5
3.在黑板上写上1,2,…,2006,
只要黑板上还有两个或两个
以上的数就擦去其中的任意
两个数a,b,并写上|a-b|,问
最后黑板上剩下的数是奇数
还是偶数?
整理ppt
6
4.某校七年级5个班
奇数与偶数
数学竞赛系列1
整2.奇数和偶数有哪些性质: (1).加乘法则:
+\- 奇 偶 奇 偶奇 偶 奇偶
× 奇偶 奇 奇偶 偶 偶偶
整理ppt
2
2.奇数和偶数有哪些性质:
(2)奇数≠偶数 奇数+偶数≠0 (3)两个整数的和与差的奇偶性有何关系? (4)整数a与|a|奇偶性有什么关系?
的足球队参加比赛,
能否安排出,使每个
初中数学竞赛:奇数与偶数
例2.求证:任意奇数的平方减去1是8的倍数
证明:设k为整数,那么2k-1是任意奇数, (2k-1)2-1=4k2-4k+1-1=4k(k-1)
∵k(k-1)是两个連续整数的积,必是偶数 ∴4k(k-1)是8的倍数
即任意奇数的平方减去1是8的倍数
例3.已知:有n个整数它们的积等于n,和等 于0
求证:n是4的倍数
证明:设n个整数为x1,x2,x3,…xn 根据题意得
如果n为正奇数,由方程(1)可知 x1,x2,x3,…xn都只能是奇数,而奇数个奇数 的和必是奇数,这不适合方程(2)右边的 0,所以n一定是偶数;
当n为正偶数时,方程(1)左边的 x1,x2,x3,…xn中,至少有一个是偶数,而 要满足方程(2)右边的0,左边的奇数必 湏是偶数个,偶数至少有2个。
整数按奇数,偶数分为两类,3个整数中必有 两个同是奇数或同偶数,故它们的和是偶数
9.试说明方程2x+10y=77是偶数,x.y不论取什么整 数,都是偶数,而右边是奇数,等式不能成 立
10.求证:两个連续奇数的平方差能被8整除 • (2n+1)2-(2n-1)2=8n
所以n是4的倍数。
例4己知:a,b,c都是奇数
求证:方程ax2+bx+c=0没有整数解
证明:设方程的有整数解x,若它是奇数, 这时方程左边的ax2,bx,c都是奇数,而 右边0是偶数,故不能成立;
若方程的整数解x是偶数,那么ax2,bx,都 是偶数,c是奇数,所以左边仍然是奇数,不 可能等于0。
两个連续整数的和是奇数,积是偶数。
例1.如果|m,n|是质数,且满足3m+5n=-1那么m+n 的值等于(第18届江苏省竞赛题) 【解密】从m,n的奇偶性入手 【解】若m,n均为奇数,则3m,5n均为数,∴3m+5n 为偶数,不合题意故m必有一个数为奇数,另一个 数为偶数.又|m|,|n|是质数,则有两种情况:(1) 若|m|=2,则m=2或-2.当m=2时,3×2+5n=-1. 则,|n| 不为质数,不合题意;当m=-2时,3×(2)+5n=-1.则n=1,n|不为质数,不合题意 (2)若,|n| =2,则=2或一2当n=2时,3m+5×2=1.1m不为质数,不合题意当n=-2时,3m+5×(-2)=1.则m=3,|ml为质数,合乎题意练上所述,m=3,n=2,故m+n=3+(2)=1
初中数学培优竞赛讲座第25讲--奇数、偶数与奇偶分析
第二十五讲 奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m 、n 是整数,则m 土n ,n m ±的奇偶性相同. 5.设m 是整数,则m 与m ,m n 的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】 三个质数之和为86,那么这三个质数是 . (“希望杯”邀请赛试题) 思路点拨 运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注: 18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】 如果a 、b 、c 是三个任意的整数,那么222a c c b b a +++、、( ). A .都不是整数 B .至少有两个整数 C .至少有一个整数 D .都是整数(2001年TI 杯全国初中数学竞赛题)思路点拨 举例验证或从a 、b 、c 的奇偶性说明.【例3】 (1)设1,2,3,…,9的任一排列为a l ,a 2,a 3…,a 9.求证:(a l l 一1)( a 2 —2)…(a 9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可. 因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上. 理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动:第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上.注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个 奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的. 注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数? 如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】(苏州市中考题)将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】(2000年山东省竞赛题)如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】(第江苏省竞赛题)已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填入“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定(第16届江苏省竞赛题)7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 . 10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .(全国初中数学联赛试题)11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ;q = .(第15届“希望杯”邀请赛试题)13.设a ,b 为整数,给出下列4个结论:(1)若a+5b 是偶数,则a 一3b 是偶数; (2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数; (4)若a+5b 是奇数,则a 一3b 是奇数其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .3 ( “五羊杯”竞赛题)15.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a 1,a 2,…a 24,则(a 1一a 2)( a 3一a 4)…(a 23一a 24)为( ).A .奇数B .偶数C .奇数或偶数D .质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.(太原市竞赛题)18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?( “华杯赛”决赛题) 19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.(汉城国际数学竞赛题)参考答案。
