最新2017年九年级数学中考模拟试卷及答案

合集下载

最新2017年中考数学模拟试卷(含答案)

最新2017年中考数学模拟试卷(含答案)

最新2017年中考数学模拟试卷(含答案)时间120分钟满分150分 2017.2.20 一、选择题(每小题3分,共21分)1.的倒数是()A.﹣2 B.2 C.D.2.下列运算正确的是()A.B. C.D.3.一元一次不等式x+1≥2的解在数轴上表示为()A.B.C.D.4.由4个相同小立方体搭成的几何体如图所示,则它的俯视图是()A.B.C. D.5.某大学生对新一代无人机的续航时间进行7次测试,一次性飞行时间(单位:分钟)分别为20、22、21、26、25、22、25.则这7次测试续航时间的中位数是()A.22或25 B.25 C.22 D.216.顺次连结菱形四边中点所得的四边形一定是()A.正方形B.矩形C.菱形D.等腰梯形7.反比例函数图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1二、填空题(每小题3分,共30分)8.计算:a2•a4= .9.分解因式:x2﹣9= .10.计算: = .11.经济日报5月8日讯,4月份我国外贸出口延续正增长态势,进出口总值195 000 000万元.请将“195 000 000”这个数据用科学记数法表示:.12.如图,将三角尺的直角顶点放在矩形的一边上,∠1=130°,则∠2= °.13.一个正多边形的每个外角都是36°,这个正多边形的边数是.14.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则cos∠A= .15.如图,在⊙O中,点C是AB的中点,AB=4cm,OC=1cm,则OB的长是cm.16.在平面直角坐标系中,将抛物线y=x2先向右平移4个单位,再向上平移3个单位,得到抛物线L,则抛物线L的解析式为.17.如图,在△ABC中,AB=AC,∠BAC=50 .分别以B、C为圆心,BC长为半径画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD.则①∠DAE= 度;②若BC=9,与的长度之和为.三、解答题(共89分)18.计算:.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图. 组别行驶的里程x (千米) 频数(台) 频率Ax <20018 0.15 B200≤x <210 36 a C210≤x <220 30 D220≤x <230 b E x ≥23012 0.10 合计 c 1.00 根据以上信息回答下列问题:(1)a= ,b= ,c= ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.参考答案与试题解析一、选择题1.故选:A.2故选:B.3.故选A.4.故选:D.5.故选:C.6.故选B.7.故选C.二、填空题8.a6.9.(x+3)(x﹣3).10. 1 .11. 1.95×108.12.50 °.13.10 .14..15.cm.16.y=(x﹣4)2+3 .17.故答案为:25;故答案为:π.三、解答题(共89分)18.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】分别进行绝对值的化简、零指数幂、二次根式的除法、负整数指数幂的运算,然后合并求解.【解答】解:原式=2﹣+1+﹣2=1.【点评】本题考查了实数的运算,涉及了绝对值的化简、零指数幂、二次根式的除法、负整数指数幂等知识,解答本题的关键是掌握各知识点的运算法则.19.先化简,再求值:(x+2)2﹣x(x+3),其中x=﹣2.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+4x+4﹣x2﹣3x=x+4,当x=﹣2时,原式=﹣2+4=2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.如图,AF与BE相交于点C,AB∥EF,AB=EF.求证:AC=CF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由AB∥EF,得到∠A=∠F,∠B=∠E,通过证明三角形全等得到对应边相等.【解答】证明:∵AB∥EF,∴∠A=∠F,∠B=∠E,在△ABC和△FEC中,,∴△ABC≌△FEC(ASA),∴AC=CF.【点评】本题考查了全等三角形的判定与性质,平行线的性质,找准对应边和对应角是解题的关键.21.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)根据4个小球中红球的个数,即可确定出从中任意摸出1个球,恰好摸到红球的概率;(2)列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.【解答】解:(1)4个小球中有2个红球,则任意摸出1个球,恰好摸到红球的概率是;故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,二次函数y=x2﹣4x+3+的图象的对称轴交x轴于A点.(1)请写出OA的长度;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否在该函数的图象上?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)先依据抛物线的对称轴方程求得抛物线的对称轴,从而可得到点A的坐标,从而可求得OA的长;(2)依据旋转的性质和特殊锐角三角函数值可求得点A′的坐标,然后将点A′的坐标代入抛物线的解析式进行判断即可.【解答】解:(1)∵x=﹣=﹣=2,∴A(2,0).∴OA=2.(2)如图所示:过A′作A′B⊥OA,垂足为B.由旋转的性质可知:OA′=OA=2.∵∠A′OA=60°,A′B⊥OA,∴OB=1,A′B=∴A′(1,).∵将x=1时,y=12﹣4+3+=,∴A′在该函数的图象上.【点评】本题主要考查的是二次函数的图象与几何变形,解答本题主要应用了二次函数的对称轴方程、旋转的性质,求得点A′的坐标是解题的关键.23.随着科技的发展,电动汽车的性能得到显著提高.某市对市场上电动汽车的性能进行随机抽样调查,抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据,绘制成如下两幅表和图.组别行驶的里程x(千米)频数(台)频率A x<200 18 0.15B 200≤x<210 36 aC 210≤x<220 30D 220≤x<230 bE x≥230 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a= 0.3 ,b= 24 ,c= 120 ;(2)请将条形统计图补充完整;(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)由A组的频数、频率可得总数c,再依据频率=可求得a,根据频数之和等于总数可求得b;(2)由(1)知D组数量,补全图形即可;(3)用样本中行驶的里程数在220千米及以上的台数(即D、E两组频数之和)所占比例乘以总数2000可得.【解答】解:(1)本次调查的总台数c=18÷0.15=120,a=36÷120=0.3,b=120﹣18﹣36﹣30﹣12=24,故答案为:0.3,24,120.(2)由(1)知,D组的人数为24人,补全条形图如图:(3)×2000=600(台),答:估计电动汽车一次充电后行驶的里程数在220千米及以上的约有600台.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.屈原食品公司接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只5元.为按时完成任务,该企业招收了新工人,设新工人小明第x天生产的粽子数量为n只,n与x满足如下关系式:.(1)小明第几天生产的粽子数量为390只?(2)设第x天每只粽子的成本是y元,y与x之间的关系的函数图象如图所示.若小明第x天的净利润为w元,试求w与x之间的函数表达式,并求出第几天的净利润最大?最大值是多少元?(提示:净利润=出厂价﹣成本)【考点】二次函数的应用.【分析】(1)把n=390代入n=30x+90,解方程即可求得;(2)根据图象求得成本y与x之间的关系,然后根据:净利润=(出厂价﹣成本价)×销售量,结合x的范围整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.【解答】解:(1)∵45×5=225<390,∴30x+90=390,解得:x=6,答:小明第6天生产的粽子数量为390只;(2)由图象可知,当0≤x≤9时,y=3.4;当9<x≤15时,设y=kx+b,将(9,3.4)、(15,4)代入,得:,解得:,∴y=0.1x+2.5;①当0≤x≤5时,w=(5﹣3.4)×45x=72x,∵w随x的增大而增大,∴当x=5时,w取得最大值,w最大=360元;②当5<x≤9时,w=(5﹣3.4)(30x+90)=48x+144,∵w随x的增大而增大,∴当x=9时,w取得最大值,w最大=576元;③当9<x≤15时,w=[5﹣(0.1x+2.5)](30x+90)=﹣3x2+66x﹣225=﹣3(x﹣11)2+138,∴当x=11时,w取得最大值,w最大=138元;综上,当x=9时,w取得最大值,w最大=576元,答:第9天的净利润最大,最大值是576元.【点评】本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.25.阅读理解:如图1,点P ,Q 是双曲线上不同的两点,过点P ,Q 分别作PB ⊥y 轴于B 点、QA ⊥x 轴于A 点,两垂线的交点为E 点,则有=,请利用这一性质解决问题.问题解决:(1)如图1,如果QE=6,AQ=3,BP=4.填空:PE= 8 ;(2)如图2,点A ,B 是双曲线y=上不同的两点,直线AB 与x 轴、y 轴相交于点C ,D :①求证:AC=BD .②已知:直线AB 的关系为y=﹣x+2,CD=4AB .试求出k 的值.【考点】反比例函数综合题.【分析】(1)根据给定比例=,将QE=6、AQ=3、BP=4代入其中即可求出PE 的值;(2)①过点A 作y 轴的垂线交y 轴于点E ,过点B 作x 轴的垂线交x 轴于点F,延长EA、FB交于点M,由ME⊥y轴、MF⊥x轴,即可得出△CAE∽△BAM∽△BDF,根据相似三角形的性质即可得出、,再结合即可得出,由此即可证出AC=BD;②分别将x=0、y=0代入一次函数解析式中即可求出点C、D的坐标,由AE ⊥y轴可得出△ACE∽△DCO,再根据相似三角形的性质结合CD=4AB,即可求出点A的坐标,利用反比例函数图象上点的坐标特征即可求出k值.【解答】(1)解:∵ =,QE=6,AQ=3,BP=4,∴PE===8.故答案为:8.(2)①证明:过点A作y轴的垂线交y轴于点E,过点B作x轴的垂线交x轴于点F,延长EA、FB交于点M,如图3所示.∵ME⊥y轴,MF⊥x轴,∴△CAE∽△BAM∽△BDF,∴,,∵,∴,∴AC=BD.证毕.②当x=0时,y=2,∴点C(0,2);当y=0时,有﹣x+2=0,解得:x=2,∴点D(2,0).∵CD=4AB,AC=BD,∴==.∵AE⊥y轴,∴AE∥DO,∴△ACE∽△DCO,∴=,∵CO=2,OD=2,∴CE=EA=,∴点A的坐标为(,).∵点A在双曲线y=上,∴×=k=.【点评】本题考查了相似三角形的判定与性质以及反比例函数图象上点的坐标特征,根据相似三角形的性质找出线段与线段之间的关系是解题的关键.26.如图,在平面直角坐标系中,以OC为直径的圆交y轴于点D,∠DOC=30°,OC=2.延长DC至点B,使得CB=4DC,过B点作BA∥OC交x轴于A点.(1)请求出BC的长度;(2)若P点与B点是关于直线AC的对称点,试求出点P的坐标;(3)若点M、N分别为CB、AB上的动点,P点与B点是关于直线MN的对称点,过点P作x轴的平行线,与AC、OC分别交于点E、F.若PE﹕PF=1:3,点P的横坐标为m.请求出点P的纵坐标,并直接写出m的取值范围.【考点】圆的综合题.【分析】(1)根据圆周角定理可知∠ODC是直角,所以可求得CD的长为1,利用CB=4DC可知,CB的长度为4;(2)根据(1)可知OA=4,OC,∠COA=60°,所以易证△OCA∽△CDO,可知∠OCA=90°,又易知四边形AOCB是平行四边形,所以∠CAB=90°,所以点P一定在BA的延长线上;(3)由题意知:P与B关于MN,所以m的范围是2≤m≤5,求出直线AC和OC的解析式后,设P的纵坐标为a,然后将y=a分别代入直线AC和OC解析式中,求出E、F的横坐标,然后利用PF=3PE,列出关于a的方程,然后解出a即可得出M的纵坐标.【解答】(1)由题意知:OC是直径,∴∠ODC=90°,∵∠DOC=30°,∴DC=OC=1,∴BC=4DC=4;(2)连接AC,由(1)可知:∠ODC=90°∴CD∥OA,∵BA∥OC,∴四边形AOCB是平行四边形,∴OA=BC=4,∵∠COD=30°,∴∠COA=∠OCD=60°,∵,∴△OCA∽△CDO,∴∠OCA=90°,在BA的延长线上截取AP=AB,过点P作PG⊥x轴于点G,∴AP=2,∠OAP=60°,∴AG=1,PG=,∴OG=OA﹣AG=3,∴P(3,﹣);(3)由题意知:当M与C重合,N在AB上移动时,m的范围是3≤m≤5,当N与A重合,M在CB上移动时,m的范围是2≤m≤5,∴点P与B关于MN对称时,2≤m≤5,由(1)可知,点C的坐标为(1,),点A的坐标为(4,0),设直线AC的解析式为:y=kx+b,把A(4,0)和C(1,)代入y=kx+b,得:,∴,∴直线AC的解析式为:y=﹣x+,设直线OC的解析式为:y=mx,把C(1,)代入y=mx,∴m=,∴直线OC的解析式为:y=x,设P的纵坐标为a,∴P的坐标为(m,a)∵PF∥x轴,∴E、F的纵坐标为a,令y=a代入y=﹣x+,∴x=4﹣a,∴E(4﹣a,a),令y=a代入y=x,∴x=a,∴F(a,a),如图1,当点P在AC的右侧时,∴PE=m﹣(4﹣a)=m﹣4+a,PF=m﹣a,∵PF=3PE,∴m﹣a=3(m﹣4+a),∴a=,如图2,当点P在EF之间时,此时,PE=4﹣a﹣m,PF=m﹣a,∵PF=3PE,∴m﹣a=3(4﹣a﹣m),∴a=(3﹣m),综上所述,P的纵坐标为或(3﹣m),m的范围是:2≤m≤5.【点评】本题考查圆的综合题目,涉及圆周角定理,轴对称的性质,相似三角形的性质和判定,题目较为综合,需要学生灵活运用所学知识进行解答.。

2017中考数学模拟试题含答案(精选5套)

2017中考数学模拟试题含答案(精选5套)

