高中数学必修四测试卷
高中数学必修4第三章三角恒等变换综合检测题(人教A版)
第三章三角恒等变换综合检测题本试卷分第I 卷选择题和第U 卷非选择题两部分,满分150分,时间120 分钟。
第I 卷(选择题共60分)一、选择题(本大题共12个小题,每小题 5分,共60分,在每小题给出的四个选项中 只有一个是符合题目要求的 )n 3 41 .已知 0v av 2v 3<n 又 sin a= 5, cos (a+ ®= — 5,贝V sin ()B . 0 或 2424 C.25 24 D . ±25 [答案]Cn 3 4[解析]•/ 0v av 2 v 3v n 且 sin a= 5, COS ( a+ 3 = — 54 n3 3• cos a= 5 , 2< a+ 3v ㊁ n, • sin( a+ 3 = ±5,=sin( a+ 3cos a — cos( a+ 3)sin a才< 3v n ••• sin 3> 0•故排除 A , B , D.4 3 4⑵由 cos( a+ 3)= — 5及 Sin a= 3可得 sin 3= §(1 + cos 3)代入 sin 2 3+ cos 2 3= 1 中可解得 cos37 n=—1或一25,再结合2<仟n 可求sin 32.若sin Bv 0, cos2 0v 0,则在(0,2 内)B 的取值范围是()3 n3=0.sin3=- 5x 4-又氏才,n j, • sin 3> 0,故 sin 3= 24当 sin( a+ 3 =,sin 3= sin [( a+ a[点评](1)可用排除法求解,T=器53 245 = 25;A . n< 0< 25 nB.5T <e< ¥3 nC.y <e< 2 nD.严< 0<孕4 4[答案]B[解析]2 2 2•/ cos2 e< 0, • 1 —2sin < 0,即sin e>2或sin < —"2,又已知sin < 0, •— 1 < sin e<—亠2,2由正弦曲线得满足条件的e取值为54n<e< ¥3. 函数y= sin2x+ cos2x的图象,可由函数y= sin2x —cos2x的图象()A .向左平移f个单位得到B .向右平移f个单位得到8c.向左平移n个单位得到4D .向右平移4个单位得到[答案]C[解析]y= sin2x+ cos2x= , 2sin(2x+J=2si n2(x +》_ n _ ny= sin2x—cos2x= 2sin(2x—4)= . 2sin2(x—§)n n n其中x+8=(x+ 4)—8n•••将y= sin2x—cos2x的图象向左平移:个单位可得y= sin2x+ cos2x的图象.44. 下列各式中,值为~2的是()A . 2sin 15 cos15 °2 2B. cos 15。
高中数学(人教A版)必修4第3章 三角恒等变换 测试题(含详解)
第三章测试(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( ) A.14 B .-14C.34D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( )A.32B .-32C.34D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34.又π4<α<π2, ∴cos α<sin α,cos α-sin α=-34=-32. 答案 B3.sin15°sin30°sin75°的值等于( ) A.14 B.34 C.18D.38解析 sin15°sin30°sin75° =sin15°cos15°sin30° =12sin30°sin30°=12×12×12=18. 答案 C4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为( ) A. 2 B.22C.32D. 2解析 在△ABC 中,∠A +∠B +∠C =π, 3sin A -cos(B +C ) =3sin A +cos A =2(32sin A +12cos A ) =2cos(60°-A )=2cos45°= 2. 答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45C.45D.65解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65.答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D 7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( ) A .c <a <b B .b <c <a C .a <b <c D .b <a <c 解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°, ∵y =cos x 在(0,90°)内是减函数, ∴cos26°>cos28°>cos30°,即b >a >c . 答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( ) A .tan A ·tan B >1 B. tan A ·tan B <1 C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角. 则有tan A >0,tan B >0,tan C <0. 又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B1-tan A ·tan B <0,易知1-tan A ·tan B >0, 即tan A ·tan B <1. 答案 B9.