七年级数学第二学期期末测试题答案

合集下载

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一

人教版七年级数学第二学期七年级期末质量检测试题及答案一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.43.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m28.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.610.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2(填“<”、“=”、“>”).12.(4分)9的平方根是.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=.三、解答题17.(8分)计算:++|1﹣|18.(8分)解不等式组并将解集在数轴上表示出来.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a=,b=;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要元(直接写出结果).24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(4分)下列调查中,适宜采用普查方式的是()A.调查综艺节目《极限挑战》的收视率B.调查莆田小学生对莆仙戏表演艺术的喜爱程度C.调查某社区居民对莆田旅游景区的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查综艺节目《极限挑战》的收视率,应用抽样调查,故此选项不合题意;B、调查莆田小学生对莆仙戏表演艺术的喜爱程度,应用抽样调查,故此选项不合题意;C、调查某社区居民对莆田旅游景区的知晓率,应用抽样调查,故此选项不合题意;D、调查我国首艘货运飞船“天舟一号”的零部件质量,适合采用全面调查方式,故此选项符合题意.故选:D.2.(4分)下面几个数:﹣1,3.14,0,,,π,,其中无理数的个数有()个.A.1B.2C.3D.4【分析】根据无理数是无限不循环小数,可得答案.【解答】解:﹣1,0,,是整数,属于有理数;3.14是有限小数,属于有理数;是分数,属于有理数;无理数有:,π共2个.故选:B.3.(4分)若点P在y轴负半轴上,则点P的坐标有可能是()A.(﹣1,0)B.(0,﹣2)C.(3,0)D.(0,4)【分析】直接利用y轴负半轴上点的坐标特点得出答案.【解答】解:∵点P在y轴负半轴上,∴点P的坐标有可能是:(0,﹣2).故选:B.4.(4分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.5.(4分)如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,故选:A.6.(4分)如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)【分析】根据已知两点的坐标确定坐标系;再确定点的坐标.【解答】解:根据题意:由(4,5)表示小明的位置,(2,4)表示小刚的位置,可以确定平面直角坐标系中x 轴与y轴的位置,则小红的位置可表示为(1,2).故选:D.7.(4分)如图是一块矩形ABCD的场地,AB=102m,AD=51m,从A、B两处入口中的路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪的面积为()A.5050m2B.4900m2C.5000m2D.4998m2【分析】本题要看图解答.从图中可以看出剩余部分的草坪正好可以拼成一个长方形,然后根据题意求出长和宽,最后可求出面积.【解答】解:由图片可看出,剩余部分的草坪正好可以拼成一个长方形,且这个长方形的长为102﹣2=100m,这个长方形的宽为:51﹣1=50m,因此,草坪的面积=50×100=5000m2.故选:C.8.(4分)已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.9【分析】方程组两方程左右两边相加,即可求出x+y的值.【解答】解:,①+②得:3(x+y)=15,则x+y=5.故选:B.9.(4分)某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9B.18C.12D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选:B.10.(4分)下列命题真命题的个数有()①经过一点有且只有一条直线与已知直线平行②直线外一点与直线上各点连接的所有线段中,垂线段最短③若a>b,则c﹣a>c﹣b④同位角相等A.3个B.2个C.1个D.0个【分析】分别根据平行线的判定与性质以及垂线段和不等式的性质分别判断得出即可.【解答】解:①经过一点有且只有一条直线与已知直线平行,必须是同一平面内,过直线外一点,经过一点有且只有一条直线与已知直线平行,原命题是假命题;②直线外一点与直线上各点连接的所有线段中,垂线段最短,是真命题;③若a>b,则c﹣a<c﹣b,原命题是假命题;④两直线平行,同位角相等,原命题是假命题;故选:C.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)比较大小:2>(填“<”、“=”、“>”).【分析】利用的取值范围进而比较得出即可.【解答】解:∵1<<2,∴2>.故答案为:>.12.(4分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.13.(4分)如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD 的度数为80°.【分析】首先根据余角的性质可得∠AOM=90°﹣50°′=40°,再根据角平分线的性质可算出∠AOC=40°×2=80°,再根据对顶角相等可得∠BOD的度数,【解答】解:∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.14.(4分)若方程组的解是一个直角三角形的两条直角边,则这个直角三角形的面积为.【分析】先用加减消元法求出x的值,再用代入消元法求出y的值,根据三角形的面积公式即可得出结论.【解答】解:,②﹣①得,x=3,把x=3代入②得,y=,故此方程组的解为,∴这个直角三角形的面积为=.故答案为:.15.(4分)莆田市计划在荔城区投放一批“共享单车”,这批单车分为A,B两种不同款型,其中A型车单价1000元,B型车单价800元.在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元.试问本次试点投放的A型车与B型车各多少辆?设本次试点投放的A型车x辆、B型车y辆.根据题意,可列方程组.【分析】根据在“共享单车”试点,投放A,B两种款型的单车共100辆,总价值88000元,A型车单价1000元,B型车单价800元,可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故答案为:.16.(4分)把长方形ABCD沿着直线EF对折,折痕为EF,对折后的图形EHGF的边FG恰好经过点C,若∠AFE =55°,则∠CEB'=70°.【分析】根据折叠前后两图形全等和内角和进行解答即可.【解答】解:如图,在长方形ABCD中,AD∥BC,则∠FEC=∠AFE=55°.∴∠BEF=180°﹣55°=125°.根据折叠的性质知:∠B′EF=∠BEF=125°.∴∠CEB'=∠B′EF﹣∠FEC=125°﹣55°=70°.故答案是:70°.三、解答题17.(8分)计算:++|1﹣|【分析】原式利用平方根、立方根性质,以及绝对值的代数意义计算即可求出值.【解答】解:原式=﹣++﹣1=﹣1.18.(8分)解不等式组并将解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣2,由②得,x<,在数轴上表示为:故此不等式组的解集为:﹣2≤x<.19.(8分)如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.【分析】(1)根据平行线的判定与性质即可进行证明;(2)根据BC平分∠ABD,∠D=112°,即可求∠C的度数.【解答】解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABC+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.20.(8分)在平面直角坐标系中,△ABC的位置如图所示,把△ABC先向右平移3个单位,再向下平移4个单位可以得到△A'B'C'.(1)画出平移后的图形△A′B′C′;(2)请写出平移后A′B′C′的各个顶点A′,B′,C′的坐标.【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)根据平面直角坐标系可确定A′,B′,C′的坐标.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)A′(3,1),B′(0,﹣4),C′(5,﹣2).21.(8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了500名居民的年龄,扇形统计图中a=20%,b=12%;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.22.(10分)已知关于xy的方程组的解满足x≥0,y<1(1)求m的取值范围;(2)在m的取值范围内,当m取何整数时,关于x的不等式2x﹣mx>2﹣m的解集为x<1?【分析】(1)求出方程组的解,根据不等式组即可解决问题;(2)根据不等式即可解决问题;【解答】解:方程组的解为,∵x≥0,y<1∴,解得﹣≤m<4.(2)2x﹣mx>2﹣m,∴(2﹣m)x>2﹣m,∵解集为x<1,∴2﹣m<0,∴m>2,又∵m<4,m是整数,∴m=3.23.(10分)为了丰富学生的课外活动,学校决定购进5副羽毛球拍和m只羽毛球,已知一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球;(1)一副羽毛球拍和一只羽毛球的价格各是多少元?(2)甲乙两商店举行促销活动,甲商店给出的优惠是:所有商品打八折;乙商店的优惠是:买一副羽毛球拍送n只羽毛球,通过调查发现,如果只到一个商店购买5副羽毛球拍和26只羽毛球时,到甲商店更划算;若只购买一副羽毛球拍和n只羽毛球,则乙商店更划算.求n的值.(3)在(2)的条件下,当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元(直接写出结果).【分析】(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,根据“一副羽毛球拍的价格是一只羽毛球的价格的15倍,用50元可以买一副羽毛球拍和10只羽毛球”列出方程组并解答;(2)利用(1)中求得的数据,结合优惠条件列出不等式组并解答;(3)当m=30时,分别求得在两商店的消费额,然后比较大小,从而得到答案.【解答】解:(1)设一副羽毛球拍的价格是x元,一只羽毛球的价格是y元,则.解得.答:一副羽毛球拍的价格是30元,一只羽毛球的价格是2元;(2)依题意得:.解不等式组,得3.75<n<4.04.因为n是正整数,所以n=4;(3)当m=30时,甲商店消费额:0.8×(5×30+2×30)=168(元)乙商店消费额:5×30+2×(30﹣20)=170(元)甲、乙混买①:(4×30+26×2)×0.8+30=167.6(元)甲、乙混买②:10×2×0.8+5×30=166(元)因为166<167.6<168<170所以当m=30时,学校购买这批羽毛球拍和羽毛球最少需要166元.故答案是:166.24.(12分)阅读材料:关于x,y的二元一次方程ax+by=c有一组整数解则方程ax+by=c的全部整数解可表示为(t为整数).问题:求方程7x+19y=213的所有正整数解.小明参考阅读材料,解决该问题如下:解:该方程一组整数解为则全部整数解可表示为(t为整数).因为解得.因为t为整数,所以t=0或﹣1.所以该方程的正整数解为.(1)方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1;(2)请你参考小明的解题方法,求方程2x+3y=24的全部正整数解;(3)方程19x+8y=1908的正整数解有多少组?请直接写出答案.【分析】(1)把x=2代入方程3x﹣5y=11得,求得y的值,即可求得θ的值;(2)参考小明的解题方法求解即可;(3)参考小明的解题方法求解后,即可得到结论.【解答】解:(1)把x=2代入方程3x﹣5y=11得,6﹣6y=11,解得y=﹣1,∵方程3x﹣5y=11的全部整数解表示为:(t为整数),则θ=﹣1,故答案为﹣1;(2)方程2x+3y=24一组整数解为,则全部整数解可表示为(t为整数).因为解得﹣3<t<2.因为t为整数,所以t=﹣2,﹣1,0,1.(3)方程19x+8y=1908一组整数解为,则全部整数解可表示为(t为整数).因为,解得﹣<t<12.5.因为t为整数,所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整数解有13组.25.(14分)新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P分别作x轴、y轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P是“和谐点”.(1)点M(1,2)不是“和谐点”(填“是”或“不是”);若点P(a,3)是第一象限内的一个“和谐点”,是关于x,y的二元一次方程y=﹣x+b的解,求a,b的值.(2)如图②,点E是线段PB上一点,连接OE并延长交AP的延长线于点Q,若点P(2,3),S△OBE﹣S△EPQ =2,求点Q的坐标.(3)如图③,连接OP,将线段OP向右平移3个单位长度,再向下平移1个单位长度,得到线段O1P1.若M 是直线O1P1上的一动点,连接PM、OM,请画出图形并写出∠OMP与∠MPP1,∠MOO1的数量关系.【分析】(1)根据题意即可得到结论;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a >0时,②当a<0时,列方程即可得到结论;(2)设E(m,3),由△BEO∽△PEQ可求得PQ=,再根据S△OBE﹣S△EPQ=2列出方程,求出m的值即可解决问题;(3)根据题意画出图形,再过M点作MF∥PP1,根据平行线的性质可得结论.【解答】解:(1)M不是和谐点.根据题意,对于M而言,面积为1×2=2,周长为2×(1+2)=6,所以M不是和谐点;因为P(a,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a>0时,3a=2(a+3),解得a=6,将(6,3)代入y=﹣x+b得3=﹣6+b,解得b=9.②当a<0时,﹣3a=2(﹣a+3),﹣3a=﹣2a+6,解得a=﹣6,将(﹣6,3)代入y=﹣x+b得3=6+b,解得b=﹣3.所以a=6,b=9或a=﹣6,b=﹣3.(2)∵P(2,3),∴BP=2,P A=3,故设E(m,3),则BE=m,PE=2﹣m,∵∠OBP=∠QPE=90°,∠BEO=∠PEQ,∴△BOE∽△PQE,∴,即,解得,,∵S△OBE﹣S△EPQ=2,∴,解得,,∴PQ=1,∴Q(2,4);(3)如图所示,过M作MF∥PP1交OP于点F,由平移的性质得,PP1∥OO1,∴MF∥OO1,由MF∥PP1得∠FMP=∠MPP1;由MF∥OO1得∠FMQ=∠MOO1;∵∠PMO=∠PMF+∠O1OM,∴∠PMO=∠MPP1+∠O1OM.。

