电磁场与电磁波试题及学习提要
电磁场与电磁波试卷及复习提纲.
《电磁场与电磁波》学习提要第一章场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
电磁场与电磁波试题
电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
电磁场与电磁波复习题(含问题详解)
电磁场与电磁波复习题(含问题详解)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数.散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。
散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。
2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分.旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。
当S 点P 时,存在极限环量密度。
⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。
4.⽮量的旋度在直⾓坐标系下的表达式。
5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。
梯度的⼤⼩为该点标量函数?的最⼤变化率.即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向.它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率.即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向.它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u l8、亥姆霍兹定理的表述在有限区域.⽮量场由它的散度、旋度及边界条件唯⼀地确定.说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。
9、麦克斯韦⽅程组的积分形式分别为 0()sls s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场. ⼀般采⽤时谐场来分析时变电磁场的⼀般规律.是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下.可以使⽤叠加原理。
电磁场与电磁波复习题(简答题)
电磁场与电磁波复习题第一部分矢量分析1、请解释电场与静电场的概念。
静止电荷产生的场表现为对于带电体有力的作用,这种场称为电场。
不随时间变化的电场称为静电场。
2、请解释磁场与恒定磁场的概念。
运动电荷或电流产生的场表现为对于磁铁和载流导体有力的作用,这种物质称为磁场。
不随时间变化的磁场称为恒定磁场。
3、请解释时变电磁场与电磁波的概念。
如果电荷及电流均随时间改变,它们产生的电场及磁场也是随时变化的,时变的电场与时变的磁场可以相互转化,两者不可分割,它们构成统一的时变电磁场。
时变电场与时变磁场之间的相互转化作用,在空间形成了电磁波。
4、请解释自由空间的概念。
电磁场与电磁波既然是一种物质,它的存在和传播无需依赖于任何媒质。
在没有物质存在的真空环境中,电磁场与电磁波的存在和传播会感到更加“自由”。
因此对于电磁场与电磁波来说,真空环境通常被称为“自由空间”。
5、举例说明电磁场与波的应用。
静电复印、静电除尘以及静电喷漆等技术都是基于静电场对于带电粒子具有力的作用。
电磁铁、磁悬浮轴承以及磁悬浮列车等,都是利用磁场力的作用。
当今的无线通信、广播、雷达、遥控遥测、微波遥感、无线因特网、无线局域网、卫星定位以及光纤通信等信息技术都是利用电磁波作为媒介传输信息的。
6、请解释常矢与变矢的概念。
若某一矢量的模和方向都保持不变,此矢量称为常矢,如某物体所受到的重力。
而在实际问题中遇到的更多的是模和方向或两者之一会发生变化的矢量,这种矢量我们称为变矢,如沿着某一曲线物体运动的速度v等。
7、什么叫矢性函数?设t是一数性变量,A为变矢,对于某一区间G[a,b]内的每一个数值t,A 都有一个确定的矢量A(t)与之对应,则称A为数性变量t的矢性函数。
8、请解释静态场和动态场的概念。
如果在某一空间区域内的每一点,都对应着某个物理量的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说,在某一空间区域中,物理量的无穷集合表示一种场。
(完整word版)电磁场与电磁波试题及答案.,推荐文档
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂v vv v v v v ,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=v v g 、20n E ⨯=vv 、2s n H J ⨯=vv v 、20n B =v v g )1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=v v v ;动态矢量位A E t ϕ∂=-∇-∂v v 或AE tϕ∂+=-∇∂vv 。