初一偶数和奇数知识点归纳总结
初一偶数和奇数知识点归纳总结初中数学中,偶数和奇数是一个基本的概念,是数学学习的重要内容。
掌握好偶数和奇数的性质以及计算方法,对于提高数学能力、解题能力都至关重要。
本文将对初一学生所需掌握的偶数和奇数知识点进行归纳总结。
一、偶数和奇数的定义1. 偶数:能够被2整除的数称为偶数。
偶数的特点是个位数字为0、2、4、6、8,即末尾是0、2、4、6、8的数。
例如:2、4、6、8、10等。
2. 奇数:除以2有余数的数称为奇数。
奇数的特点是个位数字为1、3、5、7、9,即末尾是1、3、5、7、9的数。
例如:1、3、5、7、9等。
二、偶数和奇数的性质1. 加法性质:偶数和偶数相加得偶数,奇数和奇数相加得偶数,偶数和奇数相加得奇数。
例如:偶数2+偶数4=偶数6,奇数3+奇数5=偶数8,偶数2+奇数3=奇数5。
2. 乘法性质:偶数和任何数相乘得偶数,奇数和奇数相乘得奇数,偶数和奇数相乘得偶数。
例如:偶数2×任意数=偶数,奇数3×奇数5=奇数15,偶数2×奇数3=偶数6。
3. 除法性质:偶数除以偶数得整数,奇数除以奇数得整数,偶数除以奇数得分数。
例如:偶数6÷偶数2=整数3,奇数15÷奇数5=整数3,偶数6÷奇数3=分数2。
三、偶数和奇数的运算规律1. 偶数和偶数相加、相减,结果仍为偶数。
例如:偶数2+偶数4=偶数6,偶数8-偶数4=偶数4。
2. 奇数和奇数相加、相减,结果仍为偶数。
例如:奇数3+奇数5=偶数8,奇数9-奇数5=偶数4。
3. 偶数和奇数相加、相减,结果为奇数。
例如:偶数2+奇数3=奇数5,偶数10-奇数3=奇数7。
四、偶数和奇数在图形中的应用1. 偶数和奇数在阵列图中:在阵列图中,偶数个单位正方形可以完整排列,而奇数个单位正方形最中间会多出一个单位正方形。
例如:偶数个单位正方形(4个)可以排列成一个边长为2的正方形阵列;奇数个单位正方形(5个)则可以排列成一个中间有1个单位正方形的正方形阵列。
数学竞赛中的数论问题(习题部分)
数学竞赛中的数论问题第二部分 数论题的范例讲解主要讲几个重要类型:奇数与偶数,约数与倍数(素数与合数),平方数,整除,同余,不定方程,数论函数等.重点是通过典型范例来分析解题思路、提炼解题方法和巩固基本内容.一、奇数与偶数整数按照能否被2整除可以分为两类,一类余数为0,称为偶数,一类余数为1,称为奇数.偶数可以表示为2n ,奇数可以表示为21n -或21n +.一般地,整数被正整数m 去除,按照余数可以分为m 类,称为模m 的剩余类(){}mod i C x x i m =≡,从每类中各取出一个元素i i a C ∈,可得模m 的完全剩余系(剩余类派出的一个代表团),0,1,2,,1m -称为模m 的非负最小完全剩余系.通过数字奇偶性质的分析而获得解题重大进展的技巧,常称作奇偶分析,这种技巧与分类、染色、数字化都有联系,在数学竞赛中有广泛的应用. 关于奇数和偶数,有下面的简单性质:(1)奇数≠偶数.(2)偶数的个位上是0、2、4、6、8;奇数的个位上是1、3、5、7、9. (3)奇数与偶数是相间排列的;两个连续整数中必是一个奇数一个偶数;. (4)奇数个奇数的和是奇数;偶数个奇数的和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和是偶数.(5)除2外所有的正偶数均为合数;(6)相邻偶数的最大公约数为2,最小公倍数为它们乘积的一半. (7)偶数乘以任何整数的积为偶数.(8)两数和与两数差有相同的奇偶性,()mod2a b a b +≡-. (9)乘积为奇数的充分必要条件是各个因数为奇数. (10)n 个偶数的积是2n的倍数.(11)()11k-=的充分必要条件是k 为偶数,()11k-=-的充分必要条件是k 为奇数.(12)()()()()()()22220mod 4,211mod 4,211mod8n n n ≡-≡-≡. (13)任何整数都可以表示为()221mn k =-.……例1 (1906,匈牙利)假设12,,,n a a a 是1,2,,n 的某种排列,证明:如果n 是奇数,则乘积()()()1212n a a a n ---是偶数.类似题:例1-1(1986,英国)设127,,,a a a 是整数,127,,,b b b 是它们的一个排列,证明()()()112277a b a b a b ---是偶数.(127,,,a a a 中奇数与偶数个数不等)例1-2 π的前24位数字为 3.14159265358979323846264π=,记1224,,,a a a 为该24个数字的任一排列,求证()()()12342324a a a a a a ---必为偶数.(暗藏3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4中奇数与偶数个数不等)例2 能否从1,2,,15中选出10个数填入图的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所得的14个差恰好为1,2,,14?例3 有一大筐苹果和梨分成若干堆,如果你一定可以找到这样的两堆,其苹果数之和与梨数之和都是偶数,问最少要把这些苹果和梨分成几堆?例4 有n 个数121,,,,n n x x x x -,它们中的每一个要么是1,要么是1-.若1223110n n n x x x x x x x x -+++++=,求证4|n .例5 n 个整数121,,,,n n a a a a -,其积为n ,其和为0,试证4|n .例6 在数轴上给定两点1内任取n 个点,在此2n +个点中,每相邻两点连一线段,可得1n +条互不重叠的线段,证明在此1n +条线段中,以一个有理点和一个无理点为端点的线段恰有奇数条.