动能和动能定理练习(印)
动能和动能定理练习
动能和动能定理练习一. 选择题:1. 甲乙两物体质量的比m m 1231::=,速度的比v v 1213::=,在相同的阻力作用下逐渐停下,则它们的位移比S S 12:是( B ) A. 1:1B. 1:3C. 3:1D. 4:12. 汽车在平直公路上行驶,关闭发动机继续运动S 1距离后速度由2v 变为v ,再运动S 2距离后速度由v 变为v2,设运动时受到阻力不变,则S S 21:为( D ) A. 1:1B. 1:2C. 1:2D. 1:43. 一子弹以速度v 飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为( C )A. 3块B. 6块C. 9块D. 12块4. 一个恒力F 作用在正在粗糙水平面上运动着的物体上。
如果物体作减速运动,则:( BD )A. F 对物体一定做负功B. F 对物体可能做负功C. F 对物体一定做正功D. F 对物体可能做正功5. 质量不等但有相同动能的两物体,在摩擦系数相同的水平地面上滑行直到停止,则( BD )A. 质量大的物体滑行距离大B. 质量小的物体滑行距离大C. 它们滑行的距离一样大D. 质量大的滑行时间短6. 质量相同的A 、B 两物体,它们的动能4A B k K E E =,从同一个粗糙斜面底端冲上斜面,在上滑到C 点时,它们的动能分别为E k A '和E k B ',如果物体和斜面的摩擦系数相同,则( B )A. E E k k A B ''=4B. E E k k A B ''>4C. E E k k A B ''<4D. 无法确定它们动能的大小关系7. 质量为m 的跳水运动员,从离地面高h 的跳台上以速度v 1斜向上跳起,跳起高度离跳台为H ,最后以速度v 2进入水中,不计空气阻力,则运动员起跳时所做的功( A )A.1212mvB. mgHC. mgH mgh +D.1212mv mgh +8. 某人用手将1kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取102m s /),则下列说法错误的是( BD )A. 手对物体做功12JB. 合外力做功2JC. 合外力做功12JD. 物体克服重力做功10J9. 质量为m 的小球在竖直圆环内运动,轨道半径为R ,通过最高点的最小速度为v ,当小球以速度4v 通过最低点后,经过最高点速度减为2v ,在这过程中小球克服摩擦阻力所做的功是( D )A. mgRB. 2mgRC. 3mgRD. 4mgR10. 在平直公路上,汽车由静止开始作匀加速运动,当速度达到v m 后立即关闭发动机直到停止,v -t 图象如图所示。
人教版高中物理必修第二册同步练习动能和动能定理(含答案)
人教版(2019)物理必修第二册同步练习8.3动能和动能定理一、单选题1.下列对功和动能等关系的理解正确的是( )A.所有外力做功的代数和为负值,物体的动能就减少B.物体的动能保持不变,则该物体所受合外力一定为零C.如果一个物体所受的合外力不为零,则合外力对物体必做功,物体的动能一定要变化D.只要物体克服阻力做功,它的动能就减少2.一个25kg的小孩从高度为3.0m的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0m/s。
取2,g m s10/关于力对小孩做的功,以下结果正确的是( )A.支持力做功50JB.阻力做功500JC.重力做功500JD.合外力做功50J3.质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用,设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为( )A. 14mgR B.13mgR C.12mgR D. mgR4.物体在合外力作用下做直线运动的v t 图象如图所示.下列表述正确的是( )A.在0~1s内,合外力做正功B.在0~2s内,合外力总是做负功C.在1~2s内,合外力不做功D.在0~3s内,合外力总是做正功二、多选题5.一质量为1 kg的质点静止于光滑水平面上,从t=0时起,第1 s内受到2 N的水平外力作用,第2 s内受到同方向的1 N的外力作用。
下列判断正确的是( )A.0~2 s内外力的平均功率是94WB.第2 s内外力所做的功是54JC.第2 s末外力的瞬时功率最大D.第1 s内与第2 s内质点动能增加量的比值是456.人通过滑轮将质量为m 的物体,沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端的速度为v ,如图所示。
则在此过程中( )A.物体所受的合外力做功为212mgh mv + B.物体所受的合外力做功为212mv C.人对物体做的功为mgh D.人对物体做的功大于mgh 三、计算题7.如图所示,质量10m kg =的物体放在水平地面上,物体与地面间的动摩擦因数0.4μ=,g 取102/? m s ,今用50F N =的水平恒力作用于物体上,使物体由静止开始做匀加速直线运动,经时间8t s =后,撤去F .求:1.力所做的功;2.8s 末物体的动能;3.物体从开始运动到最终静止的过程中克服摩擦力所做的功.8.如图所示,粗糙水平轨道AB与半径为R的光滑半圆形轨道BC相切于B点,现有质量为m的小物块(可看做质点)以初速度06v gR,从A点开始向右运动,并进入半圆形轨道,若小物块恰好能到达半圆形轨道的最高点C,最终又落于水平轨道上的A点,重力加速度为g,求:1.小物块落到水平轨道上的A点时速度的大小v A;2.水平轨道与小物块间的动摩擦因数μ。