库仑规范与洛仑兹规范的作用都是限制A v 的散度,从而使A v的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义2.sA ds φ=⋅⎰⎰v v Ò 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z xy z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭r rr r r r r r3x y zx y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂r r由此说明了矢量场的散度与坐标的选择无关。
电磁场与电磁波重要例题、习题复习资料
电磁场与电磁波易考简答题归纳1、什么是均匀平面电磁波?答:平面波是指波阵面为平面的电磁波。
均匀平面波是指波的电场→E 和磁场→H 只沿波的传播方向变化,而在波阵面内→E 和→H 的方向、振幅和相位不变的平面波。
2、电磁波有哪三种极化情况?简述其区别。
答:(1)直线极化,同相位或相差 180;2)圆极化,同频率,同振幅,相位相差90或270;(3)椭圆极化,振幅相位任意。
3、试写出正弦电磁场的亥姆霍兹方程(即亥姆霍兹波动方程的复数形式),并说明意义。
答:002222=+∇=+∇→→→→H k H E k E ,式中μεω22=k 称为正弦电磁波的波数。
意义:均匀平面电磁波在无界理想介质中传播时,电场和磁场的振幅不变,它们在时间上同相,在空间上互相垂直,并且电场、磁场、波的传播方向三者满足右手螺旋关系。
电场和磁场的分量由媒质决定。
4、写出时变电磁场中麦克斯韦方程组的非限定微分形式,并简述其意义。
答:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρεμμεE H t H E tE J H )4(0)3()2()1(物理意义:A 、第一方程:时变电磁场中的安培环路定律。
物理意义:磁场是由电流和时变的电场激励的。
B 、第二方程:法拉第电磁感应定律。
物理意义:说明了时变的磁场激励电场的这一事实。
C 、第三方程:时变电场的磁通连续性方程。
物理意义:说明了磁场是一个旋涡场。
D 、第四方程:高斯定律。
物理意义:时变电磁场中的发散电场分量是由电荷激励的。
5、写出麦克斯韦方程组的微分形式或积分形式,并简述其意义。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇→→→→→→→ρD B t BE tD J H )4(0)3()2()1(答:(1)微分形式(2) 积分形式物理意义:同第4题。
6、写出达朗贝尔方程,即非齐次波动方程,简述其意义。
答:→→→-=∂∂-∇J tA A μμε222,ερμε-=∂Φ∂-Φ∇→→222t 物理意义:→J 激励→A ,源ρ激励Φ,时变源激励的时变电磁场在空间中以波动方式传播,是时变源的电场辐射过程。
《电磁场与电磁波》4套试卷含答案
《电磁场与电磁波》4套试卷含答案200 年月江苏省高等教育自学考试7568 电磁场理论答案复核总分复核人题号一二三四五总分题分合分人得分一、填空题(每小题 1 分,共 10 分) 得分评卷人复查人,ˆˆˆ1(矢量A,e,e,e的大小为。
3xyz2(由相对于观察者静止的,且其电量不随时间变化的电荷所产生的电场称为静电场。
3(若电磁波的电场强度矢量的方向随时间变化所描绘的轨迹是直线,则波称为线极化。
4(从矢量场的整体而言,无散场的旋度不能处处为零。
5(在无源区域中,变化的电场产生磁场,变化的磁场产生电场,使电磁场以波的形式传播出去,即电磁波。
6(随时间变化的电磁场称为时变(动态) 场。
7(从场角度来讲,电流是电流密度矢量场的通量。
28(一个微小电流环,设其半径为、电流为I,则磁偶极矩矢量的大小为。
p,I,aam9(电介质中的束缚电荷在外加电场作用下,完全脱离分子的内部束缚力时,我们把这种现象称为击穿。
,,,B,,E,,10(法拉第电磁感应定律的微分形式为。
,t二、简述题 (每题 5分,共 20 分) 得分评卷人复查人11(简述恒定磁场的性质,并写出其两个基本方程。
答:恒定磁场是连续的场或无散场,即磁感应强度沿任一闭合曲面的积分等于零。
产生恒定磁场的源是矢量源。
(3分)两个基本方程: ,, (1分) B,dS,0,S,, (1分) H,dl,I,C(写出微分形式也对)12(试写出在理想导体表面电位所满足的边界条件。
答:设理想导体内部电位为,空气媒质中电位为。
,,21由于理想导体表面电场的切向分量等于零,或者说电场垂直于理想导体表面,因此有(3分) ,,,12SS,,1 (2分) ,,,,0n,S13(试简述静电平衡状态下带电导体的性质。
答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分)导体内部电场强度等于零,在导体表面只有电场的法向分量。