二、约数与倍数最大公约数与最小公倍数的求法. (1)短除法.(2)分解质因数法.设1212,0,1,2,,k k i a p p p i k αααα=≥=, 1212,0,1,2,,k k i b p p p i k ββββ=≥=.记 {}{}min ,,max ,i i i i i i γαβδαβ==, 则 ()1212,k k a b p p p γγγ=, []1212,k k a b p p p δδδ=.(3)辗转相除法()()()()()121,,,,,0n n n n a b b r r r r r r r -======.例7 (1)求()8381,1015,[]8381,1015; (2)()144,180,108,[]144,180,108.例8 正整数n 分别除以2,3,4,5,6,7,8,9,10得到的余数依次为1,2,3,4,5,6,7,8,9,则n 的最小值为 ..例9 有两个容器,一个容量为27升,一个容量为15升,如何利用它们从一桶油中倒出6升油来?例10 对每一个2n ≥,求证存在n 个互不相同的正整数12,,,n a a a ,使i j i j a a a a -+,对任意的{},1,2,,,i j n i j ∈≠成立.例11 ()111959,IMO -证明对任意正整数n ,分数214143n n ++不可约.例12 不存在这样的多项式 ()1110mm m m f n a n a na n a --=++++,使得对任意的正整数n ,()f n 都是素数. .三、平方数若a 是整数,则2a 就叫做a 的完全平方数,简称平方数. 1.平方数的简单性质(1)平方数的个位数只有6个:0,1,4,5.6.9.(2)平方数的末两位数只有22个:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.(3)()()()()2220mod 4,211mod 4n n ≡-≡. (4)()()2211mod8n -≡.(6)凡是不能被3整除的数,平方后被3除余1.(7)在两个相邻整数的平方数之间,不能再有平方数. (8)非零平方数的约数有奇数个.(9)直角三角形的三边均为整数时,我们把满足222a b c +=的整数(),,a b c 叫做勾股数.勾股数的公式为2222,2,,a m n b mn c m n ⎧=-⎪=⎨⎪=+⎩其中,m n 为正整数,(),1m n =且,m n 一奇一偶.这个公式可给出全部素勾股数.2.平方数的证明方法 (1)反证法. (2)恒等变形法.(3)分解法.设a 为平方数,且a bc =,(),1b c =,则,b c 均为平方数. (4)约数法.证明该数有奇数个约数. 3.非平方数的判别方法(1)若()221n x n <<+,则x 不是平方数.(2)约数有偶数个的数不是平方数.(3)个位数为2,3,7,8的数不是平方数. (4)同余法:满足下式的数n 都不是平方数.()2mod3n ≡, ()23mod4n ≡或, ()23mod5n ≡或,()23567mod8n ≡或或或或,()2378mod10n ≡或或或.(5)末两位数不是:00,01,21,41,61,81,04,24,44,64,84,25,16,36,56,76,96,09,29,49,69,89.如个位数与十位数都是都是奇数的数, 个位数是6、而十位数是偶数的数.例13 有100盏电灯,排成一横行,从左到右,我们给电灯编上号码1,2,…,99,100.每盏灯由一个拉线开关控制着.最初,电灯全是关着的.另外有100个学生,第一个学生走过来,把凡是号码为1的倍数的电灯的开关拉了一下;接着第2个学生走过来,把凡是号码为2的倍数的电灯的开关拉了一下;第3个学生走过来,把凡是号码为3的倍数的电灯的开关拉了一下,如此等等,最后那个学生走过来,把编号能被100整除的电灯的开关拉了一下,这样过去之后,问哪些灯是亮的?例14 已知直角三角形的两条直角边分别为正整数,a b ,斜边为正整数c ,若a 为素数,求证()21a b ++为平方数.例15 求证,任意3个连续正整数的积不是平方数.例16 ()2311986,IMO -设d 是异于2,5,13的任一整数.求证在集合{}2,5,13,d 中可以找到两个不同元素,a b ,使得1ab -不是完全平方数.例17 (296IMO -)设,a b 为正整数,1ab +整除22a b +.证明221a b ab ++是完全平方数.四.整除整除的判别方法主要有7大类.1.定义法.证b a a bq ⇔=,有三种方式. (1)假设a qb r =+,然后证明0r =.(定理4) (2)具体找出q ,满足a bq =. (3)论证q 的存在.例18 任意一个正整数m 与它的十进制表示中的所有数码之差能被9整除.2.数的整除判别法. ()1011010mod3n n a a a a a a -++⨯+≡++++, ()1011010mod9n n a a a a a a -++⨯+≡++++如果一个整数的末三位数与末三位数以前的数字所组成的数的差能被7或11或或13整除. 1210a a a()13132101001n n a a a a a a a -⨯--,()13210132101001n n n a a a a a a a a a a a --⇔⨯-,1113⨯,而7,11,13均为素数知,m 能被7或11或13)如果一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被)mod11,有()()()()11101110101010111mod11.n n n n nn n n a a a a a a a a ----⨯+⨯++⨯+≡-+-++-+3.分解法.主要用乘法公式.如()()123221n n n n n n n a b a b a a b a b ab b ------=-+++++.()()212122232422322n n n n n n n a b a b a a b a b ab b -------+=+-+--+.()()2221222322221n n n n n n n a b a b a a b a b ab b ------=+-+-+-.例19 试证()()555129129++++++.例20 ()2111979,IMO -设p 与q 为正整数,满足111112313181319p q =-+--+, 求证p 可被1979整除(1979p )例20-1 2009年9月9日的年、月、日组成“长长久久、永不分离”的吉祥数字20090909,而它也恰好是一个不能再分解的素数.