函数f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数 D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎫x +π4-sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫π4-x -sin 2⎝⎛⎭⎫x -π4 =cos 2⎝⎛⎭⎫x -π4-sin 2⎝⎛⎭⎫x -π4 =cos ⎝⎛⎭⎫2x -π2 =sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( ) A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2C.⎣⎢⎡⎦⎥⎤1-22,1+22D.⎣⎡⎦⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x=12+22⎝⎛⎭⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝⎛⎭⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝⎛⎭⎫2x +π4=-1时,y 有最小值1-22. ∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C11.已知θ为第二象限角,sin(π-θ)=2425,则cos θ2的值为( )A.335 B.45 C .±35D .±45解析 由sin(π-θ)=2425,得sin θ=2425.∵θ为第二象限的角,∴cos θ=-725.∴cos θ2=±1+cos θ2=± 1-7252=±35. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( )A.5665 B.1665C.5665或1665D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos [(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β) =35×1213+45×513=5665. 答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上) 13.若1+tan α1-tan α=2012,则1cos2α+tan2α=______.解析1cos2α+tan2α=1+sin2αcos2α=sin 2α+cos 2α+2sin αcos αcos 2α-sin 2α=tan 2α+1+2tan α1-tan 2α=(tan α+1)21-tan 2α=1+tan α1-tan α=2012.答案 201214.已知cos2α=13,则sin 4α+cos 4α=________.解 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α =1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________.解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2; ②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;④将函数y =2cos2x 的图像向右平移π24个单位后,将与已知函数的图像重合.其中正确命题的序号是________. 解析 f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3 =2·⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3 =2cos ⎝⎛⎭⎫2x -π3+π4 =2cos ⎝⎛⎭⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确.又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故③正确. 由④得y =2cos2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知向量m =⎝⎛⎭⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎡⎦⎤-π2,0.(1)求sin α+cos α的值; (2)求sin2αsin α-cos α的值.解 (1)∵m 与n 为共线向量, ∴⎝⎛⎭⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23. (2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79.∴(sin α-cos α)2=1-sin2α=169. 又∵α∈⎣⎡⎦⎤-π2,0,∴sin α-cos α<0. ∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎫α+3π4cos ⎝⎛⎭⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝⎛⎭⎫α+π4+π2cos ⎝⎛⎭⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α) =2-2cos 2⎝⎛⎭⎫α+π4cos 2α-sin 2α =1-cos ⎝⎛⎭⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α. ∴原等式成立.19.