人教版七年级数学下册期末解答题测试(含答案)

人教版七年级数学下册期末解答题测试(含答案)

人教版七年级数学下册期末解答题测试(含答案)一、解答题1.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是.(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数).2.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图AB BC将它剪开后,重新拼成一个大正方形ABCD.2的虚线,(1)基础巩固:拼成的大正方形ABCD的面积为______,边长AD为______;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的1-重合.以点B为圆心,BC边为半径画圆弧,交数轴于点E,则点E表示的数是______;(3)变式拓展:⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的①如图4,给定55正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.3.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?4.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?5.小丽想用一块面积为236cm的正方形纸片,如图所示,沿着边的方向裁出一块面积为220cm的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗为什么?二、解答题6.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED=.(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AE D、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD 的度数.7.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.8.已知,AB ∥CD .点M 在AB 上,点N 在CD 上.(1)如图1中,∠BME 、∠E 、∠END 的数量关系为: ;(不需要证明) 如图2中,∠BMF 、∠F 、∠FND 的数量关系为: ;(不需要证明)(2)如图3中,NE 平分∠FND ,MB 平分∠FME ,且2∠E +∠F =180°,求∠FME 的度数;(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∥NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.9.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P在直线CD下方,当∠BAK=23∠BAP,∠DCK=23∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.10.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A =∠APH ,依据是 ;因为AB ∥CD ,PH ∥AB ,所以PH ∥CD ,依据是 ;所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°.(2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点):①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系.三、解答题11.已知:三角形ABC 和三角形DEF 位于直线MN 的两侧中,直线MN 经过点C ,且BC MN ⊥,其中A ABC CB =∠∠,DEF DFE ∠=∠,90∠+∠=︒ABC DFE ,点E 、F 均落在直线MN 上.(1)如图1,当点C 与点E 重合时,求证://DF AB ;聪明的小丽过点C 作//CG DF ,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程. (2)将三角形DEF 沿着NM 的方向平移,如图2,求证://DE AC ;(3)将三角形DEF 沿着NM 的方向平移,使得点E 移动到点E ',画出平移后的三角形DEF ,并回答问题,若DFE α∠=,则∠=CAB ________.(用含α的代数式表示) 12.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.13.已知AB ∥CD ,点M 在直线AB 上,点N 、Q 在直线CD 上,点P 在直线AB 、CD 之间,∠AMP =∠PQN =α,PQ 平分∠MPN .(1)如图①,求∠MPQ 的度数(用含α的式子表示);(2)如图②,过点Q 作QE ∥PN 交PM 的延长线于点E ,过E 作EF 平分∠PEQ 交PQ 于点F .请你判断EF 与PQ 的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN ,若NE 平分∠PNQ ,请你判断∠NEF 与∠AMP 的数量关系,并说明理由.14.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 15.已知:如图1,//AB CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,探究AEM ∠,EMF ∠,∠MFC 之间有怎样的数量关系,请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB ,CD 之两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出AEM ∠,EMN ∠,MNF ∠,NFC ∠存在的数量关系(不需证明).四、解答题16.如图,在ABC 中,AD 是高,AE 是角平分线,20B ∠=︒,60C ∠=°.(1)求CAD ∠、AEC ∠和EAD ∠的度数.(2)若图形发生了变化,已知的两个角度数改为:当30B ∠=︒,60C ∠=°,则EAD ∠=__________︒.当50B ∠=︒,C 60∠=︒时,则EAD ∠=__________︒.当60B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.当70B ∠=︒,60C ∠=°时,则EAD ∠=__________︒.(3)若B 和C ∠的度数改为用字母α和β来表示,你能找到EAD ∠与α和β之间的关系吗?请直接写出你发现的结论.17.在ABC 中,射线AG 平分BAC ∠交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作//DE AC 交AB 于点E .(1)如图1,点D 在线段CG 上运动时,DF 平分EDB ∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.18.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.19.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.20.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、解答题1.(1)dm ;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周解析:(12;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据3m【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可; (2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解.【详解】解:(1)∵正方体有6个面且每个面都相等,∴正方体的一个面的面积=2 dm 2.∴正方形的棱长2dm ; 2dm ;(2)甲方案:设正方形的边长为xm ,则x 2 =121π∴x =11π∴正方形的周长为:4x=44πm乙方案: 设圆的半径rm为,则πr2==121π∴r =11∴圆的周长为:2rπ= 22πm∴ 44π-22π=22π(2-)π∵ 4>π∴ 2π>∴20π->∴正方形的周长比圆的周长大故从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则(π–y)2=121π-21π∴π–yπ∴yπ∵π取整数∴y33m;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;2.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)1010;(2101;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴边长为13,如图,点E表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.3.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(122)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴,(2)∵22r ππ=, ∴r = ∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.4.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.5.不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为x ,长为2x ,然后依据矩形的面积为20列方程求得x 的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为236cm ,故边长为6cm设长方形宽为x ,则长为2x长方形面积22220x x x =⋅==∴210x =, 解得10x =(负值舍去)长为210cm 6cm >即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二、解答题6.(1)70°;(2),证明见解析;(3)122°【分析】(1)过作,根据平行线的性质得到,,即可求得;(2)过过作,根据平行线的性质得到,,即;(3)设,则,通过三角形内角和得到,由角平分线解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122°【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒,70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠.过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒,180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=,设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒, DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒,1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.7.(1)见解析;(2)见解析;(3)n-1【分析】(1)连接AB ,根据已知证明∠MAB+∠SBA=180°,即可得证;(2)作CF ∥ST ,设∠CBT=α,表示出∠CAN ,∠ACF ,∠BCF ,根据解析:(1)见解析;(2)见解析;(3)n -1【分析】(1)连接AB ,根据已知证明∠MAB +∠SBA =180°,即可得证;(2)作CF ∥ST ,设∠CBT =α,表示出∠CAN ,∠ACF ,∠BCF ,根据AD ∥BC ,得到∠DAC =120°,求出∠CAE 即可得到结论;(3)作CF ∥ST ,设∠CBT =β,得到∠CBT =∠BCF =β,分别表示出∠CAN 和∠CAE ,即可得到比值.解:(1)如图,连接AB ,,360MAC ACB SBC ∠+∠+∠=︒,180ACB ABC BAC ∠+∠+∠=︒,180MAB SBA ∴∠+∠=︒,//MN ST ∴(2)2CAE CAN ∠=∠,理由:作//CF ST ,则////,MN CF ST 如图,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-,//AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠.即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=,180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n n βββ︒-∠=︒-∠-∠=︒--+=︒-, 11::1n CAE CAN n n n-∠∠==-, 故答案为1n -.本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式.8.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.9.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=2∠APC.3【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.10.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB ∥CD ∥PH ∥QG ,∴∠A =∠APH ,∠C =∠CQG ,∠HPQ +∠GQP =180°,∴∠APQ +∠PQC =∠APH +∠HPQ +∠GQP +∠CQG =∠A +∠C +180°.∴∠APQ +∠PQC =∠A +∠C +180°成立;②如图3,过点P 作直线PH ∥AB ,QG ∥AB ,MN ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PH ∥QG ∥MN ,∴∠A =∠APH ,∠C =∠CQG ,∠HPQ +∠GQP =180°,∠HPM =∠PMN ,∠GQM =∠QMN ,∴∠PMQ =∠HPM +∠GQM ,∵∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠PMQ +∠MPQ +∠PQM =180°,∴∠APM +∠CQM =∠A +∠C +∠PMQ =2∠MPQ +2∠MQP =2(180°﹣∠PMQ ), ∴3∠PMQ +∠A +∠C =360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.三、解答题11.(1)见解析;(2)见解析;(3)见解析;.【分析】(1)过点C 作,得到,再根据,,得到,进而得到,最后证明;(2)先证明,再证明,得到,问题得证;(3)根据题意得到,根据(2)结论得到∠D解析:(1)见解析;(2)见解析;(3)见解析;2α.【分析】(1)过点C 作//CG DF ,得到DFE FCG ∠=∠,再根据90BCF ∠=︒,90∠+∠=︒ABC DFE ,得到ABC BCG ∠=∠,进而得到//CG AB ,最后证明//DF AB ;(2)先证明90ACB DEF ∠+∠=︒,再证明90ACB ACE ∠+∠=︒,得到DEF ACE ∠=∠,问题得证;(3)根据题意得到DFE DEF α∠=∠=,根据(2)结论得到∠DEF =∠ECA =α,进而得到=90BC AC A B α=∠︒-∠,根据三角形内角和即可求解.【详解】解:(1)过点C 作//CG DF ,DFE FCG ∴∠=∠,BC MN ⊥,90BCF ∴∠=︒,90BCG FCG ∴∠+∠=︒,90BCG DFE ∴∠+∠=︒,90ABC DFE ∠+∠=︒,ABC BCG ∴∠=∠,//CG AB ∴,//DF AB ∴;(2)解:ABC ACB ∠=∠,DEF DFE ∠=∠,又90ABC DFE ∠+∠=︒,90ACB DEF ∴∠+∠=︒,BC MN ⊥,90BCM ∴∠=︒,90ACB ACE ∴∠+∠=︒,DEF ACE ∴∠=∠,//DE AC ∴;(3)如图三角形DEF 即为所求作三角形.∵DFE α∠=,∴DFE DEF α∠=∠=,由(2)得,DE ∥AC ,∴∠DEF =∠ECA =α,∵90ACB ACE ∠+∠=︒,∴∠ACB =90α︒-,∴ =90BC AC A B α=∠︒-∠,∴∠A =180°-A ABC CB -∠∠=2α.故答案为为:2α.【点睛】本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.12.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠KCF,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G作GH∥EF,结合角平分线的定义和平行线的判定及性质求解;(3)分CP交射线AQ及射线AQ的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB⊥AK∴∠BAC=90°∴∠MAB+∠KAN=90°∵∠MAB+∠KCF=90°∴∠KAN=∠KCF∴EF∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG平分∠NAB,CG平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G作GH∥EF∴∠HGC=∠FCG=90°+12α又∵MN∥EF∴MN∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC-∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.13.(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =∠AMP ,见解析【分析】1)如图①,过点P 作PR ∥AB ,可得AB ∥CD ∥PR ,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF =解析:(1)2α;(2)EF ⊥PQ ,见解析;(3)∠NEF =12∠AMP ,见解析【分析】1)如图①,过点P 作PR ∥AB ,可得AB ∥CD ∥PR ,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF =180°,进而可得EF 与PQ 的位置关系; (3)结合(2)和已知条件可得∠QNE =∠QEN ,根据三角形内角和定理可得∠QNE =12(180°﹣∠NQE )=12(180°﹣3α),可得∠NEF =180°﹣∠QEF ﹣∠NQE ﹣∠QNE ,进而可得结论.【详解】解:(1)如图①,过点P 作PR ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥PR ,∴∠AMP =∠MPR =α,∠PQN =∠RPQ =α,∴∠MPQ =∠MPR+∠RPQ =2α;(2)如图②,EF ⊥PQ ,理由如下:∵PQ 平分∠MPN .∴∠MPQ =∠NPQ =2α,∵QE ∥PN ,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=12∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=12(180°﹣∠NQE)=12(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣12(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+3 2α=12α=12∠AMP.∴∠NEF=12∠AMP.【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键.14.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.15.(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠E解析:(1)见解析;(2)见解析【分析】(1)过点M作MP∥AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.【详解】解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°;∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF-∠AEM-∠NFC=180°;过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM=∠1,∠CFN=∠4,MP∥NQ,∴∠2+∠3=180°,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN+∠MNF=∠1+∠2+∠3+∠4,∠AEM+∠CFN=∠1+∠4,∴∠EMN+∠MNF-∠AEM-∠NFC=∠1+∠2+∠3+∠4-∠1-∠4=∠2+∠3=180°;如图2第二个图:∠EMN-∠MNF+∠AEM+∠NFC=180°.过点M作MP∥AB,过点N作NQ∥AB,∴∠AEM+∠1=180°,∠CFN=∠4,MP∥NQ,∴∠2=∠3,∵∠EMN=∠1+∠2,∠MNF=∠3+∠4,∴∠EMN-∠MNF=∠1+∠2-∠3-∠4,∠AEM+∠CFN=180°-∠1+∠4,∴∠EMN-∠MNF+∠AEM+∠NFC=∠1+∠2-∠3-∠4+180°-∠1+∠4=180°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.四、解答题16.(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当时,;当时,.【分析】(1)先利用三角形内角和定理求出的度数,再根据角平分线和高的性质分别得出和的度数,进而可求和的度数;解析:(1)30°,70°,20°;(2)15°,5°,0°,5°;(3)当αβ<时,1()2EAD βα∠=-;当αβ>时,1()2EAD αβ∠=-. 【分析】(1)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,进而可求AEC ∠和EAD ∠的度数;(2)先利用三角形内角和定理求出BAC ∠的度数,再根据角平分线和高的性质分别得出EAC ∠和DAC ∠的度数,则前三问利用EAD EAC DAC ∠=∠-∠即可得出答案,第4问利用EAD DAC EAC ∠=∠-∠即可得出答案;(3)按照(2)的方法,将相应的数换成字母即可得出答案.【详解】(1)∵20B ∠=︒,60C ∠=°,∴180100BAC B C ∠=-∠-∠=︒︒ .∵AE 平分BAC ∠, ∴1502EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ADE ∴∠=∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,20EAD EAC CAD ∴∠=∠-∠=︒ ,9070AEC EAD ∴∠=︒-∠=︒ .(2)当30B ∠=︒,60C ∠=°时,∵30B ∠=︒,60C ∠=°,∴18090BAC B C ∠=︒-∠-∠=︒.∵AE 平分BAC ∠, ∴1452EAC BAC ∠=∠=︒. ∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,15EAD EAC CAD ∴∠=∠-∠=︒ ;当50B ∠=︒,60C ∠=°时,∵50B ∠=︒,60C ∠=°, ∴18070BAC B C ∠=-∠-∠=︒︒ . ∵AE 平分BAC ∠,∴1352EAC BAC ∠=∠=︒.∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ , 5EAD EAC CAD ∴∠=∠-∠=︒ ;当60B ∠=︒,60C ∠=°时, ∵60B ∠=︒,60C ∠=°, ∴18060BAC B C ∠=︒-∠-∠=︒. ∵AE 平分BAC ∠,∴1302EAC BAC ∠=∠=︒.∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ ,0EAD EAC CAD ∴∠=∠-∠=︒ ;当70B ∠=︒,60C ∠=°时, ∵70B ∠=︒,60C ∠=°, ∴18050BAC B C ∠=︒-∠-∠=︒. ∵AE 平分BAC ∠,∴1252EAC BAC ∠=∠=︒.∵AD 是高,90ADC ∴∠=︒ ,9030CAD C ∴∠=︒-∠=︒ , 5EAD DAC EAC ∴∠=∠-∠=︒ .(3)当B C ∠<∠ 时,即αβ<时, ∵B α∠=,C β∠=,∴180180BAC B C αβ∠=︒-∠-∠=︒-- . ∵AE 平分BAC ∠,∴1111(180)902222EAC BAC αβαβ∠=∠=︒--=--.∵AD 是高,90ADC ∴∠=︒ ,9090CAD C β∴∠=︒-∠=︒- ,1()2EAD EAC CAD βα∴∠=∠-∠=- ;。