若规定含素因子20090909的数为吉祥数,请证明最简分数111220090908m n =+++的分子m 是吉祥数.4. 余数分类法.例21 试证()()3121n n n ++.例22 k个连续整数中必有一个能被k整除.例23 k个连续整数之积必能被!k整除.n≥),若顺序相邻的3人中恰有一例24 有男孩、女孩共n个围坐在一个圆周上(3-.个男孩的有a组,顺序相邻的3人中恰有一个女孩的有b组,求证3a b例25 (1956,中国北京)证明3231122n n n ++-对任何正整数n 都是整数,并且用3除时余2.五、同余根据定义,同余问题可以转化为整除问题来解决;同时,同余本身有很多性质,可以直接用来解题.例26 正方体的顶点标上1+或1-,面上标上一个数,它等于这个面四个顶点处的数的乘积,求证,这样得出的14个数之和不能为0..例27 设多项式()n n n na x a xa x a x f ++++=--1110 的系数都是整数,并且有一个奇数α及一个偶数β使得()αf 及()βf 都是奇数,求证方程()0=x f 没有整数根.六、不定方程未知数的个数多于方程个数的整系数代数方程,称为不定方程.求不定方程的整数解,叫做解不定方程. 解不定方程通常要解决3个问题,方程是否有解?有解时,有几个解,解数是有限还是无穷?求出全部解.例28 解方程719213x y +=.例29 求方程3222009x x y +=的整数解.例30 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,…直到有一方队员全被淘汰为止,另一方获得胜利,形成一种比赛过程,那么所有可能出现的比赛过程的种数为 .(1988,高中联赛)例31(1989,高中)如果从数1,2,…,14中按由小到大的顺序取出123,,a a a ,使同时满足21323, 3a a a a -≥-≥, 那么,所有符合上述要求的不同取法有多少种?七.数论函数主要是[]x 高斯函数,()n ϕ欧拉函数.例32 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数)可以表示为(A)10x y ⎡⎤=⎢⎥⎣⎦ (B)310x y +⎡⎤=⎢⎥⎣⎦ (C) 410x y +⎡⎤=⎢⎥⎣⎦ (D)510x y +⎡⎤=⎢⎥⎣⎦ (2010年全国高考数学陕西卷理科第10题)例33 用[]x 表示不大于x 的最大整数,求122004366366366366⎡⎤⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦.例34 50!的标准分解式中2的指数.八、综合练习例35 整数勾股形中,证明(1)必有一条直角边长是3的倍数; (2)必有一条直角边长是4的倍数; (3)必有一条边长是5的倍数; (4)三角形的面积是6的倍数.例36 已知ABC 内有n 个点,连同,,A B C 共有3n +个点,以这些点为顶点,把ABC 分割为若干个互不重叠的小三角形,现把,,A B C 分别染上红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一,证明三顶点都不同色的小三角形的总数必是奇数.(斯潘纳定理)例37 对整点25边形的顶点作三染色,求证,存在一个三顶点同色的三角形,它的重心也是整点.高中数学竞赛训练讲义一、选择题1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ).A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;2、设 ()11x f x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2007f x =( ). A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 3、设α为锐角,xy 2sin cos sin cos z αααα=+,则,,x y z 的大小顺序为( ). A 、x y z ≥≥; B 、 x z y ≥≥; C 、z x y ≥≥; D 、z y x ≥≥;4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.52,则其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π.6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ). A 、119 B 、120; C 、151; D 、154.二、填空题 7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += . 8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MO MF的最大值为 . 9、计算01sin10= . 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .11、把一个长方体切割成k 个四面体,则k 的最小值是 .12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .三、解答题13、数列{}n a 满足:()()111,211nn n na a a n na +==++;令12,k k x a a a =+++12111,1,2,k ky k a a a =+++=;求1nk kk x y=∑.A B CD15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.答案一、选择题(本题满分36分,每小题6分)1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( )A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;答案:C ;解:若a b >,则22222a c b c bc +>+≥,不合条件,排除,A D ,又由()222a c c b c -=-,故a c -与b c -同号,排除B ;且当b a c >>时,222a c bc +=有可能成立,例如取()(),,3,5,1a b c =,故选C . 