第4章 相关性与回归分析
相关性与回归分析
相关性与回归分析4.3.4.1相关性分析相关性分析定义:相关性分析是确定两个连续变量之间是否存在线性关系。
相关性分析的用途:相关性分析是一种统计工具,如果两个变量是相关的并且存在因果关系,那么我们可以考虑使用回归分析来创建一个预测方程来进一步描述这种关系。
相关系数r●相关系数r:用于量化线性关系的强度;●范围从-1到1;●接近-1或1的相关系数表示强线性关系,相关系数接近0表示或非线性关系。
相关系数r 的值反映了相关的强度和方向。
案例:如果不绘制数据,相关系数可能会产生误导,如下例子,其中r = 0.238尽管相关系数表示弱线性关系,但图形显示强曲线关系-始终绘制数据相关VS因果例如,犯罪率和冰淇淋销售之间的相关系数为r=0.96,那么强相关系数是否意味着因果关系?高冰激凌销量会导致高犯罪率吗?相关性只意味着存在一种线性关系,而未必是因果关系。
相关性分析案例:黑带想知道在更高的流速和更多附着在灯丝上的物质之间是否存在线性关系?收集历史数据并计算相关系数。
相关检验的原假设是相关系数r=0(更高的流速和更多附着在灯丝上的物质之间无线性关系),备择假设是相关系数r ≠0(更高的流速和更多附着在灯丝上的物质之间有线性关系)。
●p > 0.05,无法拒绝原假设,更高的流速和更多附着在灯丝上的物质之间无线性关系(无显著性差异);●p < 0.05,拒绝原假设,更高的流速和更多附着在灯丝上的物质之间有线性关系(有显著性差异)。
复制数据-统计(S)-基本统计(B)-相关(C):变量(V):点击C15、C16?-方法(M):选择pearson相关系数-点击显示P值(D)-确定P值决定了统计的显著性,皮尔逊相关系数r = 0.834为正,正相关,中等强度(较强)相关性。
判定准则(结论):p值= 0.000 < 0.05,拒绝原假设,接收备择假设,更高的流速和更多附着在灯丝上的物质之间有线性关系。
皮尔逊相关系数r = 0.834,为较强的正相关。
相关性分析回归分析
问题的提出
发现变量之间的统计关系,并且 用此规律来帮助我们进行决策才 是统计实践的最终目的。 一般来说,统计可以根据目前所 拥有的信息(数据)来建立人们 所关心的变量和其他有关变量的 关系。这种关系一般称为模型 (model)。
问题的提出
假如用Y表示感兴趣的变量,用X表示其 他可能与Y有关的变量(X也可能是若干 变量组成的向量)。则所需要的是建立 一个函数关系Y=f(X)。 这里Y称为因变量或响应变量 (dependent variable, response variable),而X称为自变 量,也称为解释变量或协变量
问题的提出
对于现实世界,不仅要知其然,而且 要知其所以然。顾客对商品和服务的 反映对于企业是至关重要的,但是仅 仅有满意顾客的比例是不够的;商家 希望了解什么是影响顾客观点的因素, 及这些因素如何起作用。 类似地,学校不能仅仅知道大学英语 四级的通过率,而且想知道什么变量 影响通过率,以及如何影响。
80
70
60
但对于具体个人来说,大约有一半的学生的 40 高一平均成绩比初三时下降,而另一半没有 40 50 60 70 80 90 100 110 变化或有进步
初三 成绩
一 绩 高 成
50
问题的提出
目前的问题是怎么判断这两 个变量是否相关、如何相关 及如何度量相关? 能否以初三成绩为自变量, 高一成绩为因变量来建立一 个回归模型以描述这样的关 系,或用于预测。
定量变量的线性回归分析
对例1中的两个变量的数据进行线性回归,就 是要找到一条直线来适当地代表图1中的那些 点的趋势。 首先需要确定选择这条直线的标准。这里介绍 最小二乘回归(least squares regression)。古 汉语“二乘”是平方的意思。 这就是寻找一条直线,使得所有点到该直线的 豎直距离的平方和最小。用数据寻找一条直线 的过程也叫做拟合(fit)一条直线。
相关性分析和回归分析
相关性分析和回归分析相关性分析和回归分析是统计学中两种常见的统计工具,它们可以帮助我们更好地理解数据并从中提取出有用的信息。
相关性分析是研究两个或以上变量之间相互关系的一种方法,它确定两个变量之间的线性关系,试图推断其变量对其他变量的影响程度。
相关性分析通常分为两类,即变量间的相关性分析和单变量的相关性分析,它们通常使用皮尔森积矩关系来描述变量之间的关系。
回归分析是一种用于确定变量之间相互影响关系的统计分析方法,它可以用来预测变量的变化趋势,并以最小平方和误差度量结果的实际准确性。
回归分析通过构建预测模型来预测未来的结果,并通过残差分析来检测模型的准确性。
相关性分析和回归分析都是统计学中常用的分析方法,它们可以帮助我们更好地理解数据,并应用更多的知识进行数据分析。
首先,我们需要对数据进行观察,分析数据的规律。
为了进行有效的分析,必须了解数据变量之间的相关性,并正确记录变量值。
其次,我们需要使用相关性分析来确定数据变量之间的关系,并确定变量之间存在的线性关系。
接下来,要使用回归分析来建立模型,以预测未来的变量值。
最后,我们可以分析统计检验结果并进行总结,以指导下一步操作。
相关性分析和回归分析也可以用来评估两个或多个变量的影响,以支持业务决策。