2022—2023年人教版七年级数学下册期末考试卷及答案【学生专用】

2022—2023年人教版七年级数学下册期末考试卷及答案【学生专用】

2022—2023年人教版七年级数学下册期末考试卷及答案【学生专用】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×106 2.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A .4B .8C .16D .645.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是( )A .60°B .50°C .75°D .55°6.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为()A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩ C .12x y =-⎧⎨=-⎩ D .41x y =⎧⎨=-⎩10.如图所示的几何体的主视图是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.分解因式:x 3y ﹣2x 2y+xy=________.4.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是________.5.如果一个角的补角是150°,那么这个角的余角的度数是________度.6.若一个多边形内角和等于1260°,则该多边形边数是________.三、解答题(本大题共6小题,共72分)1.解方程:223124x x x --=+-.2.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.3.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示);(3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.4.如图1,P 点从点A 开始以2厘米/秒的速度沿A →B →C 的方向移动,点Q 从点C 开始以1厘米/秒的速度沿C →A →B 的方向移动,在直角三角形ABC 中,∠A =90°,若AB =16厘米,AC =12厘米,BC =20厘米,如果P 、Q 同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P 在线段AB 上运动,Q 在线段CA 上运动,试求出t 为何值时,QA =AP(2)如图2,点Q 在CA 上运动,试求出t 为何值时,三角形QAB 的面积等于三角形ABC 面积的14; (3)如图3,当P 点到达C 点时,P 、Q 两点都停止运动,试求当t 为何值时,线段AQ 的长度等于线段BP 的长的145.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、D5、D6、A7、D8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、150°3、xy (x ﹣1)24、40°5、606、9三、解答题(本大题共6小题,共72分)1、54x = 2、(1)m=-5 (2)373、(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由略. 4、(1) 4s;(2) 9s;(3) t=323s 或16s5、()117、20;()22次、2次;()372;()4120人.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】

2022—2023年人教版七年级数学下册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×1062.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限 C.第三象限 D.第四象限8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.分解因式:23m m -=________.5.因式分解:34a a -=_____________.6.一个多边形的内角和是1800°,这个多边形是________边形.三、解答题(本大题共6小题,共72分)1.解下列一元一次方程:(1)32102(1)x x -=-+ (2)2+151136x x -=-2.设m 为整数,且关于x 的一元一次方程(5)30m x m -+-=(1)当2m =时,求方程的解;(2)若该方程有整数..解,求m 的值.3.如图①,在三角形ABC 中,点E ,F 分别为线段AB ,AC 上任意两点,EG 交BC 于点G ,交AC 的延长线于点H ,∠1+∠AFE =180°.(1)证明:BC ∥EF ;(2)如图②,若∠2=∠3,∠BEG =∠EDF ,证明:DF 平分∠AFE.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、C5、A6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、ab3、70.4、(3)m m -5、(2)(2)a a a +-6、十二.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)x=-32、(1)13x =-;(2)6m =或4m =,7m =或3m =3、(1)略;(2) 略.4、略.5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。

2022—2023年人教版七年级数学下册期末测试卷及答案【A4打印版】

2022—2023年人教版七年级数学下册期末测试卷及答案【A4打印版】

2022—2023年人教版七年级数学下册期末测试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×106 2.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A .56°B .62°C .68°D .78°6.将二次函数y=x 2﹣2x+3化为y=(x ﹣h )2+k 的形式,结果为( )A .y=(x+1)2+4B .y=(x ﹣1)2+4C .y=(x+1)2+2D .y=(x ﹣1)2+27.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠59.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =________. 2.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_______.3.已知23的整数部分为a ,小数部分为b ,则a -b =________.4.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色与红球不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为________.5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.若不等式组0122x a x x +≥⎧⎨->-⎩①有解;②无解.请分别探讨a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;(2)补全条形统计图;(3)该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.6.某车间有27名工人,每人每天可以生产1500个螺钉或2400个螺母.一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、C6、D7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或32、720°3、4、205、1 96、10三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、①a>-1②a≤-13、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)35%,126;(2)见解析;(3)1344人6、安排12名工人生产螺钉、安排15名工人生产螺母.。

数学七年级下学期《期末测试卷》含答案

数学七年级下学期《期末测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)

七年级数学下册期末测试题及答案(共五套)七年级数学下册期末测试题及答案姓名。

学号。

班级:一、选择题(共10小题,每小题3分,共30分)1.若m。

-1,则下列各式中错误的是()A。

6m。

-6B。

-5m < -5C。

m+1.0D。

1-m < 22.下列各式中,正确的是()A。

16=±4B。

±16=4C。

3-27=-3D。

(-4)^2=163.已知a。

b。

0,那么下列不等式组中无解的是()A。

{x-a。

x>-b}B。

{x>a。

x<-a。

x<-b}C。

{x>a。

xb}D。

{x-a。

x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。

先右转50°,后右转40°B。

先右转50°,后左转40°C。

先右转50°,后左转130°D。

先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。

{x-y=1.x-y=-1}B。

{x-y=1.3x+y=5}C。

{x-y=3.3x+y=-5}D。

{x-2y=-3.3x+y=5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。

100°B。

110°C。

115°D。

120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。

4B。

3C。

2D。

18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。

5B。

6C。

7D。

89.如图,△A'B'C'是由△XXX沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm²,则四边形A'CC'B'的面积为()A。

七年级 下册 第二学期 期末教学质量检测—数学试题(含答案解析)

七年级 下册 第二学期  期末教学质量检测—数学试题(含答案解析)

班级: 姓名七年级 下册 第二学期 期末质量检测数学试题(满分120分 时间;90分钟 )题号 一 二 三总分17 18 19 20 21 2223 得分一、选择题(共12小题,每小题3分,计36分,每小题只有一个选项是符合题意的)1.下列语句中错误的是( ) A 、数字0也是单项式B 、单项式﹣a 的系数与次数都是1C 、 xy 是二次单项式D 、﹣的系数是﹣2.据外汇局网站5月16日消息:国家外汇管理局统计数据显示,2016年4月,银行结售汇逆差1534亿元人民币,其中“1534亿”用科学记数法表示为( ) A 、1.534×103B 、1.534×1011C 、15.34×108D 、1534×1083.下列计算正确是( ) A 、a 3+a 2=a 5 B 、a 8÷a 4=a 2C 、(a 4)2=a 8D 、(﹣a )3(﹣a )2=a 54.下列算式中正确的是( ) A 、3a 3÷2a=B 、﹣0.00010=(﹣9999)0C 、3.14×10﹣3=0.000314D 、5.如图所示的是四个物理实验工具的简图,从左到右依次是小车、弹簧、钩码、三极管,其中是轴对称图形的是( )评卷人 得 分A、小车B、弹簧C、钩码D、三极管6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=45°,那么∠1的度数为()A、45°B、35°C、25°D、15°7.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A、(SAS)B、(SSS)C、(ASA)D、(AAS)8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A、B、C、D、9.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A、11 cmB、7.5 cmC、11 cm或7.5 cmD、以上都不对10.如图,为估计荔香公园小池塘岸边A、B两点之间的距离,小明在小池塘的一侧选取一点O,测得OA=15m,OB=10m,则A、B间的距离可能是()A 、5mB 、15mC 、25mD 、30m11.如图,AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,DE=2,AC=3,则△ADC 的面积是( )A 、3B 、4C 、5D 、612.某中学七年级组织学生进行春游,景点门票价格情况如图,则下列说法正确的是( )A 、当旅游人数为50时,则门票价格为70元/人B 、当旅游人数为50或者100的时,门票价格都是70元/人C 、两个班级都是40名学生,则两个班联合起来购票比分别购票要便宜D 、当人数增多时,虽然门票价格越来越低,但是购票总费用会越来越高 二、填空题(本题有4小题,每题3分,共12分)13.5m 2n (2n+3m ﹣n 2)的计算结果是 次多项式。