2、设 ()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2007f x =( )A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 答案:B ;解:()()1121111,11f x f x f x x f x++===---, ()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n x f x f x x x +++==--,()()4341,1n n x f x f x x x +-==+,因2007为43n +型,故选B . 3、设α为锐角,x =y =2sin cos sin cos z αααα=+, 则,,x y z 的大小顺序为( )A 、x y z ≥≥;B 、 x z y ≥≥;C 、z x y ≥≥;D 、z y x ≥≥;答案:A;解:sin cos 1sin cos x y αααα+=≥=+,2sin cos sin cos z y αααα=≤==+,故x y z ≥≥.4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.答案:D ;解:选两色有24C 种,一色选择对角有2种选法,共计24212C =种;选三色有34C 种,其中一色重复有13C 种选法,该色选择对角有2种选法,另两色选位有2种,共计432248⨯⨯⨯=种;四色全用有4!24=种(因,,,A B C D 为固定位置),合计84种.52,则A B CD其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π .答案:A ;解:设底面正方形边长为1,棱锥的高为h ,侧面三角形的高为l ,则AC,2l =,则sin 2h PMH l ∠==,3PMH π∠=. 6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ). A 、119 B 、120; C 、151; D 、154.答案:C ;解:用k A 表示集k A 的元素个数,设1k A n =+,由20071nk =+,得2006n k=,于是172006111917A =+=,59200613559A =+=,175910032006131759A A A ==+=⨯;从而175917591003119353151A A A A A =+-=+-=.二、填空题(本题满分54分,每小题9分)7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += .答案:1010332356+++; 解:据条件,10102,3是关于t 的方程33156x y t t +=++的两个根,即()233560t x y t -+--+=的两个根,所以1010332356x y +=+--;1010332356x y +=+++.8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MOMF的最大值为 . 22y px =,则顶点及焦点坐标为()0,0,,02p O F ⎛⎫ ⎪⎝⎭,若设点M 坐标为(),M x y ,则22222222242MO x y x px p MF p x px x y ++⎛⎫== ⎪⎝⎭⎛⎫++-+ ⎪⎝⎭()222222224313234444x px x px px x px x p xpx ++=≤=+++++,故MO MF ≤(当()(),,M x y p p =或()(),,M x y p p =时取等号)9、计算001sin10cos10-= . 答案:4.解:01sin10=()000000012cos102sin 3010241sin10cos10sin 202⎛⎫ ⎪-⎝⎭==. 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 . 答案:2214536x y+=;解:设直线l 上的点为(),9P t t +,取()13,0F -关于直线l 的对称点()9,6Q -,据椭圆定义,12222a PF PF PQ PF QF =+=+≥= ,当且仅当2,,Q P F 共线,即22PF QF K K =,也即96312t t +=--时,上述不等式取等号,此时5t =-, 点P 坐标为()5,4P -,据3,c a ==得,2245,36a b ==,椭圆的方程为2214536x y +=. 11、把一个长方体切割成k 个四面体,则k 的最小值是 .答案:5;解:据等价性,只须考虑单位正方体的切割情况,先说明4个不够,若为4个,因四面体的面皆为三角形,且互不平行,则正方体的上底至少要切割成两个三角形,下底也至少要切割成两个三角形,每个三角形的面积12≤,且这四个三角形要属于四个不同的四面体,以这种三角形为底的四面体,其高1≤,故四个不同的四面体的体积之和112411323⎛⎫≤⨯⨯⨯=< ⎪⎝⎭,不合; 所以5k ≥,另一方面,可将单位正方体切割成5个四面体; 例如从正方体1111ABCD A BC D -中间挖出一个四面体11A BC D ,剩下四个角上的四面体,合计5个四面体.12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .答案:133113; 解:简称这种数为“好数”,则一位好数有3个;两位好数有3412⨯=个;三1A位好数有23448⨯=个;…,k 位好数有134k -⨯个;1,2,k =,记1134n k n k S -==∑,因562007S S <<,52007984S -=,即第2007个好数为第984个六位好数;而六位好数中,首位为1的共有541024=个,前两位为10,11,12,13的各有44256=个,因此第2007个好数的前两位数为13,且是前两位数为13的第9843256216-⨯=个数;而前三位为130,131,132,133的各64个,则2007a 的前三位为133,且是前三位数为133的第21636424-⨯=个数; 而前四位为1330,1331,1332,1333的各16个,则2007a 的前四位为1331,且是前四位数为1331的第24168-=个数;则2007a 的前五位为13311,且是前五位数为13311的第844-=个数,则2007133113a =.