(3分)14(什么是色散,色散将对信号产生什么影响,答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案导言:电磁场和电磁波是电磁学领域中的重要概念,对于理解电磁现象、电磁波传播及应用都具有重要意义。
本文将针对电磁场和电磁波相关的试题进行解答,帮助读者巩固对这一知识点的理解。
一、电磁场概念及特点1. 试题:电磁场是指什么?电磁场有哪些特点?答案:电磁场指的是电荷或电流所产生的周围空间的物理场。
具体包括静电场和磁场。
电磁场的特点有以下几个方面:- 电磁场具有源极性:任何一个电磁场的产生都必须由电荷或电流来产生。
- 电磁场具有传递性:当源增大或减小时,电磁场的强度也会相应变化。
- 电磁场具有辐射性:电磁场会以电磁波形式向外传播。
- 电磁场具有叠加性:多个电磁场可以在同一空间中叠加。
二、电磁场强度及电磁波的传播1. 试题:电磁场强度的概念是指什么?电磁波的传播过程是怎样的?答案:电磁场强度是指单位电荷所受到的电磁力的大小,通常用矢量表示,其方向为电荷所受电磁力的方向。
电磁波的传播过程主要包括以下几个阶段:- 在电磁场中,源电荷或电流激发出电磁波。
- 电磁波在空间中以垂直波动的方式传播。
- 电磁波的传播过程中,电场和磁场相互垂直、交替变化。
- 电磁波传播速度为光速,即3×10^8 m/s。
三、电磁波的频率和波长1. 试题:电磁波的频率和波长有什么关系?请列举几种常见电磁波的频率和波长范围。
答案:电磁波的频率和波长之间有以下关系:频率 = 光速 / 波长以下是几种常见电磁波的频率和波长范围:- α射线:频率高,波长短,一般范围为10^18 - 10^20 Hz,波长约为10^(-12) - 10^(-10) m。
- 紫外线:频率较高,波长较短,一般范围为10^14 - 10^16 Hz,波长约为10^(-8) - 10^(-7) m。
- 可见光:频率适中,波长适中,范围为4×10^14 - 8×10^14 Hz,波长约为3.75×10^(-7) - 7.5×10^(-7) m。
电磁场与电磁波试题&答案资料
1. 图示填有两层介质的平行板电容器,设两极板上半部分的面积为,下半部分的面积为,板间距离为,两层介质的介电常数分别为与。
介质分界面垂直于两极板。
若忽略端部的边缘效应,则此平行板电容器的电容应为______________。
2.1. 用以处理不同的物理场的类比法,是指当描述场的数学方式具有相似的____________ 和相似的__________,则它们的解答在形式上必完全相似,因而在理论计算时,可以把某一种场的分析计算结果 , 推广到另一种场中去。
2. 微分方程;边界条件1. 电荷分布在有限区域的无界静电场问题中,对场域无穷远处的边界条件可表示为________________________________,即位函数在无限远处的取值为________。
2. 有限值;1. 损耗媒质中的平面波,其电场强度,其中称为___________,称为__________。
2. 衰减系数;相位系数1. 在自由空间中,均匀平面波等相位面的传播速度等于________,电磁波能量传播速度等于________ 。
2. 光速;光速1. 均匀平面波的电场和磁场除了与时间有关外,对于空间的坐标,仅与___________ 的坐标有关。
均匀平面波的等相位面和________方向垂直。
2. 传播方向;传播1. 在无限大真空中,一个点电荷所受其余多个点电荷对它的作用力,可根据___________ 定律和__________ 原理求得。
2. 库仑;叠加1. 真空中一半径为a 的圆球形空间内,分布有体密度为ρ的均匀电荷,则圆球内任一点的电场强度1E =_________()r e r a <;圆球外任一点的电场强度2E =________()r e r a >。
2. 0/3r ρε;220/3a r ρε;1. 镜像法的关键是要确定镜像电荷的个数、_______________ 和_________________。
电磁场与电磁波精彩试题问题详解
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ϖ和磁场H ϖ满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S ϖϖϖ⨯=称为 。
4.在理想导体的表面, 的切向分量等于零。
5.矢量场)(r A ϖϖ穿过闭合曲面S 的通量的表达式为: 。
6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题 (每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ϖϖ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题 (每小题10分,共30分)15.按要求完成下列题目 (1)判断矢量函数y x e xz ey B ˆˆ2+-=ϖ是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e e A ˆ3ˆˆ2-+=ϖ,z y x e e eB ˆˆ3ˆ5--=ϖ,求(1)B A ϖϖ+ (2)B A ϖϖ⋅17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E eE --=004ˆ3ˆϖ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题 (每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求(1) 球任一点的电场强度 (2)球外任一点的电位移矢量。