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷(含答案)

七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。

2021-2022学年七年级第二学期期末数学考试试卷及参考答案

2021-2022学年七年级第二学期期末数学考试试卷及参考答案

七年级数学试卷一、选择题(本大题共6题,每题2分,共12分) 1. 下列实数中,有理数是( )(A )0.2525525552……(相邻的两个“2”之间每次增加一个“5”); (B )π3-; (C )8; (D )722.2. 若三角形的两边长分别为3和6,则第三边的长不可能是( ) (A )3; (B ) 4; (C )5; (D )6.3. 如图1,能推断AD//BC 的是( ) (A )43∠=∠; (B ); (C )345∠=∠+∠ ; (D )213∠+∠=∠.4.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比( )(A )横坐标不变,纵坐标加3 (B ) 纵坐标不变,横坐标加3 (C )横坐标不变,纵坐标乘以3 (D )纵坐标不变,横坐标乘以324∠=∠5. 若点()b a P ,到y 轴的距离为2,则( )(A )2=a ; (B )2±=a ; (C )2=b ; (D ) 2±=b . 6.如图2,已知两个三角形全等,那么∠1的度数是( )(A )72°;(B )60°;(C )58°;(D )50°.二、填空题(本大题共12题,每题2分,共24分) 7. 827-的立方根等于. 8. 比较大小:3-2-. 9. 用幂的形式表示:37=.10.计算:51515÷⨯= .11. 位于浦东的“中国馆”总建筑面积约为1601000平方米,这个数字保留两个有效数字可写为平方米.12. 经过点P ()1,3-且垂直于y 轴的直线可表示为直线_________. 13.若三角形三个内角的比为2︰3︰4,则这个三角形是三角形(按角分类).EDCBA54321图1(图2)14. 如图3,已知△ABC,ACB∠的平分线CD交AB于点D,//DE BC,且8AC=,如果点E是边AC的中点,那么DE的长为.15. 如图4,在△ABC中,︒=∠70A,如果ABC∠与ACB∠的平分线交于点D,那么BDC∠=度.16. 如图5,如果AB∥CD,∠1 = 30º,∠2 = 130º,那么∠BEC=度.17.如图6,将Rt△ABC绕点O顺时针旋转90º,得到Rt△A´OB´,已知点A的坐标为(4,2),则点A´的坐标为____________.18.已知三角形ABC是一个等腰三角形,其中两个内角度数之比为1:4,则这个等腰三角形顶角的度数为.三、简答题(本大题共6小题,每小题6分,共36分)19. 计算:()4981331-++20. 计算:3ECBADCBAD图3图421DCBAE图5图621.计算:))2222- 22.利用幂的性质进行计算:633326⨯÷23. 如图,在直角坐标平面内,点A 的坐标是(0,3),点B 的坐标是(3,2)--(1)图中点C 关于x 轴对称的点D 的坐标是. (2)如果将点B 沿着与x 轴平行的方向向右平移3个单位得到点B ',那么A 、B '两点之间的距离是. (3)求四边形ABCD 的面积24. 说理填空:如图,点E 是DC 的中点,EC=EB ,∠CDA=120°,DF//BE ,且DF 平分∠CDA ,求证:△BEC 为等边三角形.yx·· ·解: 因为DF 平分∠CDA (已知)所以∠FDC=21∠________. ( ) 因为∠CDA=120°(已知) 所以∠FDC=______°.因为DF//BE (已知) 所以∠FDC=∠_________.(____________________________________) 所以∠BEC = 60°,又因为EC=EB,(已知)所以△BCE 为等边三角形.(_____________________________)三、解答题(25题8分、26题8分,27题12分,共28分) 25. 如图,在ABC △中,点D 、E 分别在边AB 、AC 上,CD 与BE 交FBCEDA于点O ,且满足CE B D =,21∠=∠.试说明ABC △是等腰三角形的理由.26.如图,已知AB=CD ,点E 是AD 的中点,EB=EC. 试说明AD//BC的理由.AB CDE27. 如果一个三角形能用一条直线将其分割出两个等腰三角形,那么我们称这个三角形为“活三角形”,这条直线称为该“活三角形”的“生命线”. (1)小明在研究“活三角形”问题时(如图),他发现,在△ABC中,若∠BAC = 3∠C时,这个△ABC一定是“活三角形”.点D在BC 边上一点,联结AD,他猜测:当∠DAC = ∠C时,AD就是这个三角形的“生命线”,请你帮他说明AD是△ABC的“生命线”的理由.(2)如小明研究结果可以总结为:有一个内角是另一个内角的3倍时,该三角形是一个“活三角形”。

人教版七年级下册数学期末测试卷(及答案)

人教版七年级下册数学期末测试卷(及答案)

人教版七年级下册数学期末测试卷(及答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44381524,…,其中第6个数为( ) A 373535235.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm7.当a <0,n 为正整数时,(-a )5·(-a )2n 的值为( ) A .正数B .负数C .非正数D .非负数8.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( )A .m ≤-1B .m<-1C .-1<m ≤0D .-1≤m<010.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.绝对值不大于4.5的所有整数的和为________.3.已知点A (0,1),B (0 ,2),点C 在x 轴上,且2ABC S ∆=,则点C 的坐标________. 4.已知15x x+=,则221x x +=________________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________ 6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x⎧--≤⎪⎨--⎪⎩<的所有整数解.2.化简(1)先化简,再求值:()()22632a a a a ++-,其中1a =(2)化简:已知222A a ab b =-+,22+2B a ab b =+,求()14B A -3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.如图1,△ABD ,△ACE 都是等边三角形, (1)求证:△ABE ≌△ADC ;(2)若∠ACD=15°,求∠AEB 的度数;(3)如图2,当△ABD 与△ACE 的位置发生变化,使C 、E 、D 三点在一条直线上,求证:AC ∥BE .5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、B6、B7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、03、(4,0)或(﹣4,0)4、235、-1或-46、36°或37°.三、解答题(本大题共6小题,共72分)1、不等式组的解集:-1≤x<2,整数解为:-1,0,1.2、(1)4a,4;(2)ab3、略4、(1)略(2) ∠AEB=15°(3) 略5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)⼈教版七年级第⼆学期综合测试题(⼆)、填空题:(每题3分,共15分)i.8i 的算术平⽅根是 ________ ,旷64= __________ . 2. 如果 13. 在⼛ABC 中,已知两条边a=3,b=4,则第三边c 的取值范围是 _____________4. 若三⾓形三个内⾓度数的⽐为 2:3:4,则相应的外⾓⽐是 ___________ .5.已知两边相等的三⾓形⼀边等于 ___________ 5cm,另⼀边等于11cm,则周长是.⼆、选择题:(每题3分,共15分)6?点P (a,b )在第四象限,则点P 到x 轴的距离是() A.a B.b C.| a | D. | b |7. 已知aa b A.a+5>b+5B.3a>3b;C.-5a>-5bD.>3 38. 如图,不能作为判断AB// CD 的条件是()A. / FEB=/ ECDB./ AEC ⽞ ECD; C. / BEC+Z ECD=180D. / AEG=Z DCH三、解答题:(每题6分,共18分) 11.解下列⽅程组:12.2x 5y 25,4x 3y 15.9.以下说法正确的是()A. 有公共顶点,并且相等的两个⾓是对顶⾓B. 两条直线相交,任意两个⾓都是对顶⾓C. 两⾓的两边互为反向延长线的两个⾓是对顶⾓D. 两⾓的两边分别在同⼀直线上,这两个⾓互为对顶⾓ 10.下列各式中,正确的是()13.若A(2x-5,6-2x)在第四象限,求a解不等式组,并在数轴表⽰2x 3 6 x,1 4x 5x 2.的取值范围作图题:(6分)作BC 边上的⾼作AC 边上的中线。

五.有两块试验⽥,原来可产花⽣470千克,改⽤良种后共产花⽣ 532千克,已知第⼀块⽥的产量⽐原来增加 16%,第⼆块⽥的产量⽐原来增加10%,问这两块试验⽥改⽤良种后各增产花⽣多少千克?( 8分)六,已知a 、b 、c 是⼆⾓形的⼆边长,化简:|a — b +c|+ |a — b — c| (6分)⼋,填空、如图1,已知/1 =/2, Z B =Z C ,可推得AB //CD 。

初中七年级数学第二学期期末考试试卷含答案(标准)

初中七年级数学第二学期期末考试试卷含答案(标准)