三、解答题(本题满分60分,每小题20分)13、数列{}n a 满足:()()111,211n n n na a a n na +==++;令12,k k x a a a =+++ 12111,1,2,k k y k a a a =+++=;求 1n k k k x y =∑解:改写条件式为()11111n nn a na +-=+,则 ()()()112211111111111122n n n n n na na n a n a n a a a a ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()121n n =-+=+,所以()11n a n n =+,111111111k k k i i i k x a ii k k ==⎛⎫==-=-= ⎪+++⎝⎭∑∑; ()2111111kk k k k i i i i i y i i i i a ======+=+=∑∑∑∑()()()()()121112623k k k k k k k k ++++++=; ()()()()22111121112233236n n k k k k n n n n n x y k k ==+++⎛⎫=+=+⋅ ⎪⎝⎭∑∑()()21311436n n n n +++=.15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.解:称(),,,a b c d 为n 的数码组,则{},,,1,2,,9a b c d M ∈=; 一、当数码组只含一个值,为(),,,,1,2,,9a a a a a =,共得9个n 值;二、当数码组恰含二个值,a b ,()a b >. ()1、数码组为(),,,a a a b 型,则任取三个数码皆可构成三角形,对于每个{}2,,9a ∈,b 可取1a -个值,则数码组个数为()92136a a =-=∑,对于每组(),,,a a a b ,b 有4种占位方式,于是这种n 有364144⨯=个.()2、数码组为(),,,a b b b 型,()a b >,据构成三角形条件,有2b a b <<, M 中a 的个数共得16个数码组,对于每组(),,,a b b b ,a 有4种占位方式,于是这种n 有16464⨯=个.()3、数码组为(),,,a a b b 型,()a b >,据构成三角形条件,有2b a b <<,同上得16个数码组,对于每组(),,,a a b b ,两个a 有246C =种占位方式,于是这种n 有16696⨯=个.以上共计1446496304++=个.三、当数码组恰含三个值,,a b c ,()a b c >>.()1、数码组为(),,,a b c c 型,据构成三角形条件,则有2c b a c <<<,这种(),,,a b c c 有14组,每组中,a b 有2412A =种占位方式,于是这种n 有1412168⨯=个.()2、数码组为(),,,a b b c 型,c b a b c <<<+,此条件等价于{}1,2,,9M =中取三个不同的数构成三角形的方法数,有34组,每组中,a b 有2412A =种占位方式,于是这种n 有3412408⨯=个.()3、数码组为(),,,a a b c 型,c b a b c <<<+,同情况()2,有2434408A =个n 值. 以上共计168408408984++=个n 值.四、,,,a b c d 互不相同,则有d c b a c d <<<<+,这种,,,a b c d 有16组,每组有4!个排⨯=个n值.法,共得164!384+++=个.综上,全部四位三角形数n的个数为93049843841681。
竞赛专题:奇数、偶数及奇偶分析
奇数、偶数及奇偶分析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是_________数.2.能不能在下式的各个方框中分别填入“+”号或“一”号,使等式成立?答:_________.3.已知三个质数a、b、c满足a+b+c+abc=99,那么|a﹣b|+|b﹣c|+|c﹣a|的值等于_________.4.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是_________.5.1,2,3,…,98共98个自然数中,能够表示成两整数的平方差的个数是_________.6.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有_________名选手参加.7.已知p、q、pq+1都是质数,且p﹣q>40,那么满足上述条件的最小质数p=_________,q=_________.8.三个质数之和为86,那么这三个质数是_________.二、选择题(共10小题,每小题3分,满分30分)9.已知n为整数,现有两个代数式:(1)2n+3,(2)4n﹣1,其中,能表示“任意奇数”的()A.只有(1)B.只有(2)C.有(1)和(2)D.一个也没有10.如果a,b,c都是正整数,且a,b是奇数,则3a+(b﹣1)2c是()A.只当c为奇数时,其值为奇数B.只当c为偶数时,其值为奇数C.只当c为3的倍数,其值为奇数D.无论c为任何正楚数,其值均为奇数11.设a,b为整数,给出下列4个结论:(1)若a+5b是偶数,则a﹣3b是偶数;(2)若a+5b是偶数,则a﹣3b是奇数;(3)若a+5b是奇数,则a﹣3b是偶数;(4)若a+5b是奇数,则a﹣3b是奇数,其中结论正确的个数是()A.0个B.2个C.4个D.1个或3个12.下面的图形,共有()个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸)A.0 B.1 C.2 D.313.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1﹣a2)(a3﹣a4)…(a23﹣a24)为()A.奇数B.偶数C.奇数或偶数D.质数14.如a、b、c是三个任意整数,那么、、()A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数15.(2001•荆州)将正偶数按下表排成五列:第1列第2列第3列第4列第5列第1行 2 4 6 8第2行16 14 12 10第3行18 20 22 24………28 26根据上面排列规律,则2000应在()A.第125行第1列B.第125行第2列C.第250行第1列D.第250行第2列16.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a,右图轮子上方的箭头指着的数字为b,数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对的参数为m,则m/n等于()A.B.C.D.17.已知a、b、c中有两个奇数、一个偶数,n是整数,如果S=(a+2n+1)(b+2n+2)(c+2n+3),那么()A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶性不能确定三、解答题(共16小题,满分88分)18.