在衡量两个或多个变量之间的关系时,可以利用将变量的数值表示成皮尔森积矩关系来评估彼此之间的函数关系。
回归分析也可以用来估算模型的精确性,可以用来评估模型的准确性并决定其可信度。
为此,我们只需要对模型的预测结果与实际观察值进行比较,并计算在模型上受误差影响的准确性。
总的来说,相关性分析和回归分析是统计学中重要的统计工具,它们可以有效地帮助研究人员更好地理解数据,并从中获得有用的信息。
它们可以用来监测数据变量之间的关系,并评估业务问题的潜在影响。
它们还可以用来估算模型的准确性和可信度,以便用于业务策略制定。
第四章Minitab相关与回归分析
第一,如何确定非线性函数的具体形式。与线性回 归分析的场合不同,非线性回归函数有多种多样的 具体形式,需要根据所要研究的问题的性质并结合 实际的样本观测值做出恰当的选择。
第二,如何估计函数中的参数。非线性回归分析最 常用的方法仍然是最小二乘估计法,但需要根据函 数的不同类型,作适当的处理。
89 90 91 92 93 94 95 96 97 98
广告支出 10 20 40 50 60 80 70 110 110 140 x(万元)
销售量 y(万元)
20 30 35 40 50 70 65 80 70 95
试根据此资料确定销售量y与广告费支出x的是 否存在线性关系,并进行模型分析。
1.根据一般原理, 我们首先需要绘制 散点图,观察其是 否存在线性关系, 如果观察结果存在 线性关系,我们才 能对其进行进一步 的分析。
ut是随机误差项,又称随机干扰项,它是一个特 殊的随机变量,反映未列入方程式的其他各种因素
对y的影响。
(二)样本回归函数:
et称yt为 残a 差b,xt 在 e概t 念上t ,1,2e,t与,总n 体误差项ut相互
对应; n是样本的容量。
a、b分别为α、β的样本估计值
一元线性回归模型的估计
1. 回归系数的估计
关
|r|=0 不存在线性关系或存在非线性相关;
系
数 值: |r|=1 完全线性相关
0<|r|<1不同程度线性相关(0~0.3 微弱;0.3~0.5 低度;
0.5~0.8 显著;0.8~1 高度)
符号:r>0 正相关;r<0 负相关
相关系数的检验:
相关系数的检验( t 检验)
相关分析与回归分析 PPT
2022/9/20
26
距离相关分析一般不单独使用, 而就是作为聚类分析、因子分析等得 预处理过程。
距离相关分析根据统计量得不同, 分为不相似性测度和相似性测度。对 于不相似性测度,通过计算距离来表 示,距离越大,相似性越弱;对于相似性 测度,通过计算 Pearson 相关系
数据得采集也就是建立回归模型 得重要一环。
大多数建模竞赛题目会提供相关 数据,但这些数据可能包含了一些无 用得信息,个别数据缺失甚至失真。
在建模前,需要对数据进行适当
2022/9/20
45
处理。比如标准化,剔除个别过大或 过小得“野值”,用插值方法补齐空 缺数据等。 (3) 回归模型形式得确定
收集、处理好数据后,首先要确 定适当得数学模型来描述这些变量间 得统计关系。
显然,样品间得相关系数都接近
于1,很难辨别出其相似程度。
2022/9/20
31
例4 5名考官给10名应聘者得面
试分数如下,请问各考官评分得一致
性如何?哪位考官得可信度较小?各
应聘者分数得差异就是否明显?
解 若第1问改为:请问不同考官
对应聘者面试分数得影响就是否显著,
则勉强可用方差分析。因为考官给10
相关分析与回归分析
一、引 言
2022/9/20
2
在很多研究领域中,往往需要研
究事物间得关系。如收入与受教育程
度,子女身高与父母身高,商品销售额
与广告费用支出,农作物产量与施肥
量,上述两者间有关系吗?如果有关
系,又就是怎么样得关系呢?如何来
度量这种关系得强弱?
解决上述问题得统计方法就是相
回归分析与相关分析
相关分析与回归分析
第11页
根据回归函数的意义,当X取xi时,Y的期望值 应为f(xi),由于随机误差,观察值yi与f(xi)之间有
一定的差距,即:
yi f (xi ) i
i是第i次试验的误差。 对于Y ( y1, y2 , , yn) , X (x1, x2 , , xn )和 (1, 2 , , n ) 有
27 May 2020
相关分析与回归分析
第22页
三、回归方程的检验
1.随机误差 2 的估计
由一元线性回归方程的模型:
yi a bxi i i ~ N (0 , 2 )
Y ~ N (a bx , 2 )
以D剩为基础作为 2的估计是合理的,其估计为
n
n
D剩
2 i
( yi (aˆ bˆxi ))2
27 May 2020
相关分析与回归分析
第8页
第二节 回归分析
一、确定回归函数的思想
要全面地考察两个变量 X、Y 之间的关系,我们就要研究Y 的
条件分布 F (y | X=x ) 随 X 取值 x 的变化情况. 很自然我们会 想到用 F ( y | X=x ) 的数学期望(平均值)来代替它,这样就可 以通过研究 x 与 Y 的条件期望值之间的关系来代表 X 与 Y 之 间的关系. 即:
显著. n个y值的总差异记为D总
n
D总= ( yi y) 2 l yy
程进行预测和控制.