B ′C ′D ′O ′A ′O DC BA (第8题图)初中七年级数学第二学期期末考试试卷(标准)班级 姓名 分数(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 78 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生 3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等 7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同 8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AAS D .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的大小是 °. 12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °.13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率(第16题图)为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者试验次数n 正面朝上的次数m 正面朝上的频率nm 布丰4040 2048 0.5069德·摩根4092 2048 0.5005费勤10000 4979 0.4979那么估计抛硬币正面朝上的概率的估计值是 .16.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC全等且有一个公共顶点的格点△CBA''';在图②中画出与△ABC全等且有一条公共边的格点△CBA''''''.18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010(2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)xx-3(2)-2x+x2+120.解方程组:(每小题5分,本题共10分)OACPP′B(第16题图)能进行密铺的地砖的形状是( ).(A) ① (B) ② (C) ③ (D) ④6.如果4(1)6x y x m y +=⎧⎨--=⎩中的解x 、y 相同,则m 的值是( )(A)1(B)-1(C)2(D)-27.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场8.若使代数式312m -的值在-1和2之间,m 可以取的整数有( )(A )1个 (B )2个 (C )3个 (D )4个9.把不等式组110x x +⎧⎨-≤⎩>0,的解集表示在数轴上,正确的是( ).(A ) (B ) (C ) (D ) 10.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2”,这种说明问题的方式体现的数学思想 方法叫做( ).(A )代入法(B )换元法(C )数形结合(D )分类讨论二、填空题(每题3分,共30分)1.若∠1与∠2互余,∠2与∠3互补,若∠1=630,则∠3=2.已知P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则2005()a b +的值为 3.根据指令[s,A](s≥0,0º<A<180º),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s .现机器人在直角坐标系的坐标原点,且面对x 轴正方向(1)若给机器人下了一个指令[4,60º],则机器人应移动到点 ;(2)请你给机器人下一个指令 ,使其移动到点(-5,5). 4.右图是用12个全等的等腰梯形镶嵌成的图形,这个图形中等腰梯形的上底长与下底长的比是 .5.一个多边形的每一个外角都等于360,则该多边形的内角和等于 6. 已知2(234)370x y x y +-++-=,则x= ,y=7.已知方程组11235mx ny mx ny ⎧+=⎪⎨⎪+=⎩的解是32x y =⎧⎨=-⎩,则m= ,n= 8.若点(m-4,1-2m )在第三象限内,则m 的取值范围是 .9.绝对值小于100的所有的整数的和为a ,积为b ,则20042005a b +的值为 .-1 0 1-1 0 1 -1 0 1 -1 0 1 第10题图第4题图对54D3E 21C B A人都版七年级数学下学期末模拟试题(三)1. 若点P 在x 轴的下方,y 轴的左方,到每条坐标轴的距离都是3,则点P 的坐标为( )A 、()3,3B 、()3,3-C 、()3,3--D 、()3,3-2. △ABC 中,∠A=13∠B=14∠C,则△ABC 是( ) A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3. 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有.( )(A )1种 (B )2种 (C )3种 (D )4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解 以上解法,造成错误的一步是( )A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是( )A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是( )A.m =1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=3 7. 一个四边形,截一刀后得到的新多边形的内角和将( )A 、增加180ºB 、减少180ºC 、不变D 、以上三种情况都有可能 8. 如右图,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ;(2)21∠=∠;(3) 43∠=∠;(4) 5∠=∠B . A.1 B.2 C.3 D.4 9. 下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4) 为了解中央电视台春节联欢晚会的收视率。

人教版七年级下册数学期末测试卷(含答案解析)

人教版七年级下册数学期末测试卷(含答案解析)

人教版七年级下册数学期末测试卷一.选择题(每小题3分,共36分)1.如果(0<x<150)是一个整数,那么整数x可取得的值共有()A.3个B.4个C.5个D.6个2.二元一次方程2a+5b=﹣6,用含a的代数式表示b,下列各式正确的是()A.B.C.D.3.如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠1+∠2=180°4.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.256.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.7、将一张长方形纸片如图所示折叠后,再展开,如果∠1=56°,那么∠2等于()A.56°B.68°C.62°D.66°8、如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为( )A.70ºB.50ºC.40º D.30º9、若a、b均为正整数,且,则a+b的最小值是()A.3 B.4 C.5 D.610、若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015 D.﹣5201511、若关于x的不等式组只有5个整数解,则a的取值范围()A.B.C.D.12、. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是()A.(13,13)B.(–13,–13)C.(14,14)D.(–14,–14)二、填空题(每小题3分,共18分)13.如图,当剪刀口∠AOB增大21°时,∠COD增大__________度.14.在二元一次方程x+4y=13中,当x=5时,y=__________.15.如图所示,一个机器人从O点出发,向正东方向走3m到达A1点,再向正北方向走6m到达A2点,再向正西方向走9m到达A3点,再向正南方向走12m到达A4点,再向正东方向走15m到达A5点,按如此规律走下去,相对于点O,机器人走到A6时是__________位置.16、已知关于的不等式组只有两个整数解,则的取值范围__________.17、如图,在△ABC中,EF∥BC,∠ACG是△ABC的外角,∠BAC的平分线交BC于点D,记∠ADC=α,∠ACG=β,∠AEF=γ,则:α、β、γ三者间的数量关系式是__________.18、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是__________.三、解答题(共8小题,共66分)19.(6分)计算:20.(6分)解方程组:21.(8分)解不等式组:22.(8分)已知直线AB∥CD.(1)如图1,直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;(3)如图3,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,则=.23.(9分)如图,已知四边形ABCD(网格中每个小正方形的边长均为1).(1)写出点A,B,C,D的坐标;(2)求四边形ABCD的面积.24.(9分)已知关于x,y的方程组的解满足不等式组求满足条件的m的整数值.25.(10分)如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.26.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.参考答案一.选择题(共12小题,满分36分,每小题3分)1.B.2.D.3.D.4.D.5.A.6.D.7、B.8、D 9、B.10、B 11、A 12、C 二.填空题(共6小题,满分24分,每小题4分)13.21度.14.215.(9,12).16、17、2∠α=∠β+∠γ.18、(2011,2)三解答题19.答案为:20.答案为:x=2,y=–1.5;21.解:解不等式3(x﹣1)<2x,得:x<3,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<3.22.解:(1)如图1,∵AB∥CD,∴∠END=∠EFB,∵∠EFB是△MEF的外角,∴∠E=∠EFB﹣∠BME=∠END﹣∠BME,故答案为:∠E=∠END﹣∠BME;(2)如图2,∵AB∥CD,∴∠CNP=∠NGB,∵∠NPM是△GPM的外角,∴∠NPM=∠NGB+∠PMA=∠CNP+∠PMA,∵MQ平分∠BME,PN平分∠CNE,∴∠CNE=2∠CNP,∠FME=2∠BMQ=2∠PMA,∵AB∥CD,∴∠MFE=∠CNE=2∠CNP,∵△EFM中,∠E+∠FME+∠MFE=180°,∴∠E+2∠PMA+2∠CNP=180°,即∠E+2(∠PMA+∠CNP)=180°,∴∠E+2∠NPM=180°;(3)如图3,延长AB交DE于G,延长CD交BF于H,∵AB∥CD,∴∠CDG=∠AGE,∵∠ABE是△BEG的外角,∴∠E=∠ABE﹣∠AGE=∠ABE﹣∠CDE,①∵∠ABM=∠MBE,∠CDN=∠NDE,∴∠ABM=∠ABE=∠CHB,∠CDN=∠CDE=∠FDH,∵∠CHB是△DFH的外角,∴∠F=∠CHB﹣∠FDH=∠ABE﹣∠CDE=(∠ABE﹣∠CDE),②由①代入②,可得∠F=∠E,即.故答案为:.23解:(1)由图象可知A(﹣2,1),B(﹣3,﹣2),C(3,﹣2),D(1,2);(2)S四边形ABCD=S△ABE+S△ADF+S△CDG+S正方形AEGF=0.5×1×3+0.5×1×3+0.5×2×4+3×3=16。

人教版七年级数学第二学期期末考试试卷及答案

人教版七年级数学第二学期期末考试试卷及答案

七年级数学第二学期期末试卷(满分120分,考试时间120分钟) 一、选择题1.19的算术平方根是()A.±13B.13C.−13D.±1812.如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.13a>13b D.﹣3a>﹣3b3.下列各数中,无理数是()A.√4B.3.14C.√−273D.5π4.不等式2x+3<5的解集在数轴上表示为()A.B.C.D.5.若{x=3y=2是方程kx+3y=1的解,则k等于()A.−53B.﹣4C.73D.146.下列命题中,假命题是()A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行B.两条直线被第三条直线所截,同旁内角互补C.两直线平行,内错角相等D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.25°D.35°7题9题8.下列调查中,最适合采用抽样调查的是()A.对旅客上飞机前的安检B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.如图,将△ABC进行平移得到△MNL,其中点A的对应点是点M,则下列结论中不一定成立的是()A.AM∥BN B.AM=BN C.BC=ML D.BN∥CL10.平面直角坐标系中,点A (﹣3,2),B (3,4),C (x ,y ),若AC//x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,4)B .2,(3,2)C .2,(3,0)D .1,(4,2)二、填空题:11.化简:√(−3)2= .12.如果2x ﹣7y =5,那么用含y 的代数式表示x ,则x = ..13.请写出命题“在同一平面内,垂直于同一直线的两直线平行”的题设和结论:题设: . .,结论: . ..14.点A (2m +1,m +2)在第二象限内,且点A 的横坐标、纵坐标均为整数,则点A 的坐标为 ..15.如图,已知AB∥CD,BC 平分∠ABE,∠C=35°,则∠CEF 的度数是 ..16.√−83的绝对值是 ..17.不等式组{2x +1>−12x +1<3的解集是 .. 18.已知点A 的坐标为(2,3),点B 与点A 关于x 轴对称,点C 与点B 关于y 轴对称,则点C 关于x 轴对称的点的坐标为 ..19.在一本书上写着方程组{x +py =2x +y =1的解是{x =0.5y =∎其中y 的值被墨渍盖住了,不过,我们可解出p = ..20.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排 .名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题21.计算:. 22.解方程组:.23.解不等式:.并把解集在数轴上表示出来.24.求不等式组:{5x<3x+23x−3≤2(2x−1)的整数解.25.如图,三角形ABC中任一点P(m,n)经平移后对应点为P1(m+4,n﹣3),将三角形ABC作同样的平移得到三角形A1B1C1.(1)直接写出A1、C1的坐标分别为A1,C1;(2)在图中画出△A1B1C1;(3)请直接写出△A1B1C1的面积是.26.已知:如图,直线AB、CD相交于点O,OA平分∠EOC,若∠EOC:∠EOD=2:3,求∠BOD的度数.27.为了解某区2015年七年级学生的体育测试情况,随机抽取了该区若干名七年级学生的体育测试成绩等级,绘制如图统计图(不完整):请根据以下统计图表提供的信息,解答下列问题:(1)本次抽样调查的样本容量,“A等级”对应扇形的圆心角度数为;(2)请补全条形统计图;(3)该区约10000名七年级学生,根据抽样调查结果,请估计其中体育测试成绩为“D等级”的学生人数.28.已知:如图,AB∥CD.∠A+∠DCE=180°,求证:∠E=∠DFE.29.列方程组解应用题某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.求两种跳绳的单价各是多少元?30.某果品公司要请汽车运输公司或火车货运站将60吨水果从A地运到B地.已知汽车和火车从A地到B地的运输路程都是x千米,两家运输单位除都要收取运输途中每吨每小时5元的冷藏费外,其他要收取的费用和有关运输资料由下表列出:运输单位运输速度(千米/时)运费单价元/(吨•千米)运输途中冷藏元/(吨•时)装卸总费用(元)汽车货运公司75 1.5 54000火车货运站 100 1.3 56600(1)用含x的式子分别表示汽车货运公司和火车货运站运送这批水果所要收取的总费用(总运费=运费+运输途中冷藏费+装卸总费用);(2)果品公司应该选择哪家运输单位运送水果花费少?31.夏季来临,某饮品店老板大白计划下个月(2015年8月)每天制作新鲜水果冰淇淋800份销售.去年同期,这种冰淇淋每份的成本价为5元,售价为8元.该冰淇淋不含防腐剂,很受顾客的欢迎,但如果当天制作的冰淇淋未售出,新鲜水果就会腐败变质,饮品店就将承担冰淇淋制作成本的损失.根据大白去年的销售记录,得到去年同期该冰淇淋日销售量的频数分布表和频数分布直方图(不完整)如下:2014年8月该冰淇淋日销售量频数分布表 2014年8月该冰淇淋日销售量频数分布直方图日销售量分组频数500≤x<600 3600≤x<700 6700≤x<800800≤x<900由于今年水果涨价,该冰淇淋的制作成本提高了10%.大白计划今年冰淇淋还按8元/份销售.设下个月该冰淇淋的日销售量为m份(0<m≤800).(1)请根据以上信息补全频数分布表和直方图,并标明相应数据;(2)用含m的式子表示下个月销售该冰淇淋的日利润;(3)大白认为,下个月该冰淇淋的销售状况将会与去年同期相差不多.①请你通过计算帮助大白估计下个月销售该冰淇淋的日利润少于1200元的天数;②为减少因当日冰淇淋未售出造成的损失,大白计划今年采取下班前打八折销售的方法,希望将剩余的冰淇淋售出.请你通过计算帮助大白估计下个月因销售该冰淇淋获得月利润的范围.答案一、选择题1.B.2.D.3.D.4.A.5.A.6.B.7.C.8.D.9.C.10B.二、填空题:11.3 12.x=5+7y213.在同一平面内两条直线垂直于同一条直线那么这两条直线平行14.A(−1,1) 15.75° 16.2 17.−1<x<1 18.(-2,3) 19.320.解:设x个人缝制衣袖,y个人缝制衣身,z个人缝制衣领.则有{x+y+z=21010x=2×15y10x=2×12z,(工人们每天缝制出的衣袖、衣身、衣领正好配套。

七年级数学下册期末试卷测试卷 (word版,含解析)

七年级数学下册期末试卷测试卷 (word版,含解析)

七年级数学下册期末试卷测试卷 (word 版,含解析)一、选择题1.如图,下列结论中错误的是( )A .∠1与∠2是同旁内角B .∠1与∠4是内错角C .∠5与∠6是内错角D .∠3与∠5是同位角2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是( )A .1B .2C .3D .45.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160° 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.已知223130x x y -+--=,则x +y=___________10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.12.如图,点D 、E 分别在AB 、BC 上,DE ∥AC ,AF ∥BC ,∠1=70°,则∠2=_____°.13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.15.如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_____.16.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算下列各题:2213-123181632163125()2-318.求下列各式中的x.(1)x2-81=0(2)(x﹣1)3=819.如图所示,已知∠1+∠2=180°,∠B=∠3,请你判断DE和BC平行吗?说明理由.(请根据下面的解答过程,在横线上补全过程和理由)解:DE∥BC.理由如下:∵∠1+∠4=180°(平角的定义),∠1+∠2=180°(),∴∠2=∠4().∴∥().∴∠3=().∵∠3=∠B(),∴=().∴DE∥BC().20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.阅读下面的文字,解答问题 22的小数部分我们不可能全部212 21,将这个数减去其整数部分,差就是小数部分. 479273, ∴7272)请解答:(157整数部分是 ,小数部分是 .(211a 7b ,求|a ﹣b 11(3)已知:5x +y ,其中x 是整数,且0<y <1,求x ﹣y 的相反数.二十二、解答题22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?二十三、解答题23.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.解读基础:(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:应用乐园:直接运用上述两个结论解答下列各题(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.26.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在Rt ABC 中,90ACB ∠=︒,BD 是ABC 的角平分线,求证:ABD △是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在ABC 中,若100A ∠=︒,70B ∠=︒,10C ∠=︒,则ABC 是“准互余三角形”; ②若ABC 是“准互余三角形”,90C ∠>︒,60A ∠=︒,则20B ∠=︒;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,B ,C 为直线l 上两点,点A 在直线l 外,且50ABC ∠=︒.若P 是直线l 上一点,且ABP △是“准互余三角形”,请直接写出APB ∠的度数.【参考答案】一、选择题1.B解析:B【分析】根据同位角、内错角、同旁内角的定义结合图形进行判断即可.【详解】解:如图,∠1与∠2是直线a与直线b被直线c所截的同旁内角,因此选项A不符合题意;∠1与∠6是直线a与直线b被直线c所截的内错角,而∠6与∠4是邻补角,所以∠1与∠4不是内错角,因此选项B符合题意;∠5与∠6是直线c与直线d被直线b所截的内错角,因此选项C不符合题意;∠3与∠5是直线c与直线d被直线b所截的同位角,因此选项D不符合题意;故选:B.【点睛】本题主要考查同位角、内错角、同旁内角,掌握同位角、内错角、同旁内角的定义是关键.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确; 经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.A【分析】过P 点作PM //AB 交AC 于点M ,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P 点作PM //AB 交AC 于点M .∵CP 平分∠ACD ,∠ACD =68°,∴∠4=12∠ACD =34°.∵AB //CD ,PM //AB ,∴PM //CD ,∴∠3=∠4=34°,∵AP ⊥CP ,∴∠APC =90°,∴∠2=∠APC -∠3=56°,∵PM //AB ,∴∠1=∠2=56°,即:∠BAP 的度数为56°,故选:A .【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴解析:60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴∠EOC=∠COB∴∠AOE=∠EOC=∠COB,∵∠AOE+∠EOC+∠COB=180︒∴∠COB=60°,∴∠AOD=∠COB=60°,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.12.70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答解析:70【分析】根据两直线平行,同位角相等可得∠C=∠1,再根据两直线平行,内错角相等可得∠2=∠C.【详解】∵DE∥AC,∴∠C=∠1=70°,∵AF∥BC,∴∠2=∠C=70°.故答案为70.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.13.62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁解析:62°【分析】根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.【详解】解:∵将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,∠1=59°,∴∠EFB′=∠1=59°,∴∠B′FC=180°−∠1−∠EFB′=62°,∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠B′FC=62°,故答案为:62°.【点睛】本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=12×1•h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P 点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A、B、C、D的坐标可得出AB、AD及矩形ABCD的周长,由题意可知P点的运动是绕矩形ABCD的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1),B(-1,1),C(-1,-2), D(1,-2)∴AB= CD= 2,AD= BC= 3,∴四边形ABCD 的周长= AB+ AD+BC+CD= 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(解析:(1)x=±9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解.【详解】解:(1)方程整理得:x2=81,开方得:x=±9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3.【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.19.已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB解析:已知;同角的补角相等;AB;EF;内错角相等,两直线平行;∠ADE;两直线平行,内错角相等;已知;∠B;∠ADE;等量代换;同位角相等,两直线平行【分析】求出∠2=∠4,根据平行线的判定得出AB∥EF,根据平行线的性质得出∠3=∠ADE,求出∠B=∠ADE,再根据平行线的判定推出即可.【详解】解:DE∥BC,理由如下:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知),∴∠2=∠4(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠3=∠ADE (两直线平行,内错角相等),∵∠3=∠B (已知),∴∠B =∠ADE (等量代换),∴DE ∥BC (同位角相等,两直线平行),【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的性质定理及判定定理是解题的关键. 20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)7;-7;(2)5;(3)13-.【分析】(1)估算出的范围,即可得出答案;(2)分别确定出a 、b 的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y 的值,进而求解析:(1)7;(2)5;(3)【分析】(1(2)分别确定出a、b的值,代入原式计算即可求出值;(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.【详解】解:(1)∵78,∴7.故答案为:7.(2)∵34,∴a,3∵23,∴b=2∴=5(3)∵23∴11<12,∵,其中x是整数,且0﹤y<1,∴x=11,y=,∴x-y==【点睛】本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.二十二、解答题22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x =,∴22(5)252537925900x x ==⨯=>,∴22(5)30x >,∴530x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC ∥DE ,∠CAN =∠DEG =15°,∴∠BAM =∠MAN -∠CAN -∠BAC =180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结解析:(1)D A B C ∠=∠+∠+∠,理由详见解析;(2)A D B C ∠+∠=∠+∠,理由详见解析:(3)①1902D A ∠=︒+∠;②360°;(4)124E ∠=︒; =14F ∠︒.【分析】(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;(2)根据三角形内角和定理及对顶角相等即可得出结论;(3)①根据角平分线的定义及三角形内角和定理即可得出结论;②连结BE ,由(2)的结论及四边形内角和为360°即可得出结论;(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】(1)D A B C ∠=∠+∠+∠.理由如下:如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠; (2)A D B C ∠+∠=∠+∠.理由如下:在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.②连结BE .∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,3336064(2)644012422E GAE AGD GDE CAE CDF ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.【点睛】本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.26.(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB 的度数是10°或20°或40°或110°【分析】(1)由90ABC A ∠+∠=︒和BD 是ABC 的角平分线,证明290ABD A ∠+∠=︒即可; (2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A +∠ABC =90°;②∠A +2∠APB =90°;③2∠APB +∠ABC =90°;④2∠A +∠APB =90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在Rt ABC 中,90ACB ∠=︒,∴90ABC A ∠+∠=︒,∵BD 是ABC ∠的角平分线,∴2ABC ABD ∠=∠,∴290ABD A ∠+∠=︒,∴ABD △是“准互余三角形”;(2)①∵70,10B C ∠=︒∠=︒,∴290B C ∠+∠=︒,∴ABC 是“准互余三角形”,故①正确;②∵60A ∠=︒, 20B ∠=︒,∴210090A B ∠+∠=︒≠︒,∴ABC 不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,,αβγ,且αβγ<<,∵三角形是“准互余三角形”,∴290αβ+=︒或290αβ+=︒,∴90αβ+<︒,∴180()90γαβ=︒-+>︒,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB 的度数是10°或20°或40°或110°;如图①,当2∠A +∠ABC =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A =20°,∴∠APB =110°;如图②,当∠A +2∠APB =90°时,△ABP 是“准直角三角形”,∵∠ABC =50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,ABP△是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.。

2022—2023年人教版七年级数学下册期末测试卷带答案

2022—2023年人教版七年级数学下册期末测试卷带答案

2022—2023年人教版七年级数学下册期末测试卷带答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A .﹣4 B.4 C.﹣2 D.22.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤a bc c =.A.5 B.4 C.3 D.25.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.下列二次根式中,最简二次根式的是()A .15B .0.5C .5D .507.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1a b=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a b a b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )A .0个B .1个C .2个D .3个10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.对于实数a ,b ,定义运算“※”如下:a ※b=a 2﹣ab ,例如,5※3=52﹣5×3=10.若(x+1)※(x ﹣2)=6,则x 的值为________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.已知一个多边形的内角和为540°,则这个多边形是________边形.5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程组:20 346 x yx y+=⎧⎨+=⎩2.已知A-B=7a2-7ab,且B=-4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满货物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案,并求出最少的租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、B5、A6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、12、-4π3、180°4、5.5、24.6、48三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、(1)3a2-ab+7;(2)12.3、20°4、(1)OF⊥OD,证明详略;(2)∠EOF=60°.5、(1)50;72;(2)详见解析;(3)330.6、(1)1辆A型车载满货物每次可运货物3吨,1辆B型车载满货物一次可运货物4吨;(2) 有三种租车方案:方案一,租用A型车9辆,B型车1辆,方案二,租用A型车5辆,B型车4辆,方案三,租用A型车1辆,B型车7辆.(3)选择方案三最省钱,最少的租车费为940元.。

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(含答案)

七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。

一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。

2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。

4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P (-2,1)向上平移2个单位后的点的坐标为 。

10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。

问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。

二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。

C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。

12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第二学期期末测试题答案2019
完成了小学阶段的学习,进入紧张的初中阶段。

这篇七年级数学第二学期期末测试题答案2019,是查字典数学网特地为大家整理的,欢迎阅读~
1.答案:D 点拨:根据不等式的基本性质,不等式的两边都除以m,而m并不知道是正数还是负数,所以A,B均不正确;不等式的两边都乘以-1,不等号的方向改变,所以C不正确;不等式的两边都减去n,不等号的方向不变,D是正确的.故选D.
2.答案:C
3.答案:A 点拨:分别解两个不等式,得x4,x-1,所以-1
4.答案:C 点拨:先求出原不等式的解集是x5,从而得出符合条件的非负整数解是0,1,2,3,4,
5.故选C.
5.答案:A
6.答案:D
7. 答案:C 点拨:解答此题可选用特殊值法,因为0
8.答案:A 解析:设第6次射中x环,由于后4次最多只能射40环,所以有46+x+4092,解得x6.
9.答案:A 点拨:本题可先解方程组求出x,y,再根据x0,转化为关于m的不等式.再将选择项代入不等式中检验.
10 .答案:A 点拨:已知a-1,3-a,2a在数轴上所对应的点从左到右依次排列,即已知a-12a,解该不等式组即可得a
的范围.
11 .答案:m2 点拨:由题意可知不等式(m-2)x2的两边都除以(m-2)后,不等号的方向发生了改变,因此m-20,从而可知m2.
12.答案:x1
13.答案:点拨:因为c0,所以c20,-c20.根据不等式的基本性质两边同乘以一个负数,不等号的方向改变可知
-ac2-bc2(c0).
14.答案:-4 点拨:当3x-55x+3时,解得x-4.
15.答案:13 点拨:设小明能买x枝钢笔,则他能买(30-x)本笔记本,依题意,得5x+2(30-x)100,解得 .故小明最多能买13枝钢笔.
16.答案:k2 点拨:因为关于x的方程kx-1=2x可化简为(k-2)x=1,所以,即k-20,也即k2.
17.答案:68 点拨:解不等式2x-m0得,结合题意知该不等式有3个正整数解:1,2,3,于是34.故68.
18.答案:解:(1)解不等式6x-23x-4得 .
解不等式得
2(2x+1)-3(1-2x)6,
所以 .
因为x同时满足这两个不等式,
所以x的取值范围是 .
故整数x为0.
查字典数学网给您带来的七年级数学第二学期期末测试题答案2019 ,希望可以更好的帮助到您!!。

相关文档
最新文档