高中物理动能与动能定理专项训练100(附答案)及解析
高中物理动能与动能定理专项训练 100(附答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量 m=3kg 的小物块以初速度秽v °=4m/s 水平向右抛出,恰好从 A 点沿着 圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为 R= 3.75m , B 点是圆弧轨道的最低点,圆弧轨道与水平轨道 BD 平滑连接,A 与圆心D 的连线与竖直方向成 37角,MN 是一段粗 糙的水平轨道,小物块与 MN 间的动摩擦因数 尸0.1,轨道其他部分光滑。
最右侧是一个 半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道 BD 在D点平滑连接。
已知重力加速度g=10m/s 2, sin37° =0.6, cos37° =0.8。
(1) 求小物块经过 B 点时对轨道的压力大小;(2) 若MN 的长度为L 0=6m ,求小物块通过 C 点时对轨道的压力大小; (3) 若小物块恰好能通过 C 点,求MN 的长度L 。
、丨_ — 一 !丿月MV D【答案】(1) 62N (2) 60N (3) 10m 【解析】 【详解】 (1)物块做平抛运动到 A 点时,根据平抛运动的规律有: V 。
v A cos37解得:v A —V04m / s 5m / scos37 0.8小物块经过A 点运动到B 点,根据机械能守恒定律有:2—mv A mg R Rcos372 小物块经过B 点时,有:F NB mg m V BR根据牛顿第三定律,小物块对轨道的压力大小是62N(2) 小物块由B 点运动到C 点,根据动能定理有:2 在C 点,由牛顿第二定律得:F NC mg m V Cr代入数据解得:F NC 60N 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是 60N解得:F NB mg 3 2cos372m V B 62N RmgL ° mg 2r2mv C2(3)小物块刚好能通过C点时,根据mg m^C2r解得:V c2 gr 10 0.4m /s 2m / s小物块从B点运动到C点的过程,根据动能定理有:mgL mg 2r代入数据解得:L=10m2. 某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v o水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m的光滑竖直圆形轨道,运行一周后自B点向C点运动,C点右侧有一陷阱, C D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L i=1m, BC长为L2 =2.6m ,(1) 若小滑块恰能通过圆形轨道的最高点,求小滑块在A点弹射出的速度大小;⑵若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出, 求小滑块在A点弹射出的速度大小的范围.【答案】(1 (2) 5m/s Wvw 6m/s和V A》.「心【解析】【分析】【详解】(1) 小滑块恰能通过圆轨道最高点的速度为v,由牛顿第二定律及机械能守恒定律11 2 1 2由B到最高点一mv B 2mgR mv2 2j. 1 1 j由 A 到B: - _■ 一 . : * - _ :'解得A点的速度为.- 5・(2) 若小滑块刚好停在C处,^「- -.解得A点的速度为_若小滑块停在BC段,应满足3m/s v A 4m/s1 2若小滑块能通过C点并恰好越过壕沟,则有h 2*s V e t一冲疚£i +Q =解得二.■所以初速度的范围为3m / s v A 4m/ s和v A 5m/ s3. 如图所示,固定的粗糙弧形轨道下端B点水平,上端A 与B点的高度差为h i = 0.3 m ,倾斜传送带与水平方向的夹角为0= 37°传送带的上端C点到B点的高度差为h2= 0.1125m(传送带传动轮的大小可忽略不计).一质量为m = 1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v= 0.5 m/s,滑块与传送带间的动摩擦因数为尸0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g = 10 m/s2,试求:(2) •滑块由A到B运动过程中克服摩擦力做的功W f;(3) .滑块在传送带上运动时与传送带摩擦产生的热量Q.【答案】 (1) 2.5 m/s (2) 1 J (3) 32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
【物理】物理动能与动能定理题20套(带答案)
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
人教版高一物理必修二 7.7动能和动能定理 同步练习(带解析)
14、【答案】(1) (2) (3) ,速度与水平方向的夹角为 ,
【解析】
【分析】
(1)根据小球从最高点摆到最低点,动能定理求出小球运动到最低点时的速度大小;
(2)小球运动到最低点时由重力和绳的拉力的合力提供向心力,由牛顿第二定律求解;
(3)细线断后小球做平抛运动,根据竖直方向运动规律求解竖直分速度,然后速度合成即可;
A.10JB.40JC.50JD.60J
3、如图所示,质量为m可视为质点的小球在光滑的固定竖直圆轨道内侧做圆周运动。已知重力加速度为g,小球在最高点受到轨道弹力的大小为mg。不计空气阻力,则小球在最低点受到轨道弹力的大小为()
A.3mgB.4mg
C.5mgD.7mg
4、有两个物体a和b,其质量分别为 、 ,已知 ,它们的初动能相同。若a和b分别受到不变的阻力 和 作用,经相同时间停下来,它们的位移分别为 和 ,则()
(1) 小物块通过A点时的速度大小;
(2) 恒力F的大小
12、如图所示,粗糙水平地面与半径为R= 0.5m的粗糙半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上。质量为m= 1kg的小物块在水平恒力F= 15N的作用下,由静止开始从A点开始做匀加速直线运动,当小物块运动到B点时撤去F,小物块沿半圆轨道运动恰好能通过D点,已知A、B间的距离为3m,小物块与地面间的动摩擦因数为0.3,重力加速度g= 10m/s2。求:
(1)小物块运动到B点时对圆轨道B点的压力大小;
(2)小物块离开D点后落到地面上的点与B点之间的距离;
(3)小物块从B点到D点的过程中粗糙轨道对其所做的功。
13、如图所示,位于竖直平面内的轨道,由一段斜直轨道AB和光滑半圆形轨道BC平滑连接而成,AB的倾角为 ,半圆形轨道的半径 m,直径BC竖直。质量m=1kg的小物块从斜轨道上距半圆形轨道底部高为h处由静止开始下滑,经B点滑上半圆形轨道.己知物块与斜轨道间的动摩擦因数为 ,g取 m/s2。
物理动能和动能定理经典试题(含答案)
动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg,起飞过程中从静止开始滑跑的路程为s =5。
3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0。
02倍(k =0.02),求飞机受到的牵引力.例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力.(g 取10m/s 2)例3 一质量为0。
3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A 。
Δv=0 B. Δv=12m/s C 。
W=0 D 。
W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A 。
gh v 20+B 。
gh v 20- C. gh v 220+ D 。
gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7—3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θ D 。
Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2—7—4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
7.7《动能和动能定理》人教版高中物理必修二练习(含解析)
7.7《动能和动能定理》同步练习(含答案)一、多选题1.质量为1kg的物体以某一初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的图线如图所示,g取10m/s2,则以下说法中正确的是()A.物体与水平面间的动摩擦因数为0.4B.物体与水平面间的动摩擦因数为0.25C.物体滑行的总时间为4sD.物体滑行的总时间为2.5s2.一个质量为0.3 kg的弹性小球,在光滑水平面上以6 m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv和碰撞过程中墙对小球做功的大小W为()A.Δv=0B.Δv=12 m/s C.W=0D.W=10.8 J3.如右图所示质量为M的小车放在光滑的水平而上,质量为m的物体放在小车的一端.受到水平恒力F作用后,物体由静止开始运动,设小车与物体间的摩擦力为f,车长为L,车发生的位移为S,则物体从小车一端运动到另一端时,下列说法正确的是A .物体具有的动能为(F -f )(S +L )B .小车具有的动能为fSC .物体克服摩擦力所做的功为f (S +L )D .这一过程中小车和物体组成的系统机械能减少了fL4.如图甲所示,质量为0.1 kg 的小球从最低点A 冲入竖直放置在水平地面上、半径为0.4 m 的半圆轨道,小球速度的平方与其高度的关系图象如图乙所示。
已知小球恰能到达最高点C ,轨道粗糙程度处处相同,空气阻力不计。
g 取10 m/s 2,B 为AC 轨道中点。
下列说法正确的是( )A .图乙中x =4 m 2s -2B .小球从B 到C 损失了0.125 J 的机械能C .小球从A 到C 合外力对其做的功为-1.05JD .小球从C 抛出后,落地点到A 的距离为0.8 m5.如图所示,质量为m 的物体在粗糙水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是( )A .传送带克服摩擦力做功为212mvB .摩擦产生的热为212mv C .传送带对物体做功为212mv D .电动机多做的功为212mv二、单选题6.下列说法中,正确的是( )A.一定质量的物体,动能不变,则其速度一定也不变B.一定质量的物体,速度不变,则其动能也不变C.一定质量的物体,动能不变,说明物体运动状态没有改变D.一定质量的物体,动能不变,说明物体所受的合外力一定为零7.从同一高度以相同的速率分别抛出质量相等的三个小球,一个竖直上抛,一个竖直下抛,另一个平抛,则它们从抛出到落地①运行的时间相等①加速度相同①落地时的速度相同①落地时的动能相等,以上说法正确的是A.①①B.①①C.①①D.①①8.有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图所示.如果由于摩擦使木块的运动速率保持不变,则以下叙述正确的是()A.木块所受的合外力为零B.因木块所受的力都不对其做功,所以合外力做的功为零C.重力和摩擦力的合力做的功为零D .重力和摩擦力的合力为零9.在下列几种情况中,甲、乙两物体的动能相等的是( )A .甲的速度是乙的2倍,甲的质量是乙的12B .甲的质量是乙的2倍,甲的速度是乙的12 C .甲的质量是乙的12倍,甲的速度是乙的12D .质量相同,速度大小也相同,但甲向东运动,乙向西运动10.质量为10kg 的物体,在变力F 的作用下沿x 轴做直线运动,力F 随位移x 的变化情况如图所示。
物理动能与动能定理练习题20篇
物理动能与动能定理练习题20篇一、高中物理精讲专题测试动能与动能定理1.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。
游客乘坐的滑草车(两者的总质量为60kg ),从倾角为53θ=︒的光滑直轨道AC 上的B 点由静止开始下滑,到达C 点后进入半径为5m R =,圆心角为53θ=︒的圆弧形光滑轨道CD ,过D 点后滑入倾角为α(α可以在075α︒范围内调节)、动摩擦因数为33μ=的足够长的草地轨道DE 。
已知D 点处有一小段光滑圆弧与其相连,不计滑草车在D 处的能量损失,B 点到C 点的距离为0=10m L ,10m/s g =。
求:(1)滑草车经过轨道D 点时对轨道D 点的压力大小;(2)滑草车第一次沿草地轨道DE 向上滑行的时间与α的关系式;(3)α取不同值时,写出滑草车在斜面上克服摩擦所做的功与tan α的关系式。
【答案】(1)3000N ;(2)3sin cos 32t αα=⎛⎫+ ⎪⎝⎭;(3)见解析 【解析】 【分析】 【详解】(1)根据几何关系可知CD 间的高度差()CD 1cos532m H R =-︒=从B 到D 点,由动能定理得()20CD D 1sin 5302mg L H mv ︒+=-解得D 102m/s v =对D 点,设滑草车受到的支持力D F ,由牛顿第二定律2D D v F mg m R-= 解得D 3000N F =由牛顿第三定律得,滑草车对轨道的压力为3000N 。
(2)滑草车在草地轨道DE 向上运动时,受到的合外力为sin cos F mg mg αμα=+合由牛顿第二定律得,向上运动的加速度大小为sin cos F a g g mαμα==+合因此滑草车第一次在草地轨道DE 向上运动的时间为Dsin cos v t g g αμα=+代入数据解得t =⎝⎭(3)选取小车运动方向为正方向。
①当0α=时,滑草车沿轨道DE 水平向右运动,对全程使用动能定理可得[]01sin (1cos )+=00f mg L R W θθ+--代入数据解得16000J f W =-故当0α=时,滑草车在斜面上克服摩擦力做的功为6000J W =克1②当030α<≤︒时,则sin cos g g αμα≤滑草车在草地轨道DE 向上运动后最终会静止在DE 轨道上,向上运动的距离为2D22(sin cos )v x g g αμα=+摩擦力做功为22cos f W mg x μα=-⋅联立解得2f W =故当030α<≤︒时,滑草车在斜面上克服摩擦力做的功为2W =克③当3075α︒<≤︒时sin cos g g αμα>滑草车在草地轨道DE 向上运动后仍会下滑,若干次来回运动后最终停在D 处。
高考物理动能与动能定理题20套(带答案)含解析
高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。
一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。
已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。
(1)求滑块第一次运动到B 点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A 点。
【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。
(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。
【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。
物理动能与动能定理题20套(带答案)
向上:
,解得
(2)小滑块在最低点时速度为 vC 由机械能牛顿第三定律得:
,方向竖直向
下 (3)从 D 到最低点过程中,设 DB 过程中克服摩擦力做功 W1,由动能定理
h=3R
【点睛】 对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要 知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点 C 水平飞出,恰好击中导 轨上与圆心 O 等高的 P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低 点运用牛顿第二定律求解.
(1).滑块运动至 C 点时的速度 vC 大小; (2).滑块由 A 到 B 运动过程中克服摩擦力做的功 Wf; (3).滑块在传送带上运动时与传送带摩擦产生的热量 Q. 【答案】(1)2.5 m/s (2)1 J (3)32 J 【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
【解析】
【详解】
(1)由 y 5 x2 得:A 点坐标(1.20m,0.80m) 9
由平抛运动规律得:xA=v0t,yA 1 gt 2 2
代入数据,求得 t=0.4s,v0=3m/s; (2)由速度关系,可得 θ=53° 求得 AB、BC 圆弧的半径 R=0.5m OE 过程由动能定理得:
mgyA﹣mgR(1﹣cos53°)
vy 2gR 2100.45 m/s=3m/s
vy tan53° 4
vD
3
所以:vD=2.25m/s
(2)物块在内轨道做圆周运动,在最高点有临界速度,则
mg=m v2 , R
解得:v gR 3 2 m/s 2
物块到达 P 的速度:
vP vD2 vy2 32 2.252 m/s=3.75m/s
动能与动能定理经典习题
动能和动能定理练习题一、选择题1.关于做功和物体动能变化的关系,不正确的是().A.动力对物体做功时,物体的动能增加B.物体克服阻力做功时,它的动能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功6.如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.下列关于一定质量的物体的速度和动能的说法中,正确的是()A.物体的速度发生变化,其动能一定发生变化B.物体的速度保持不变,其动能一定不变C.物体的动能发生变化,其速度一定变化D.物体的动能保持不变,其速度可能变化二、计算题1.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3min内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.2. 一小球从高出地面H米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
高一物理动能、动能定理练习题
动能、动能定理练习1、下列关于动能的说法中,正确的是( )A 、动能的大小由物体的质量和速率决定,与物体的运动方向无关B 、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同C 、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大D 、物体所受的合外力越大,其动能就越大2、一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( ) A 、0 B 、8J C 、16J D 、32J3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( ) A 、质量大的物体滑行距离小 B 、它们滑行的距离一样大C 、质量大的物体滑行时间短D 、它们克服摩擦力所做的功一样多4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min 速度达到10m/s.那么该列车在这段时间内行的距离( )A 、一定大于600mB 、一定小于600mC 、一定等于600mD 、可能等于1200m5、质量为1.0kg 的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s 2)( )A 、物体与水平面间的动摩擦因数为0.30B 、物体与水平面间的动摩擦因数为0.25C 、物体滑行的总时间是2.0sD 、物体滑行的总时间是4.0s6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( )A 、返回斜面底端的动能为EB 、返回斜面底端时的动能为3E/2C 、返回斜面底端的速度大小为2υD 、返回斜面底端的速度大小为2υ7、以初速度v 0急速竖直上抛一个质量为m 的小球,小球运动过程中所受阻力f 大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功( ) A.1202mvB. mghC.1202mv mgh + D. mgh fh +8、如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为 A.12μmgR B.12mgR C. mgR D . ()1-μmgR 9、 质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E 2,则: A 、E 2=E 1 B 、E 2=2E 1 C 、E 2>2E 1D 、E 1<E 2<2E 110.质量为m ,速度为V 的子弹射入木块,能进入S 米。
高中物理动能与动能定理题20套(带答案)
高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
物理动能与动能定理题20套(带答案)
(2)若滑块在 A 点以 v0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ 的取值范围。
【答案】(1) t
3 3
s;(2)
1 32
3 4
或
3
13 16
。
【解析】
【分析】
【详解】
(1)设滑块从点 A 运动到点 B 的过程中,加速度大小为 a ,运动时间为 t ,则由牛顿第二
定律和运动学公式得
(1)当细线与水平杆的夹角为 β( 90 )时,A 的速度为多大?
(2)从开始运动到 A 获得最大速度的过程中,绳拉力对 A 做了多少功?
【答案】(1) vA
2gh 1 cos2
1
sin
1 sin
;(2)WT
mg
h sin
h
【解析】
【详解】
(2)A、B 的系统机械能守恒
EP减 EK加
(1)圆弧轨道的半径 (2)小球滑到 B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是 5m. (2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下. 【解析】
(1)小球由 B 到 D 做平抛运动,有:h= 1 gt2 2
x=vBt
解得: vB x
g 4 2h
10 10m / s 2 0.8
mg sin ma
s 1 at2 2
解得 t 3 s 3
(2)滑块最终停在 B 点,有两种可能:
①滑块恰好能从 A 下滑到 B ,设动摩擦因数为 1 ,由动能定律得:
mg sin
s 1mg cos
s
0
1 2
mv02
解得
1
13 16
②滑块在斜面 AB 和水平地面间多次反复运动,最终停止于 B 点,当滑块恰好能返回 A
高中物理《动能和动能定理》同步练习附详解
高中物理《动能和动能定理》同步练习附详解[基础达标练]1.(多选)关于动能,下列说法正确的是()A.公式E k=12m v2中的速度v一般是物体相对于地面的速度B.动能的大小由物体的质量和速率决定,与物体运动的方向无关C.一定质量的物体动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态ABC[动能是标量,与速度的大小有关,而与速度的方向无关,B对.公式中的速度一般是相对于地面的速度,A对.一定质量的物体的动能变化时,速度的大小一定变化,但速度变化时,动能不一定变化,如匀速圆周运动,动能不变,但速度变化,故选项C正确,D错误.]2.(2018·全国卷Ⅱ)如图7-7-5所示,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度.木箱获得的动能一定()图7-7-5A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功A[由动能定理W F-W f=E k-0,可知木箱获得的动能一定小于拉力所做的功,A正确.]3.改变汽车的质量和速度,都能使汽车的动能发生变化,在下面几种情况中,汽车的动能是原来的2倍的是()A.质量不变,速度变为原来的2倍B.质量和速度都变为原来的2倍C .质量变为原来的2倍,速度减半D .质量减半,速度变为原来的2倍D [由E k =12m v 2知,m 不变,v 变为原来的2倍,E k 变为原来的4倍.同理,m 和v 都变为原来的2倍时,E k 变为原来的8倍;m 变为2倍,速度减半时,E k 变为原来的一半;m 减半,v 变为2倍时,E k 变为原来的2倍,故选项D 正确.]4.关于动能概念及公式W =E k2-E k1的说法中正确的是( )A .若物体速度在变化,则动能一定在变化B .速度大的物体,动能一定大C .W =E k2-E k1表示功可以变成能D .动能的变化可以用合力做的功来量度D [速度是矢量,而动能是标量,若物体速度只改变方向,不改变大小,则动能不变,A 错;由E k =12m v 2知B 错;动能定理W =E k2-E k1表示动能的变化可用合力做的功来量度,但功和能是两个不同的概念,有着本质的区别,故C 错,D 对.]5.人在距地面h 高处抛出一个质量为m 的小球,落地时小球的速度为v ,不计空气阻力,人对小球做功是( )A .12m v 2B .mgh +12m v 2C .mgh -12m v 2D .12m v 2-mghD [对全过程运用动能定理得:mgh +W =12m v 2-0,解得:W =12m v 2-mgh ,故D 正确,A 、B 、C 错误.故选D .]6.如图7-7-6所示,物体沿曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑的高度为5 m ,速度为6 m/s ,若物体的质量为1 kg.则下滑过程中物体克服阻力所做的功为( )图7-7-6 A.50 J B.18 J C.32 J D.0 JC[由动能定理得mgh-W f=12m v2,故W f=mgh-12m v2=1×10×5 J-12×1×62 J=32 J,C正确.]7.(多选)用力F拉着一个物体从空中的a点运动到b点的过程中,重力做功-3 J,拉力F做功8 J,空气阻力做功-0.5 J,则下列判断正确的是() A.物体的重力势能增加了3 JB.物体的重力势能减少了3 JC.物体的动能增加了4.5 JD.物体的动能增加了8 JAC[因为重力做功-3 J,所以重力势能增加3 J,A对,B错;根据动能定理W合=ΔE k,得ΔE k=-3 J+8 J-0.5 J=4.5 J,C对,D错.] 8.(多选)甲、乙两个质量相同的物体,用大小相等的力F分别拉它们在水平面上从静止开始运动相同的距离s,如图7-7-7所示,甲在光滑面上,乙在粗糙面上,则下列关于力F对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是()图7-7-7A.力F对甲物体做功多B.力F对甲、乙两个物体做的功一样多C.甲物体获得的动能比乙大D.甲、乙两个物体获得的动能相同BC[由功的公式W=Fl cos α=Fs可知,两种情况下力F对甲、乙两个物体做的功一样多,A错误,B正确;根据动能定理,对甲有Fs=E k1,对乙有,Fs-fs=E k2,可知E k1>E k2,即甲物体获得的动能比乙大,C正确,D错误.] 9.质量为m=50 kg的滑雪运动员,以初速度v0=4 m/s从高度为h=10 m 的弯曲滑道顶端A滑下,到达滑道底端B时的速度v1=10 m/s.求:滑雪运动员在这段滑行过程中克服阻力做的功.(g取10 m/s2)图7-7-8[解析]从A运动到B,物体所受摩擦力随之变化,所以克服摩擦力所做的功不能直接由功的公式求得,此时要根据动能定理求解.设摩擦力做的功为W,根据动能定理mgh-W=12m v21-12m v2代入数值得:W=2 900 J.[答案] 2 900 J[能力提升练]10.如图7-7-9所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A的速度为v,压缩弹簧至C点时弹簧最短,C点距地面高度为h,则从A到C的过程中弹簧弹力做功是()图7-7-9A.mgh-12m v2B.12m v2-mghC.-mgh D.-(mgh+12m v2)A[由A到C的过程运用动能定理可得:-mgh+W=0-122m v所以W=mgh-12,所以A正确.]2m v11.物体在恒定阻力作用下,以某初速度在水平面上沿直线滑行直到停止.以a、E k、x和t分别表示物体运动的加速度大小、动能、位移的大小和运动的时间.则以下各图象中,能正确反映这一过程的是()C[ 物体在恒定阻力作用下运动,其加速度随时间不变,随位移不变,选项A、B错误;由动能定理,-fx=E k-E k0,解得E k=E k0-fx,选项C正确,D 错误.]12.(多选)物体沿直线运动的v-t图象如图7-7-10所示,已知在第1 s内合力对物体做的功为W,则()图7-7-10A.从第1 s末到第3 s末合力做的功为4WB.从第3 s末到第5 s末合力做的功为-2WC.从第5 s末到第7 s末合力做的功为WD.从第3 s末到第4s末合力做的功为-0.75WCD[物体在第1 s末到第3 s末做匀速直线运动,合力为零,做功为零,故A错误;从第3 s末到第5 s末动能的变化量与第1 s内动能的变化量相反,合力的功相反,等于-W,故B错误;从第5 s末到第7 s末动能的变化量与第1 s内动能的变化量相同,合力做功相同,即为W,故C正确.从第3 s末到第4 s末动能变化量是负值,大小等于第1 s内动能的变化量的3,则合力做功为-0.75W,4故D 正确.]13.在光滑的水平面上,质量为m 的小滑块停放在质量为M 、长度为L 的静止的长木板的最右端,滑块和木板之间的动摩擦因数为μ.现用一个大小为F 的恒力作用在M 上,当小滑块滑到木板的最左端时,滑块和木板的速度大小分别为v 1、v 2,滑块和木板相对于地面的位移大小分别为s 1、s 2,下列关系式错误的是( )图7-7-11A .μmgs 1=12m v 21B .Fs 2-μmgs 2=12M v 22C .μmgL =12m v 21D .Fs 2-μmgs 2+μmgs 1=12M v 22+12m v 21C [滑块在摩擦力作用下前进的距离为s 1,故对于滑块μmgs 1=12m v 21,A 对,C 错;木板前进的距离为s 2,对于木板Fs 2-μmgs 2=12M v 22,B 对;由以上两式得Fs 2-μmgs 2+μmgs 1=12M v 22+12m v 21,D 对.故应选C .] 14.粗糙的1/4圆弧的半径为0.45 m ,有一质量为0.2 kg 的物体自最高点A 从静止开始下滑到圆弧最低点B .然后沿水平面前进0.4 m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5(取g =10 m/s 2),求:图7-7-12(1)物体到达B 点时的速度大小;(2)物体在圆弧轨道上克服摩擦力所做的功.[解析] (1)物体从B 运动到C 的过程,由动能定理得:-μmgx =0-12m v 2B解得:v B =2 m/s.(2)物体从A 运动到B 的过程,由动能定理得:mgR -W f =12m v 2B -0解得:W f =0.5 J.[答案] (1)2 m/s (2)0.5 J15.如图7-7-13所示,粗糙水平轨道AB 与半径为R 的光滑半圆形轨道BC 相切于B 点,现有质量为m 的小球(可看成质点)以初速度v 0=6gR ,从A 点开始向右运动,并进入半圆形轨道,若小球恰好能到达半圆形轨道的最高点C ,最终又落于水平轨道上的A 处,重力加速度为g ,求:图7-7-13(1)小球落到水平轨道上的A 点时速度的大小v A ;(2)水平轨道与小球间的动摩擦因数μ.[解析] (1)mg =m v 2C R ,得v C =gR ,从C 到A 由动能定理得:mg 2R =12m v 2A -12m v 2C ,得v A =5gR .(2)AB 的距离为x AB =v C t =gR ×2×2R g=2R 从A 出发回到A 由动能定理得:-μmgx AB =12m v 2A -12m v 20,得μ=0.25. [答案] (1)5gR (2)0.25。
动能和动能定理练习含答案
动能和动能定理精选练习一夯实基础1.如图,某同学用绳子拉动木箱,使它从静止开始沿粗糙水平路面运动至具有某一速度。
木箱获得的动能一定()A.小于拉力所做的功B.等于拉力所做的功C.等于克服摩擦力所做的功D.大于克服摩擦力所做的功【答案】A【解析】:A对、B错:由题意知,W拉-W阻=ΔE k,则W拉>ΔE k;C、D错:W阻与ΔE k的大小关系不确定。
2.(2019·浙江温州九校高一下学期期中)如图,小飞用手托着质量为m的“地球仪”,从静止开始沿水平方向运动,前进距离L后,速度为v(地球仪与手始终相对静止,空气阻力不可忽略),地球仪与手掌之间的动摩擦因数为μ,则下列说法正确的是()A.手对地球仪的作用力方向竖直向上B.地球仪所受摩擦力大小为μmgC.手对地球仪做的功等于mv2/2 D.地球仪对手做正功【答案】C【解析】:经受力分析知,手对地球仪的作用力斜向前上方,A错;地球仪所受摩擦力f=ma,B错;由动能定理W f=12mv2,C对;地球仪对手做负功,D错。
3.(2019·山东省诸城一中高一下学期期中)2018年2月22日平昌冬奥会短道速滑接力赛,中国男队获得亚军。
观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲,甲获得更大的速度向前冲出。
在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A .甲对乙的作用力与乙对甲的作用力相同B .乙对甲的作用力一定做正功,甲的动能增大C .甲对乙的作用力可能不做功,乙的动能可能不变D .甲的动能增加量一定等于乙的动能减少量【答案】B【解析】:甲、乙间的相互作用力大小相等方向相反,A 错;根据动能定理可判B 正确,C 、D 错误。
4.在水平路面上,有一辆以36 km/h 行驶的客车,在车厢后座有一位乘客甲,把一个质量为4 kg 的行李以相对客车5 m/s 的速度抛给前方座位的另一位乘客乙,则以地面为参考系行李的动能和以客车为参考系行李的动能分别是( )A .200 J 50 JB .450 J 50 JC .50 J 50 JD .450 J 450 J【答案】B【解析】:行李相对地面的速度v =v 车+v 相对=15 m/s ,所以行李的动能E k =12mv 2=450 J 。
(物理)物理动能与动能定理练习题20篇
(物理)物理动能与动能定理练习题20篇一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能和动能定理练习
一. 选择题:
1. 甲乙两物体质量的比m m 1231
::=,速度的比v v 1213::=,在相同的阻力作用下逐渐停下,则它们的位移比S S 12:是( ) A. 1:1
B. 1:3
C. 3:1
D. 4:1
2. 汽车在平直公路上行驶,关闭发动机继续运动S 1距离后速度由2v 变为v ,再运动S 2距离后速度由v 变为v
2
,设运动时受到阻力不变,则S S 21:为( ) A. 1:1
B. 1:2
C. 1:2
D. 1:4
3. 一子弹以速度v 飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为( )
A. 3块
B. 6块
C. 9块
D. 12块
4. 一个恒力F 作用在正在粗糙水平面上运动着的物体上。
如果物体作减速运动,则:( ) A. F 对物体一定做负功 B. F 对物体可能做负功 C. F 对物体一定做正功 D. F 对物体可能做正功
5. 质量不等但有相同动能的两物体,在摩擦系数相同的水平地面上滑行直到停止,则( )
A. 质量大的物体滑行距离大
B. 质量小的物体滑行距离大
C. 它们滑行的距离一样大
D. 质量大的滑行时间短
6. 质量相同的A 、B 两物体,它们的动能4A B k K E E =,从同一个粗糙斜面底端冲上斜面,在上滑到C 点时,它们的动能分别为E k A '和E k B '
,如果物体和斜面的摩擦系数相同,则( ) A. E E k k A B '
'
=4
B. E E k k A B ''
>4
C. E E k k A B '
'
<4
D. 无法确定它们动能的大小关系
7. 质量为m 的跳水运动员,从离地面高h 的跳台上以速度v 1斜向上跳起,跳起高度离跳台为H ,最后以速度v 2进入水中,不计空气阻力,则运动员起跳时所做的功( )
A.
12
12
mv
B. mgH
C. mgH mgh +
D.
12
12
mv mgh +
8. 某人用手将1kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取102
m s /),则下列说法错误的是( )
A. 手对物体做功12J
B. 合外力做功2J
C. 合外力做功12J
D. 物体克服重力做功10J
9. 质量为m 的小球在竖直圆环内运动,轨道半径为R ,通过最高点的最小速度为v ,当小球以速度4v 通过最低点后,经过最高点速度减为2v ,在这过程中小球克服摩擦阻力所做的功是( )
A. mgR
B. 2mgR
C. 3mgR
D. 4mgR
10. 在平直公路上,汽车由静止开始作匀加速运动,当速度达到v m 后立即关闭发动机直到停止,v -t 图象如图所示。
设汽车的牵引力为F ,摩擦力为f ,全过程中牵引力做功W 1,克服摩擦力做功W 2,则( )
A. F f ::=13
B. W W 1211::=
C. F f ::=41
D. W W 1213::=
二. 填空题:
1. 电子的质量是911031.⨯-kg ,它以3107
⨯m s /的速度由阴极射出,这个电子的动能是___________J 。
2. 质量为2吨的卡车,以10m/s 的速度在水平公路上行驶,突然紧急刹车,若所受阻力为5104
⨯N ,那么卡车滑行___________后停止。
3. 用36N 的水平推力推一个180N 重的物体,使它在水平地面上匀速移动30m ,则地面与物体的动摩擦因数为___________,推力所做的功为___________J 。
4. 作自由落体运动的物体,降落了1m 和2m 时,物体的动能比E E k k 12/=___________。
当降落了1s 后和2s 后,物体的动能之比E E k k 12/=___________。
三. 计算题:
1. 质量m 为0.5kg 的小球,从离地面h 为20m 高处落下,落地时小球的速度v 为18m/s 。
求下落过程中空气对小球平均阻力?
2. 质量m 为0.02kg 的子弹以v 1为600m/s 的速度垂直射穿一块厚度S 为10cm 的固定木板,已知木板对子弹的平均阻力f 为2104
⨯N 。
求子弹穿过木板后的速度v 2为多大?
3. 一质量m =0.5kg 的物体,以v m s 04=/的初速度沿水平桌面上滑过S =0.7m 的路程后
落到地面,已知桌面高h =0.8m ,着地点距桌沿的水平距离S m 112
=.,求物体与桌面间的摩擦系数是多少?(g 取102
m s /)
4. 质量m =1kg 的物体,在水平拉力F 的作用下,沿粗糙水平面运动,经过位移4m 时,拉力F 停止作用,运动到位移是8m 时物体停止,运动过程中E k -S 的图线如图所示。
求: (1)物体的初速度多大?
(2)物体和平面间的摩擦系数为多大?(g 取102
m s /) (3)拉力F 的大小。