27 May 2020
相关分析与回归分析
第6页
“回归” 一词的历史渊源
“回归”一词最早由Francis Galton引入。英国著
名人类学家Franics Galton(1822-1911)于1885年在
相关性分析及回归分析
n
n
相关系数表示的意义6
• 相关系数r是对两变量线性相关的测量,数值的范围从-1 到0,到+1,表达变量间的相关强度。
– r值为+1表示两组数完全正相关 – r值为-1表示两组数完全负相关,说明它们间存在反向关系,一
个变量变大时另外一个就变小
– 当r值为0时表示两变量之间不存在线性关系 – 相关系数取值范围限于:-1≤r≤+1
– 得到趋势线(线性)方程和R2
利用分析工具进行一元线形回16 归分析
• 加载宏—分析工具库 • 数据—数据分析—回归 • 在“回归”对话框输入X值和Y值的区域 • 选择“标志” • 确定输出区域 • 将X代入线性方程,进行预测
– X=210,Y=1379.372
数据分析结果
判定系数R2 是对估计的回归方程拟合优度的度 量,取值范围[0,1]。 R2越接近1,表明回归直 线与观测点越接近,回归直线的拟合程度越好。
^
(xi , yi )
^ห้องสมุดไป่ตู้
y a bx
x x1
11
回归模型建立的步骤
• 获取自变量和因变量的观测值; • 绘制XY散点图,观察自变量和因变量之间
是否存在线性关系; • 写出带未知参数的回归方程;
– 工具-数据分析-回归。
• 回归方程检验;
– R2判断回归方程的拟合优度; – t 统计量及相伴概率值,自变量与因变量之间
– 从一组样本数据出发,确定变量之间的数学关系式。 – 对该关系式的可信度进行各种统计检验,并从影响某一特定变量
的诸多变量中找出哪些变量的影响是显著的,哪些是不显著的。 – 利用所求的关系式,根据一个或几个变量的取值来估计或预测另
一个特定变量的取值,并给出这种估计或预测的可靠程度。
第4章 相关分析
完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
相关系数的直观意义
结论:作为度量X 和Y 相关的一个数值,Σ (x − x)( y − y) 至少在符号上是对的(即Σ (x − x)( y − y) 的正与负表现了X 与y 相关的正与负)。而且, 当X 与Y 之间没有什么线性联系时,观测点将均匀 地散布在四个象限上,正项和负项抵消后Σ (x − x)( y − y) 将会是0。
单相关和复相关 正相关和负相关 线性相关和非线线相关 完全相关、完全不相关和不完全相关
当一个变量每增减1个单位,另 一相关变量按一个大致固定的 增(减)量变化时称为线性相关; 反之,相关变量不按固定增(减) 量变化时,则为非线性相关。 当变量之间的依存关系密切到近
乎于函数关系时,称为完全相关; 当变量之间不存在依存关系时, 就称为不相关或零相关; 大多数相关关系介于其间,称为 不完全相关。
返回
相关表
相关表是一种显示变量之间相关关系的统计表。 通常将两个变量的对应值平行排列,且其中某一变量按其取值大小顺序 排列,便可得到相关表。 如下表 某商店10名售货员的工龄和日工资的相关系表
工龄(年) 日工资(百元) 4 42 4 46 5 50 6 60 7 64 8 68 8 74 9 72 9 80 10 84
近似服从t (n 2).
Spearman等级相关系数 Spearman等级相关系数用来度量定序变量间的线性相 关关系。该系数的设计思想与Pearson简单相关系数完 全相同,仍然可依照式(4.1)计算,相应的指标特征也相 似。然而在计算Spearman等级相关系数时,由于数据 为非定距的,因此计算时并不直接采用原始数据(x,y), 而是利用数据的秩,用两变量的秩(U, V)代替(x, y)代 人式(4.1)中,于是其中的x和y的取值范围被限制在1至 n之间.且式(4.1)可被简化为:
第四章 回归分析
•反映客观现象之间的联系的数量关系有两种,确定性关系和不 确定性关系. •确定性关系常用函数描述,不确定性关系也称为相关关系,常 用回归分析处理. •确定性关系和不确定性关系在一定条件下互相转换.
4.1 概述 •不确定性关系中作为影响因素的称自变量,用X 表示,是可以控 制的,受X 影响的响应变量称为因变量,用Y 表示,是可以观测的.
n
lxx
14
结束
于是有: 2 (x) ˆ u1 / 2 ,
Y0的1置信区间为yˆ0 ˆ u1 / 2 , yˆ0 ˆ u1 / 2
取 0.05时 : u1 / 2 1.96, Y0的1 置信区间为:
yˆ0 1.96ˆ , yˆ0 1.96ˆ yˆ0 2ˆ , yˆ0 2ˆ
yˆ0 y0
ˆ s1 ( x0 )
~
t (n 2),
其中: s1 ( x0 )
1 ( x0 x )2 ,
n
lxx
ˆ 2
S
2 E
/(n
2),
S
2 E
lyy
S
2 R
,
S
2 R
ˆ12lxx.
12
结束
P T1 t1 / 2 (n 2), 1 ,
P yˆ0 1( x0 ) y0 yˆ0 1( x0 ) 1 ,
r 2
S R2 ST2
n
ˆ12 l xx
( yi y)2
l xy l xx
2
l xx l yy
l
2 xy
,取R
l xx l yy
i 1
Lxy . Lxx Lyy
据性质4.2.5,
0
r
1,
r
相关分析和回归分析要注意的要点,自己整理的,很全面
回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。
从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。
从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。
在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;另外,若用计算器实现统计分析,可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的。
回归分析和相关分析都是研究变量间关系的统计学课题,它们的差别主要是:1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制。
1.为什么要对相关系数进行显著性检验?在对实际现象进行分析时,往往是利用样本数据计算相关系数()作为总体相关系数()的估计值,但由于样本相关系数具有一定的随机性,它能否说明总体的相关程度往往同样本容量有一定关系。
当样本容量很小时,计算出的不一定能反映总体的真实相关关系,而且,当总体不相关时,利用样本数据计算出的也不一定等于零,有时还可能较大,这就会产生虚假相关现象。
为判断样本相关系数对总体相关程度的代表性,需要对相关系数进行显著性检验。
8第4章相关分析与回归分析(1)
4
3.2
80.8
7.2
10
14.5
5
7.8
199.7
16.5
19
63.2
…
…
…
…
…
…
20
6.8
139.4
7.2
28
64.3
21
11.6
368.2
16.8
32
163.9
22
1.6
95.7
3.8
10
44.5
23
1.2
109.6
10.3
14
67.9
24
7.2
196.2
15.8
16
39.7
25
3.2
102.2
二、用INSIGHT模块作相关分析
【例4-1】一家大型商业银行在多个地区设有分行, 其业务主要是进行基础设施建设、国家重点项目建 设、固定资产投资等项目的贷款。 近年来,该银行的贷款额平稳增长,但不良贷款额 也有较大比例的提高,这给银行业务的发展带来较 大压力。 为弄清楚不良贷款形成的原因,希望利用银行业务 的有关数据做些定量分析,以便找出控制不良贷款 的办法。 表4-1是该银行所属的25家分行2002年的有关业务数 据。
2. 结果分析
首先给出各个变量的描述性统计量,包括观测总数、 各变量的均值及标准差等。 然后给出变量的相关系数矩阵,原假设 H0:ρ = 0 的检验结果,即p值。
分析: (1) Y与x3、x2接近高度相关;
Y与x1、x4、x5为低度相关;Y与x6中度相关。
(2) Y与x3、x2、x6、x5,p < = 0.05,拒绝H0;
COV(X,Y)
D(X) D(Y)
相关性分析与回归分析的区别及其应用
相关性分析与回归分析的区别及其应用一、前言统计学中有两个重要方法,一个是相关性分析,另一个则是回归分析。
对于这两种方法的应用,许多人都有所耳闻,但是他们很少有机会深入研究这些概念的内在区别。
在我们这篇文章中,我们将会对相关性分析和回归分析进行比较,并探讨它们各自在实际应用场景中的不同作用。
二、相关性分析相关性分析是研究变量之间的相关程度的一种方法。
通过计算变量之间的相关系数,我们可以了解到两个变量之间的线性关系强度和方向。
相关系数的值范围在-1和1之间,当它接近-1时,表示变量呈完全的负相关;当接近1时,则表示它们呈完全的正相关;当为0时,则表示变量之间不存在线性关系。
在实际应用中,相关性分析被广泛使用,如市场调查、医疗研究以及统计预测等领域。
例如,一些研究人员会使用相关性分析来研究消费者的购买习惯和年龄之间的关系,以便确定其目标市场并开发更有效的营销策略。
三、回归分析回归分析则是通过建立一个预测模型来探究变量之间的关系。
与相关性分析不同的是,回归分析不仅仅只是探索线性关系,还可以揭示非线性关系。
通过引入一些控制因素,我们可以建立一个比相关性分析更为复杂的模型。
在实际应用中,回归分析也被广泛使用。
例如,当我们想知道股票价格的变化和利率之间的关系时,就可以通过建立回归模型进行预测。
此外,回归分析还可以应用于风险分析、财务预测及时间序列等应用场景中。
四、相关性分析和回归分析的区别虽然相关性分析和回归分析都用于探究变量之间的关系,但它们之间还是有一些区别的。
首先,相关性分析只是描述了变量之间的线性关系强度和方向,而回归分析则是通过建立一个模型来预测其中一个变量的值。
其次,相关性分析只能告诉我们变量之间是否存在线性关系,而回归分析则可以更加深入地探究两个变量之间的关系,包括它们的函数形式关系及其中的交互作用。
最后,相关性分析和回归分析在应用场景中也有所不同。
相关性分析可用于研究市场调查和医疗研究等领域,而回归分析则更适用于预测和风险分析等应用场景中。
第4章 回归分析
r=1
r=-1
y
y
x
x
r<0:x与y负线性相关(negative linear correlation) r>0:x与y正线性相关(positive linear correlation)
-1<r<0
0<r<1
y y
x
② 自由度
SST的自由度 :dfT=n-1 SSR的自由度 :dfR=1 SSe的自由度 :dfe=n-2 三者关系: dfT= dfR +dfe
③ 均方
MSR
SSR dfR
MSe
SSe dfe
④ F检验
F MSR MSe
F服从自由度为(1,n-2)的F分布
给定的显著性水平α下 ,查得临界值: Fα(1,n-2)
① 离差平方和
总离差平方和:
n
SST ( yi y)2 Lyy
i 1
回归平方和(regression sum of square) :
n
SSR ( $yi y)2 b2 Lxx bLxy i 1
残差平方和 : n SSe ( yi $yi )2 i 1
三者关系:
SST SSR SSe
性回归方程,其中b1,b2,…,bm 称为偏回归系数。。
设变量 x1, x2 , xm , y 有N组试验数据:
x11, x21, xm1, y1 x12 , x22 , xm2 , y2
回归系
数?
x1k , x2k , xmk , yk (k 1,2, , N )( N m)
回归系数的确定
根据最小二乘法原理 :求偏差平方和最小时的回归系数。
相关系数与线性回归分析
相关系数与线性回归分析数据分析是现代社会中不可或缺的一部分,它帮助我们了解事物之间的相互关系。
在数据分析中,相关系数与线性回归分析是常用的统计工具,它们可以揭示变量之间的关联和预测未来的趋势。
本文将以深入浅出的方式介绍相关系数与线性回归分析的原理、应用和局限性。
相关系数是用来衡量两个变量之间的统计依赖性的指标。
它的取值范围从-1到1,其中0表示没有线性关系,1表示完全正相关,-1表示完全负相关。
常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。
皮尔逊相关系数是用来衡量两个连续变量之间线性关系的强弱的指标。
它的计算公式为cov(X,Y)/(σX σY),其中cov(X,Y)代表X和Y的协方差,σX和σY分别代表X和Y的标准差。
如果相关系数接近于1,则表示两个变量之间存在强正相关关系;如果接近于-1,则表示存在强负相关关系;如果接近于0,则表示两个变量之间没有线性关系。
斯皮尔曼等级相关系数是用来衡量两个有序变量之间的相关性的指标。
它通过将每个变量的原始值转换为等级值,并计算等级之间的差异来确定相关性。
斯皮尔曼等级相关系数的取值范围与皮尔逊相关系数相同,但它不要求变量之间呈现线性关系。
相关系数的应用非常广泛。
在金融领域中,相关系数可以用来衡量不同证券之间的关联性,帮助投资者构建更稳健的投资组合。
在医学研究中,相关系数可以用来分析不同变量对疾病风险的影响,为医生提供指导性建议。
在社会科学中,相关系数可以帮助研究者了解不同因素对人们态度和行为的影响,从而改善政策和社会管理的决策。
除了相关系数,线性回归分析也是一种常用的统计方法。
线性回归分析通过拟合一条直线来描述两个变量之间的关系,它的基本形式为Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。
线性回归分析的目标是找到最佳拟合线,使得回归系数能够准确地预测Y的变化。
线性回归分析的应用广泛。
在市场营销中,线性回归分析可以帮助企业了解消费者购买意愿与价格、促销活动等因素之间的关系,从而制定更有效的营销策略。
相关分析和回归分析SPSS讲解
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。
2
2
n x 2 x n y 2 y
2
n xy x y
2
相关系数的计算
• Spearman等级相关系数是对Pearson相关
系数的延伸。用 表示,适用于具有线性关 系的两列等级变量,主要解决称名数据和顺序 数据的相关问题,不必考虑是否正态。
r 1 6 Di2 ,其中 Di2 (Ui Vi )2
n xy x y
2
13 9156173.99 12827.5 7457
2 13 5226399 7457
0.9987
相关系数的显著性检验(概念要点)
检验两个变量之间是否存在线性相关关系 等价于对回归系数 b1的检验 采用 t 检验 检验的步骤为
人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果
•
解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2 2 13 16073323.77 12827.5
相关分析与回归分析
本章内容
第四章Minitab相关与回归分析
4.点击Stat-Regression-Regression,弹出:
因变量y 自变量x
点击OK
结果输出:
结果输出(续):
预测方程 系数的t检验 拟合优度R2
方程的F检验
一元线性回归模型预测
回归预测分为点预测和区间预测两部分
1.点预测的基本公式:
yˆ f a bx f
回归预测是一种有条件的预测,在进行回归预 测时,必须先给出xf的具体数值。 2.预测误差及发生预测误差的原因。
关
|r|=0 不存在线性关系或存在非线性相关;
系
数 值: |r|=1 完全线性相关
0<|r|<1不同程度线性相关(0~0.3 微弱;0.3~0.5 低度;
0.5~0.8 显著;0.8~1 高度)
符号:r>0 正相关;r<0 负相关
相关系数的检验:
相关系数的检验( t 检验)
H0 : ρ=0, H1 : ρ≠0
输入数据,点击
Graph-Scatterplot
绘制散点图:
2.弹出如下对话框:选择销售量资料C2进入因变 量Y,广告费支出C1进入自变量X,点击OK将绘制 Y与X的散点图。
点击OK
散点图结果及意义:
3.从此散点图 可以看出:销 售收入C2与 广告费支出 C1间存在着 明显的线性相 关关系,我们 可以进一步建 立回归模型对 其进行分析。
相关分析及其实现
相关分析和回归分析是研究客观现象之间数量联 系的重要统计方法,两者在有关现实经济和管理 问题的定量分析中,具有广泛的应用价值。
变量之间关系 相关关系 函数关系
因果关系 互为因果关系 共变关系 确定性依存关系
随机性 依存 关系
试验设计与数据处理第4章回归分析
a' ln a
y' ln y
yˆ abx ln yˆ ln a xln b
yˆ a bx
a' ln a
b' ln b
对数函数 (logarithmic function)
x' lg x
yˆ a blg x
yˆ a bx'
x' ln x
yˆ a bln x
yˆ a bx'
幂函数 (power function)
(2)回归系数的确定 根据最小二乘法原理 :求偏差平方和最小时的回归系数
偏差平方和:
n
n
Q ( yi $yi )2 ( yi a b1x1 b2x2 ... bmxm )2
i 1
i 1
根据:
Q 0
Q 0
a
bj
得到正规方程组,正规方程组的解即为回归系数。
应用条件:
注意:虽然模型要求因变量是连续数值变量,但对自变量的类型不限。若 自变量是分类变量,特别是无序分类变量,要转化为亚变量才能分析。对 于自变量是分类变量的情形,需要用广义线性回归模型分析。
-1≤r≤1 r=±1:x与y有精确的线性关系
y
y
r=1 x
r=-1
x
r<0:x与y负线性相关(negative linear correlation) r>0:x与y正线性相关(positive linear correlation)
y y
0<r<1 x
-1<r<0 x
r=0
r=0
y y
b0 11.9259 0.1424 5.8126 0.3515 2.8407 0.2706 6.1467 0.6382 9.1185
新教材高中数学第4章第2课时相关系数与非线性回归学案含解析新人教B版选择性必修第二册
新教材高中数学新人教B版选择性必修第二册:第2课时相关系数与非线性回归学习任务核心素养1.了解两个变量间的线性相关系数r,并能利用公式求相关系数r.(重点)2.能利用相关系数r判断两个变量线性相关程度的大小,从而判断回归直线方程拟合的效果.(重点)3.掌握非线性回归转化为线性回归的方法,会求非线性回归方程,并作出预测.(难点)1.通过学习相关系数,培养数学运算的素养.2.借助非线性回归方程的学习,提升数据分析和数学建模的素养.据隆众资讯数据统计,2017~2019年截止到10月底的数据显示,聚丙烯期货价格及现货价格二者相关系数为88.70%,其中2017年二者相关系数高达90.86%,2018年降至83.97%,2019年截止到10月底二者相关系数为65.23%.问题:什么是相关系数,如何计算,它有什么作用?[提示]略.(1)定义:统计学里一般用r=∑ni=1(x i-x-)(y i-y-)∑ni=1(x i-x-)2∑ni=1(y i-y-)2=∑ni=1x i y i-n x-y-(∑ni=1x2i-n x-2)(∑ni=1y2i-n y-2)来衡量y与x的线性相关性强弱,这里的r称为线性相关系数(简称为相关系数).(2)性质①|r|≤1,且y与x正相关的充要条件是r>0,y与x负相关的充要条件是r<0;②|r|越小,说明两个变量之间的线性相关性越弱,也就是得出的回归直线方程越没有价值,即方程越不能反映真实的情况;|r|越大,说明两个变量之间的线性相关性越强,也就是得出的回归直线方程越有价值;③|r|=1的充要条件是成对数据构成的点都在回归直线上.1.甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 如下表:甲乙丙丁r 0.82 0.78 0.69 0.85则哪位同学的试验结果体现A ,B 两变量有更强的线性相关性( ) A .甲 B .乙 C .丙 D .丁 D [r 的绝对值越接近1,相关性越强,故选D .] 知识点2 非线性回归方程如果具有相关关系的两个变量x ,y 不是线性相关关系,那么称为非线性相关关系,所得到的方程称为非线性回归方程(也简称为回归方程).如何猜测非线性回归方程的类型?[提示] 可以通过作出散点图,结合已学的函数模型进行猜测. 拓展:常见的非线性回归方程的转换方式如下:曲线方程曲线(曲线的一部分)变换公式 变换后的线性函数 y =ax bc =ln av =ln x u =ln y u =c +b vy =a e bxc =ln a u =ln yu =c +bxy =a e b xc =ln av =1xu =ln yu =c +b vy =a +b ln xv =ln x y =a +b v到的散点图,那么适宜作为y 关于x 的回归方程的函数类型是( )A .y =a +bxB .y =c +d xC .y =m +nx 2D .y =p +qc x (q >0)B [散点图呈曲线,排除A 选项,且增长速度变慢,排除选项C 、D ,故选B .]类型1 相关系数的性质【例1】 (1)相关变量x ,y 的散点图如图所示,现对这两个变量进行线性相关性分析.方案一:根据图中所有数据,得到回归直线方程y ^=b ^1x +a ^1,相关系数为r 1;方案二:剔除点(10,21),根据剩下数据得到回归直线方程:y ^=b ^2x +a ^2,相关系数为r 2,则( )A .0<r 1<r 2<1B .0<r 2<r 1<1C .-1<r 1<r 2<0D .-1<r 2<r 1<0(2)设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线方程的回归系数为b ^,回归截距是a ^,那么必有( )A .b ^与r 的符号相同 B .a ^与r 的符号相同 C .b ^与r 的符号相反D .a ^与r 的符号相同(1)D (2)A [(1)由散点图得负相关,所以r 1,r 2<0,因为剔除点(10,21)后,剩下的数据更具有线性相关性,|r |更接近1,所以-1<r 2<r 1<0.(2)由公式可知b ^与r 的符号相同.]线性相关强弱的判断方法(1)散点图(越接近直线,相关性越强). (2)相关系数(绝对值越大,相关性越强).[跟进训练]1.如图是具有相关关系的两个变量的一组数据的散点图和回归直线,若去掉一个点使得余下的5个点所对应的数据的相关系数最大,则应当去掉的点是( )A .DB .EC .FD .AB [因为相关系数的绝对值越大,越接近1,则说明两个变量的相关性越强.因为点E 到直线的距离最远,所以去掉点E ,余下的5个点所对应的数据的相关系数最大.]类型2 相关系数的计算及应用【例2】 假设关于某种设备的使用年限x (单位:年)与所支出的维修费用y (单位:万元)有如下统计资料:x2 3 4 5 6y 2.2 3.8 5.5 6.5 7.0已知∑5i =1x 2i =90,∑5i =1y 2i ≈140.8,∑i =1x i y i =112.3,79≈8.9,2≈1.4.(1)计算y 与x 之间的相关系数(精确到0.001),并求出回归直线方程; (2)根据回归方程,预测假设使用年限为10年时,维修费用约是多少万元?[解] (1)∵x -=2+3+4+5+65=4,y -=2.2+3.8+5.5+6.5+7.05=5.∑5i =1x i y i -5x -y -=112.3-5×4×5=12.3,∑5i =1x 2i -5x -2=90-5×42=10, ∑5i =1y 2i -5y -2=140.8-125=15.8,所以r =12.310×15.8=12.3158=12.32×79≈12.31.4×8.9≈0.987.又b ^=∑5i =1x i y i -5x -y-∑5i =1x 2i -5x-2=112.3-5×4×590-5×42=1.23.a ^=y --b ^x -=5-1.23×4=0.08. 所以回归直线方程为y ^=1.23x +0.08.(2)当x =10时,y ^=1.23×10+0.08=12.38(万元), 即假设使用10年时,维修费用约为12.38万元. [跟进训练]2.某厂的生产原料耗费x (单位:百万元)与销售额y (单位:百万元)之间有如下的对应关系:x2468y 30 40 50 70(1)计算x 与y 之间的相关系数,并求其回归直线方程;(2)若实际销售额不少于80百万元,则原料耗费应该不少于多少? [解] (1)画出(x ,y )的散点图如图所示,由图可知x ,y 有线性关系.x -=5,y -=47.5,∑4i =1x 2i =120,∑4i =1y 2i =9 900,∑4i =1x i y i =1 080,故相关系数r =∑4i =1x i y i -4x -y-(∑4i =1x 2i -4x -2)(∑4i =1y 2i -4y -2)=1 080-4×5×47.5(120-4×52)(9 900-4×47.52)≈0.982 7.b ^=∑4i =1x i y i -4x -y-∑4i =1x 2i -4x-2=1 080-4×5×47.5120-4×52=6.5, a ^=y --b ^x -=47.5-6.5×5=15. 故回归直线方程为y ^=6.5x +15. (2)由回归直线方程知, 当y ^≥80,即6.5x +15≥80时, x ≥10.故原料耗费应不少于10百万元. 类型3 非线性回归方程已知x 和y 之间的一组数据,则下列四个函数中,哪一个作为回归模型最好?x 12 3y 3 5.99 12.01①y =3×2x -1;②y =log 2x ;③y =4x ;④y =x 2.[提示] 作出散点图(图略),观察散点图中样本点的分布规律可判断样本点分布在曲线y =3×2x-1附近.①作为回归模型最好.【例3】 某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x12345678y 112 61 44.5 35 30.5 28 25 24观察散点图,两个变量不具有线性相关关系,现考虑用反比例函数模型y =a +bx 和指数函数模型y =c e dx 分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为y ^=96.54e-0.2x,ln y 与x 的相关系数r 1=-0.94.参考数据⎝⎛⎭⎫其中u i =1x i: ∑8i =1u i y iu -u -2∑8i =1u 2i ∑8i =1y i∑8i =1y 2i0.61×6 185.5e -2 183.4 0.34 0.115 1.53 360 22 385.561.40.135(1)(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.01),并用其估计产量为10千件时每件产品的非原料成本;(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出).根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选择100元还是90元,请说明理由.参考公式:对于一组数据(u 1,υ1),(u 2,υ2),…,(u n ,υn ),其回归直线υ=α^+β^u 的斜率和截距的最小二乘估计分别为:β^=∑ni =1u i υi -n u -υ-∑n i =1u 2i -n u-2,a ^=υ--β^u -,相关系数r =∑ni =1u i υi -n u -υ-⎝⎛⎭⎫∑ni =1u 2i -n u-2⎝⎛⎭⎫∑ni =1υ2i -n υ-2[思路点拨] (1)首先可令u =1x 并将y =a +bx 转化为y =a +bu ,然后根据题目所给数据以及线性回归方程的相关公式计算出b ^以及a ^,即可得出结果;(2)计算出反比例函数模型的相关系数r 并通过对比即可得出结果;(3)可分别计算出单价为100元和90元时产品的利润,通过对比即可得出结果. [解] (1)令u =1x ,则y =a +b x 可转化为y =a +bu ,因为y -=3608=45,所以b ^=∑8i =1u i y i -8u -y-∑8i =1u 2i -8u-2=183.4-8×0.34×451.53-8×0.115=610.61=100,则a ^=y --b ^u -=45-100×0.34=11, 所以y ^=11+100u ,所以y 关于x 的回归方程为y ^=11+100x .(2)y 与1x的相关系数为:r 2=∑8i =1u i y i -n u -y-⎝⎛⎭⎫∑8i =1u 2i -8u -2⎝⎛⎭⎫∑8i =1y 2i -8y-2=610.61×6 185.5≈0.99.因为|r 1|<|r 2|,所以用反比例函数模型拟合效果更好, 当x =10时,y =10010+11=21(元),所以当产量为10千件时,每件产品的非原料成本为21元.(3)①当产品单价为100元,设订单数为x 千件,因为签订9千件订单的概率为0.8,签订10千件订单的概率为0.2,所以E (x )=9×0.8+10×0.2=9.2,所以企业利润为100×9.2-9.2×⎝⎛⎭⎫1009.2+21=626.8(千元). ②当产品单价为90元,设订单数为y 千件,因为签订10千件订单的概率为0.3,签订11千件订单的概率为0.7, 所以E (y )=10×0.3+11×0.7=10.7, 所以企业利润为90×10.7-10.7×⎝⎛⎭⎫10010.7+21=638.3(千元). 故企业要想获得更高利润,产品单价应选择90元.非线性回归问题有时并不给出经验公式,这时我们可以画出已知数据的散点图,把它与学过的各种函数(幂函数、指数函数、对数函数等)图像作比较,挑选一种跟这些散点拟合得最好的函数,然后采用适当的变量变换,把问题化为线性回归分析问题,使之得到解决.其一般步骤为:[跟进训练]3.二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y (单位:万元/辆)进行整理,得到如下数据:使用年数x 2 3 4 5 6 7 售价y 201286.44.43z =ln y3.00 2.48 2.08 1.86 1.48 1.10下面是z 关于(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关系数加以说明; (2)求y 关于x 的回归方程并预测某辆A 型号二手车当使用年数为9年时售价约为多少? (b ^,a ^小数点后保留两位有效数字)(3)基于成本的考虑,该型号二手车的售价不得低于7 118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考数据:∑6i =1x i y i =187.4,∑6i =1x i z i =47.64,∑6i =1x 2i =139,∑6i =1 (x i -x-)2≈4.18,∑6i =1(y i -y -)2=13.96,∑6i =1(z i -z -)2=1.53,ln 1.46≈0.38,ln 0.711 8≈-0.34.参考公式:回归直线方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1 (x i -x -)(y i -y -)∑ni =1 (x i -x -)2=∑ni =1x i y i -n x -y-∑ni =1x 2i -n x-2,a ^=y --b ^x -.r =∑n i =1 (x i -x -)(y i -y -)∑n i =1(x i -x-)2∑ni =1(y i -y -)2,x -,y -为样本平均值.[解] (1)由题意,计算x -=16×(2+3+4+5+6+7)=4.5,z -=16×(3+2.48+2.08+1.86+1.48+1.10)=2,且∑6i =1x i z i =47.64,∑6i =1x i -x-2≈4.18,∑6i =1z i -z-2=1.53,所以r =∑ni =1 x i -x-z i -z-∑n i =1x i -x-2∑n i =1z i -z-2=47.64-6×4.5×24.18×1.53=- 6.366.395 4≈-0.99.所以z 与x 的相关系数大约为-0.99,说明z 与x 的线性相关程度很高. (2)利用最小二乘估计公式计算b ^=∑ni =1x i z i -n x - z-∑n i =1x 2i -n x-2=47.64-6×4.5×2139-6×4.52=-6.3617.5≈-0.36,所以a ^=z --b ^x -=2+0.36×4.5=3.62,所以z 关于x 的线性回归方程是z ^=-0.36x +3.62, 又z =ln y ,所以y 关于x 的回归方程是y ^=e -0.36x +3.62. 令x =9,解得y =e -0.36×9+3.62≈1.46,即预测某辆A 型号二手车当使用年数为9年时售价约1.46万元.(3)当y ≥0.711 8时, e-0.36x +3.62≥0.711 8=e ln 0.711 8=e-0.34,所以-0.36x +3.62≥-0.34,解得x ≤11,因此预测在收购该型号二手车时车辆的使用年数不得超过11年.1.两个变量之间的线性相关程度越低,其线性相关系数的数值( ) A .越接近于-1 B .越接近于0 C .越接近于1D .越小B [由相关系数的含义可得:两个变量之间的线性相关程度越低,其线性相关系数的数值越接近于0.故选B .]2.如图所示,给出了样本容量均为7的A ,B 两组样本数据的散点图,已知A 组样本数据的相关系数为r 1,B 组数据的相关系数为r 2,则( )A .r 1=r 2B .r 1<r 2C .r 1>r 2D .无法判定C [根据A ,B 两组样本数据的散点图知,A 组样本数据几乎在一条直线上,且成正相关,∴相关系数为r 1应最接近1,B 组数据分散在一条直线附近,也成正相关,∴相关系数为r 2,满足r 2<r 1,即r 1>r 2,故选C .]3.对于线性相关系数r ,叙述正确的是( )A .r ∈(-∞,+∞),且r 越大,相关程度越大B .r ∈(-∞,+∞),且|r |越大,相关程度越大C .r ∈[-1,1],且r 越大,相关程度越大D .r ∈[-1,1],且|r |越大,相关程度越大D [相关系数r 是来衡量两个变量之间的线性相关程度的,线性相关系数是一个绝对值小于等于1的量,并且它的绝对值越大就说明相关程度越大.故选D .]4.若回归直线方程中的回归系数b ^=0,则相关系数r =________.0 [相关系数r =∑n i =1 (x i -x -)(y i -y -)∑n i =1 (x i -x -)2∑n i =1 (y i -y -)2与b ^=∑n i =1 (x i -x -)(y i -y -)∑n i =1 (x i -x -)2的分子相同,故r =0.]5.在一次试验中,测得(x ,y )的四组值分别为(1,2),(2,0),(4,-4),(-1,6),则y 与x 的相关系数为________.-1 [法一:x -=1.5,y -=1,∑4i =1x 2i =22,∑4i =1y 2i =56,∑4i =1x i y i =-20,相关系数r =-20-4×1.5×1(22-4×1.52)(56-4×12)=-1.法二:观察四个点,发现其在一条单调递减的直线上,故y 与x 的相关系数为-1.]回顾本节内容,自我完成以下问题.1.你对相关系数是怎样认识的?[提示] (1)样本的相关系数r 可以定量地反映出变量间的相关程度,明确给出有无必要建立两变量间的回归方程.(2)|r |很小只是说明两个变量之间的线性相关程度弱,但不一定不相关.2.散点图和相关系数都可以确定两变间是否具备相关关系,两者有何区别与联系?[提示](1)散点图从形的角度来判断;相关系数r则是从数的角度来判断.(2)判断变量之间的线性相关关系,一般用散点图,但在作图中,由于存在误差,有时很难判断这些点是否分布在一条直线的附近,从而就很难判断两个变量之间是否具有线性相关关系,此时就必须利用样本相关系数来判断.(3)样本相关系数r只能描述两个变量之间的变化方向及密切程度,不能揭示二者之间的本质联系.(4)样本相关系数r可以定量地反映出变量间的相关程度,明确的给出有无必要建立两变量间的回归直线方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经营净收入 1191.29 1059.29 1836.45 875.24 2320.36 2285.41 1860.32 1529.14 1994.12 3026.57 4383.89 1874.45 2991.66 1721.84 2294.85 2264.36 1906.73 2674.18 3035.25 1699.84 2154.62 1779.43 1670.51 1614.67 1785.61 486.92 771.75 914.3 1054.6 2367.47 1412.32
地区 北 京 天 津 河 北 山 西 内蒙古 辽 宁 吉 林 黑龙江 上 海 江 苏 浙 江 安 徽 福 建 江 西 山 东 河 南 湖 北 湖 南 广 东 广 西 海 南 重 庆 四 川 贵 州 云 南 西 藏 陕 西 甘 肃 青 海 宁 夏 新 疆
可支配收入 32903.03 26920.86 18292.23 18123.87 20407.57 20466.84 17796.57 15696.18 36230.48 26340.73 30970.68 18606.13 24907.4 17494.87 22791.84 18194.8 18373.87 18844.05 26897.48 18854.06 18364.95 20249.7 17899.12 16495.01 18575.62 16195.56 18245.23 14984.68 15603.31 17574.92 15513.62
财产性收入 696.64 462.28 314.43 274.09 513.36 333.55 235.31 141.26 633.12 667.06 1572.34 569.96 1752.82 471.73 615.69 286.02 357.15 770.66 1242.95 844.91 715.4 433.71 523.24 356.41 1273.99 354.07 214.18 161.66 74.64 194.48 149.06
转移性收入 10075.23 9600.4 5750.43 5370.29 4277.38 7166.95 4894.99 5213.05 9354.29 7516.76 7973.91 5390.73 5194.82 4804.59 4349.86 4937.3 5306.95 5084.95 4844.42 4751.2 4343.24 5753.42 4807.05 4873.34 4779.36 1415.8 5032.65 3996.15 5257.77 4691.94 3416.35
财产性收入 0.546966 0.453977 0.670542
转移性收入 0.794152 0.646626 0.216411 0.203696
SUMMARY OUTPUT
回归统计 Multiple R 0.9505 R Square 0.903451 Adjusted R 0.900122 Square 标准误差 1694.929 观测值30000 20000 10000 0
0 5000 10000 15000 20000 工资性收入(单位:元) 25000 30000
可支配收入 工资性收入 经营净收入 财产性收入 转移性收入 可支配收入 1 1 1 1 1
工资性收入 0.9505
经营净收入 0.440412 0.255384
工资性收入 25161.22 18794.08 11686.6 13146.47 14779.08 13093.86 12217.09 10235.04 28550.76 17761.58 20334.25 12915.97 17434.81 11654.36 17629.4 12039.24 12622.44 11550.09 21092.14 13550.16 12876.92 13827.72 12687.29 10754.45 12416.17 15854.97 14051.28 11195.26 11403.97 12396.71 12653.43
Intercept 3154.014 1102.342 2.861193 0.007751 899.4712 5408.557 X Variable 1.185539 1 0.071968 16.47319 2.93E-16 1.038349 1.33273
30000
下限 95.0% 上限 95.0% 899.4712 5408.557 1.038349 1.33273
方差分析 df 回归分析 残差 总计 1 SS 7.8E+08 MS F Significance F
7.8E+08 271.3658 2.93E-16 2872785
29 83310772 30 8.63E+08
Coefficients 标准误差
t Stat
P-value Lower 95%Upper 95%