(12分)已知函数f (x )=2cos2x +sin 2x -4cos x . (1)求f ⎝⎛⎭⎫π3的值;(2)求f (x )的最大值和最小值. 解 (1)f ⎝⎛⎭⎫π3=2cos 2π3+sin 2π3-4cos π3 =2×⎝⎛⎭⎫-12+⎝⎛⎭⎫322-4×12 =-1+34-2=-94.(2)f (x )=2(2cos 2x -1)+(1-cos 2x )-4cos x =3cos 2x -4cos x -1=3⎝⎛⎭⎫cos x -232-73, ∵x ∈R ,cos x ∈[-1,1],∴当cos x =-1时,f (x )有最大值6; 当cos x =23时,f (x )有最小值-73.20.(12分)已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝⎛⎭⎫π2,3π4, ∴x -π4∈⎝⎛⎭⎫π4,π2, 于是sin ⎝⎛⎭⎫x -π4= 1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π4+π4=sin ⎝⎛⎭⎫x -π4cos π4+cos ⎝⎛⎭⎫x -π4sin π4 =7210×22+210×22=45. 解法2:由题设得22cos x +22sin x =210, 即cos x +sin x =15.又sin 2x +cos 2x =1, 从而25sin 2x -5sin x -12=0, 解得sin x =45,或sin x =-35,因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝⎛⎭⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35. sin2x =2sin x cos x =-2425.cos2x =2cos 2x -1=-725.∴sin ⎝⎛⎭⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.21.(12分)已知函数 f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 解 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6所以f (x )的最小正周期为π.(2)-π6≤x ≤π4,所以-π6≤2x +π6≤2π3,当2x +π6=π2时,即x =π6,f (x )取得最大值2;当2x +π6=-π6时,即x =-π6,f (x )取得最小值-1.22.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解 (1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45.两式相加,得2cos βcos α=0, ∵0<α<β≤π2,∴β=π2.∴[f (β)]2-2=4sin 2π4-2=0.。
高中数学必修四试卷(含详细答案)
高中数学必修四试卷(含详细答案)高中数学必修四试卷(含详细答案)考试时间:2小时总分:100分一、选择题(共30小题,每小题2分,共60分)从每题所给的四个选项中,选出一个最佳答案。
1. 已知数列{an}的通项公式为an = 3n - 2,其中n为正整数。
则数列S = a1 + a2 + a3 + ... + a10的值为:A. 135B. 145C. 155D. 1652. 若函数f(x) = ax^3 + bx + 1在区间[-1,1]上具有单调性,则a和b 的关系是:A. a > 0,b > 0B. a > 0,b < 0C. a < 0,b > 0D. a < 0,b < 03. 曲线y = 2x^2 - 3x + c与x轴相交于两点,若这两点的横坐标之和为1,则c的值为:A. -1B. 0C. 1D. 24. 在△ABC中,已知∠A = 30°,边a = 5,边b = 10。
则△ABC的面积为:A. 10√3B. 15√3C. 20√3D. 25√3...(题目继续,共30题)二、解答题(共4题,共40分)题目1:已知函数f(x) = x^3 - 3x^2 - 4x + 2。
(1)求f(x)的零点;(2)求函数f(x)在区间[-2,2]上的最大值和最小值。
(1)令f(x) = 0,得到x^3 - 3x^2 - 4x + 2 = 0,进行因式分解得(x-1)(x+2)(x-1)=0,所以零点为x=-2, x=1。
(2)在区间[-2,2]上,先求f'(x)的值为0的点,即f'(x)=3x^2-6x-4=0。
通过求解方程可得x=2和x=-2/3。
将这三个点代入f(x)的表达式中,比较大小可得最大值和最小值。
题目2:若函数g(x)满足g(3)=1,并且对任意实数x有g(ax)=g(x)-3ax,其中a是一个常数。
求g(x)的表达式。
高中数学必修四总复习测试题
高中数学必修四总复习测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.化简sin()2απ+等于( ). A.cos α B.sin α C.cos α- D.sin α-2.已知M 是ABC ∆的BC 边上的一个三等分点,且BM MC <,若AB = a ,AC =b ,则AM 等于( ).A.1()3-a bB.1()3+a bC.1(2)3+b aD.1(2)3+a b3.已知3tan =α,则αααα22cos 9cos sin 4sin 2-+的值为( ). A.3 B.1021 C.31 D.301 4.化简=--+( ). A. B.0 C. D. 5.函数x x y 2cos 2sin =是( ). A.周期为4π的奇函数 B.周期为2π的奇函数 C.周期为2π的偶函数 D.周期为4π的偶函数 6.已知)7,2(-M ,)2,10(-N ,点P 是线段MN 上的点,且−→−PN −→−-=PM 2,则P 点的坐标为( ). A.)16,14(- B.)11,22(- C.)1,6( D.)4,2( 7.已知函数sin()y A x B ωφ=++(0,0,||2A ωφπ>><)的周期为T ,在一个周期内的图象如图所示,则正确的结论是( ). A.3,2A T ==π B.2,1=-=ωBC.4,6T φπ=π=-D.3,6A φπ== 8.将函数sin()3y x =-π的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移3π个单位,则所得函数图像对应的解析式为( ). A.1sin(26y x =-π B.1sin()23y x =-π C.1sin 2y x = D.sin(2)6y x =-π9.若平面四边形ABCD 满足0,()0AB CD AB AD AC +=-⋅=,则该四边形一定是( ).A.直角梯形B.矩形C.菱形D.正方形10.函数()sin 2cos2f x x x =-的最小正周期是( ).A.π2B.πC.2πD.4π11.设单位向量1e ,2e 的夹角为︒60,则向量1234e e +与向量1e 的夹角的余弦值是( ). A.43 B.375 C.3725 D.375 12.定义运算⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡df ce bf ae f e d c b a ,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡1514543021,已知αβ+=π,2αβπ-=,则=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡ββααααsin cos sin cos cos sin ( ). A.00⎡⎤⎢⎥⎣⎦ B.01⎡⎤⎢⎥⎣⎦ C.10⎡⎤⎢⎥⎣⎦D.11⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.︒75sin 的值为 .14.已知向量(2,4)=a ,(1,1)=b ,若向量()⊥+λb a b ,则实数λ的值是.15.︒︒︒80cos 40cos 20cos 的值为_____________________________. 16.在下列四个命题中:①函数tan()4y x π=+的定义域是{,}4x x k k π≠+π∈Z ; ②已知1sin 2α=,且[0,2]α∈π,则α的取值集合是{}6π;③函数x a x x f 2cos 2sin )(+=的图象关于直线8x π=-对称,则a 的值等于1-;④函数2cos sin y x x =+的最小值为1-.把你认为正确的命题的序号都填在横线上____________________.三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.(本小题满分10分)已知4cos()45x π+=,(,)24x ππ∈--,求xxx tan 1sin 22sin 2+-的值.18.(本小题满分12分)已知函数()sin sin()2f x x x π=++,x ∈R . (1)求)(x f 的最小正周期;(2)求)(x f 的的最大值和最小值; (3)若43)(=αf ,求α2sin 的值.19.(本小题满分12分)(1)已知函数1()sin()24f x x π=+,求函数在区间[2,2]-ππ上的单调增区间; (2)计算:)120tan 3(10cos 70tan -︒︒︒.20.(本小题满分13分)已知函数()sin()f x x ωφ=+(0>ω,0φ≤≤π)为偶函数,其图象上相邻的两个最高点之间的距离为2π.(1)求)(x f 的解析式; (2)若(,)32αππ∈-,1()33f απ+=,求5sin(2)3απ+的值.21.(本小题满分13分)已知a ,b ,c 是同一平面内的三个向量,其中)2,1(=a .(1)若||=c ,且//c a ,求c 的坐标;(2)若||=b ,且2+a b 与2-a b 垂直,求a 与b 的夹角θ.22.(本小题满分14分)已知向量33(cos ,sin )22x x =a ,(cos ,sin )22x x =-b ,且[0,]2x π∈,()2||f x =⋅-λ+a b a b (λ为常数),求:(1)⋅a b 及||+a b ; (2)若)(x f 的最小值是23-,求实数λ的值.参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.A 由诱导公式易得A 正确.2.C BC =- b a ,11()33BM BC ==- b a ,11()(2)33AM AB BM =+=+-=+ a b a b a .3.B αααααααααα222222cos sin cos 9cos sin 4sin 2cos 9cos sin 4sin 2+-+=-+10211tan 9tan 4tan 222=+-+=ααα. 4.B )()(=-=+-+=--+. 5.B x x x y 4sin 212cos 2sin ==,故是周期为2π的奇函数. 6.D 设),(y x P ,则)2,10(y x ---=,)7,2(y x ---=, −→−PN ⎩⎨⎧==⇒⎩⎨⎧--=-----=-⇒-=−→−.4,2),7(22),2(2102y x y y x x PM 7.C ⎩⎨⎧-==⇒⎩⎨⎧-=+-=+,1,3,4,2B A B A B A ππππ42)32(342=⇒=--=T T ,21422===πππωT ,623421πϕπϕπ-=⇒=+⨯. 