电磁场与电磁波试题与答案
电磁场与电磁波试题与答案电磁场与微波技术基础试题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号。
每小题2分,共20分)1.设一个矢量场 =x x+2y y+3z z,则散度为( )A. 0B. 2C. 3D. 62.人们规定电流的方向是( )运动方向。
A.电子B.离子C.正电荷D.负电荷3.在物质中没有自由电子,称这种物质为( )A.导体B.半导体C.绝缘体D.等离子体4.静电场能量的来源是( )A.损耗B.感应C.极化D.做功5.对于各向同性介质,若介电常数为ε,则能量密度we为( )A. ?B. E2C. εE2D. εE26.电容器的大小( )A.与导体的形状有关B.与导体的形状无关C.与导体所带的电荷有关D.与导体所带的电荷无关7.电矩为的电偶极子在均匀电场中所受的作用力和库仑力矩为( )A. =0,Tq= ?B. =0, = ×C. = ?,= ×D. = ?, =08.在 =0的磁介质区域中的磁场满足下列方程( )A. × =0, ? =0B. × ≠0, ? ≠0C. × ≠0, ? =0D. × =0, ? ≠09.洛伦兹条件人为地规定的( )A.散度B.旋度C.源D.均不是10.传输线的工作状态与负载有关,当负载短路时,传输线工作在何种状态?( )A.行波B.驻波C.混合波D.都不是二、填空题(每空2分,共20分)1.两个矢量的乘法有______和______两种。
2.面电荷密度ρs( )的定义是______,用它来描述电荷在______的分布。
3.由库仑定律可知,电荷间作用力与电荷的大小成线性关系,因此电荷间的作用力可以用______原理来求。
4.矢量场的性质由它的______决定。
5.在静电场中,电位相同的点集合形成的面称为______。
6.永久磁铁所产生的磁场,称之为______。
最新电磁场与电磁波试卷
华北水利水电学院考试题《电磁场与电磁波》一、选择题(每题1分,共20题)1. 毕奥—沙伐定律()在任何媒质情况下都能应用在单一媒质中就能应用必须在线性,均匀各向同性媒质中应用。
2. 真空中两个点电荷之间的作用力()A. 若此两个点电荷位置是固定的,则不受其他电荷的引入而改变B. 若此两个点电荷位置是固定的,则受其他电荷的引入而改变C. 无论固定与不固定,都不受其他电荷的引入而改变3. 真空中有三个点电荷、、。
带电荷量,带电荷量,且。
要使每个点电荷所受的电场力都为零,则()A. 电荷位于、电荷连线的延长线上,一定与同号,且电荷量一定大于B. 电荷可位于连线的任何处,可正、可负,电荷量可为任意大小C. 电荷应位于、电荷连线的延长线上,电荷量可正、可负,且电荷量一定要大于4. 如图所示两个载流线圈,所受的电流力使两线圈间的距离( )扩大; 缩小; 不变5. 电流是电荷运动形成的,面电流密度可以表示成( ); ;6. 下列关于电磁对偶性的互换规则,正确的是( )A .E H →,H E → ;B .εμ→,1/με→;C .e m ρρ→,1/ηη→;D .A ρ→,J ϕ→ 7.在导波系统中,存在TEM 波的条件是A. ;B. ;C.8.同轴线、传输线 ( )A. 只能传输TEM 波B. 只能传输TE 波和TM 波C. 既能传输 TEM 波 , 又能传输TE 波和TM 波9.损耗媒质中的平面电磁波, 其波长 随着媒质电导率 的增大,将( )A. 变长;B. 变短;C. 不变10.两个极化方向相互垂直的线极化波叠加,当振幅相等,相位差为或时,将形成( )A. 线极化波;B. 圆极化波;C. 椭圆极化波11.均匀平面波由介质垂直入射到理想导体表面时,产生全反射,入射波与反射波叠加将形成驻波,其电场强度和磁场的波节位置( )A. 相同;B. 相差;C. 相差12.已知一均匀平面波的电场强度振幅为,当 时,原点处的达到最大值且取向为,该平面波以相位系数在空气中沿方向传播,则其电场强度可表示为();13.一金属圆线圈在均匀磁场中运动,以下几种情况中,能产生感应电流的是()线圈沿垂直于磁场的方向平行移动线圈以自身某一直径为轴转动,转轴与磁场方向平行线圈以自身某一直径为轴转动,转轴与磁场方向垂直14.对于载有时变电流的长直螺线管中的坡印廷矢量,下列陈述中,正确的是()A. 无论电流增大或减小,都向内B. 无论电流增大或减小,都向外C. 当电流增大,向内;当电流减小时,向外15.比较位移电流与传导电流,下列陈述中,不正确的是()A. 位移电流与传导电流一样,也是电荷的定向运动B. 位移电流与传导电流一样,也能产生涡旋磁场C. 位移电流与传导电不同,它不产生焦耳热损耗16.已知在电导率、介电常数的海水中,电场强度,则位移电流密度为():17.导电媒质中,已知电场强度,则媒质中位移电流密度的相位与传导电流密度的相位( )相差; 相差; 相同18.若要增大两线圈之间的互感,可以采用以下措施( )A. 增加两线圈的匝数B. 增加两线圈的电流C. 增加其中一个线圈的电流19.在无限长线电流 附近有一块铁磁物质,现取积分路径1234,它部分地经过铁磁物质,则在以下诸式中,正确的是( )20.空气与磁介质 ( 导磁媒质) 的分界面为无限大平面,有一载流线圈位于磁介质内部,则该线圈( )A. 将受到远离分界面的斥力B. 将受到朝向分界面的吸力C. 将不受力。
电磁场与电磁波试题及答案
电磁场与电磁波试题及答案一、选择题1. 以下哪个物理量描述了电场线的密度?A. 电场强度B. 电势C. 电通量D. 电荷密度答案:A. 电场强度2. 在电磁波传播过程中,以下哪个说法是正确的?A. 电磁波的传播速度与频率成正比B. 电磁波的传播速度与波长成正比C. 电磁波的传播速度与频率无关D. 电磁波的传播速度与波长成反比答案:C. 电磁波的传播速度与频率无关3. 在真空中,以下哪个物理量与磁感应强度成正比?A. 磁场强度B. 磁通量C. 磁导率D. 磁化强度答案:A. 磁场强度二、填空题4. 在电场中,某点的电场强度大小为200 V/m,方向向东,则该点的电场强度可以表示为______。
答案:200 V/m,方向向东5. 一个电磁波在空气中的波长为3 m,频率为100 MHz,则在空气中的传播速度为______。
答案:300,000,000 m/s6. 一个长直导线通过交流电流,其周围产生的磁场是______。
答案:圆形磁场三、计算题7. 一个平面电磁波在真空中的电场强度为50 V/m,磁场强度为0.2 A/m。
求该电磁波的波长和频率。
解题过程:根据电磁波的基本关系,电场强度和磁场强度满足以下关系:\[ E = c \times B \]其中,\( c \) 为光速,\( E \) 为电场强度,\( B \) 为磁场强度。
代入数据:\[ 50 = 3 \times 10^8 \times 0.2 \]解得:\[ c = 1.25 \times 10^7 m/s \]根据电磁波的波长和频率关系:\[ c = \lambda \times f \]代入光速和波长关系:\[ 1.25 \times 10^7 = \lambda \times f \]假设频率为 \( f \),则波长为:\[ \lambda = \frac{1.25 \times 10^7}{f} \]由于波长和频率的乘积为光速,可以求出频率:\[ f = \frac{1.25 \times 10^7}{3 \times 10^8} = 0.0417 \text{ GHz} \]将频率代入波长公式,求出波长:\[ \lambda = \frac{1.25 \times 10^7}{0.0417\times 10^9} = 3 m \]答案:波长为3 m,频率为0.0417 GHz8. 一个半径为10 cm的圆形线圈,通过频率为10 MHz的正弦交流电流,求线圈中心处的磁场强度。
电磁场与电磁波习题及答案讲解学习
电磁场与电磁波习题及答案1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,BE t∂∇⨯=-∂,0B ∇=,D ρ∇= 2静电场的基本方程积分形式为:CE dl =⎰SD ds ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H4线性且各向同性媒质的本构关系方程是: 4.D E ε=,B H μ=,J E σ= 5电流连续性方程的微分形式为:5.J t ρ∂∇=-∂ 6电位满足的泊松方程为2ρϕε∇=-;在两种完纯介质分界面上电位满足的边界 。
12ϕϕ=1212n n εεεε∂∂=∂∂ 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E的单位是V/m ,电位移D的单位是C/m2 。
9.静电场的两个基本方程的微分形式为0E ∇⨯= ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是( 0B ∇= ) 2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni i i q W 121φ,其中i φ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
《电磁场与电磁波》笔记和课后习题(含考研真题)详解
第1章矢量分析1.1复习笔记一、标量场和矢量场1.一个只用大小描述的物理量为标量。
若所研究的物理量为一标量,则该物理量所确定的场为标量场,如温度场,密度场等。
用一个标量函数来表示该场为2.一个既有大小又有方向特性的物理量为矢量。
若所研究的物理量为一矢量,则该物理量所确定的场为矢量场,如力场、电场等。
用一个矢量函数来表示该场为二、标量场的方向导数与梯度1.在直角坐标系中方向导数的计算公式为式中,是方向l的方向余弦。
特点:方向导数既与所研究的点有关,也与方向有关。
2.标量场的梯度是一个矢量,在直角坐标系中,梯度的表达式为在柱坐标系和球坐标系中,梯度的表达式为标量场的梯度意义:描述标量场在某点的最大变化率及其变化最大的方向。
3.梯度运算的基本公式:三、矢量场的散度与旋度1.散度矢量通过包含该点的任意闭合小曲面的通量与曲面元体积之比的极限。
矢量场的散度是个标量,在直角坐标系、圆柱坐标系及球坐标系中的计算式分别为2.散度定理(高斯定理)矢量场F的散度在体积V上的体积分,等于矢量场F在限定该体积的闭合面S上的面积分。
3.旋度旋涡源密度矢量。
矢量场的旋度是个矢量,在直角坐标系、圆柱坐标系及球坐标系中分别表示为4.斯托克斯定理矢量场F的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲线C上的线积分。
四、无旋场与无散场1.仅有散度源而无旋度源的矢量场为无旋场,如静电场,。
梯度矢量的重要性质:它的旋度恒等于零,即。
2.仅有旋度源而无散度源的矢量场为无散场,如恒定磁场,。
旋度矢量的重要性质:它的散度恒等于零,即。
五、格林定理1.格林第一恒等式2.格林第二恒等式3.格林定理的应用:(1)利用格林定理可以将区域中场的求解问题转变为边界上场的求解问题。
(2)格林定理反映了两种标量场之间满足的关系。
因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布。
六、亥姆霍兹定理在有限区域V内,任一矢量场由它的散度、旋度和边界条件唯一地确定,且可表示为:1.2课后习题详解(一)思考题1.1如果A·B=A·C,是否意味着B=C?为什么?答:并不意味着B=C。
电磁场与电磁波期末复习考试要点
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
电磁场与电磁波波试卷3套含答案
《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。
另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。
2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。
第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=。
6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。
(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波。
(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
电磁场与电磁波考试题
电磁场与电磁波试题一、填空:1. 对于某一标量2. 对于某一标量exeyez.x ■:y;zu 和某一矢量 A ? X (? u )=6; ",它的梯度用哈密顿算子表示为? ?(? XA )=0_j^,在直角坐标系下表示为.:z 3.自由空间中静态电场的两个基本方程的积分形式为D d^qsE d'。
()和4.静电场中的电位 '满足泊松方程,该方程表达式为 ),如果求解空间没有电荷分布。
则该方程变为i 2「(r )=0 ,叫拉普拉斯方程。
5. 分析静电矢量场时对于各向同性的线性介质,两个基本场变量之间的关系为6. 真空中的静电场是有散场和无旋场,真空中的恒定磁场是无散场和有旋场。
7•传导中的电流密度 J 二;「E 位移电流密度J d =空电场能量密度 W e;E 2磁场能量t 2密度W n =-2。
28.在理想介质中,沿z 轴传播的均匀平面波的波阻抗 z = J U想为常数k = .二、 判断1. 电磁场是电场和磁场形成的一个统一的整体,对于任何形式的电磁场问题。
电场和磁场 总是同时存在的。
(V )2. 矢量场在闭合路径上的环流和在闭合面上的之间都是标量。
()3. 按统一规则绘制出的力线可以确定矢量场中各点矢量的方向,还可以根据力线的疏密判 别出各处矢量的大小及变化趋势。
(X )4. 从任意闭合面穿出的恒定电流为零。
(X )5. 麦克斯韦方程有四个基本矢量场方程,它们并不独立,由两个旋度方程可导出两个相应 的散度方程,因此(X )6. 位移电流是麦克斯韦假说所提出的电流,它是真实电流一样可以产生磁效应。
()7. 在均匀无耗各向同性媒质中,电磁波的波速(即想速)与波长均为常数,但在导电媒质 中则不一样,其波速和波长不再是常数。
(V )8. 均匀平面电磁波的极化是用电场强度矢量 E 的端点在空间描绘出的轨迹来表示,若该轨 迹是圆侧称为圆极化波。
(V )9. 介质极化后会同时产生极化体电荷和极化面电荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁场与电磁波》测验试卷﹙一﹚一、填空题(每题8分,共40分)1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单位是____________;磁感应强度的单位是___________;真空中介电常数的单位是____________。
2、静电场→E 和电位Ψ的关系是→E =_____________。
→E 的方向是从电位_______处指向电位______处。
3、位移电流与传导电流不同,它与电荷___________无关。
只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。
位移电流存在于____________和一切___________中。
4、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =________;而磁场→B 的法向分量B 1n -B 2n=_________;电流密度→J 的法向分量J 1n -J 2n =___________。
5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→E ,____________________=→H 。
二、计算题(题,共60分)1、(15分)在真空中,有一均匀带电的长度为L 的细杆,其电荷线密度为τ。
求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。
2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c ,在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。
3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。
在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。
4、(10分)某回路由两个半径分别为R 和r 的 半圆形导体与两段直导体组成,其中通有电流I 。
求中心点O 处的磁感应强度→B 。
5、电场强度为)2106(7.378Z t COS E Ya ππ+⨯=→→伏/米的电磁波在自由空间传播。
问:该波是不是均匀平面波?并请说明其传播方向。
求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5)→H 的大小和方向;(6)坡印廷矢量。
《电磁场与电磁波》测验试卷﹙二﹚(一)、问答题(共50分)1、(10分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。
2、(10分)在两种媒质的交界面上,当自由电荷面密度为ρs 、面电流密度为J s 时,请写出→→→→HB D ,,,E 的边界条件的矢量表达式。
3、(10分)什么叫TEM 波,TE 波,TM 波,TE 10波?4、(10分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关?5、什么是滞后位?请简述其意义。
(二)、计算题(共60分)1、(10分)在真空里,电偶极子电场中的任意点M (r 、θ、φ)的电位为2cos 41rP θπε=Φ(式中,P 为电偶极矩,l q P =), 而 →→→∂Φ∂+∂Φ∂+∂Φ∂=Φ000s i n 11φφθθθr r r r。
试求M 点的电场强度→E 。
2、(15分)半径为R 的无限长圆柱体均匀带电,电荷体密度为ρ。
请以其轴线为参考电位点,求该圆柱体内外电位的分布。
3、(10分)一个位于Z 轴上的直线电流I =3安培,在其旁边放置一个矩形导线框,a =5米,b =8米,h =5米。
最初,导线框截面的法线与I 垂直(如图),然后将该 截面旋转900,保持a 、b 不变,让其法线与I 平行。
求:①两种情况下,载流导线与矩形线框的互感系数M 。
②设线框中有I ′=4安培的电流,求两者间的互感磁能。
4、(10分)P 为介质(2)中离介质边界极近的一点。
已知电介质外的真空中电场强度为→1E ,其方向与电介质分界面的夹角为θ。
在电介质界面无自由电荷存在。
求:①P 点电场强度→2E 的大小和方向;5、(15分)在半径为R、电荷体密度为ρ的球形均匀带电体内部有一个不带电的球形空腔,其半径为r, 两球心的距离为a(r<a<R)。
介电常数都按ε0计算。
求空腔内的电场强度E。
《电磁场与电磁波》测验试卷﹙三﹚二、填空题(每题8分,共40分)1、 真空中静电场高斯定理的内容是:_________________________________________________________________________________________________________________ ______________________________________________________________________。
2、 等位面的两个重要性质是:①_____________________________________________,②____________________________________________________________________。
3、 真空中的静电场是__________场和__________场;而恒定磁场是____________场和__________场。
4、 传导电流密度___________=→J 。
位移电流密度___________=→d J 。
电场能量密度W e =___________。
磁场能量密度W m =___________。
5、 沿Z 轴传播的平面电磁波的三角函数式:=→E _____________________, =→H _________________________________;其波速V =__________________________,波阻抗η=__________________,相位常数β=_______________________。
(二)计算题(共50分) 1、(10分)如图内外半径分别为r 、R 的同轴电缆,中间充塞两层同心介质:第一层ε1=2ε0, 其半径为r ';第二层ε2=3ε0 。
现在内外柱面间加以直流电压U 。
求:①电缆内各点的场强E 。
②单位长度电缆的电容。
③单位长度电缆中的电场能。
2、(10分)在面积为S 、相距为d 的平板 电容器里,填以厚度各为d /2、介电常 数各为εr1和εr2的介质。
将电容器两极 板接到电压为U 0的直流电源上。
求:①电容器介质εr1和εr2内的场强; ②电容器极板所带的电量;③电容器中的电场能量。
3、(10分)有一半径为R 的圆电流I 。
求:①其圆心处的磁感应强度→0B =?②在过圆心的垂线上、与圆心相距为H 的一点P ,其→B =?4、(10分)在Z 轴原点,安置一个电偶极子天线。
已知电偶极子轴射场的表示式为: )(sin 2000kr t j rl I jE e-=ϖθεμλθ Q E H ηφ1=求:①在Y 轴上距O 点为r 处的平均能流密度。
②和天线成450而距O 点同样为r 的地方的平均能流密度。
5、(10分)有一根长L =1m 的电偶极子天线,,其激励波长λ=10m ,激励波源的电流振幅I =5A 。
试求该电偶极子天线的辐射电阻R r 和辐射功率P Σ。
《电磁场与电磁波》学习提要第一章 场论简介1、方向导数和梯度的概念;方向导数和梯度的关系。
2、通量的定义;散度的定义及作用。
3、环量的定义;旋度的定义及作用;旋度的两个重要性质。
4、场论的两个重要定理:高斯散度定理和斯托克斯定理。
第二章静电场1、电场强度的定义和电力线的概念。
2、点电荷的场强公式及场强叠加原理;场强的计算实例。
3、静电场的高斯定理;用高斯定理求场强方法与实例。
4、电压、电位和电位差的概念;点电荷电位公式;电位叠加原理。
5、等位面的定义;等位面的性质;电位梯度,电位梯度与场强的关系。
6、静电场环路定理的积分形式和微分形式,静电场的基本性质。
7、电位梯度的概念;电位梯度和电场强度的关系。
8、导体静电平衡条件;处于静电平衡的导体的性质。
x9、电偶极子的概念。
10、电位移向量;电位移向量与场强的关系;介质中高斯定理的微分形式和积分形式;求介质中的场强。
11、介质中静电场的基本方程;介质中静电场的性质。
12、独立导体的电容;两导体间的电容;求电容及电容器电场的方法与实例。
13、静电场的能量分布,和能量密度的概念。
第三章电流场和恒定电场1、传导电流和运流电流的概念。
2、电流强度和电流密度的概念;电流强度和电流密度的关系。
3、欧姆定律的微分形式和积分形式。
4、电流连续性方程的微分形式和积分形式;恒定电流的微分形式和积分形式及其意义。
5、电动势的定义。
6、恒定电场的基本方程及其性质。
第四章恒定磁场1、电流产生磁场,恒定电流产生恒定磁场。
2、电流元与电流元之间磁相互作用的规律-安培定律。
3、安培公式;磁感应强度矢量的定义;磁感应强度矢量的方向、大小和单位。
4、洛仑兹力及其计算公式。
5、电流元所产生的磁场元:比奥-萨伐尔定律;磁场叠加原理;磁感应线。
计算磁场的方法和实例。
6、磁通的定义和单位。
7、磁通连续性原理的微分形式、积分形式和它们的意义。
8、通量源和旋涡源的定义。
9、安培环路定律的积分形式和微分形式。
10、安培环路定律的应用。
11、磁场强度的定义,磁场强度的单位,磁场强度矢量和磁感应强度矢量的关系。
12、磁介质中的安培环路定律的积分形式微分形式。
13、用安培环路定律的积分形式来计算磁感应强度。
14、磁通、磁链和自感。
求电感的方法和实例。
15、互感;求互感的方法和实例。
第五章时变电磁场1、法拉第电磁感应定律的积分形式和微分形式;感应电动势的正方向;感应电场的特点;感应电场电力线的特点;感应电动势的计算实例。
2、位移电流密度;位移电流特点;推广的安培环路定律的积分形式和微分形式;全电流连续定律。
3、麦克斯韦方程组的积分形式、微分形式和辅助方程;这些方程的物理意义。
4、电磁场的边界条件及其推导方法。
5、理想导体表面处的边界条件。
6、电磁场的能量密度;坡印廷定理;坡印廷矢量。
第六章电磁波的传播1、无源空间电磁波一维波动方程的解(即方程6.1-4a至6.1-4f)的物理意义;E0、H0、ω、v、λ和k的物理意义。
2、平面电磁波的基本性质;波阻抗的概念。
3、平面简谐电磁波的平均能量密度;平均能流密度矢量。
4、传播常数、相位常数和衰减常数的概念。
5、电磁波在均匀导电媒质中的传播规律;透入深度的概念6、圆极化波、椭圆极化波的特点。
7、反射定律和折射定律。
8、半波损失、布儒斯特角、光密媒质、光密媒质和全反射的概念。
第七章传输线和波导1、自由电磁波的概念;导行波的概念。