(1)是否有满足方程x2﹣y2=1998的整数解x和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?19.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A作1,J,Q,K分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?20.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?21.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.22.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?23.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.24.(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)(a2﹣2)…(a9﹣9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.25.已知x1、x2、x3、…、x n都是+1或﹣1,并且,求证:n是4的倍数.26.游戏机的“方块”中共有下面7种图形.每种“方块”都由4个l×l的小方格组成.现用这7种图形拼成一个7×4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?27.桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下_________(能或不能)?28.在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数_________?29.“元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.30.桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.31.在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1﹣6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.32.有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?33.黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?新课标七年级数学竞赛培训第25讲:奇数、偶数及奇偶分析参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1.若按奇偶性分类,则12+22+32+…+20022002是奇数.考点:整数的奇偶性问题。
奇数与偶数的认识与判断
奇数与偶数的认识与判断数字是我们日常生活中不可或缺的一部分,而奇数与偶数是数字中最基本的概念之一。
在数学领域,理解奇数与偶数的概念以及正确地判断一个数是奇数还是偶数,对我们的数学学习和应用有着重要的意义。
本文将深入探讨奇数与偶数的定义、特性和判断方法,帮助读者准确理解并运用。
一、奇数与偶数的定义在数学领域,奇数与偶数是自然数的两个基本属性。
根据定义,奇数是不能被2整除的整数,而偶数则可以被2整除的整数。
二、奇数与偶数的特性1. 奇数的特性奇数具有以下特性:- 奇数加奇数仍为偶数- 奇数加偶数仍为奇数- 奇数乘以奇数为奇数- 奇数乘以偶数为偶数- 奇数与任何数相除,商为无限循环小数2. 偶数的特性偶数具有以下特性:- 偶数加偶数仍为偶数- 偶数与任何数相乘,积为偶数- 偶数能够被2整除,即偶数除以2的余数为0- 偶数除以2的商为整数三、奇数与偶数的判断方法判断一个数是奇数还是偶数,我们可以使用以下两种方法:1. 除法判断法通过使用除法判断一个数的奇偶性。
具体步骤如下:- 用待判断的数字除以2- 如果除数能够整除,即余数为0,则该数为偶数- 如果除数不能整除,即余数不为0,则该数为奇数例如,判断数字18的奇偶性:18 ÷ 2 = 9,余数为0,因此18是偶数。
2. 数字特性法通过观察一个数的数字特性进行奇偶判断,具体规律如下:- 奇数的个位数字只能是1、3、5、7、9- 偶数的个位数字只能是0、2、4、6、8例如,判断数字27的奇偶性:27的个位数字为7,因此27是奇数。
通过上述奇偶判断方法,我们可以准确地判断一个数的奇偶性。
四、奇数与偶数的应用奇数和偶数的概念在数学领域有着广泛的应用。
以下是其中一些常见应用:1. 素数与合数判断将奇数和偶数的概念扩展,我们可以判断一个数是素数还是合数。
素数是只能被1和自身整除的数,而合数则可以被其他数整除。
根据定义,除了2以外,所有偶数都是合数。
2. 数字运算与逻辑推理在数学运算和逻辑推理中,奇数与偶数的性质经常被应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛:奇数与偶数
通常我们所说的“单数”、“双数”,也就是奇数和偶数,即±1,±3,±5,…是奇数,0,±2,±4,±6,…是偶数.
用整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数.通常奇数可以表示为2k+1(或2k-1)的形式,其中k为整数,偶数可以表示为2k的形式,其中k 是整数.
奇数和偶数有以下基本性质:
性质1奇数≠偶数.
性质2奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数.
性质3奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.
性质4奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数.性质5若干个奇数的乘积是奇数,偶数与整数的乘积是偶数.
性质6如果若干个整数的乘积是奇数,那么其中每一个因子都是奇数;如果若干个整数的乘积是偶数,那么其中至少有一个因子是偶数.
性质7如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数一定是一奇一偶.
性质8两个整数的和与差的奇偶性相同.
性质9 奇数的平方除以8余1,偶数的平方是4的倍数.
性质1至性质6的证明是很容易的,下面我们给出性质7至性质9的证明.
性质7的证明设两个整数的和是偶数,如果这两个整数为一奇一偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数.
同理两个整数的和(或差)是奇数时,这两个数一定是一奇一偶.
性质8的证明设两个整数为X,y.因为
(x+y)+(x-y)=2x
为偶数,由性质7便知,x+y与x-y同奇偶.
性质9的证明若x是奇数,设x=2k+1,其中k为整数,于是
x2=(2k+1)2=4k3+4k+1=4k(k+1)+1.
因为k与k+1是两个连续的整数,它们必定一奇一偶,从而它们的乘积是偶数.于是,x2除以8余1.
若y是偶数,设y=2t,其中t为整数,于是
y2=(2t)2=4t2
所以,y2是4的倍数.
例1在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?
解由性质8知,这最后运算所得的奇偶性同
1+2+3+…+1998=999×1999
的奇偶性是相同的,即为奇数.
例2设1,2,3,…,9的任一排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是一个偶数.
证法1因为
(a1-1)+(a2-2)+(a3-3)+…+(a9-9)
=(a1+a2+...+a9)-(1+2+ (9)
=0
是偶数,所以,(a1-1),(a2-2),…,(a9-9)这9个数中必定有一个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4矛盾),从而由性质5知
(a1-1)(a2-2)…(a9-9)
是偶数.
证法2由于1,2,…,9中只有4个偶数,所以a1,a3,a5,a7,a9中至少有一个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9至少有一个是偶数,从而(a1-1)(a2-2)…(a9-9)是偶数.
例3有n个数x1,x2,…,x n,它们中的每一个数或者为1,或者为-1.如果
x1x2+x2x3+…+x n-1x n+x n x1=0,
求证:n是4的倍数.
证我们先证明n=2k为偶数,再证k也是偶数.
由于x1,x2,…,x n。
的绝对值都是1,所以,x1x2,x2x3,…,x n x1的绝对值也都是1,即它们或者为+1,或者为-1.设其中有k个-1,由于总和为0,故+1也有k个,从而n=2k.下面我们来考虑(x1x2)·(x2x3)…(x n x1).一方面,有(x1x2)·(x2x3)…(x n x1)=(-1)k,
另一方面,有
(x1x2)·(x2x3)…(x n x1)=(x1x2…x n)2=1.
所以(-1)k=1,故k是偶数,从而n是4的倍数.
例4设a,b是自然数,且满足关系式
(11111+a)(11111-b)=123456789.
求证:a-b是4的倍数.
证由已知条件可得11111+a与11111-b均为奇数,所以a,b均为偶数.又由已知条件11111(a-b)=ab+2468,①
ab是4的倍数,2468=4×617也是4的倍数,所以11111×(a-b)是4的倍数,故a-b 是4的倍数.
例5某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数.
证我们证明每一个学生的得分都是偶数.
设某个学生答对了a道题,答错了b道题,那么还有40-a-b道题没有答.于是此人的得分是
5a+(40-a-b)-b=4a-2b+40,
这是一个偶数.
所以,不论有多少人参赛,全体学生的得分总和一定是偶数.
例6证明15块4×1的矩形骨牌和1块2×2的正方形骨牌不能盖住8×8的正方形.
证将8×8正方形的小方格用黑、白色涂色(如图1-62).每一块4×1骨牌不论怎么铺设都恰好盖住两个白格,因此15块4×1的骨牌能盖住偶数个白格.一块2×2的骨牌只能盖住一个白格或三个白格,总之能盖住奇数个白格.于是15块4×1骨牌和一块2×2骨牌在图上盖住的白格是奇数个.事实上图上的白格数恰为偶数个,故不能盖住8×8的正方形.
【练习】
1.设有101个自然数,记为a1,a2,…,a101.已知a1+2a2+3a3+…+100a100+101a101=s是偶数,求证:a1+a3+a5+…+a99+a101是偶数.
2.设x1,x2,…,x1998都是+1或者-1.求证:
x1+2x2+3x3+…+1998x1998≠0.
3.设x1,x2,…,x n(n>4)为1或-1,并且
x1x2x3x4+x2x3x4x5+…+x n x1x2x3=0.
求证:n是4的倍数.
4.(1)任意重排某一自然数的所有数字,求证:所得数与原数之和不等于99…9(共n 个9,n是奇数);
(2)重排某一数的所有数字,并把所得数与原数相加,求证:如果这个和等于1010,那么原数能被10整除.
5.(1)有n个整数,其和为零,其积为n.求证:n是4的倍数;
(2)设n是4的倍数,求证:可以找到n个整数,其积为n,其和为零.
6.7个杯子杯口朝下放在桌子上,每次翻转4个杯子(杯口朝下的翻为杯口朝上,杯口朝上的翻为杯口朝下),问经过若干次这样的翻动,是否能把全部杯子翻成杯口朝上?
7.能否把1,1,2,2,3,3,4,4,5,5这10个数排成一行,使得两个1中间夹着1个数,两个2之间夹着2个数,…,两个5之间夹着5个数?。