8.A sin()sin()sin[(]sin(3336111))2232y x y y x x x πππππ=-→=→==-+--.9.C 0AB CD AB CD +=⇒=-⇒四边形ABCD 为平行四边形,()0AB AD AC DB AC DB AC -⋅=⋅=⇒⊥,对角线互相垂直的平行四边形为菱形.10.B ()sin 2cos 2)4f x x x x π=-=-,ππ==22T .11.D 1||1=e ,1||2=e ,2160cos ||||2121=︒⋅=⋅e e e e ,543)43(2121121=⋅+=⋅+e e e e e e ,37|43|21===+e e ,375|||43|cos 121121=⋅+=e e e θ.12.A ⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡002cos sin )cos()sin(sin sin cos cos sin cos cos sin sin cos sin cos cos sin ππβαβαβαβαβαβαββαααα.二、填空题(本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.) 13.426+ ︒︒+︒︒=︒+︒=︒30sin 45cos 30cos 45sin )3045sin(75sin 42621222322+=⨯+⨯=. 14.3- 30)4(2)4,2()1,1()()(-=⇒=+++=++⋅=+⋅⇒+⊥λλλλλλλ. 15.818120sin 8160sin 20sin 880cos 40cos 20cos 20sin 880cos 40cos 20cos =︒︒=︒︒︒︒︒=︒︒︒. 16.①③④ )(424Z k k x k x ∈+≠⇒+≠+πππππ,故①正确;1sin 2α=,且[0,2]6παπα∈⇒=或65πα=,故②不正确;函数)(x f 的图象关于直线8π-=x 对称1)4()0(-=⇒-=⇒a f f π,故③正确;22215cos sin 1sin sin (sin )24y x x x x x =+=-+=--+,451≤≤-y ,故④正确. 三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17.解:∵)4,2(ππ--∈x , ∴)0,4(4ππ-∈+x ,∵54)4cos(=+x π, ∴53)4sin(-=+x π,4sin)4cos(4cos)4sin(]4)4sin[(sin ππππππx x x x +-+=-+=102722542253-=⋅-⋅-=, ∴102cos =x , ∴7528sin cos )sin (cos cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22=+-=+-=+-x x x x x x xx x x x x x x .18.解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f ,(1))(x f 的最小正周期为ππ212==T ; (2))(x f 的最大值为2和最小值2-;(3)因为43)(=αf ,即167cos sin 2169)cos (sin 43cos sin 2-=⇒=+⇒=+αααααα,即1672sin -=α. 19.解:(1)由πππππk x k 2242122+≤+≤+-(Z k ∈)得ππππk x k 42423+≤≤+-(Z k ∈),当0=k 时,得223ππ≤≤-x , ]2,2[]2,23[ππππ-⊂-,且仅当0=k 时符合题意,∴函数)421sin()(π+=x x f 在区间]2,2[ππ-上的单调增区间是]2,23[ππ-. (2)︒︒-︒⋅︒⋅︒︒=-︒︒︒20cos 20cos 20sin 310cos 70cos 70sin )120tan 3(10cos 70tan ︒︒⋅︒︒-=︒︒-⋅︒⋅︒︒=20cos 20sin 70cos 70sin 20cos 10sin 210cos 70cos 70sin120cos 20sin 20sin 20cos -=︒︒⋅︒︒-=. 20.解:(1)∵图象上相邻的两个最高点之间的距离为π2,∴π2=T , 则12==Tπω, ∴)sin()(ϕ+=x x f ,∵)(x f 是偶函数, ∴)(2Z k k ∈+=ππϕ,又πϕ≤≤0, ∴2πϕ=, 则x x f cos )(=.(2)由已知得31)3cos(=+πα, ∵)2,3(ππα-∈, ∴)65,0(3ππα∈+, 则322)3sin(=+πα, ∴924)3cos()3sin(2)322sin()352sin(-=++-=+-=+παπαπαπα. 21.解:(1)设),(y x c =, ∵a c //,)2,1(=a , ∴02=-y x , ∴x y 2=,∵52||=, ∴5222=+y x , ∴2022=+y x , 即20422=+x x ,∴⎩⎨⎧==,4,2y x 或⎩⎨⎧-=-=,4,2y x∴)4,2(=或)4,2(--=(2)∵⊥+2-2, ∴)2(+0)2(=-⋅,∴023222=-⋅+b b a a , 即0||23||222=-⋅+b b a a , 又∵5||2=,45)25(||22==, ∴0452352=⨯-⋅+⨯b a , ∴25-=⋅b a , ∵5||=a ,25||=b , ∴125525||||cos -=⋅-=⋅=b a θ,∵],0[πθ∈, ∴πθ=. 22.解:(1)x xx x x 2cos 2sin 23sin 2cos 23cos=-=⋅, x x xx x x 222cos 22cos 22)2sin 23(sin )2cos 23(cos||=+=-++=+, ∵]2,0[π∈x , ∴0cos ≥x , x cos 2||=+.(2)2221)(cos 2cos 42cos )(λλλ---=-=x x x x f ,∵]2,0[π∈x , ∴1cos 0≤≤x ,①当0<λ时,当且仅当0cos =x 时,)(x f 取得最小值1-,这与已知矛盾;②当10≤≤λ,当且仅当λ=x cos 时,)(x f 取得最小值221λ--,由已知得23212-=--λ,解得21=λ; ③当1>λ时,当且仅当1cos =x 时,)(x f 取得最小值λ41-, 由已知得2341-=-λ,解得85=λ,这与1>λ相矛盾. 综上所述,21=λ为所求.。
人教版高中数学必修四第一章单元测试(一)及参考答案
人教版高中数学必修四第一章单元测试(一)及参考答案2018-201年必修四第一章训练卷三角函数(一)注意事项:1.答题前请填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上。
2.选择题请用2B铅笔将答案标号涂黑,非选择题请用签字笔直接答在答题卡上。
3.考试结束后,请将试题卷和答题卡一并上交。
一、选择题1.sin²120°等于( )A。
±33B。
2C。
±3/2D。
1/22.已知点P的坐标为(sin(3π/4)。
cos(3π/4)),则点P落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A。
π/4B。
3π/4C。
5π/4D。
7π/43.已知tanα=3/4,α∈(3π/2.2π),则cosα的值是( )A。
±4/5B。
±3/5C。
±5/4D。
±5/34.已知sin(2π-α)=4/5,α∈(2π/3.π),则sinα+cosα的值等于( )A。
1/7B。
-1/7C。
-7D。
75.已知函数f(x)=sin(2x+θ)的图象关于直线x=π/8对称,则θ可能取值是( )A。
π/2.3π/2B。
-π/4C。
4πD。
4π/36.若点P(sinα-cosα。
tanα)在第一象限,则在[0,2π)内α的取值范围是( )A。
(π/2.π)B。
(0.π/2)C。
(π/3.π/2)D。
(π/4.π/3)7.已知a是实数,则函数f(x)=1+asinax的图象不可能是( )A。
一条直线B。
一段正弦曲线C。
一段余弦曲线D。
一段正切曲线8.为了得到函数y=sin(2x+π/3)的图象向左平移π/12个单位,应该将x改为( )A。
2x+π/12B。
2x-π/12C。
2(x+π/12)D。
2(x-π/12)A.将函数y=cos2x的图象向右平移π/6个单位长度。
B.已知函数y=Asin(ωt+φ)的图象如右图所示,当t=1/100秒时,电流强度是5A。
(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
人教A版高中数学必修四测试题及答案全套
人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在0°~360°的范围内,与-510°终边相同的角是()A。
330° B。
210° C。
150° D。
30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。
-6/3 B。
-1/2 C。
16/2 D。
33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。
2 B。
2sin1 C。
2sin1 D。
sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。
x = π/4 B。
x = π/2 C。
x = -π/4 D。
x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。
sin2+cos2 B。
cos2-sin2 C。
sin2-cos2 D。
±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。
(kπ-π/2.kπ+π/2),k∈Z B。
(kπ。
(k+1)π),k∈ZC。
(kπ-4π/4.kπ+4π/4),k∈Z D。
(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。
1/3 B。
-1/3 C。
1/2 D。
-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。
3/4 B。
2 C。
1/3 D。
4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。
(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
人教A版高中数学必修四测试题及答案全套
人教A 版高中数学必修四测试题及答案全套阶段质量检测(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0°~360°的范围内,与-510°终边相同的角是( ) A .330° B .210° C .150° D .30° 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎫α+π2=( ) A .-63B .-12C.12D.633.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A .2 B.2sin 1C .2sin 1D .sin 24.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π25.化简1+2sin (π-2)·cos (π-2)得( ) A .sin 2+cos 2 B .cos 2-sin 2 C .sin 2-cos 2 D .±cos 2-sin 26.函数f (x )=tan ⎝⎛⎭⎫x +π4的单调增区间为( )A.⎝⎛⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎫k π-3π4,k π+π4,k ∈ZD.⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z7.已知sin ⎝⎛⎭⎫π4+α=32,则sin ⎝⎛⎭⎫3π4-α的值为( )A.12B .-12 C.32 D .-32 8.设α是第三象限的角,且⎪⎪⎪⎪cosα2=-cos α2,则α2的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y =cos 2x +sin x ⎝⎛⎭⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32B .2 C .0 D.3410.将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移π3个单位,得到的图象对应的解析式为( )A .y =sin 12xB .y =sin ⎝⎛⎭⎫12x -π2C .y =sin ⎝⎛⎭⎫12x -π6 D .y =sin ⎝⎛⎭⎫2x -π611.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎫2x -π4B .y =2sin ⎝⎛⎭⎫2x -π4或y =2sin ⎝⎛⎭⎫2x +3π4C .y =2sin ⎝⎛⎭⎫2x +3π4D .y =2sin ⎝⎛⎭⎫2x -3π412.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,且f ⎝⎛⎭⎫-14=-a ,那么f ⎝⎛⎭⎫94等于( ) A .a B .2a C .3a D .4a二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 14.设f (n )=cos ⎝⎛⎫n π2+π4,则f (1)+f (2)+f (3)+…+f (2 015)等于________.15.定义运算a *b 为a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数f (x )=sin x *cos x 的值域为________.16.给出下列4个命题:①函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝⎛⎭⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝⎛⎭⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 18.(12分)已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的单调递增区间. 19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象;(2)写出f (x )的值域、最小正周期、对称轴,单调区间.20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝⎛⎭⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合.21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎡⎦⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,求实数m 的取值范围.22.(12分)如图,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ⎭⎫≤π2的图象与y 轴交于点(0,3),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A ⎝⎛⎭⎫π2,0,点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=32,x 0∈⎣⎡⎦⎤π2,π时,求x 0的值.答 案1. 解析:选B 因为-510°=-360°³2+210°,因此与-510°终边相同的角是210°.2. 解析:选A ∵sin ⎝⎛⎭⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3. 解析:选B 如图,由题意知θ=1,BC =1,圆的半径r 满足sin θ=sin 1=1r ,所以r =1sin 1,弧长AB =2θ·r =2sin 1.4. 解析:选C f (x )=sin ⎝⎛⎭⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4,当k =-1时,则其中一条对称轴为x =-π4.5. 解析:选C1+2sin (π-2)·cos (π-2)=1+2sin 2·(-cos 2) =(sin 2-cos 2)2, ∵π2<2<π,∴sin 2-cos 2>0. ∴原式=sin 2-cos 2.6. 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7. 解析:选C ∵⎝⎛⎭⎫π4+α+⎝⎛⎭⎫3π4-α=π, ∴3π4-α=π-⎝⎛⎭⎫π4+α,∴sin ⎝⎛⎭⎫3π4-α=sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=32. 8. 解析:选B ∵α是第三象限的角, ∴π+2k π<α<3π2+2k π,k ∈Z .∴π2+k π<α2<3π4+k π,k ∈Z . ∴α2在第二或第四象限. 又∵⎪⎪⎪⎪cosα2=-cos α2,∴cos α2<0.∴α2是第二象限的角. 9. 解析:选A f (x )=1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54,∵-π6≤x ≤π6, ∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10. 解析:选C 将函数y =sin ⎝⎛⎭⎫x -π3的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即将x 变为12x ,即可得y =sin ⎝⎛⎭⎫12x -π3,然后将其图象向左平移π3个单位,即将x 变为x +π3.∴y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +π3-π3=sin ⎝⎛⎭⎫12x -π6.11. 解析:选C 由图象可知A =2,因为π8-⎝⎛⎭⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝⎛⎭⎫-π8·2+φ=2,即sin ⎝⎛⎭⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎫2x +3π4.12. 解析:选A 由f ⎝⎛⎭⎫x -12=f ⎝⎛⎭⎫x +12,得f (x +1)=f ⎝⎛⎭⎫⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ), 即1是f (x )的周期.而f (x )为奇函数, 则f ⎝⎛⎭⎫94=f ⎝⎛⎭⎫14=-f ⎝⎛⎭⎫-14=a . 13. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32, 所以cos α-sin α=-1+32.答案:-1+3214. 解析:f (n )=cos ⎝⎛⎭⎫n π2+π4的周期T =4,且f (1)=cos ⎝⎛⎭⎫π2+π4=cos 3π4=-22,f (2)=cos ⎝⎛⎭⎫π+π4=-22,f (3)=cos ⎝⎛⎭⎫3π2+π4=22, f (4)=cos ⎝⎛⎭⎫2π+π4=22.所以f (1)+f (2)+f (3)+f (4)=0, 所以f (1)+f (2)+f (3)+…+f (2 015) =f (1)+f (2)+f (3)=-22. 答案:-2215. 解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎡⎦⎤-1,22. 答案:⎣⎡⎦⎤-1,22 16. 解析:函数y =sin ⎝⎛⎭⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π12的最小正周期为π2,故①正确.对于②,当x =7π12时,2sin ⎝⎛⎭⎫3³7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确.对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝⎛⎭⎫23,3长度73>2π3,显然④错误. 答案:①②③17. 解:由tan αtan α-1=-1,得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=12-312+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos α+2(cos 2α+sin 2α) =3sin 2α+sin αcos α+2cos 2αsin 2α+cos 2α=3tan 2α+tan α+2tan 2α+1=3⎝⎛⎭⎫122+12+2⎝⎛⎭⎫122+1=135.18. 解:(1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13³5π4-π6=2sin π4=2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝⎛⎭⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19. 解:(1)列表如下:描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤π4+2k π,5π4+2k π(k ∈Z ).20. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎫πx +π6的单调递增区间为⎣⎡⎦⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21. 解:(1)由题意,A =3,T =2⎝⎛⎭⎫7π12-π12=π,ω=2πT =2. 由2³π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝⎛⎭⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝⎛⎫2x +π3=m -16在⎣⎡⎤-π3,π6上有两个根.因为x ∈⎣⎡⎦⎤-π3,π6,所以2x +π3∈⎣⎡⎦⎤-π3,2π3.所以m -16∈⎣⎡⎭⎫32,1.所以m ