高考物理备考中等生百日捷进提升系列专题05万有引力定律含解析
2017年高考物理备考 中等生百日捷进提升系列 专题05 万有引力定律(含解析)
专题05 万有引力定律第一部分 特点描述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
牢牢地抓住基本公式,建立天体运动的两个模型是解决万有引力问题的关键。
复习万有引力定律的应用时分两条主线展开,一是万有引力等于向心力,二是重力近似等于万有引力。
第二部分 知识背一背一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小跟物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。
2.公式:F =Gm 1m 2r 2,其中G 为引力常量,G =6.67×10-11 N ·m 2/kg 2,由卡文迪许扭秤实验测定. 3.适用条件:两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离。
(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为_质点到球心间的距离。
二、三种宇宙速度三、经典时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量不随运动状态而改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m= m 01-v 2c 2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。
第三部分 技能+方法考点一、万有引力定律在天体运动中的应用1.利用万有引力定律解决天体运动的一般思路(1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型.(2)两组公式G Mm r 2=m v 2r =m ω2r =m 4π2T 2·r =ma mg =GMm R2(g 为星体表面处的重力加速度). 2.天体质量和密度的计算(1)估算中心天体的质量①从环绕天体出发:通过观测环绕天体运动的周期T 和轨道半径r ,就可以求出中心天体的质量M②从中心天体本身出发:只要知道中心天体表面的重力加速度g 和半径R ,就可以求出中心天体的质量M(2)设天体表面的重力加速度为g ,天体半径为R ,则mg =G MmR 2,即g =GM R 2(或GM =gR 2)若物体距星体表面高度为h ,则重力mg ′=G Mm R +h 2,即g ′=GM R +h 2=R 2R +h 2g .【例1】(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析
高考物理万有引力定律的应用及其解题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R 月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=2.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。
(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。
已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。
【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gR=(2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
(物理)高考必刷题物理万有引力定律的应用题含解析
(物理)高考必刷题物理万有引力定律的应用题含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+ (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:32GMvR.【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v0的初速度竖直上抛一物体,经过时间t1,物体回到抛出点;在月球的“两极”处仍以大小为v0的初速度竖直上抛同一物体,经过时间t2,物体回到抛出点。
高考物理二轮复习专题05万有引力定律与航天讲含解析28物理
万有引力定律与航天考试大纲要求考纲解读1. 万有引力定律及其应用Ⅱ1.本章重点考查万有引力定律及其应用、环绕速度.特别是我国近几年航天事业的飞速发展,使万有引力的应用成为近几年高考命题的热点.2.万有引力定律高考选择题每年都出,因本章知识较难与其他章串联,故计算题已被削弱.2. 环绕速度Ⅱ3. 第二宇宙速度和第三宇宙速度Ⅰ4.经典时空观和相对论Ⅰ纵观近几年高考试题,预测2019年物理高考试题还会考:1.一般以选择题形出现,主要有天体运动中的基本参数求解与比较;双星问题的分析与计算2.分析人造卫星的运行规律,是考试中的热点,一般以选择题的形式出现;从命题趋势上看,几乎年年有题,年年翻新,以近几年中国及世界空间技术和宇宙探索为背景的题目备受青睐,对本部分内容的考查仍将延续与生产、生活以及科技航天相结合,形成新情景的物理题。
考向01 万有引力定律天体运动1.讲高考(1)考纲要求掌握万有引力定律的内容、公式(2)命题规律一般以选择题形出现,主要有天体运动中的基本参数求解与比较;双星问题的分析与计算案例1.土星最大的卫星叫“泰坦”(如图),每16天绕土星一周,其公转轨道半径约为,已知引力常量,则土星的质量约为A. B.C. D.【来源】浙江新高考2018年4月选考科目物理试题【答案】 B案例2.(多选)2017年,人类第一次直接探测到来自双中子星合并的引力波。
根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星()A. 质量之积B. 质量之和C. 速率之和D. 各自的自转角速度【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 BC【解析】本题考查天体运动、万有引力定律、牛顿运动定律及其相关的知识点。
双中子星做匀速圆周运动的频率f=12Hz(周期T=1/12s),由万有引力等于向心力,可得,G=m1r1(2πf)2,G =m 2r 2(2πf )2,r 1+ r 2=r =40km ,联立解得:(m 1+m 2)=(2πf )2Gr 3,选项B 正确A 错误;由v 1=ωr 1=2πf r 1,v 2=ωr 2=2πf r 2,联立解得:v 1+ v 2=2πf r ,选项C 正确;不能得出各自自转的角速度,选项D 错误。
【百日冲刺】2020年高考物理备考专题05万有引力定律含解析
专题05 万有引力定律第一部分名师综述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
第二部分精选试题一、单选题1.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍,某时刻,航天站使登月器减速分离,登月器沿如图所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器快速启动所用的时间可以忽略不计,整个过程中航天站保持原轨道绕月运行,不考虑月球自转的影响,则下列说法正确的是()A.从登月器与航天站分离到对接,航天站至少转过半个周期B.从登月器与航天站分离到对接,航天站至少转过2个周期C.航天站做圆周运动的周期与登月器在椭圆轨道上运动的周期之比为√278D.航天站做圆周运动的周期与登月器在椭圆轨道上运动的周期之比为278【答案】 C【解析】【详解】航天站的轨道半径为3R,登月器的轨道半长轴为2R,由开普勒第三定律可知,航天站做圆周运动的周期与登月器在椭圆轨道上运动的周期之比为:T′T =√3323=√278;从登月器与航天站分离到对接,登月器的运动的时间为一个周期T,登月器可以在月球表面逗留的时间为t,使登月器仍沿原椭圆轨道回到分离点与航天飞机实现对接,T+T=TT′,则T>TT′=√827,n取整数,即n至少为1,这一时间要大于航天站的半个周期,而登月器在月球上要逗留一段时间,其值不知,即无法确定时间大小,则AB错误;航天站做圆周运动的周期与登月器在椭圆轨道上运动的周期之比为:T′T =√3323=√278,则C正确,D错误;故选C。
高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析
高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。
专题05 万有引力定律-2018年高考物理备考优生百日闯关
第一部分 名师综述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
第二部分 精选试题 一、选择题1.我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球。
假如宇航员在月球上测得摆长为L 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为 ( ) A.23L GrT π B. 23L GrT π C. 2163L GrT π D. 2316LGrTπ 【答案】 B2.由于太阳不断向外辐射电磁能,其自身质量不断减小.根据这一理论,在宇宙演变过程中,地球公转的情况是 ( ) A .公转周期变大 B .公转半径减小 C .公转速率变大D .公转角速度变大【答案】 A【解析】如果太阳质量不变,线速度V 正好能够满足万有引力提供需要的向心力.可是太阳质量变小了,万有引力就变小了,这个时候需要的向心力就比万有引力大了.地球就做离心运动了,也就离太阳越来越远了.所以运动半径变大;B 、地球跑远了,同时是在背离太阳做负功的,这个时候动能转化为势能,所以速率变小了.同时半径又变大了,根据rνω=,所以角速度就变小了,根据2rT πν=所以周期就变长了.本题考查了万有引力在天体中的应用,这个题目有所不同的是中心体的质量也在发生改变,所以要考虑全面.3.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,N F 表示人对秤的压力,下面说法中正确的是 ( ) A .g Rr g 22=' B .g rR g 22=' C .N F =g RrmD .N F =g rR m【答案】B4.因“光纤之父”高锟的杰出贡献,早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”。
新高考物理模拟题分类汇编专题05-万有引力定律与航天(含答案)
专题05 万有引力定律与航天1.(2021·天津高三一模)三颗人造卫星A 、B 、C 都在赤道正上方同方向绕地球做匀速圆周运动,A 、C 为地球同步卫星,某时刻A 、B 相距最近,如图所示.已知地球自转周期为1T ,B 的运行周期为2T ,则下列说法正确的是( )A .C 加速可追上同一轨道上的AB .经过时间()12122T T T T -,A 、B 相距最远C .A 、C 向心加速度大小相等,且小于B 的向心加速度D .在相同时间内,C 与地心连线扫过的面积等于B 与地心连线扫过的面积 【答案】BC【解析】A .卫星C 加速后做离心运动,轨道变高,不可能追上卫星A ,A 错误; B .A 、B 卫星由相距最近至相距最远时,两卫星转的圈数差半圈,设经历时间为t ,有2112t t T T -=, 解得经历的时间()1212 2?T T t T T =-,B 正确;C .根据万有引力提供向心加速度,由2GMm ma r =,可得2GMa r=,由于A C B r r r =>,可知A 、C 向心加速度大小相等,且小于B 的向心加速度,C 正确;D .轨道半径为r 的卫星,根据万有引力提供向心力2224GMm r T π=,可得卫星为周期32r T GM= 则该卫星在单位时间内扫过的面积2012r S GMr Tπ==由于A B r r >,所以在相同时间内,A 与地心连线扫过的面积大于B 与地心连线扫过的面积,D 错误。
故选BC 。
2.(2021·天津高三模拟)嫦娥工程分为三期,简称“绕、落、回”三步走。
我国发射的“嫦娥三号”卫星是嫦娥工程第二阶段的登月探测器,该卫星先在距月球表面高度为h 的轨道上绕月球做周期为T 的匀速圆周运动,再经变轨后成功落月。
已知月球的半径为R ,引力常量为G ,忽略月球自转及地球对卫星的影响。
则以下说法正确的是( )A .物体在月球表面自由下落的加速度大小为23224()R h T Rπ+ B .“嫦娥三号”绕月球做匀速圆周运动时的线速度大小为2RTπ C .月球的平均密度为3233()R h GT Rπ+ D【答案】AC【解析】A .在月球表面,重力等于万有引力,则得2MmGmg R =,对于“嫦娥三号”卫星绕月球做匀速圆周运动过程,由万有引力提供向心力得2224()()Mm G m R h R h T π=++,联立解得23224()R h g T R π+=,选项A 正确; B .“嫦娥三号”卫星绕月球做匀速圆周运动,轨道半径为r =R +h 则它绕月球做匀速圆周运动的速度大小为22()r R h v T Tππ+==,选项B 错误; C .根据万有引力提供向心力有2224()()Mm G m R h R h T π=++ 解得月球的质量为2324()R h M GTπ+= 月球的平均密度为32333()=43MR h GT R R πρπ+=,选项C 正确; D .设在月球上发射卫星的最小发射速度为v ,则有22=Mm v G mg m R R=解得2()R h R hvgRT Rπ,选项D 错误。
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析
高考物理万有引力定律的应用解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT Tπππ-=解得87Rtgπ=2.由三颗星体构成的系统,忽略其他星体对它们的影响,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做角速度相同的圆周运动(图示为A、B、C三颗星体质量不相同时的一般情况)若A星体的质量为2m,B、C两星体的质量均为m,三角形的边长为a,求:(1)A星体所受合力的大小F A;(2)B星体所受合力的大小F B;(3)C星体的轨道半径R C;(4)三星体做圆周运动的周期T.【答案】(1)2223Gma(227Gm(37(4)3πaTGm=【解析】【分析】【详解】(1)由万有引力定律,A星体所受B、C星体引力大小为24222A BR CAm m mF G G Fr a===,则合力大小为223AmF Ga=(2)同上,B星体所受A、C星体引力大小分别为2222222A BABC BCBm m mF G Gr am m mF G Gr a====则合力大小为22cos 602Bx AB CB m F F F G a =︒+=22sin 603By AB m F F G a=︒=.可得22227B BxBym F F F G a=+=(3)通过分析可知,圆心O 在中垂线AD 的中点,22317424C R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭ (4)三星体运动周期相同,对C 星体,由22227C B C m F F G m R a T π⎛⎫=== ⎪⎝⎭可得22a T Gmπ=3.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1v =2)2=M E G R '引;(3)2v =4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R=解得:1v =; (2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr 引 质点所在处的引力场强度=F E m引引 得2=M E Gr引 该星球表面处的引力场强度'2=ME GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.4.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
2025高考物理专题复习--万有引力定律及其应用(共30张ppt)
C.从 P 到 Q 阶段,速率逐渐变小
D.从 M 到 N 阶段,万有引力对它先做负功后做正功
1
结论:同一椭圆轨道,物体靠近中心天体的 轨道运动时间
4
轨道运动时间
<
1
4
<
1
远离中心天体的
4
例2 (多选)如图2所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、
资( D )
A.质量比静止在地面上时小
B.所受合力比静止在地面上时小
C.所受地球引力比静止在地面上时大
D.做圆周运动的角速度大小比地球自转角速度大
角度
“挖补法”求解万有引力
例4 有一质量为M、半径为R、密度均匀的球体,在距离球
心O为2R的地方有一质量为m的质点。现从球体中挖去半
径为0.5R的小球体,如图3所示,引力常量为G,则剩余部
3
T代表公转周期,即 2
= ��(其中,比值k是一个与行星无关的常量)
(2)对开普勒第三定律的理解
开普勒三定律不仅适用于行星,也适用于其他天体。例如对于木星的所有卫星来说,
a3
它们的 2 一定相同,但常量k的值跟太阳系各行星绕太阳运动的k值不同.开普勒恒量k
T
的值只跟(行星运动时所围绕的)中心天体的质量有关.不同的中心天体k值不同。但该
相互性:两个物体相互作用的引力是一对作用力和反作用力,它们大小
相等,方向相反,分别作用在两个物体上
宏观性:一般物体间的万有引力非常小,只有质量巨大的星球间或天体
与附近的物体间,它的存在才有宏观的物理意义。在微观世界中,粒子的
质量都非常小,万有引力可以忽略不计
高考物理备考优生百日闯关系列专题05万有引力定律(含解析)
专题05 万有引力定律第一部分名师综述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
第二部分精选试题1、【2017·辽宁省本溪市高级中学、大连育明高级中学、大连二十四中高三联合模拟考试】如图所示,A为置于地球赤道上的物体,B为绕地球做椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P为B、C两卫星轨道的交点,已知A、B、C绕地心运动的周期相同,相对地心,下列说法中错误的是:()A.卫星C的运行速度大于物体A的速度B.物体A和卫星C具有相同大小的加速度C.卫星B运动轨迹的半长轴与卫星C运动轨迹的半径相同D.卫星B在P点的加速度大小与卫星C在该点的加速度大小相等【答案】B半径相同,所以卫星B在P点的加速度大小与卫星C在该点的加速度大小相等,故B错误D正确;由开普勒第三定律可知:3322 C B r r T T=,则卫星B 运动轨迹的半长轴与卫星C 运动轨迹的半径相等,故C 正确; 【名师点睛】在万有引力这一块,涉及的公式和物理量非常多,掌握公式222224Mm v G m m r m r ma r r Tπω====在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算2、【2017·湖北省部分重点中学高三新考试大纲适应性考试】如图所示,由中山大学发起的空间引力波探测工程“天琴计划”于2015年启动,拟采用三颗全同的卫星(SC1、SC2、SC3)构成一个边长约为地球半径27倍的等边三角形阵列,地球恰好处于三角形中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,对一个周期仅有5.4分钟的超紧凑双白矮里系统RXJ0806.3+1527产生的引力波进行探测。
高考物理专题复习《万有引力定律 》真题汇编含答案
高考物理专题复习《万有引力定律 》真题汇编考点一:开普勒行星运动定律一、单选题1.(22·23·河北·学业考试)西汉时期,《史记·天官书》作者司马迁在实际观测中发现岁星呈青色,与“五行”学说联系在一起,正式把它命名为木星。
如图甲所示,两卫星Ⅰ、Ⅰ环绕木星在同一平面内做圆周运动,绕行方向相反,卫星Ⅰ绕木星做椭圆运动,某时刻开始计时,卫星Ⅰ、Ⅰ间距离随时间变化的关系图象如图乙所示,其中R 、T 为已知量,下列说法正确的是( )A .卫星Ⅰ在M 点的速度小于卫星Ⅰ的速度B .卫星Ⅰ、Ⅰ的轨道半径之比为1:2C .卫星Ⅰ的运动周期为TD .绕行方向相同时,卫星Ⅰ、Ⅰ连续两次相距最近的时间间隔为78T【答案】C【解析】A .过M 点构建一绕木星的圆轨道,该轨道上的卫星在M 点时需加速才能进入椭圆轨道,根据万有引力定律有22GMm v m r r= 可得GMv r=则在构建的圆轨道上运行的卫星的线速度大于卫星Ⅰ的线速度,根据以上分析可知,卫星Ⅰ在M 点的速度一定大于卫星Ⅰ的速度,A 错误;BC .根据题图乙可知,卫星Ⅰ、Ⅰ间的距离呈周期性变化,最近为3R ,最远为5R ,则有213R R R -=,215R R R +=可得1R R =,24R R =又根据两卫星从相距最远到相距最近有111222t t T T πππ+= 其中149t T =,根据开普勒第三定律有21122233T R R T = 联立解得1T T =,28T T =B 错误,C 正确;D . 运动方向相同时卫星Ⅰ、Ⅰ连续两次相距最近,有2212222t t T T πππ-= 解得287t T =D 错误。
故选C 。
2.(19·20·北京·学业考试)2012年12月,经国际小行星命名委员会批准,紫金山天文台发现的一颗绕太阳运行的小行星被命名为“南大仙林星”。
如图所示,“南大仙林星”绕太阳依次从a→b→c→d→a 运动。
高考物理二轮复习【专题05】万有引力定律(讲)(解析版)
2018高三二轮讲练测之讲专题5 万有引力定律考向01万有引力定律天体运动1.讲高考(1)考纲要求掌握万有引力定律的内容、公式(2)一般以选择题形出现,主要有天体运动中的基本参数求解与比较;双星问题的分析与计算案例1.(多选)【2018·新课标全国卷Ⅰ】太阳系个行星几乎在同一平面内沿同一方向绕太阳做圆周运动,当地球恰好运行到某个行星和太阳之间,且三者几乎成一条直线的现象,天文学成为“行星冲日”据报道,2019年各行星冲日时间分别是:1月6日,木星冲日,4月9日火星冲日,6月11日土星冲日,8月29日,海王星冲日,10月8日,天王星冲日,已知地球轨道以外的行星绕太阳运动的轨道半径如下表所示,则下列判断正确的是:()B.在2019年内一定会出现木星冲日C.天王星相邻两次的冲日的时间是土星的一半D.地外行星中海王星相邻两次冲日间隔时间最短年,由于今年的冲日时间是1月6日,所以下次木星冲日在2019年,选项B对。
由于木星相邻两次冲日的案例2.【2018·新课标全国卷Ⅱ】假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为:( )A. 0203g g g GT π-B. 0203g g gGT π- C. 23GT π D. 023g g GT πρ=案例3. (2018·山东卷)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )T kn 23A.T k n 3.B T k n 2.C T k nD.2.讲基础(1)开普勒行星运动定律 (2)万有引力定律 ①内容: ②表达式:221rm m G F = ;引力常量G =6.67×10-11 N •m 2/kg 2. ③适用条件:(3)天体质量和密度的计算①利用天体表面的重力加速度g 和天体半径R 。
五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析
专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。
2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。
已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。
则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。
4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。
高考物理万有引力定律的应用解析版汇编及解析
高考物理万有引力定律的应用解析版汇编及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯3.为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为m 的砝码,读数为F. 已知引力常量为G.求该行星的半径R 和质量M 。
高考物理万有引力定律的应用解析版汇编及解析
高考物理万有引力定律的应用解析版汇编及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.(1)求M 、N 间感应电动势的大小E ;(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】(1)法拉第电磁感应定律E=BLv代入数据得E =1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有2MmGmg R=匀速圆周运动22()Mm v G m R h R h=++ 解得22gR h R v=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.我国首个月球探测计划“嫦娥工程”将分三个阶段实施,大约用十年左右时间完成,这极大地提高了同学们对月球的关注程度.以下是某同学就有关月球的知识设计的两个问题,请你解答:(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T ,且把月球绕地球的运动近似看做是匀速圆周运动.试求出月球绕地球运动的轨道半径. (2)若某位宇航员随登月飞船登陆月球后,在月球某水平表面上方h 高处以速度v 0水平抛出一个小球,小球落回到月球表面的水平距离为s .已知月球半径为R 月,万有引力常量为G .试求出月球的质量M 月. 【答案】(1)22324gR T r π=22022=R h M Gs 月月 【解析】本题考查天体运动,万有引力公式的应用,根据自由落体求出月球表面重力加速度再由黄金代换式求解5.对某行星的一颗卫星进行观测,运行的轨迹是半径为r 的圆周,周期为T ,已知万有引力常量为G .求: (1)该行星的质量.(2)测得行星的半径为卫星轨道半径的十分之一,则此行星的表面重力加速度有多大?【答案】(1)2324r M GT π=(2)22400rg T π= 【解析】(1)卫星围绕地球做匀速圆周运动,由地球对卫星的万有引力提供卫星所需的向心力.则有:2224Mm G m r r T π=,可得2324r M GT π=(2)由21()10MmGmg r =,则得:222400100GM r g r T π==6.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)36RTgπ=(2)133tgRω-V=【解析】【分析】【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m RTRπ⋅=地球表面的物体受到重力等于万有引力2Mmmg GR=联立解得36RTgπ=;(2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π.ω1△t-ω0△t=2π,所以1000222133tgT RV===πππωωωω---;7.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。
高考物理万有引力定律的应用解析版汇编及解析
高考物理万有引力定律的应用解析版汇编及解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:()()2L R H R HTRv hπ++=3.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s绕地球做匀速圆周运动,运动方向与太阳帆板两端M、N的连线垂直,M、N间的距离L =20m,地磁场的磁感应强度垂直于v,MN所在平面的分量B=1.0×10﹣5 T,将太阳帆板视为导体.(1)求M、N间感应电动势的大小E;(2)在太阳帆板上将一只“1.5V、0.3W”的小灯泡与M、N相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;(3)取地球半径R=6.4×103 km,地球表面的重力加速度g = 9.8 m/s2,试估算“天宫一号”距离地球表面的高度h(计算结果保留一位有效数字).【答案】(1)1.54V(2)不能(3)5410m⨯【解析】【分析】【详解】(1)法拉第电磁感应定律E=BLv代入数据得E=1.54V(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流.(3)在地球表面有2MmG mgR=匀速圆周运动22()Mm vG mR h R h=++解得22gRh Rv=-代入数据得h ≈4×105m 【方法技巧】本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不大,但第二问很容易出错,要求考生心细,考虑问题全面.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .【答案】(1)02v t ;(2)202R v Gt ;(3)2【解析】 【详解】(1)小球在月球表面上做竖直上抛运动,有02v t g =月月球表面的重力加速度大小02v g t=月 (2)假设月球表面一物体质量为m ,有2=MmGmg R月 月球的质量202R v M Gt=(3)飞船贴近月球表面做匀速圆周运动,有222Mm G m R R T π⎛⎫= ⎪⎝⎭飞船贴近月球表面绕月球做匀速圆周运动的周期2T π=5.土星是太阳系最大的行星,也是一个气态巨行星。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题05 万有引力定律第一部分 特点描述万有引力定律是高考的必考内容,也是高考命题的一个热点内容。
考生要熟练掌握该定律的内容,还要知道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、以及分析卫星运动轨道等相关问题。
由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以前会有所降低。
本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际生活、新科技等结合的应用性题型考查较多。
牢牢地抓住基本公式,建立天体运动的两个模型是解决万有引力问题的关键。
复习万有引力定律的应用时分两条主线展开,一是万有引力等于向心力,二是重力近似等于万有引力。
第二部分 知识背一背一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小跟物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比。
2.公式:F =Gm 1m 2r2,其中G 为引力常量,G =6.67×10-11 N ·m 2/kg 2,由卡文迪许扭秤实验测定. 3.适用条件:两个质点之间的相互作用.(1)质量分布均匀的球体间的相互作用,也可用本定律来计算,其中r 为两球心间的距离。
(2)一个质量分布均匀的球体和球外一个质点之间的万有引力也适用,其中r 为_质点到球心间的距离。
二、三种宇宙速度三、经典时空观和相对论时空观 1.经典时空观(1)在经典力学中,物体的质量不随运动状态而改变;(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观(1)在狭义相对论中,物体的质量随物体的速度的增加而增加,用公式表示为m=m 01-v 2c2.(2)在狭义相对论中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是不同的。
第三部分 技能+方法考点一、万有引力定律在天体运动中的应用 1.利用万有引力定律解决天体运动的一般思路 (1)一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型. (2)两组公式G Mm r 2=m v 2r =mω2r =m 4π2T2·r =mamg =GMmR2(g 为星体表面处的重力加速度).2.天体质量和密度的计算 (1)估算中心天体的质量①从环绕天体出发:通过观测环绕天体运动的周期T 和轨道半径r ,就可以求出中心天体的质量M②从中心天体本身出发:只要知道中心天体表面的重力加速度g 和半径R ,就可以求出中心天体的质量M(2)设天体表面的重力加速度为g ,天体半径为R ,则mg =G Mm R 2,即g =GM R2(或GM =gR 2)若物体距星体表面高度为h ,则重力mg ′=GMmR +h 2,即g ′=GMR +h2=R 2R +h2g .【例1】“嫦娥一号”于2009年3月1日下午4时13分成功撞月,从发射到撞月历时433天,标志我国一期探月工程圆满结束.其中,卫星发射过程先在近地圆轨道绕行3周,再长途跋涉进入近月圆轨道绕月飞行.若月球表面的重力加速度为地球表面重力加速度的16,月球半径为地球半径的14,根据以上信息得 ( ).A .绕月与绕地飞行周期之比为3∶ 2B .绕月与绕地飞行周期之比为2∶ 3C .绕月与绕地飞行向心加速度之比为1∶6D .月球与地球质量之比为1∶96 【答案】ACD考点二、双星模型1.模型概述:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星. 2.模型特点:(1)两颗行星做圆周运动所需的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在m 1、m 2两颗行星上.(2)由于两颗行星之间的距离总是恒定不变的,所以两颗行星的运行周期及角速度相等. (3)由于圆心在两颗行星的连线上,所以r 1+r 2=L .【例2】宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动而不至因万有引力的作用吸引到一起.试证明它们的轨道半径之比、线速度之比都等于质量的反比.(2)设两者的质量分别为m 1和m 2,两者相距L ,试写出它们角速度的表达式. 【答案】(1)见解析;(2)G m 1+m 2L 3考点三、卫星的在轨运行和变轨问题 (1)圆轨道上的稳定运行G Mm r 2=m v 2r =mrω2=mr ⎝ ⎛⎭⎪⎫2πT 2 (2)变轨运行分析当卫星由于某种原因速度v 突然改变时,受到的万有引力G Mm r 2和需要的向心力m v 2r 不再相等,卫星将偏离原轨道运动.当G Mm r 2>m v 2r 时,卫星做近心运动,其轨道半径r 变小,由于万有引力做正功,因而速度越来越大;反之,当G Mm r 2<m v 2r时,卫星做离心运动,其轨道半径r 变大,由于万有引力做负功,因而速度越来越小. 3.地球同步卫星的特点(1)轨道平面一定:轨道平面和赤道平面重合.(2)周期一定:与地球自转周期相同,即T =24 h =86 400 s. (3)角速度一定:与地球自转的角速度相同.(4)高度一定,卫星离地面高度h=r-R≈6R(为恒量).(5)绕行方向一定:与地球自转的方向一致.4.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.【例3】如图所示,北京飞控中心对“天宫一号”的对接机构进行测试,确保满足交会对接要求,在“神舟八号”发射之前20天,北京飞控中心将通过3至4次轨道控制,对“天宫一号”进行轨道相位调整,使其进入预定的交会对接轨道,等待神舟八号到来,要使“神舟八号”与“天宫一号”交会,并最终实施对接,“神舟八号”为了追上“天宫一号” ().A.应从较低轨道上加速B.应从较高轨道上加速C.应在从同空间站同一轨道上加速D.无论在什么轨道上只要加速就行【答案】A第四部分基础练+测1.【重庆市第一中学2016届高三上学期第二次月考考试理科综合试题】“轨道康复号”是“垃圾卫星”的救星,它可在太空中给“垃圾卫星”补充能量,延长卫星的使用寿命。
一颗“轨道康复号”正在地球赤道平面内的圆周轨道上运行,运行方向与地球自转方向一致。
轨道半径为地球同步卫星轨道半径的14,则A.“轨道康复号”相对于地球赤道上的城市向西运动B.“轨道康复号”的加速度是地球同步卫星加速度的4倍C.“轨道康复号”的周期是地球同步卫星周期的24倍D.“轨道康复号”每经过17天就会再赤道同一城市的正上方出现【答案】D考点:本题考查万有引力定律及其应用。
2.【云南省师范大学附属中学2016届高三适应性月考卷(二)理科综合物理试题】太阳系中的九大行星绕太阳公转的轨道均可视为圆,不同行星的轨道平面均可视为同一平面。
如图5所示,当地球外侧的行星运动到日地连线上,且和地球位于太阳同侧时,与地球的距离最近,我们把这种相距最近的状态称为行星与地球的“会面”。
若每过N1年,木星与地球“会面”一次,每过N2年,天王星与地球“会面”一次,则木星与天王星的公转轨道半径之比为A.231221(1)(1)N NN N⎡⎤-⎢⎥-⎣⎦B.232112(1)(1)N NN N⎡⎤-⎢⎥-⎣⎦C.231122(1)(1)N NN N⎡⎤-⎢⎥-⎣⎦D.232211(1)(1)N NN N⎡⎤-⎢⎥-⎣⎦【答案】A考点:开普勒行星运动定律,圆周运动.3.【安徽省淮北一中、马鞍山二中、安师大附中2016届高三11月期中联考(第二次模拟)物理试题】理论上已经证明质量分别均匀的球壳对壳内物体的引力为零,设地球是一个质量分别均匀的球体,设想沿地球的直径挖一条隧道,将物体从此隧道一端由静止释放刚好运动到另一端,如图所示,不考虑阻力,在此过程中关于物体的运动速度v 随时间t 变化的关系图像可能是:【答案】C 【解析】试题分析:如果物体在距地心为r 处(r R ≤),那么这个物体只会受到以地心为球心、以r 为半径的那部分球体的万有引力,而距地心为r 到R 之间的物质对物体作用力的合力为零.物体掉入隧道之后,不是做自由落体运动.设物体的质量为m ,地球密度为ρ,以半径为r 的那部分球体的质量为M ,距地心r 处的重力加速度为g ,则3243MmM r G mg rπρ==,,得243M g GGr r πρ==,由于物体掉入隧道之后,r 在变化,离地心越近g 越小,在地心处g =0,g 与位移r 大小成正比、方向相反,所以物体在隧道来回做简谐振动,结合速度时间图像的斜率表示加速度,加速度先减小后增大,故C 正确 考点:考查了万有引力定律的应用4.【黑龙江省哈尔滨市第六中学2016届高三上学期期中考试物理试题】地球赤道上的物体随地球自转的向心加速度为a ;假设月球绕地球作匀速圆周运动,轨道半径为r 1,向心加速度为a 1。
已知万有引力常量为G ,地球半径为R 。
下列说法中正确的是( )A .地球质量GaRM 2=B .地球密度211334a r GR π C .地球的第一宇宙速度为aRD .向心加速度之比2121r R aa =【答案】B考点:考查了万有引力定律的应用5.【山东师范大学附属中学2016届高三上学期第二次模拟考试物理试题】发射地球同步卫星时.先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图所示.则以下说法不正确的是A .要将卫星由圆轨道1送入圆轨道3,需要在圆轨道1的Q 和椭圆轨道2的远地点P 分别点火加速一次B .由于卫星由圆轨道l 送入圆轨道3被点火加速两次,则卫星在圆轨道3上正常运行速度要大于在圆轨道1上正常运行的速度C .卫星在椭圆轨道2上的近地点Q 的速度一定大于7.9Km/s ,而在远地点P 的速度一定小于7.9Km/sD.卫星奄椭圆轨道2上经过P点时的加速度等于它在圆轨道3上经过P点时的加速度【答案】B考点:考查了万有引力定律的应用6.【吉林省实验中学2016届高三上学期第一次模拟理科综合试题】有a、b、c、d四颗地球卫星,a还未发射,在赤道表面上随地球一起转动,b是近地轨道卫星,c是地球同步卫星,d 是高空探测卫星,它们均做匀速圆周运动,各卫星排列位置如图所示,则( )A.a的向心加速度等于重力加速度g B.在相同时间内b转过的弧长最长C.c在2小时内转过的圆心角是6πD.d的运动周期有可能是20小时【答案】BC【解析】试题分析:对于a,受力分析可得:F万—mg=ma,选项A错误;由公式rmMmGvr22=得:rGMv=故弧长rGMtvtl==,b、c、d相比b的半径较小,在相同时间内b转过的弧长较长,a与b相比较,同样时间转过的圆心角相等,由弧长rlθ=知b比a转过的弧长长,综上,在相同时间内b转过的弧长最长,选项B正确;c转动一圈用24h,所以2小时转过的角度为6π,选项C正确;由rmMmGTr2224π=得GMTr324π=,知半径越大周期越大,所以d的周期大于24h,选项D 错误。