2017年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B 。

23C 。

2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个 C 。

3个 D. 2个3。

据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A 。

1。

8×10B 。

1.8×108C 。

1.8×109 D. 1。

8×10104. 估计8-1的值在( )A. 0到1之间 B 。

1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A 。

平行四边形B. 矩形C. 正方形D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C 。

400名 D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A 。

(x + 2)2= 9 B 。

(x — 2)2= 9C 。

(x + 2)2 = 1D. (x - 2)2=19。

如图,在△ABC 中,AD,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B 。

1∶4C 。

1∶3D 。

2∶310。

下列各因式分解正确的是( )A 。

x 2+ 2x-1=(x — 1)2B. - x 2+(—2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x — 2)D 。

2017年数学中考模拟试题(含答案)

2017年数学中考模拟试题(含答案)

AB2017年安徽省中考数学模拟试题一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.) 1.下列运算正确的是( ).A .a b a b 11+-=+-B .()2222b ab a b a ++=-- C .12316+=+a a D .()222-=- 2.某地区水能资源丰富,理论蕴藏量达221.21万千瓦,己开发156万千瓦,把己开发水能资源用四舍五入法保留两个有效数字并且用科学计数法表示应记为( )千瓦.A.51016⨯ B.6106.1⨯ C.610160⨯ D.71016.0⨯ 3.如图在数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( ).A .0>b a + B .0>ab C .0>b a - D .0>b a -4.关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足( ). A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠55.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是( ).6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的BC横坐标逐渐增大时,OAB △的面积将会( ). A .逐渐增大 B .不变C .逐渐减小D .先增大后减小7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论一定正确的个数有①CE =DE ;②BE =OE ;③C B ⌒=BD ⌒;④∠CAB =∠DAB ;⑤AC =AD ( ).A .4个B .3个C .2个D .1个 8.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( ). A .18%)201(400160=++x x B .18%)201(160400160=+-+x x C .18%20160400160=-+x x D .18%)201(160400400=+-+xx 9.2010年因干旱影响,凉山州政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是( ). A .中位数是6 B .平均数是5.8 C .众数是6 D .极差是410.如图,在△ABC 中,AB =AC =10,CB =16, 分别以AB 、AC 为直径作半圆,则图中阴影部 分面积是( ).A .4850-πB .4825-πC .2450-πD .24225-πCEBAFD 第11题图11.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤△CDE 面积 的最大值为8.其中正确的结论是( ). A .①②③ B .①④⑤ C .①③④D .③④⑤12.已知二次函数2y ax bx c =++(a ≠0)的图象如图所 示,则下列结论:① ac >0; ② a –b +c <0; ③当 x <0时,y <0;④方程20ax bx c ++=(a ≠0)有两个大于-1的实数根.其中错误的结论有( ).A .②③B .②④C .①③D .①④二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.分解因式:x 2-2xy +y 2-9= . 14.若关于x 的分式方程311x a x x--=-无解,则a = . 15.如图,ABC △的顶点坐标分别为(36)(13)A B ,,,,(42)C ,.若将ABC △绕C 点顺时针旋转90,得到A B C '''△,则点A 的对应点A '的坐标为 .16.若关于x 、y 的二元一次方程组⎩⎨⎧=++=+3313y x ay x的解满足2<y x +,则a 的取值范围是 .17.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,;②当2x >时,• •第12题x4 21y y >;③当1x =时,3BC =;④当x逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号 是 .三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18.(本题满分8分)如图,一个被等分成4个扇形的圆形转盘,其中3个扇形分别标有数字2,5,6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).(1)求当转动这个转盘,转盘自由停止后,指针指向没有标数字的扇形的概率; (2)请在4,7,8,9这4个数字中选出一个数字填写在没有标数字的扇形内,使得分别转动转盘2次,转盘自由停止后指针所指扇形的数字和分别为奇数与为偶数的概率相等,并说明理由.19.(本题满分9分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)20.(本题满分9分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.21.(本题满分10分)如图,已知在梯形ABCD 中,AD ∥BC ,AB =CD ,E 、F 分别是AB 和BC 的边上的点.(1)如图①,以EF 为对称轴翻折梯形ABCD ,使点B 与点D 重合,且DF ⊥BC .若AD =4,BC =8,求梯形ABCD 的面积ABCD S 梯形的值.(2)如图②,连接EF 并延长与DC 的延长线交于点G ,如果EF k FG ∙=(k为正数),试猜想BE 与CG 有何数量关系?写出你的结论并证明之.22.(本题满分10分)某县响应“建设环保节约型社会”的号召,决定资助部分乡镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A 型、B 型沼气池共政府相关部门批给该村沼气池修建用地708m .设修建A 型沼气池x 个,修建两种型号沼气池共需费用y 万元. (1)求y 与x 之间的函数关系式;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案.AB E DF C ① AB E DG C ②F23.(本题满分11分)如图,已知在Rt ABC △中,90C ∠= ,点O 在AB 上,以O为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠. (1)判断直线BD 与O 圆的位置关系,并证明你的结论; (2)若:8:5AD AO =,2BC =,求BD 的长.24.(本题满分12分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.xA2017年安徽省中考数学模拟试题参考答案一、选择题(本题共12小题,共36分.在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.)二、填空题(本大题共5小题,共15分.只要求填写最后结果,每小题填对得3分.)13.)3)(3(+---y x y x 14.21-==a a 或15.(8,3) 16. a <4 17.①③④ 三、解答题(本大题共7小题,共69分.解答应写出必要的文字说明、证明过程或演算步骤.)18. 解答:解:(1)∵没有标数字扇形的面积为整个圆盘面积的41,∴指针指向没有标数字扇形的概率为p=41.(3分)(2)填入的数字为9时,两数和分别为奇数与为偶数的概率相等.理由如下:设填入的数字为x ,则有下表: 和 x 2 5 6x 2x (偶) 2+x 5+x 6+x 2 2+x 偶 奇 偶 5 5+x 奇 偶 奇 6 6+x 偶 奇 偶从上表可看出,为使和分别为奇数与偶数的概率相等,则x 应满足2+x ,5+x ,6+x 三个数中有2个是奇数,一个是偶数.将所给的数字代入验算知,x=9满足条件.∴填入的数字为9.(8分) (注:本题答案不惟一,填入数字7也满足条件;只填数字不说理由的不给分.) 19.(1)如图,作AD ⊥BC 于点D …………………1分Rt △ABD 中,AD =AB sin 45°=22224=⨯……2分 在Rt △ACD 中,∵∠ACD =30°∴AC =2AD =24≈6.5…………………3分 即新传送带AC 的长度约为6.5米.……4分 (2)结论:货物MNQP 应挪走.……………5分 解:在Rt △ABD 中,BD =ABcos 45=22224=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2∴货物MNQP 应挪走. ……………………………9分 20.解⑴①10+7x ②12+6x ……………………………….2分 ⑵y =(12+6x )-(10+7x )y =2-x ………………………………………………….5分 ⑶∵w =2(1+x )(2-x )=-2x 2+2x +4 ∴w =-2(x -0.5)2+4.5 ∵-2<0,0<x ≤11, ∴w 有最大值,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.…..9分21. 解:(1)如图,连接AC 交BD 于点O ,作DP ∥AC 交BC 的延长线于点P.∵AD ∥BP ,AC ∥DP∴四边形ACPD 是平行四边形∴AC=DP ,∠BOC=∠BDP=90°,AD=CP=4 ∵AB=DC ∴AC=BD ∴BD=DP∴DF=21BP=21(BC+CP)=6 ∴DF BP S BPD ∙=21三角形=36………………5分(2)KCG BE 1=……………………………..6分 过点E 作EQ ∥DG ,交BC 于点Q , ∴△EQF ∽△GCF∴KFG EF CG EQ 1==…….8分 ∵AB=CD, ∴∠B=∠DCB ∵EQ ∥DG ∴∠EQB=∠DCB ∴∠EQB=∠B ∴EQ=BE ∴KCG BE 1=……………………10分 22. 解:(1)40)20(23+=-+=x x x y ………………………3分(2)由题意可得⎩⎨⎧≤-+≥-+②②②①①708)20(648264)20(320x x x x 解得:12≤x ≤14 ∵x 是正整数∴x 的取值为12、13、14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个;……………………………………………………………7分(3)∵y=x+40,y 随x 的增加而增加,要使费用最少,则x=12 ∴最少费用为y=x+40=52(万元)村民每户集资700元与政府补助共计700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案………………………10分23.解 ⑴ 直线BD 与O 相切.1分证明:如图1,连结OD . OA OD = , A ADO ∴∠=∠.90C ∠= , 90CBD CDB ∴∠+∠= . 又CBD A ∠=∠ ,90ADO CDB ∴∠+∠= . 90ODB ∴∠= .∴直线BD 与O 相切.…………………….5分 ⑵ 如图,连结DE .AA BED FC①A B EDGC ②F P QOx (第24题)AE 是O 的直径, 90ADE ∴∠= .:8:5AD AO = , 4cos 5AD A AE ∴==.………………………7分 90C ∠= ,CBD A ∠=∠,4cos 5BC CBD BD ∴∠==.……………………..9分 2BC = , 52BD ∴=.………………11分 24.(1)解:设抛物线为2(4)1y a x =--. ∵抛物线经过点A (0,3),∴23(04)1a =--.∴14a =∴抛物线为2211(4)12344y x x x =--=-+. …3 (2) 答:l 与⊙C 相交. …………………………4分 证明:当21(4)104x --=时,12x =,26x =.∴B 为(2,0),C 为(6,0).∴AB =设⊙C 与BD 相切于点E ,连接CE ,则90BEC AOB ∠=︒=∠.∵90ABD ∠=︒,∴90CBE ABO ∠=︒-∠.又∵90BAO ABO ∠=︒-∠,∴BAO CBE ∠=∠.∴AOB ∆∽BEC ∆. ∴CE BC OB AB =.∴2CE =.∴2CE =>.…………………………7 ∵抛物线的对称轴l 为4x =,∴C 点到l 的距离为2.∴抛物线的对称轴l 与⊙C 相交. (8)(3) 解:如图,过点P 作平行于y 轴的直线交AC 于点Q .可求出AC 的解析式为132y x =-+ (10)设P 点的坐标为(m ,21234m m -+),则Q 点的坐标为(m ,132m -+). ∴2211133(23)2442PQ m m m m m =-+--+=-+. ∵22113327()6(3)24244PAC PAQ PCQ S S S m m m ∆∆∆=+=⨯-+⨯=--+, ∴当3m =时,PAC ∆的面积最大为274. 此时,P 点的坐标为(3,34-). (12)。

2017年中考数学模拟试题及答案

2017年中考数学模拟试题及答案

2017年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。

考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分)1、比-2013小1的数是()A、-2012B、2012C、-2014 D、20142、如图,直线l1∥l2,∠1=40°,∠2=75°,则∠3=()A、70°B、65°C、60°D、55°3、从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()A、 B、 C、 D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是()A、9.4×10-7mB、9.4×107mC、9.4×10-8mD、9.4×108m5、下列计算正确的是()A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-2)4=-a4b6D、-2a+(2a-1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。

某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。

假设零售商当天购进四星级枇杷x千克,则列出关于x的方程为()A、+4=B、-4=C、+4=D、-4=二、填空题(本大题共8小题,每小题3分,共24分)7、因式分解:2-x=。

8、已知x=1是关于x的方程x2+x+2k=0的一个根,则它的312l1l2FCBGDE正面另一个根是 。

9、已知=,则分式的值为 。

10、如图,正五边形,∥交的延长线于点F ,则∠= 度。

11、已知x =-1,2) ,y =+1,2) ,则x 2++y 2的值为 。

12、分式方程+=1的解为。

13、现有一张圆心角为108°,半径为作成一个底面半径为10的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 。

2017年中考数学模拟试卷 (含答案解析) (16)

2017年中考数学模拟试卷 (含答案解析) (16)

2017年中考数学模拟试卷一、选择题:1.下列说法中错误的是()2.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠03.下列计算结果正确的是()A.a4•a2=a8B.(a4)2=a6C.(ab)2=a2b2D.(a﹣b)2=a2﹣b24.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()5.一元二次方程x2+px-6=0的一个根为2,则p的值为()A.-1B.-2C.1D.26.已知点P(2a+1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A. B. C. D.7.下图是一个由相同小正方体搭成的几何体的俯视图,若小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的主视图是()8.我区某一周的最高气温统计如下表:最高气温(℃)13 15 17 18天数 1 1 2 3A.17,17B.17,18C.18,17D.18,189.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧AMB上一点,则∠APB的度数为()A.45°B.30° C.75° D.60°10.附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?()A.3:2 B.5:3 C.8:5 D.13:8二、填空题:11.比较大小:12-____5-;2_____(2)----.12.科学记数法—表示较大的数.据统计,全球每分钟约有8500000吨污水排入江河湖海,将8500000用科学记数法表示为吨.13.如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为.14.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB 的周长是18厘米,则EF= 厘米.15.已知一个一次函数,当x>0时,函数值y随着x的增大而减小,请任意写出一个符合以上条件的函数关系式.16.如图.在正方形ABCD中.对角线AC与BD相交于点O.E为BC上一点.CE=5.F为DE的中点/若△CEF的周长为18.则OF的长为.三、解答题:17.解方程: (x﹣4)2=(5﹣2x)2.18.如图,E、A、C三点共线,AB∥CD,∠B=∠E,,AC=CD。

2017年九年级数学中考模拟试卷

2017年九年级数学中考模拟试卷

2017 年九年级数学中考模拟试卷一、选择题:1.已知有理数 a, b, c在数轴上对应点的地点如图, 化简 : ∣ b-c ∣ -2 ∣ c+a∣-3 ∣ a-b ∣ =()A.-5a+4b-3cB.5a-2b+c2. 以下计算正确的选项是()A.2+a=2a﹣3a=﹣1 C.(﹣a)2?a3=a5÷4ab=2ab3. 若 x、 y为有理数,以下各式建立的是()A. (﹣ x)3=x3B. (﹣ x)4=﹣ x4 4=﹣ x4 D. ﹣x3=(﹣ x)34. 如图,依据三视图确立该几何体的全面积是(图中尺寸单位:cm)()222 2A. 40π cm B. 65π cm C.80π cm D. 105πcm5. 化简的结果是()A. B. C.x+1﹣16.以下运算中,正确的选项是()A.3a+2b=5abB.2a 3 +3a 2=5a 5C.3a 2 b ﹣ 3ba 2 =0D.5a 2﹣ 4a 2=17.某学校将为初一学生开设 ABCDEF共 6门选修课,现选用若干学生进行了“我最喜爱的一门选修课”检查,将检查结果绘制成如图统计图表(不完好)选修课A B C D E F 人数4060100依据图表供给的信息,以下结论错误的选项是()A.此次被检查的学生人数为 400 人B.扇形统计图中 E部分扇形的圆心角为 72°C.被检查的学生中喜爱选修课 E、F的人数分别为 80,70D.喜爱选修课 C的人数最少8.在同样时辰的物高与影长成比率,假如高为1.5 米的测竿的影长为 2.5 米,那么影长为 30 米的旗杆的高是()米米米米9.如图 1,在直角梯形 ABCD中,动点 P 从点 B 出发,沿 BC,CD运动至点 D 停止.设点 P 运动的行程为 x,△ ABP 的面积为y,假如 y 对于 x 的函数图象如图 2 所示,则△ BCD的面积是()A. 3 B . 4 C . 5 D .610. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24 米,拱的半径为13 米,则拱高为 ( )A.5 米 B .8米 C .7米 D . 5 米二、填空题:11.已知对于 x,y 的方程组的解为正数,则.12.分解因式: 2x3﹣4x2+2x=.13.如图,△ ABC是边长为4个等边三角形,D 为AB边中点 , 以 CD为直径画圆 , 则图中暗影部分面积为.14.如图在□ABCD中,点 E 在边 DC上, DE: EC=3: 1,连结 AE交 BD于点 F,若△ DEF的面积为 18,则□ABCD的面积为.三、计算题:15.计算 :2016 0﹣ | ﹣|++2sin45 °.16.解方程 :3x 2- 7x +4=0.四、解答题:17.如图 , 在 Rt △ ABC中 , ∠ ACB=90° , 点 D,E 分别在 AB,AC上 ,CE=BC,连结 CD,将线段 CD绕点 C按顺时针方向旋转 90°后得 CF, 连结 EF.( 1)增补达成图形;( 2)若 EF∥ CD,求证 : ∠ BDC=90°.第3页共3页18.如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,交 y 轴于 C点,此中 B 点坐标为( 3,0), C 点坐标为( 0,3),且图象对称轴为直线x=1.( 1)求此二次函数的关系式;( 2) P 为二次函数y=ax 2+bx+c 在 x 轴下方的图象上一点,且S△ABP=S△ABC,求 P 点的坐标.19.如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB的坡度为1: 2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端 B 点正上方的一点, BC⊥MN,在自动扶梯底端 A 处测得 C 点的仰角为 42°,求二楼的层高 BC(精准到 0.1 米).(参照数据: sin42 °≈ 0.67 , cos42°≈ 0.74 ,tan42 °≈ 0.90 )如图 1,某商场从底楼到二楼有一自动扶梯,图 2 是侧面表示图.已知自动扶梯AB 的坡度为 1:2.4 ,AB的长度是 13 米, MN是二楼楼顶, MN∥ PQ,C 是 MN上处在自动扶梯顶端B点正上方的一点,BC⊥ MN,在自动扶梯底端A 处测得 C点的仰角为42°,求二楼的层高BC(精准到0.1 米).(参照数据:sin42 °≈ 0.67 ,cos42 °≈ 0.74 ,tan42 °≈ 0.90 )20.一辆客车从甲地出发前去乙地,均匀速度v(千米 / 小时)与所用时间 t (小时)的函数关系以下图,此中60≤ v≤ 120.( 1)直接写出 v与t 的函数关系式;( 2)若一辆货车同时从乙地出发前去甲地,客车比货车均匀每小时多行驶20 千米, 3 小时后两车相遇.①求两车的均匀速度;②甲、乙两地间有两个加油站A、B,它们相距200 千米,当客车进入B加油站时,货车恰巧进入A加油站(两车加油的时间忽视不计),求甲地与B加油站的距离.21.某中学举行了“中国梦,中国好少年”演讲竞赛,菲菲同学将选手成绩区分为A、 B、 C、 D四个等级,绘制了两种不完好统计图.依据图中供给的信息,解答以下问题:( 1)参加演讲竞赛的学生共有人,扇形统计图中m=,n=,并把条形统计图增补完好.(2)学校欲从 A等级 2 名男生 2 名女生中随机选用两人,参加达州市举办的演讲竞赛,请利用列表法或树状图,求 A等级中一男一女参加竞赛的概率.(男生疏别用代码A 1、 A2表示,女生疏别用代码 B1、B2表示)五、综合题:22.如图,在平面直角坐标系中,已知抛物线y=ax 2+bx的对称轴为 x=0.775 ,且经过点 A( 2, 1),点 P是抛物线上的动点, P的横坐标为 m( 0< m< 2),过点 P作PB⊥ x轴,垂足为 B,PB交 OA于点 C,点 O对于直线 PB的对称点为 D,连结 CD,AD,过点 A作 AE⊥x轴,垂足为 E.(1)求抛物线的分析式;(2)填空:①用含 m的式子表示点 C, D的坐标: C(,),D(,);②当 m=时,△ ACD的周长最小;( 3)若△ ACD为等腰三角形,求出全部切合条件的点P的坐标.23.如图①,△ ABC与△ CDE是等腰直角三角形,直角边AC、 CD在同一条直线上,点M、 N 分别是斜边AB、 DE的中点,点P 为 AD的中点,连结AE、 BD.(1)猜想 PM与 PN的数目关系及地点关系,请直接写出结论;(2)现将图①中的△ CDE绕着点 C顺时针旋转α(0°<α<90°),获得图②, AE与 MP、BD分别交于点 G、H.请判断( 1)中的结论能否建立?若建立,请证明;若不建立,请说明原因;(3)若图②中的等腰直角三角形变为直角三角形,使 BC=kAC,CD=kCE,如图③,写出 PM与 PN的数目关系,并加以证明.参照答案11.答案为: 7;12.答案为: 2x(x ﹣1) 2.13.答案为: 2.5 ﹣π .14.答案为: 112;15. 解: 20160 ﹣|﹣ |+ +2sin45 ° =1﹣ +( 3﹣1)﹣1+2×=1﹣ +3+ =4.16. 解: (3)x 1 =, x2=117.解:( 1)补全图形,以下图;(2)由旋转的性质得:∠ DCF=90°,∴∠ DCE+∠ ECF=90°,∵∠ ACB=90°,∴∠ DCE+∠BCD=90°,∴∠ ECF=∠ BCD,∵EF∥ DC,∴∠ EFC+∠ DCF=180°,∴∠ EFC=90°,在△ BDC和△ EFC中,,∴△BDC≌△ EFC(SAS),∴∠ BDC=∠ EFC=90°.18. 解:( 1)依据题意,得,解得.故二次函数的表达式为y=﹣ x2+2x+3.△ ABP △ABC PC P( 2)由 S =S ,得 y +y =0,得 y =﹣ 3,当 y=﹣ 3 时,﹣ x2+2x+3=﹣ 3,解得 x1=1﹣, x2=1+.故 P 点的坐标为( 1﹣,﹣ 3)或( 1+ ,﹣ 3).19.20.解:( 1)设函数关系式为 v=kt -1,-1∵ t=5 , v=120,∴ k=120 ×5=600,∴ v与 t 的函数关系式为 v=600t(5≤ t≤ 10);当 v=110 时, v﹣ 20=90.答:客车和货车的均匀速度分别为110 千米 / 小时和 90 千米 / 小时;②当 A加油站在甲地和B加油站之间时,110t ﹣( 600﹣ 90t ) =200,解得 t=4 ,此时 110t=110 ×4=440;当 B加油站在甲地和 A加油站之间时, 110t+200+90t=600 ,解得 t=2 ,此时 110t=110 ×2=220.答:甲地与 B加油站的距离为220 或 440 千米.21.22.23.解:( 1) PM=PN, PM⊥PN,原因以下:∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.在△ ACE和△ BCD中,∴△ ACE≌△ BCD(SAS),∴AE=BD,∠ EAC=∠CBD,∵点 M、N 分别是斜边AB、 DE的中点,点P 为 AD的中点,∴ PM= BD, PN= AE,∴PM=PM,∵∠ NPD=∠ EAC,∠ MPN=∠BDC,∠ EAC+∠BDC=90°,∴∠ MPA+∠ NPC=90°,∴∠ MPN=90°,即 PM⊥PN;( 2)∵△ ACB和△ ECD是等腰直角三角形,∴AC=BC, EC=CD,∠ ACB=∠ ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∴△ ACE≌△ BCD.∴AE=BD,∠ CAE=∠CBD.又∵∠ AOC=∠ BOE,∠ CAE=∠CBD,∴∠ BHO=∠ ACO=90°.∵点 P、M、 N 分别为 AD、AB、 DE的中点,∴ PM= BD, PM∥ BD;PN=AE, PN∥ AE.∴ PM=PN.∴∠ MGE+∠ BHA=180°.∴∠ MGE=90°.∴∠ MPN=90°.∴ PM⊥ PN.(3) PM=kPN∵△ ACB和△ ECD是直角三角形,∴∠ ACB=∠ECD=90°.∴∠ ACB+∠ BCE=∠ECD+∠ BCE.∴∠ ACE=∠ BCD.∵ BC=kAC, CD=kCE,∴=k.∴△ BCD∽△ ACE.∴ BD=kAE。

中考数学模拟试卷含答案(2017)

中考数学模拟试卷含答案(2017)

中考数学模拟试卷(满分:150分,考试时间:120分钟)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的.1.在-3,0,10-,4这四个数中,最小的数是( B )A.﹣3 B.10- C.0 D.42.下列计算中,正确的是( D )A.842a a a ÷=B.255=±C.235a b ab +=D.11()22--=-3.下列四个标志中,不是轴对称图形的是( A )4.下列说法中,正确的是( C ) (5题图)A.一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖.B.为了了解全国中学生的心理健康状况,应采用普查的方式.C.一组数据0,1,2,1,1的众数和中位数都是1.D.若甲组数据的方差S 甲2=0.2,乙组数据的方差S 乙2=0.5,则乙组数据比甲组数据稳定. 5.如图,已知AB ∥CD ,DE ⊥AC ,垂足为E ,∠A=130°,则∠D 的度数是( B ) A.20° B.40° C.50° D.70°6.若代数式2425x x -+的值为7,那么代数式221x x -+的值等于( B ) A.-2 B.2 C.3 D.47.函数24x y x +=-中,自变量x 的取值范围是( D ) A.4x > B.4x ≠ C.24x x >-≠且 D.24x x ≥-≠且 (9题图) 8.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3:2,则△ABC 与△DEF 对应边上的高线的比为( C ) A.2:3 B.4:16 C.3:2 D.16:49.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=23,则阴影部分的面积为( D )A.4πB.2πC.πD.23π10.土家传统建筑的窗户上常有一些精致花纹,小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“○”代表的就是精致的花纹,第1个图有5个花纹,第2个图有8个花纹,第3个图有11个花纹,…,请问第7个精致花纹有( B )A.26个B.23个C.20个D.17个11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB 的坡度为1:2.4,AB 的长度是13米,MN 是二楼楼顶,MN ∥PQ ,C 是MN 上处在自动扶梯顶端B 点正上方的一点,BC ⊥MN ,在自动扶梯底端A 处测得C 点的仰角为42°,则二楼的层高BC 约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)( D )A.10.8米B.8.9米C.8.0米D.5.8米12.从-2,-1,12-,1,2这五个数中,随机抽取一个数,记为a ,若数a 使关于x 的不等式组无解,且使关于的分式方程22123a x -=--的解为正分数,那么这个数中所有满足条件的a 的值之是( A ) A.﹣3 B.52- C.-2 D.72-二、填空题(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在对应的横线上.13.2016年3月30日国务院通过了《成渝城市群发展规划》,成渝城市群包括重庆全城和四川成都、德阳、绵阳、乐山、眉山、资阳、内江、宜宾、泸州、自贡等11个城市及所辖73个县(市)、1636个建制镇,幅员面积183000平方公里,将183000用科学计数法表示为 . 14.计算:012(3)4cos30π+-°= 1 . 51.8310⨯ 15.如图,AB 是⊙O 的直径,点C 、D 在圆上,∠D=65°,则∠ABC= 25° .16.从-4,12-,34,5中任取一个数记为a ,再从余下的三个数中任取一个数记为b ,则二次函数2y ax bx =-的对称轴在y 轴左侧的概率是 . 2317.甲、乙两车分别从A ,B 两地同时相向匀速行驶.当乙车到达A 地后,继续保持原速向远离B 的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.设两车行驶的时间为x(小时),两车之间的距离为y(千米),y 与x 之间的函数关系如图所示,则B ,C 两地相距 600 千米.18.如图,已知正方形ABCD ,点P 为BC 边上的一点,将△ABP 绕点A 逆时针旋转90°得到 △ADE ,连接PE 交AC 于F ,点G 是AF 上一点,且∠PGE=135°,连接DG 交PE 于点N ,若P B=3,CF=42NG 的长是 . 25三、解答题(本大题共2个小题,每小题8分,共16分)解答应写出必要的文字说明、证明过程或演算步骤.19.如图,点A 、B 、C 、D 在同一直线上,BE ∥DF ,∠A=∠F, AB=FD.求证:AE=FC. 证:∵BE ∥DF ,∴∠ABE=∠D.在△ABE 和△FDC 中A F AB FD ABE D ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABE ≌△FDC(ASA)∴AE=FC.20.某初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息,解答下列问题:① ② (答案图)(1)在这次评价中,一共抽查了 560 名学生;请将图①中的频数分布直方图补充完整;求图②中“主动质疑”所在扇形对应的圆心角是 54 度.(2)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?解:因为抽查的这些人中,“独立思考”的学生占总数的比例为168÷560=30%,所以6000名初三学生 “独立思考”的初三学生约有6000×30%=1800(人)四、解答题(本大题共5个小题,每小题10分,共50分)解答应写出必要的文字说明、证明过程或演算步骤.21.化简下列各式:(1)22(2)()a a b a b b +--+ (2)2344(1)11x x x x x -+-+÷++22.如图,在平面直角坐标系中,一次函数的图象与反比例函数my x=的图象交于第一、三象限内的A ,B 两点,直线AB 与x 轴交于点C ,点B 的坐标是(-6,n),线段OA=5,E 为x 轴正半轴上一点,且tan ∠AOE=43.(1)求反比例函数的解析式;(2)求△AOB 的面积.解:(1)A(3,4),12y x =. (2)B(-6,-2),223y x =+,C(-3,0).OC=3,113432922AOB AOC BOC S S S ∆∆∆=+=⨯⨯+⨯⨯=.23.第31届夏季奥林匹克运动会于2016年8月5日在巴西里约热内卢举行,里约热内卢成为奥运史上首个主办奥运会的南美洲城市,某经销商抓住商机在今年6月底购进了一批奥运吉祥物1160件,预计在7月份进行试销,购进价格为每件10元,若售价为12元/件,则可全部售出.若每涨价0.1元,销售量就减少2件.(1)求该经销商在7月份的销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,8月份该吉祥物进价比6月底的进价每件增加20%,该经销商增加了进货量,并加强了宣传力度,结果8月份的销售量比7月份在(1)的条件下的最低销售量增加了m%,但售价比7月份在(1)的条件下的最高售价减少2%15m ,结果8月份利润达到3388元,求m的值(m>10).解:(1)设售价为x 元,由题意得:121160211000.1x --⨯≥,解得15x ≤.(2)由题意得:21100(1%)[15(1%)12]338815m m +⨯⨯--=,整理得:m 2-50m+400=0,∴(m-10)(m-40)=0,解得:m 1=40,m 2=10,又∵m>10,∴m=40,∴m 的值是40. 24.认真阅读下面的材料,完成有关问题.对于实数x ,y 我们定义一种新运算L (x ,y)=ax+by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.已知L (1,-2)=-1,L (13,12)=2.(1)a= 3 ,b= 2 ;(2)若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;(3)若正格线性数L (x ,y)=76,满足这样的正格数对有多少个;在这些正格数对中,有满足问题(2)的数对吗,若有,请找出;若没有,请说明理由.解:(2)∵(2)32(2)54L m m m m m -=+-=-,,∴5054100m <-<,∴10.85420.8m <-<,∴有10个.(3)3276x y +=,3382x y =-,7603x <<,且为偶数,∴有12个. 有,∵3x+2y=76,y=x-2,∴x=16,y=14.25.如图,在等腰三角形ABC 中,AB=AC ,D 为线段BC 中点,∠EDF=∠B ,AE=CD . (1)如图1,EF 交AD 于点G ,∠B =60°,求∠ADF 的度数;(2)如图2,EF 交AD 于点G ,G 为AD 中点,2∠FDC=∠B ,求证:AE=2EG.(图1) (图2)(1)等边△BDE ,∠ADE=30°,∠ADF=30°.(2)过点D 作DH ∥BA 交EF 于点H ,△AEG ≌△DHG(AAS), AE=DH ,EG=HG ,∴2EG=EG+HG=EH ,又∵∠ABC=∠HDC=∠HDF+∠FDC=2∠FDC ,∴∠HDF =∠FDC , 又∵AE=CD ,∴DH=DC ,又∵DF=DF ,∴△HDF ≌△CDF(SAS), ∴∠DFH =∠DFC ,又∵2∠FDC=∠B ,∠EDF=∠B , ∴∠EDF=2∠FDC ,∴∠HDF+∠HDE=2∠FDC , 又∵∠HDF =∠FDC ,∴∠HDE=∠FDC ,又∵∠FDC=180°-∠DFC-∠C ,∠HED=180°-∠DFH-∠EDF ,∠DFH =∠DFC , ∠EDF=∠B=∠C ,∴∠FDC=∠HED ,∴∠HDE=∠HED ,∴DH=EH ,∴AE=EH=2EG ,AE=2EG. 五、解答题(本大题共1个小题,12分)解答应写出必要的文字说明、证明过程或演算步骤. 26.如图,已知抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A (-1,0),点B (3,0),与y 轴交于点C ,顶点为D ,连接BC.(1)求抛物线的解析式及顶点D 的坐标;(2)如图1,点E ,F 为线段BC 上的两个动点,且EF =22,过点E ,F 作y 轴的平行线EM ,FN ,分别与抛物线交于点M ,N ,连接MN ,设四边形EFNM 的面积为S ,求S 的最大值和此时点M 的坐标;(3)如图2,连接BD ,点P 为BD 的中点,点Q 是线段BC 上的一个动点,连接DQ ,PQ ,将△DPQ 沿PQ 翻折得到△D ′PQ ,当△D ′PQ 与△BCD 重叠部分的面积是△BDQ 面积的14时,求线段CQ 的长.(1)a-b+3=0,9a+3b+3=0,a=-1,b=2,∴y=-x 2+2x+3,D(1,4).(2)过点F 作FH ⊥ME 交ME 的延长线于点H ,连接EN ,直线BC 的解析式为:y=-x+3, 等腰Rt △EFH 中,∵EF =22,∴HF=HE=22EF=2,∴设E(m ,-m+3),F(m+2,-m+1), ∴M(m ,-m 2+2m+3),N(m+2,-m 2-2m+3),∴ME=-m 2+3m ,NF=-m 2-m+2, ∴S=S △MNE+S △EFN=ME+NF=-m 2+3m-m 2-m+2=-2m 2+2m+2,∴S=2152()22m --+(0<m<1),∴max 52S =,M(12,154).(3)∵BC=32,CD=2,BD=25,∴BC 2+CD 2=BD 2,∴△BCD 为直角三角形,BCD=90°,∵点P 为BD 的中点,∴P(2,2),BP=12BD=5,若QP ⊥DB ,∵PBQ=∠CBD ,∴Rt △BPQ ∽Rt △BCD ,∴BQ:BD=BP:BC ,即BQ:25=5:32,解得BQ=523,此时CQ=53223-=423;当CQ>423时,如图2,QD ′交BD 于点G ,∵△PQG 的面积是△BDQ 面积的14,而△PQB 的面积为△BDQ 面积的12,∴△PQG 的面积为△PBQ 面积的12,∴点G 为PB 的中点,∴G(52,1),PD=2PG ,设Q(t ,-t+3),则DQ=22(1)(34)t t -+-+-,QG=225()(31)2t t -+-+-, ∵△DPQ 沿PQ 翻折得到△D ′PQ ,∴∠DQP=∠GQP ,即PQ 平分∠DQG ,∴QD:QG=PD:PG=2:1,即QD=2QG ,∴22(1)(34)t t -+-+-=2252()(31)2t t -+-+-,整理得2t 2﹣12t+13=0,解得t 1=6102+(舍去),t 2=6102-, 此时CQ=22610(33)223252t t t -+-+-==⨯=-; 当CQ<423时,如图3,PD ′交BC 于点G , ∵△PQG 的面积是△BDQ 面积的14,而△PQB 的面积为△BDQ 面积的12,∴△PQG 的面积为△PBQ 面积的12,∴点G 为QB 的中点,∴PG 为BDQ 的中位线,∴DQ ∥PG ,∴∠DQP=∠GPQ ,∵△DPQ 沿PQ 翻折得到D ′PQ ,∴∠DPQ=∠GPQ ,∴∠DQP=∠DPQ ,∴DQ=DP ,设Q(t ,-t+3),DQ=22(1)(34)t t -+-+-,∴221(1)(34)252t t -+-+-=⨯,整理得2t 2﹣3=0,解得t 1=62-(舍去),t 2=62,此时CQ=226(33)2232t t t +-+-==⨯=,综上所述,CQ 的长为3或325-.。

2017年中考数学模拟试题(九)含答案

2017年中考数学模拟试题(九)含答案

原点,点 C 在反比例函数 (-2,-2),则 k ( A.2 B.4
y
k x 的图象上.若点的坐标为
4题 D.16
) C.8
5.如图所示,在平行四边形纸片上作随机 扎针实验, 针头扎在阴影区域内的概率为( A. )
1 3
B.
1 4
C.
1 5
D.
1 6
5题
6. 如图,AB 与⊙O 相切于点 B,AO 的延长线交⊙O 于点 C, 连结 BC,若∠A=36°,则∠C 等于( A.36°; B.54°; C.60°; ) D.27°.
2017 年中考数学模拟试题(九)含答案 2017 年中考模拟数学试题(九)
(考试时间 120 分钟满分 150 分) 第 I 卷(选择题部分 共 30 分)
一、选择题(每小题 3 分,共 30 分.每小题只有一个正确选项,请把正确选项的字母代号填在下面 的表格内). 1.下列等式正确的是( A. ( 1) 1
4 3 2 3 4 3 2 3 4 3 2 3 4 3 2 3
y l
A
B
M
O N
C
(10 题)
x

O
2
A
4
t
O
2
4
t
O
2
4
t
O
2
4
t
B
C
第 I I 卷(非选择题 共 120 分)
D
二、填空题(共 24 分)
11. 函数 y= 2 x +
1 中自变量 x 的取值范围是 x3

12.2014 年索契冬奥会,大部分比赛将在总占地面积为 142000 平方米的“菲什特奥林匹克体育场” 进行 .将 142000 平方米用科学用科学记数法表示是 13.如图, ABC 中, C 90°, tan A 平方米

2017年新九年级中考数学模拟试卷

2017年新九年级中考数学模拟试卷

2017年新九年级中考数学模拟试卷参考答案与试题解析一、选择题(共20小题,每小题3分,满分60分)1.下面计算正确的是()A.B.C.D.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的混合运算方法,分别进行运算即可.解答:解:A.3+不是同类项无法进行运算,故A选项错误;B.===3,故B选项正确;C.×==,故C选项错误;D.∵==2,故D选项错误;故选:B.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.解答:解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确;故选D.点评:本题考查正多边形对称性.关键要记住偶数边的正多边形既是轴对称图形,又是中心对称图形,奇数边的正多边形只是轴对称图形.3.不等式4﹣3x≥2x﹣6的非负整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:移项,得﹣3x﹣2x≥﹣6﹣4,合并同类项,得:﹣5x≥﹣10,系数化成1得:x≤2.则非负整数解是:1和2共2个.故选B.点评:本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.4.如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.5.据2015年1月24日《桂林日报》报道,临桂县2014年财政收入突破18亿元,在广西各县中排名第二,将18亿用科学记数法表示为()A.1.8×10 B.1.8×108 C.1.8×109 D.1.8×1010考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:18亿=18 0000 0000=1.8×109.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如下表所示:则这些运动员成绩的中位数是()成绩/m 1.50 1.61 1.66 1.70 1.75 1.78人数 2 3 2 1 5 1A.1.66 B.1.67 C.1.68 D. 1.75考点:中位数.专题:图表型.分析:先求出14名运动员成绩的总和,再除以14即可.解答:解:根据图表可知题目中数据共有14个,故中位数是按从小到大排列后第7,第8两个数的平均数作为中位数.故这组数据的中位数是(1.66+1.70)=1.68.故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义,一些学生往往对这个图表分析的不准确,没有考虑到共有14个数据而不是6个而错解.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35° B.55° C.65° D.70°考点:圆周角定理.分析:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍,所以∠AOC=2∠D=70°,而△AOC中,AO=CO,所以∠OAC=∠OCA,而180°﹣∠AOC=110°,所以∠OAC=55°.解答:解:∵∠D=35°,∴∠AOC=2∠D=70°,∴∠OAC=(180°﹣∠AOC)÷2=110°÷2=55°.故选:B.点评:本题考查同弧所对的圆周角和圆心角的关系.规律总结:解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解,特别地,当有一直径这一条件时,往往要用到直径所对的圆周角是直角这一条件.8.解分式方程,可知方程()A.解为x=2 B.解为x=4 C.解为x=3 D.无解考点:解分式方程.专题:计算题.分析:本题考查分式方程的解法.,可变形为,可确定公分母为(x﹣2).解答:解:原方程可变形为,两边都乘以(x﹣2),得(1﹣x)+2(x﹣2)=﹣1.解之得x=2.代入最简公分母x﹣2=0,因此原分式方程无解.故选D.点评:本题考查分式方程的解法,此题两个分母互为相反数,因此去分母化为整式方程时要注意符号变化.同时要注意去分母时会出现增根,要检验的环节,否则容易出错.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,作OE∥AB,交BC于点E,则OE的长一定等于()A.BE B.AO C.AD D.OB考点:菱形的性质;直角三角形斜边上的中线.分析:根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO,再判断出点E是BC的中点,然后根据直角三角形斜边上的中线等于斜边的一半解答.解答:解:在菱形ABCD中,AC⊥BD,AO=CO,∵OE∥AB,∴点E是BC的中点,∴OE=BE=CE.故选:A.点评:本题考查了菱形的对角线互相垂直平分的性质,三角形中位线的判定,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.10.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2考点:相似多边形的性质;翻折变换(折叠问题).分析:可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.解答:解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.点评:考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD相似得到比例式.11.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A.B.C.D.考点:列表法与树状图法;等腰三角形的判定.分析:根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可.解答:解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA1B1,△OA2B2,所作三角形是等腰三角形的概率是:=.故选:D.点评:此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.12.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1个B.2个C.3个D.4个考点:函数的图象.专题:压轴题.分析:由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,乙追上甲,此时都跑了10千米;乙比甲先到达终点;求得乙跑的直线的解析式,即可求得两人跑的距离,则可求得答案.解答:解:根据图象得:起跑后1小时内,甲在乙的前面;故①正确;在跑了1小时时,乙追上甲,此时都跑了10千米,故②正确;乙比甲先到达终点,故③错误;设乙跑的直线解析式为:y=kx,将点(1,10)代入得:k=10,∴解析式为:y=10x,∴当x=2时,y=20,∴两人都跑了20千米,故④正确.所以①②④三项正确.故选:C.点评:此题考查了函数图形的意义.解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程.13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2 B.C.D.考点:垂径定理;等边三角形的性质;矩形的性质;解直角三角形.分析:连接BD、OC,根据矩形的性质得∠BCD=90°,再根据圆周角定理得BD为⊙O的直径,则BD=2;由ABC为等边三角形得∠A=60°,于是利用圆周角定理得到∠BOC=2∠A=120°,易得∠CBD=30°,在Rt△BCD中,根据含30°的直角三角形三边的关系得到CD=BD=1,BC=CD=,然后根据矩形的面积公式求解.解答:解:连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.故选:B.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理、等边三角形的性质和矩形的性质.14.某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路x m,则根据题意可列方程为()A.﹣=2 B.﹣=2C.﹣=2 D.﹣=2考点:由实际问题抽象出分式方程.专题:工程问题.分析:设原计划每天修建道路x m,则实际每天修建道路为(1+20%)x m,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路x m,则实际每天修建道路为(1+20%)x m,由题意得,﹣=2.故选:D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.15.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A.1 B.C.D.2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2,利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.16.如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:(甲)连接BD、CE,两线段相交于P点,则P即为所求(乙)先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确考点:平行四边形的判定.分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.解答:解:甲正确,乙错误,理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°﹣108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°﹣36°=72°,∴∠BPE=360°﹣108°﹣72°﹣72°=108°=∠A,∴四边形ABPE是平行四边形,即甲正确;∵∠BAE=108°,∴∠BAM=∠EAM=54°,∵AB=AE=AP,∴∠ABP=∠APB=×(180°﹣54°)=63°,∠AEP=∠APE=63°,∴∠BPE=360°﹣108°﹣63°﹣63°≠108°,即∠ABP=∠AEP,∠BAE≠∠BPE,∴四边形ABPE不是平行四边形,即乙错误;故选C.点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.17.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1 B. 2 C. 3 D. 4考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.专题:压轴题.分析:根据∠DAF=90°,∠DAE=45°,得出∠FAE=45°,利用SAS证明△AED≌△AEF,判定①正确;如果△ABE∽△ACD,那么∠BAE=∠CAD,由∠ABE=∠C=45°,则∠AED=∠ADE,AD=AE,而由已知不能得出此条件,判定②错误;先由∠BAC=∠DAF=90°,得出∠CAD=∠BAF,再利用SAS证明△ACD≌△ABF,得出CD=BF,又①知DE=EF,那么在△BEF中根据三角形两边之和大于第三边可得BE+BF>EF,等量代换后判定③正确;先由△ACD≌△ABF,得出∠C=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE2+BF2=EF2,等量代换后判定④正确.解答:解:①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF﹣∠DAE=45°.在△AED与△AEF中,,∴△AED≌△AEF(SAS),①正确;②∵∠BAC=90°,AB=AC,∴∠ABE=∠C=45°.∵点D、E为BC边上的两点,∠DAE=45°,∴AD与AE不一定相等,∠AED与∠ADE不一定相等,∵∠AED=45°+∠BAE,∠ADE=45°+∠CAD,∴∠BAE与∠CAD不一定相等,∴△ABE与△ACD不一定相似,②错误;③∵∠BAC=∠DAF=90°,∴∠BAC﹣∠BAD=∠DAF﹣∠BAD,即∠CAD=∠BAF.在△ACD与△ABF中,,∴△ACD≌△ABF(SAS),∴CD=BF,由①知△AED≌△AEF,∴DE=EF.在△BEF中,∵BE+BF>EF,∴BE+DC>DE,③正确;④由③知△ACD≌△ABF,∴∠C=∠ABF=45°,∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°.在Rt△BEF中,由勾股定理,得BE2+BF2=EF2,∵BF=DC,EF=DE,∴BE2+DC2=DE2,④正确.所以正确的结论有①③④.故选C.点评:本题考查了勾股定理,全等三角形的判定与性质,等腰直角直角三角形的性质,三角形三边关系定理,相似三角形的判定,此题涉及的知识面比较广,解题时要注意仔细分析,有一定难度.18.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A.6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B到对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选:D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何综合题;压轴题;数形结合.分析:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.20.如图,点P是▱ABCD边上一动点,沿A→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP 的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可.解答:解:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.点评:本题主要考查了动点问题的函数图象.注意分段考虑.二、填空题(共4小题,每小题3分,满分12分)21.计算:=.考点:分式的混合运算.专题:计算题.分析:将式子括号内部分通分,然后根据分式除法的运算法则,将其转化为乘法,再将分母中的式子因式分解,即可得到结果.解答:解:原式=×=×=.故答案为.点评:本题考查了分式的混合运算,熟悉分式的运算法则是解题的关键.22.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.考点:几何概率.分析:两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.解答:解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案为:.点评:此题主要考查几何概率的意义:一般地,对于古典概率,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有P(A)=.23.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为y=.考点:待定系数法求反比例函数解析式;反比例函数图象的对称性;正方形的性质.专题:压轴题;探究型.分析:由反比例函数的对称性可知阴影部分的面积和正好为正方形面积的,设正方形的边长为b,图中阴影部分的面积等于9可求出b的值,进而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,进而得出反比例函数的解析式.解答:解:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的,设正方形的边长为b,则b2=9,解得b=6,∵正方形的中心在原点O,∴直线AB的解析式为:x=3,∵点P(3a,a)在直线AB上,∴3a=3,解得a=1,∴P(3,1),∵点P在反比例函数y=(k>0)的图象上,∴k=3,∴此反比例函数的解析式为:y=.故答案为:y=.点评:本题考查的是用待定系数法求反比例函数的解析式及正方形的性质,根据题意得出直线AB的解析式是解答此题的关键.24.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.考点:平行四边形的性质;等腰直角三角形;翻折变换(折叠问题).专题:几何图形问题.分析:如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则BB′=BE.又B′E是BD的中垂线,则DB′=BB′.解答:解:∵四边形ABCD是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则BB′=BE=.又∵BE=DE,B′E⊥BD,∴DB′=BB′=.故答案为:.点评:本题考查了平行四边形的性质,等腰三角形的判定与性质以及翻折变换(折叠的性质).推知DB′=BB′是解题的关键.三、解答题(共5小题,满分48分)25.2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难、八方支援”,某厂计划生产1 800吨纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?考点:分式方程的应用.分析:设原计划每天生产x吨纯净水,根据工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务,可以时间做为等量关系列方程求解.解答:解:设原计划每天生产x吨纯净水,=+3,x=200,经检验x=200是原分式方程的解,且符合题意,原计划每天生产200吨纯净水.点评:本题考查理解题意的能力,根据结果比原计划提前3天完成了生产任务,可以时间做为等量关系列方程求解.26.如图,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数的图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值;(3)求经过A,C两点的直线的解析式.考点:反比例函数综合题.分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;(3)由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x ﹣1.解答:解:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;(3)∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入y=kx+b得,解得,∴直线AC的解析式为y=x﹣1.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求一次函数解析式;理解坐标与图形的性质;同时要熟悉三角函数.27.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.解答:证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).点评:本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.28.(12分)(2009•中山)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.考点:二次函数综合题.专题:压轴题.分析:(1)要证△ABM和△MCN相似,就需找出两组对应相等的角,已知了这两个三角形中一组对应角为直角,而∠BAM和∠NMC都是∠AMB的余角,因此这两个角也相等,据此可得出两三角形相似.(2)根据(1)的相似三角形,可得出AB,BM,MC,NC的比例关系式,已知了AB=4,BM=x,可用BC和BM的长表示出CM,然后根据比例关系式求出CN的表达式.这样直角梯形的上下底和高都已得出,可根据梯形的面积公式得出关于y,x的函数关系式.然后可根据函数的性质得出y的最大值即四边形ABCN的面积的最大值,以及此时对应的x的值,也就可得出BM的长.(3)已知了这两个三角形中相等的对应角是∠ABM和∠AMN,如果要想使Rt△ABM∽Rt△AMN,那么两组直角边就应该对应成比例,即,根据(1)的相似三角形可得出,因此BM=MC,M是BC的中点.即x=2.解答:(1)证明:在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB,∴Rt△ABM∽Rt△MCN.(2)解:∵Rt△ABM∽Rt△MCN,∴,即,∴,∴y=S梯形ABCN=(+4)•4=﹣x2+2x+8=﹣(x﹣2)2+10,∴当点M运动到离B点的长度为2时,y取最大值,最大值为10.(3)解:∵∠B=∠AMN=90°,∴要使△ABM∽△AMN,必须有,由(1)知,∴=,∴BM=MC,∴当点M运动到BC的中点时,△ABM∽△AMN,此时x=2.点评:本题主要考查了相似三角形的判定和性质以及二次函数的综合应用,根据相似三角形得出与所求的条件相关的线段成比例是解题的关键.。

2017年中考数学模拟试卷 (含答案解析) (36)

2017年中考数学模拟试卷 (含答案解析) (36)

初三数学期中试卷答案一、选择题:(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案DCBACDAABD二、填空题:(每空2分,共22分)11. )2)(2(-+x x 12.___5=x ___ 13. 45 14._____49________15.__15000)1(80002=+x ___ 16. 5<x 17. 2 18.___2___三、解答题(共9大题,78分)19.(1)解:原式=14+22-14……………(3分) =22…………… (4分)(2)解:原式=xx -1×(x +1)(x -1)x ……………………(3分) =x +1…………… (4分)20.(1)35x =± (4分)(2) 3x < (1分) -1x ³ (2分) -13x \? (4分)21.(1)证明:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AD=BC ,AB=CD .∵点E 、F 分别是AD 、BC 的中点,∴AE=12AD ,FC=12BC .∴AE=CF .(1分) 在△AEB 与△CFD 中,,∴△AEB ≌△CFD (SAS ).(4分) (2)解:∵四边形EBFD 是菱形, ∴BE=DE .∴∠EBD=∠EDB . ∵AE=DE ,∴BE=AE .∴∠A=∠ABE .∵∠EBD+∠EDB+∠A+∠ABE=180°, ∴∠ABD=∠ABE+∠EBD=×180°=90°.(4分)22.(1)61;(4分)(2)241(2分)23.(1)10%;(2)72°(3)略;(4)330(每问各2分) 24.(1) 连接OM ,则OM =OB ∴∠OBM=∠OMB ∵BM 平分∠ABC ∴∠OBM=∴∠OMB=∠EBM ∴OM ∥BE∴∠AMO=∠AEB而在⊿ABC 中,AB=AC,AE 是角平分线 ∴AE ⊥BC∴∠AMO=∠AEB=90°∴AE 与⊙O 相切. ------------ 3分(2) 在⊿ABC 中,AB=AC,AE 是角平分线∴BE=12BC=2,∠ABC=∠ACB∴在Rt ⊿ABC 中cos ∠ABC=cos ∠ACB=2AB =13∴AB=6 --------------6分设⊙O 的半径为r,则AO=6-r ∵OM ∥BC∴△AOM ∽△ABE∴OM BE =AOAB即 r 2 =6-r 6 ∴r=32--------------8分25.(第(1)3分,第(2)5分)26.(1)把B 、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x 2﹣2x ﹣3;(3分)(2)827)23(232+--=x S ,当P 点坐标为(,﹣)时,△BCP 的面积最大,最大面积为827;(4分)(面积表达式对2分,坐标对1分,面积对1分)(3))4263,2233();4263,2233(--++(各2分,共4分) 27.解:(1)①∵纸箱的高为0.5米,底面是黄金矩形(宽与长的比是黄金比,取黄金比为0.6),体积为0.3立方米,∴假设底面长为x ,宽就为0.6x , ∴体积为:0.6x •x •0.5=0.3,解得:x=1,∴AD=1,CD=0.6,DW=KA=DT=JC=0.5,FT=JH=CD=0.3,WQ=MK=AD=,∴QM=+0.5+1+0.5+=3, FH=0.3+0.5+0.6+0.5+0.3=2.2,∴矩形硬纸板A 1B 1C 1D 1的面积是3×2.2=6.6平方米;(3分)28.②从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A 2B 2C 2D 2做一个纸箱比方案1更优, ∵如图可知△MAE ,△NBG ,△HCF ,△FDQ 面积相等,且和为2个矩形FDQD 1, 又∵菱形的性质得出,对角线乘积的一半绝对小于矩形边长乘积;∴从节省材料的角度考虑,采用方案2(如图)的菱形硬纸板A 2B 2C 2D 2做一个纸箱比方案1更优,(4分) (2)∵将纸箱的底面周长、底面面积和高都设计为原来的一半时,∴边长为:0.5,0.3,底面积将变为:0.3×0.5=0.15,将变为原来的,高再变为原来的一半时,体积将变为原来的,∴水果商的要求不能办到.(2分)28、(1)C(6,3 3 )………1分, D(3,0) ………1分 作图………1分(2)①94 ,78,,2.726………4分 ②63152………2分,(3)105π-36 3 16………2分,。

2017中考数学模拟试卷及答案

2017中考数学模拟试卷及答案

第6题图九年级数学模拟试卷(含答案)(2017年5月5日)一、选择题:(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内)1.-2的相反数是( D )A.21- B.21C. -2D. 22.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A. B. C. D.3. 2015年我国的GDP总量为629180亿元,用科学计数法表示为( C )A、6.2918×105元B、6.2918×1014元C、6.2918×1013元D、6.2918×1012元4. 下列运算正确的是(D)A.abba5=3+2 B.1=2-322yxyx C.()6326=2aa D.xxx5=÷5235. 一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为,则袋子里2号球有(B)A.1个 B.2个 C.3个 D.4个6. 如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为(D)A、50°B、80°C、100°D、130°7.如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能..是( D )A.5或6 B.5或7C.4或5或6 D.5或6或78. 如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿DE折叠,使A点落在BC上的F处,若∠B=65°,则∠BDF等于( A )A、50°B、57.5°C、60°D、65°9. 若关于x的方程+=2的解为正数,则m的取值范围是(C)A.m<6B.m>6C.m<6且m≠0D.m>6且m≠810. 如图,已知A、B是反比例函数(0,0)ky k xx=>>上的两点,BC x轴,交y轴于C,动点P从坐标原点O 出发,沿O A B C→→→匀速运动,终点为C,过运动路线上任意一点P作PM x⊥轴于M,PN y⊥轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是( A )二、填空题(本题有6个小题,每小题3分,共18分)11. 分解因式:2x2-8x+8=第7题图俯视图左视图12.关于x 的方程m x 2-3x+1=0有两个实数根,则实数m 的取值范围是。

2017初三中考数学模拟试卷及答案

2017初三中考数学模拟试卷及答案

2017初三中考数学模拟试卷及答案学生想在中考取得更好的成绩备考的时候就要多做中考数学试题,并加以复习,这样能更快提升自己的成绩。

以下是小编精心整理的2017初三中考数学模拟试题及答案,希望能帮到大家!2017初三中考数学模拟试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 的平方根是( )A.81B.±3C.﹣3D.32.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.如图,四边形ABCD中,∠A=90°,AB= ,AD=3,点M,N 分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )A.3B.4C.4.5D.54.已知关于x的分式方程+ =1的解是非负数,则m的取值范围是( )A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠35.商店某天销售了14件衬衫,其领口尺寸统计如表:领口尺寸(单位:cm) 38 39 40 41 42件数 1 5 3 3 2则这14件衬衫领口尺寸的众数与中位数分别是( )A.39cm、39cmB.39cm、39.5cmC.39cm、40cmD.40cm、40cm6.如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是( )A.55°B.60°C.65°D.70°7.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为( )A.1B.3C.﹣5D.﹣98.若关于x的不等式的整数解共有4个,则m的取值范围是( )A.69.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是( )A. B. C.2 D.10.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD= ,E为CD中点,连接AE,且AE=2 ,∠DAE=30°,作AE⊥AF 交BC于F,则BF=( )A.1B.3﹣C. ﹣1D.4﹣211.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( )A.25°B.30°C.35°D.40°12.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )A.36B.12C.6D.313.如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P 从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有( )①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.A.1个B.2个C.3个D.4个14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C( ,y3)在该函数图象上,则y1A.1个B.2个C.3个D.4个15.如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2 为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D 与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是( )A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分.)16.分解因式:2x2﹣12x﹣32= .17.如果方程kx2+2x+1=0有实数根,则实数k的取值范围是.18.一个包装盒的设计方法如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.若广告商要求包装盒侧面积S(cm2)最大,试问x应取的值为cm.19.如图在平面直角坐标系xOy中,直线l经过点A(﹣1,0),点A1,A2,A3,A4,A5,…按所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n= .20.如图,已知△ABC,外心为O,BC=6,∠BAC=60°,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD 交于点P,则OP的最小值是.21.如图,点A在双曲线y= 的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)22.(6分)先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.23.(8分)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.(1)如图①:求证∠AFD=∠EBC;(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;(3)若∠DAB=90°且当△BE F为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)24.(8分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查为了给学生提供更好的学习生活环境,重庆一中寄宿学校2015年对校园进行扩建.某天一台塔吊正对新建教学楼进行封顶施工,工人在楼顶A处测得吊钩D处的俯角α=22°,测得塔吊B,C两点的仰角分别为β=27°,γ=50°,此时B与C距3米,塔吊需向A处吊运材料.(tan27°≈0.5,tan50°≈1.2,tan22°≈0.4)(1)吊钩需向右、向上分别移动多少米才能将材料送达A处?(2)封顶工程完毕后需尽快完成新建教学楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.求甲、乙两工程队单独完成此项工程所需的天数.26.(8分)母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B 种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?27.(9分)⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC的长.28.(10分)如图,在平面直角坐标系中,直线与抛物线交于A、B 两点,点A在x轴上,点B的横坐标为﹣8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.。

2017中考数学模拟试题附答案

2017中考数学模拟试题附答案

中考数学模拟试题附答案2017中考数学模拟试题附答案中考是九年义务教育的终端显示与成果展示,其竞争较为激烈。

为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在中考中取得理想的成绩,下文小编为大家准备了2017中考数学模拟试题附答案的内容。

2017中考数学模拟试题:A级基础题1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为( )A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e 的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.2017中考数学模拟试题:B级中等题7.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.10.如图7-2-3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两11.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是( )A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物2017中考数学模拟试题参考答案1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∴P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∴P(一黑一白)=612=12.图737.25 8.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴小明获胜的.概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∴他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∴P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.方法二,列表格如下:A1B2 A2B2 B1B2 -A1B1 A2B1 - B2B1A1A2 - B1A2 B2A2- A2A1 B1A1 B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.。

2017年中考数学模拟测试题及答案.doc

2017年中考数学模拟测试题及答案.doc

2017年中考数学模拟测试题及答案中考数学要想取得好成绩就必须多做题,通过做题能够使大家检验自己的复习水平,还能帮助大家了解数学常考题型,为此下面为大家带来2017年中考数学模拟测试题及答案,希望大家能够认真利用这些模拟题。

A级基础题1.(2013年浙江丽水)在数0,2,-3,-1.2中,属于负整数的是()A.0B.2C.-3D.-1.22.(2013年四川内江)下列四个实数中,绝对值最小的数是()A.-5B.-2C.1D.43.(2013年四川凉山州)-2是2的()A.相反数B.倒数C.绝对值D.算术平方根4.(2012年广东深圳)-3的倒数是()A.3B.-3C.13D.-135.下列各式,运算结果为负数的是()A.-(-2)-(-3)B.(-2)(-3)C.(-2)2D.(-3)-36.(2013年江苏南京)计算:12-7(-4)+8(-2)的结果是()A.-24B.-20C.6D.367.如果+30 m表示向东走30 m,那么向西走40 m表示为______________.8.(2013年江苏常州)计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.(2013年云南曲靖)若a=1.9105,b=9.1104,则a______b(填或).10.(2012年河北)计算:|-5|-(2-3)0+613-12+(-1)2.B级中等题11.(2013年湖北宜昌)实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是()A.a+b=0B.b0 D.|b||a|12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.000 001 6秒.这里的0.000 001 6秒用科学记数法表示__________秒.13.(2013年广东初中毕业生学业考试预测卷二)观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16试猜想第n个等式(n为正整数):an=__________.14.(2013年广东深圳十校模拟)计算:|1-3|+-12-3-2cos30+(-3)0.C级拔尖题15.(2013年湖北咸宁)在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.(2012年广东)观察下列等式:第1个等式:a1=113=121-13;第2个等式:a2=135=1213-15;第3个等式:a3=157=1215-17;第4个等式:a4=179=1217-19;请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4++a100的值.实数1.C2.C3.A4.D5.D6.D7.-40 m8.33-1399.10.解:原式=5-1+(2-3)+1=4.11.D12.1.610-613.1n-1n+214.解:原式=3-1-8-232+1=-8.15.-67116.解:(1)19111219-111(2)1?2n-1??2n+1?1212n-1-12n+1(3)a1+a2+a3+a4++a100=121-13+1213-15+1215-17++121199-1201=12 1-13+13-15+15-17++1199-1201=121-1201=12200201=100201.为大家带来了2017年中考数学模拟测试题及答案,大家能够在做题中提高自己的数学解题水平,拥有众多的中考数学模拟题,欢迎大家查阅。

新人教版2017年中考数学模拟试题及答案.docx

新人教版2017年中考数学模拟试题及答案.docx

.2017 年中考数学模拟试题一、选择题(共 12 小题,每小题 3分,共 36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.11 C. D..332. 函数y x 2 中自变量x的取值围是A.x ≥0.B.x ≥-2.C.x ≥2.D.x ≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0, x-3>0.B.x+1>0, 3-x>0.C.x+1<0, x-3>0.D.x+1<0, 3-x>0.4.下列事件中,为必然事件的是A.购买一彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有 5 个黑球,从中摸出一个球是黑球.5.2+4x+3=0的两个根,则 x 1 x2的值是若 x1, x 2是一元二次方程 xA.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675 万人 . 数 6750000用科学计数法表示为A.6754B.67.55C.6.7567×10 .×10 .×10 . D.0.675 ×10 .7.如图,在梯形 ABCD中, AB ∥ DC , AD=DC=CB,若∠ABD=25°,则∠BAD 的大小是A.40 °.B.45°.C.50 °.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的部不包含边界上的1的正方形部有 1个整点, 2 的正方形部有 1个整点, 3 的正方形部有 9个整点,⋯ 8的正方形部的整点的个数A.64.B.49.C.36.D.25.10.如,路MN和公路PQ在点O交,∠QON=30°.公路PQ上A距离O点 240 米.如果火行,周200 米以会受到噪音的影响.那么火在路 MN上沿 ON方向以72千米/的速度行,A受噪音影响的A.12秒.B.16秒.C.20 秒 .D.24秒.11.广泛开展健身活,2010 年星中学投入修地、安装施、置器材及其它目的金共 38 万元. 1、 2 分反映的是 2010 年投入金分配和 2008 年以来置器材投入金的年增率的具体数据.根据以上信息,下列判断:①在2010年投入中置器材的金最多;②②2009年置器材投入金比2010年置器材投入金多8%;③③若2011年置器材投入金的年增率与2010年置器材投入金的年增率相同,2011年置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是A.0.B.1.C.2.D.3.12.如,在菱形ABCD中,AB=BD,点E,F 分在AB, AD 上,且 AE=DF.接BF与 DE 相交于点 G,接CG与BD相交于点H.下列:①△ AED≌ △DFB;②S四边形BCDG=3CG2;4③若 AF=2DF,BG=6GF. 其中正确的A.只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非,共84分)二、填空(共4小,每小3分,共 12 分).下列各不需要写出解答程,将果直接填写在答卡指定的位置.13.sin30°的_____.14.某次数学中,五位同学的分数分是:89,91,105,105,110. 数据的中位数是 _____,众数是_____,平均数是 _____.15.一个装有水管和出水管的容器,从某刻起只打开水管水,一段,再打开出水管放水.至 12 分,关停水管.在打开水管到关停水管段,容器的水量 y(单位:升)与时间 x(单位:分钟)之间的函数关系如图所示 . 关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点 A,B的坐标分别是 A(-1 ,0),B(0,-2 ),顶点 C,D在双曲线 y=k上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5 x倍,则 k=_____.三、解答题(共 9小题,共 72 分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分 6 分)解方程: x 2+3x+1=0.18.(本题满分 6x 22x4分)先化简,再求值:( x) ,其中x=3.x x19.(本题满分 6分)如图,D,E,分别是 AB,AC上的点,且 AB=AC,AD=AE.求证∠B=∠C.20.(本题满分 7 分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分 7 分)在平面直角坐标系中,△ABC 的顶点坐标是 A(-7 ,1),B(1,1),C(1,7).线段 DE 的端点坐标是 D(7,-1),E(-1,-7 ).(1)试说明如何平移线段 AC,使其与线段 ED 重合;(2)将△ABC 绕坐标原点 O 逆时针旋转,使 AC 的对应边为 DE,请直接写出点 B的对应点 F的坐标;(3)画出(2)中的△DEF,并和△ABC 同时绕坐标原点 O逆时针旋转 90°,画出旋转后的图形.22.(本题满分 8 分)如图,PA 为⊙O 的切线,A为切点.过 A作 OP 的垂线 AB,垂足为点 C,交⊙O 于点 B.延长 BO 与⊙O 交于点 D,与 PA 的延长线交于点E.(1)求证:PB为⊙O 的切线;1( 2 )若 tan ∠ ABE=,求sinE的值.223.(本题满分 10 分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30 米的篱笆围成.已知墙长为 18米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米 .(1 )若平行于墙的一边的长为 y 米,直接写出 y 与 x 之间的函数关系式及其自变量 x 的取值围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于 88 平方米时,试结合函数图像,直接写出 x 的取值围 .24.(本题满分 10 分)(1)如图1,在△ ABC 中,点D,E,Q 分别在 AB,AC,BC 上,且DE∥BC, AQDP PE交 DE于点 P.求证:.BQ QC(2)如图,在△ABC 中,∠BAC=90 °,正方形 DEFG 的四个顶点在△ABC 的边上,连接 AG,AF分别交DE于 M,N两点.①如图 2,若 AB=AC=1,直接写出 MN的长;②如图 32,求证 MN =DM ·EN.25.(本题满分 122经过 A(-3 ,0),B(-1 ,0)两分)如图 1 ,抛物线 y=ax +bx+3点 .(1)求抛物线的解析式;( 2 )设抛物线的顶点为 M ,直线 y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线 OD 上.若平移的抛物线与射线 CD(含端点 C)只有一个公共点,求它的顶点横坐标的值或取值围;(3 )如图 2 ,将抛物线平移,当顶点至原点时,过 Q ( 0 , 3 )作不平行于 x 轴的直线交抛物线于 E, F 两点 .问在 y 轴的负半轴上是否存在点 P,使△ PEF 的心2017 年中考数学模拟试题答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B11.C12.D二、填空题13.1/214.105; 105;10015.816.12三、解答题17.( 本题 6 分)解:∵ a=1,b=3,c=1∴ △ =b 2-4ac=9-4× 1 × 1 = 5 > 0 ∴ x=-3±52∴ x 1=-3+55, x2 =-3-2218.( 本题6分 ) 解:原式= x(x-2)/x÷ (x+2)(x-2)/x=x(x-2)/x·x/(x+2)(x-2)= x/(x+2)∴当 x=3时,原式=3/519.( 本题 6 分)解:证明:在△ABE 和△ACD中,AB=AC∠A=∠A AE= AD∴ △ ABE≌ △ ACD∴∠B=∠C20.( 本题7 分)解法 1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有 9 种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有 5 种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法 2:根据题意,可以列出如下的表格:以下同解法 1(略)21.( 本题 7 分)(1)将线段 AC 先向右平移 6个单位,再向下平移 8个单位.(其它平移方式也可)(2) F(- 1,-1 )(3)画出如图所示的正确图形22.( 本题 8 分)(1)证明:连接 OA∵PA 为⊙O 的切线,∴∠ PAO=90 °∵OA=OB,OP⊥AB 于 C∴BC= CA , PB= PA∴△PBO≌△PAO∴∠PBO=∠PAO =90°∴PB 为⊙O 的切线(2)解法 1:连接 AD,∵BD 是直径,∠BAD =90°由(1)知∠BCO=90°∴AD∥ OP∴△ADE∽ △POE∴ EA/EP= AD/OP由 AD∥OC得AD = 2OC左直右= t,左(左,左)(左,直)(左,右)直(直,左)(直,直)(直,右)PC右(右,左)(右,直)(右,右)∵tan ∠ ABE=1/2∴OC/BC=1/2 ,设 OC 则BC = 2t,AD=2t由△PBC∽ △ BOC ,得= 2BC = 4t , OP = 5t∴ EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m ∵PA=PB ∴ PB=3m∴sinE=PB/EP=3/5.=2OC∵ tan∠ ABE=1/2,∴ OC/BC=1/2,OC =t ,BC =2t,AB=4t由△PBC ∽ △ BOC ,得 PC = 2BC = 4t ,∴ PA= PB= 2 5 tA 作 AF ⊥ PB 于 F,AF · PB=AB · PC8565∴ AF=t而由勾股定理得 PF=t55∴sinE=sin ∠ FAP=PF/PA=3/523.( 本10 分 )解:( 1 ) y=30-2x(6≤ x<15)(2)矩形苗圃园的面S S=xy=x(30-2x)=-2x 22+30x∴ S=-2(x-7.5)+112.5由( 1 )知, 6 ≤ x<15∴当 x=7.5,S 最大= 112.5即当矩形苗圃园垂直于的7.5 米,个苗圃园的面最大,最大112.5 ( 3 ) 6 ≤ x≤ 1124.(本10 分)(1)明:在△ABQ中,由于 DP∥BQ,∴△ADP∽△ABQ,∴ DP/BQ = AP/AQ.同理在△ ACQ中,EP/CQ=AP/AQ.2∴ DP/BQ = EP/CQ. ( 2 )99.( 3)明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠ BGD= ∠ EFC,∴ △ BGD ∽ △ EFC. ⋯⋯ 3 分∴ DG/CF = BG/EF ,∴ DG · EF= CF· BG 又∵ DG =GF=EF,∴ GF2= CF·BG由( 1 )得 DM/BG=MN/GF=EN/CF∴ (MN/GF)2=(DM/BG)· (EN/CF)∴MN 2= DM ·EN25. ( 1 )抛物y=ax2+bx+3 A ( -3,0 ), B( -1,0)两点∴ 9a-3b+3= 0 且 a-b+3= 0解得 a = 1b = 4 ∴抛物的解析式y=x 2+4x+3 ( 2 )由( 1 )配方得 y=(x+2)2-1 ∴抛物的点 M ( -2 , ,1 )∴直OD 的解析式y=1x 2于是平移的抛物的点坐( h ,1h ),∴平移的抛物解析式221h. ①当抛物点21,y= ( x-h ) +2C ,∵ C( 0 , 9 ),∴ h+h=92解得 h=- 1145. ∴当- 1- 145 ≤h<- 1145444,平移的抛物与射CD 只有一个公共点.②当抛物与直CD 只有一个公共点,由方程y= ( x-h )2+1h,y=-2x+9.211得x2+ ( -2h+2 ) x+h2+h-9=0 ,∴ △ = ( -2h+2)2-4( h2+h-9)=0,22解得 h=4.2此抛物y= ( x-4 ) +2 与射CD 唯一的公共点(3,3),符合意..-1 -围是h=4或(3)方法145 ≤h< - 1145 . 441将抛物线平移,当顶点至原点时,其解析式为y=x 2,设 EF 的解析式为 y=kx+3 ( k≠ 0 ) .假设存在满足题设条件的点 P( 0 , t ),如图,过 P 作 GH ∥ x 轴,分别过 E, F 作 GH 的垂线,垂足为 G,H. ∵ △ PEF 的心在 y 轴上,∴∠ GEP= ∠ EPQ= ∠ QPF= ∠ HFP ,∴ △ GEP ∽ △ HFP , ...............9分∴ GP/PH=GE/HF,∴ -x E/x F=(y E-t)/(y F-t)=(kx E+3-t)/(kx F +3-t)∴2kx E· x F= ( t-3 )( x E+x F)由y=x 2, y=-kx+3. 得 x 2 -kx-3=0.∴ x E+x F =k,x E· x F =-3.∴ 2k(-3)=(t-3)k, ∵ k≠ 0, ∴ t=-3.∴ y轴的负半轴上存在点P(0,-3),使△ PEF 的心在 y 轴上 .方法2设EF的解析式为y=kx+3(k≠ 0),点E,F的坐标分别为( m,m 2)( n,n 2)由方法 1 知: mn=-3.作点 E 关于 y 轴的对称点 R( -m,m 2) ,作直线 FR 交 y 轴于点 P,由对称性知∠EPQ= ∠FPQ,∴点 P就是所求的点.由 F,R 的坐标,可得直线 FR 的解析式为 y=( n-m )x+mn.当 x=0 , y=mn=-3, ∴ P ( 0 , -3 ) .∴ y 轴的负半轴上存在点P( 0,-3 ),使△ PEF 的心在 y 轴上 .。

中考模拟数学试卷2017(答案)

中考模拟数学试卷2017(答案)

数学试卷考试时间:120分钟 试卷满分:150分注意事项:1.本试卷分第一部分(客观题)和第二部分(主观题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第一部分时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第二部分时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第 一 部 分(客观题)一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项正确) 1.85-的相反数是( ) A. 58- B. 85- C. 85 D. 582. 下面有4个汽车标志图案,其中是轴对称图形的是:( )① ② ③ ④A.②③④B.①③④C.①②④D.①②③ 3.下列运算中,正确的是( )A . 422x x x =+B . 22x x x =÷C . 4224)2(x x -=- D . 32x x x =⋅4.在一次体检中,抽得某班8位同学的身高(单位:cm )分别为:166,158,171,165,175,165,162,169.则这8位同学身高的中位数和众数分别是( )A. 170,165B. 166.5,165C. 165.5,165D. 165,165.55. 把不等式组x 315x 6-⎧⎨⎩<--<的解集表示在数轴上,正确的是6.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )A .B .C .D .7. 已知二次函数2y ax bx c =++(其中a >0,b >0,c <0), 关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧;④方程02=+bx ax 一定有两个不相等的实数根.以上说法正确的个数为A .1B .2C .3D .48. 如图,在△ABC 中,AB=AC=13,BC=10,点D 为BC 的中点,DE ⊥AB 于点E ,则tan ∠BDE 的值等于( ) A .B .C .D .9.在平面直角坐标系中,已知点A (-4,0),点B (2,0),若点C 在一次函数122y x =-+的图象上, 且△ABC 为等腰三角形,则满足条件的点C 有( ) A. 2个 B. 3个 C. 4个 D. 510.如图,点G 、E 、A 、B 在一条直线上,Rt △EFG 从如图所示的位置出发,沿直线AB 向右匀速运动,当点G 与点B 重合时停止运动,设△EFG 与矩形ABCD 重合部分的面积为S,运动时间为t,则S 与t 的图象大致是( )第 二 部 分(主 观 题)二、填空题(每小题3分,共24分) 11.函数52-=x xy 中,自变量x 的取值范围是 12.一个口袋中装有4个红球,x 个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是31,则袋里有 个绿球 13.分解因式:4ax 2﹣a= .14.如图,已知等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是 度.15.若圆锥的母线长为5cm ,底面圆的半径为3cm ,则它的侧面展开图的面积为 cm 2(保留π).16.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意列方程得____________第10题图17.如图,已知点A 在反比例函数y=的图象上,点B 在反比例函数y=(k≠0)的图象上,AB∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为C 、D ,若OC=OD ,则k 的值为__________18.如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2015次,点P 依次落在点P 1,P 2,P 3,……P 2015的位置,则点P 2015的横坐标为14题图 17题图 18题图 三、解答题(共96分) 19.(10分) 先化简,再求代数式的值,其中a=2sin60°+tan45°.20.(12分) 某校2015年八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言人数的比为5:2,请结合图中相关数据回答下列问题: 发言次数nA 0≤n <3B 3≤n <6C 6≤n <9D 9≤n <12E 12≤n <15F 15≤n <18(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A 组发言的学生中恰有1位女生,E 组发言的学生中有2位男生.现从A 组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率. 21.(10分) 如图,小明站在家中窗口选一个观测点D ,测得正对面AB 楼顶端A 的仰角为30°,楼底B 的俯角为15°,观测点D 到楼AB 的距离为27米.(结果用根号表示) (1)求观测点D 到楼顶A 的距离; (2)求楼AB 的高度.22.(12分)如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,⊙O 交直线OB 于E D ,,连接EC CD ,.(1)求证:直线AB 是⊙O 的切线; (2)求证:△BCD ∽△ BEC (3)若1tan 2CED ∠=,⊙O 的半径为3,求OA 的长.23.(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x (h ),两车之间的距离为y (km ),图中的折线表示y 与x 之间的函数关系式.根据题中所给信息解答以下问题: (1)甲、乙两地之间的距离为 km ;图中点C 的实际意义为: ;慢车的速度为 ,快车的速度为 ;(2)求线段BC 所表示的y 与x 之间的函数关系式,以及自变量x 的取值范围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km .24.(12分)某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?25 (14分)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F 不重合),并说明理由.26.(14分)如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1、x2是方程x2-2x-8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出....所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案 一选择题1C 2D 3D 4C 5C 6A 7B 8C 9D 10D 二、填空题 11、x ≠5 12、3个 13、a(2x+1)2x-1)14、60° 15、15π16、25/x-30/1.8x=1/6 17、k=12 18、(2014,0) 三、解答题 19.解:2121()111a a a a --÷+-+= ------------3 ------------4-----------------------------52sin 60tan 45a =+ = ---------------- ------------------------------8所以原式=3331=---------------------------------------------------------------------------------10 20、解:(1)∵由发言人数直方图可知B 组发言人为10人,又已知B 、E 两组发言人数的比为5:2, ∴E 组发言人为4人备用图第26题图11)1()1)(1(1)1())1)(1(2)1)(1(1-=++-=+⋅+---+--a a a a a a a a a a a (131232+=+⨯又由发言人数扇形统计图可知E 组为%,∴发言人总数为人,于是由扇形统计图知A 组、C 组、D 组分别为3人,15人,13人, ∴F 组为人,于是补全直方图为:(2) ∵在统计的50人中,发言次数的有人∴在这天里发言次数不少于12的概率为∴全年级500人中,在这天里发言次数不少于12的次数为次;(3)∵A 、E 组人数分别为3人、4人,又各恰有1女 ∴由题意可画树状图为: ∴由一男一女有5种情况,共有 12种情况,于是所抽的两位学生 恰好是一男一女的概率为21题 (1)183 (2) 54-18322题. . (1)证明:如图3,连接OC . ······················································ (1分) OA OB = ,CA CB =,OC AB ∴⊥.····················································· (3分) AB ∴是⊙O 的切线. ··············································································· (4分) (2)ED 是直径,90ECD ∴∠=.90E EDC ∴∠+∠= .又90BCD OCD ∠+∠=,OCD ODC ∠=∠,BCD E ∴∠=∠. ···················································································· (5分) 又CBD EBC ∠=∠ ,BCD BEC ∴△∽△.(8分)(3)1tan 2CED ∠= ,12CD EC ∴=. BCD BEC △∽△,12BD CD BC EC ∴==. ················································· (10分)设BD x =,则2BC x =.又BE BD BC ⋅=2, ())6(22+=x x x .解之,得10x =,22x =.0BD x => ,2BD ∴=.∴BC=AC=4 又∵OC=3 ∴OA=5 ······························································· (12分) 23题、(1)由图象可知,甲、乙两地间的距离是960km ;图中点C 的实际意义是:当慢车行驶6h 时,快车到达乙地; 慢车速度是:960÷12=80km/h , 快车速度是:960÷6=160km/h ;故答案为:960;当慢车行驶6h 时,快车到达乙地;80km/h ;160km/h ; (2)根据题意,两车行驶960km 相遇,所用时间=4h ,所以,B 点的坐标为(4,0),2小时两车相距2×(160+80)=480km , 所以,点C 的坐标为(6,480), 设线段BC 的解析式为y=kx+b ,则,解得,所以,线段BC 所表示的y 与x 之间的函数关系式为y=240x ﹣960,自变量x 的取值范围是4≤x ≤6; (3)设第二列快车出发a 小时两车相距200km ,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a ﹣160a=200, 解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a ﹣(4×80+80a )=200, 解得a=6.5,∵快车到达甲地仅需要6小时, ∴a=6.5不符合题意,舍去, 24题:解:(1)y=w (x ﹣20) =(x ﹣20)(﹣2x+80) =﹣2x 2+120x ﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35舍去25题②当点D在BC的延长线上时①的结论仍成立.如图3由正方形ADEF得AD="AF" ,∠DAF=90º.∵∠BAC=90º,∴∠DAF="∠BAC" ,∴∠DAB=∠FAC,又AB="AC" ,∴△DAB≌△FAC,∴CF=BD∠ACF=∠ABD.∵∠BAC=90º,AB="AC" ,∴∠ABC=45º,∴∠ACF=45º,∴∠BCF="∠ACB+∠ACF=" 90º.即CF⊥BD(2)画图正确当∠BCA=45º时,CF⊥BD(如图丁).理由是:过点A作AG⊥AC交BC于点G,∴AC=AG 可证:△GAD≌△CAF∴∠ACF=∠AGD=45º∠BCF="∠ACB+∠ACF=" 90º.即CF⊥BD(1,Q54-19)┅┅┅14分。

2017年中考数学模拟试卷 (含答案解析) (6)

2017年中考数学模拟试卷 (含答案解析) (6)

中考模拟考试数学试题(时间:120分钟 满分:140分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项直接填写在答题卡相应位置上)1.下列各数中,最小的数是( ▲ ) A. -1 B. -2C. 0D. 12.纳米(nm ),又称毫微米,是长度的度量单位,1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ▲ ) A .625.110-⨯米B .40.25110-⨯米C .52.5110⨯米D .52.5110-⨯米3.直线y=x -1的图像经过象限是( ▲ )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 4.如图,⊙O 是△A BC 的外接圆,∠OCB =40° ,则∠A 的度数等于( ▲ ) A . 60° B . 50° C . 40° D . 30° 5.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含添加剂的情况,宜采用抽样调查C .数据2,2,3,1,2,2,3的众数是3D .一组数据的波动越大,方差越小6.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( ▲ )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 7.一次函数24y x =-的图像与x 轴相交成的锐角为β,则tan β的值为 ( ▲ ) A . 2 B . 12C . 25D 5应位置上)9.812∙的值是 ▲ .10.代数式2-x 在实数范围内有意义,则x 的取值范围是 ▲ .oyxβ24y x =-的距离是 ▲ .12.某班体育投篮测试中,第一小组六位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,5,3,4,8,4,这组数据的中位数是 ▲ 个.13.若22=-b a ,则b a 486-+= ▲ .14.据统计,2015年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x 万辆,根据题意可列出的方程是 ▲ . 15.已知2是关于x 的一元二次方程x 2+4x -p =0的一个根,则该方程的另一个根是 ▲ . 16.一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为 一个圆锥的底面半径为6㎝,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为 ▲ .17.如图所示,小明把等腰直角三角尺放置在等宽且互相平行的格线上,恰好等腰直角三角尺的三个顶点都落在格线上,若相邻两条格线之间的宽度为1 cm ,则等腰直角三角尺的斜边长为______▲_______. 18.小明观看了阿尔法狗下围棋后,设计了一款电子跳蚤游戏,如图所示的正△ABC 边长为12cm ,如果电子跳蚤开始在BC 边的点P 0处,且BP 0=4cm .此时第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步P 2从跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;…:电子跳蚤按照上述规则已知跳下去,第n 次落点为P n (n 为正整数),则点P 2015与点P 2016之间的距离是 ▲ .三、解答题(本大题共有10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题10分,每小题5分)(1) 计算:()()2012321-+-+⎪⎭⎫⎝⎛--π; (2)分解因式:m mx mx2422+-.20.(本题10分,每小题5分)(1)解方程:01432=+-x x ; (2)解不等式组:⎩⎨⎧≤-<+5148x x xABC第17题 第18题第11题CB36.9°21.(本题7分)某校开展了以“人生观、价值观”为主题的班会活动,活动结束后,初三(1)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有 人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是 °(2)如果该校有400名初三学生,利用样本估计选择“感恩”观点的初三学生约有 人.22.(本题7分)已知:如图,在 ABCD中,E 为AD 中点,连接CE 并延长交BA 的延长线于F .求证:CD=AF .23、(本题8分)一个不透明口袋中,放有4个完全相同的小球,它们的标号分别为l 、2、3、4. (1)小英随机摸出一个小球,则小英摸出的球是3号球的概率是 ;(2)小英和小华协商制定游戏规则为:小英先随机摸出一个小球,小华再随机摸出一个小球,谁摸出的球的标号大谁获胜.若小英摸出的球不放回,小华再随机摸出一个小球,这个游戏规则公平吗?请利用树状图或列表说明理由.24.(本题8分)如图某天上午9时,向阳号轮船位于A 处,观测到某港口城市P 位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B 处,这时观测到城市P 位于该船的南偏西36.9°方向,求此时轮船所处位置B 与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)25.(本题8分)第22题小丽家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小丽对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y (单位:千克)与上市时间x (单位:天)的函数关系如图1所示,樱桃价格z (单位:元/千克)与上市时间x (单位:天)的函数关系如图2所示. (1)观察图象,直接写出日销售量的最大值;(2)求小丽家樱桃的日销售量y 与上市时间x 的函数解析式; (3)试比较第10天与第12天的销售金额哪天多?26.(本题8分)已知:点M N 、分别是矩形ABCD 的边AD BC 、上的点,将矩形ABCD 沿MN 翻折180︒以后得到图1,再将梯形CDEN 沿EP 翻折180︒,使点D 落在线段EN 或EN 的延长线上. (1)四边形MNPE 是怎样的特殊四边形?并说明理由;(2)如图2,若30EMN ∠=︒,并且4ME =cm ,求四边形MNPE 的面积.(3)若2AB =cm ,BC a =cm ,探究:当a 至少为多少时,四边形MNPE 的面积最小?最小是多少?A BCDA 'B 'MNE 图1ABC D A 'B 'D 'C 'M NPE 图2已知如图,在平面直角坐标系中,点P(-4,0)⊙P半径为2,将⊙P沿x轴向右平移3个单位长度得⊙P1,设⊙P1交y轴正半轴于点A、负半轴于点B,直线L经过点A,及点C(3,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新2017年九年级数学中考模拟试卷及答案一、选择题:1.在Rt△ABC中,∠C=90°,AC=3,AB=4,那么cosA的值是()A. B. C. D.2.若方程(m-1)x m2+1-(m+1)x-2=0是一元二次方程,则m的值为 ( )A.0B.±1C.1D.-13.小华以每分钟x个字的速度书写,y分钟写了300个字,则y与x的函数关系式为( )4.如图是用七颗相同骰子叠成的造型,骰子的六面分别标有1至6点.从正上方俯视,看到的点数和是() A.16 B.17 C.19 D.525.如图,DE∥BC,且AD=4,DB=2,DE=3.5,则BC的长度为()A.5.5 B.5.25 C.6.5 D.76.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏() A.对小明有利 B.对小亮有利 C.游戏公平 D.无法确定对谁有利7.下列各组图形相似的是( )8.如图,CD是平面镜,光线从A点出发经过CD上点E反射后照到B点,若入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=4,CD=11,则tanα的值为()A. B. C. D.9.如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个10.如图,为了测量某栋大楼的高度AB,在D处用高为1米的测角仪CD测得大楼顶端A的仰角为30°,向大楼方向前进100米到达F处,又测得大楼顶端A的仰角为60°,则这栋大楼的高度AB(单位:米)为( )A. B. C.51 D.10111.已知△ABC∽△DEF,若△ABC与△DEF的面积比为4:9,则△ABC与△DEF的周长比为( )A.16:81B.4:9C.3:2D.2:312.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与X轴交点的横坐标分别为x,x2,其中﹣12<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个二、填空题:13.在比例尺1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 km。

14.如果方程x2﹣(m﹣1)x+=0有两个相等的实数根,则m的值为15.将正方形与直角三角形纸片按如图所示方式叠放在一起,已知正方形的边长为20cm,点O为正方形的中心,AB=5cm,则CD的长为 cm.16.若二次函数y=x2+6x+k的图象与x轴有且只有一个交点,则k的值为.17.如图,“石头、剪刀、布”是民间广为流传的游戏.据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,那么两人打平的概率P=________.18.如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=0.75,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或3.5;④0<BE≤5.其中正确的结论是(填入正确结论的序号)三、解答题:19.解方程:2x2﹣3x﹣1=0.20.已知在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.21.制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).23.从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)24.某超市超市准备购进A、B两种品牌的书包共100个,已知两种书包的进价如下表所示,设购进A种书包x个,且所购进的两种书包能全部卖出,获得的总利润为y元.(1)将表格的信息填写完整;(2)求y关于x的函数表达式;(3)如果购进两种书包的总费用不超过4500元且购进B种书包的数量不大于A种书包的3倍,那么超市如何进货才能获利最大?并求出最大利润.四、综合题:25.如图①,在矩形ABCD中,动点P从A点出发沿折线AD﹣DC﹣CB运动,当点P运动到点B时停止.已知动点P在AD、BC上的运动速度为1cm/s,在DC上的运动速度为2cm/s.△PAB的面积y(cm2)与动点P的运动时间t (s)的函数关系图象如图②.(1)a= ,b= ;(2)用文字说明点N坐标的实际意义;(3)当t为何值时,y的值为2cm2.26.如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.(1)求该二次函数的关系式.(2)若点A的坐标是(6,-3),求△ANO的面积.(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:①证明:∠ANM=∠ONM②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由.参考答案1.B2.D3.B4.C5.B6.C7.B8.A9.C10.A11.D12.D13.略14.答案为:m=2或m=0.15.答案为:2016.答案为:9.17.答案为:18.解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADC=180°﹣α﹣∠BDE,∵∠BED=180°﹣α﹣∠BDE,∴∠BED=∠ADC∴△DBE∽△ACD,故①正确;②∵∠B=∠C,∴∠C=∠ADE,不能得到△ADE∽△ACD;故②错误,③当∠AED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠AED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=0.8,AB=10,BD=8.当∠BDE=90°时,易△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠B=α且cosα=0.8.AB=10,∴cosC=0.8,∴CD=12.5,∴BD=BC﹣CD=3.5;故③正确.④过A作AG⊥BC于G,∵cosα=0.8,∴BG=8,∴BC=16,易证得△BDE∽△CAD,设BD=y,BE=x,∴=,∴=,整理得:y2﹣16y+64=64﹣10x,即(y﹣8)2=64﹣10x,∴0<x≤6.4.故④错误.故答案为:①③.19.【解答】解:2x2﹣3x﹣1=0,a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=.20.【解答】(1)证明:∵AB=AD=25,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵AE⊥BD,∴∠AEB=∠C=90°,∴△ABE∽△DBC;(2)解:∵AB=AD,又AE⊥BD,∴BE=DE,∴BD=2BE,由△ABE∽△DBC,得,∵AB=AD=25,BC=32,∴,∴BE=20,∴AE=25.21.解:(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=kx-1(k≠0),由题意得60=5k-1,解得k=300,则停止加热进行操作时y与x的函数关系式为y=300x-1(x≥5);(2)把y=15代入y=300x-1,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.22.解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.23.解:作AD⊥BC于点D,∵∠MBC=60°,∴∠ABC=30°,∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,则∠ACB=45°,在Rt△ADB中,AB=1000,则AD=500,BD=,在Rt△ADC中,AD=500,CD=500,则BC=.答:观察点B到花坛C的距离为米.24.25.解:(1)由图②中发现,点P从开始运动到2s时运动到点D,且在AD边上速度为1,∴BC=AD=2,∵点P在DC上运动时,面积不变是4,∴4=0.5AB×AD,∴AB=4,∵DC上的运动速度为2cm/s,∴a=2+4÷2=4,∴b=2+2+2=6,故答案为4,6;(2)P运动了4s时到达点C,此时△PAB的面积为4cm2,(3)由题意AB=DC=4,∵要y的值为2cm2,即点P到AB的距离为1,∴必须点P在AD或BC上,且PA=1cm或PB=1cm,当PA=1cm时,点P的运动时间t=1s,当PB=1cm时,点P的运动时间为t=6﹣1=5s,即当t为1s或5s时,y的值为2cm2.26.解:(1)∵二次函数图象的顶点为P(4,-4),∴设二次函数的关系式为。

相关文档
最新文档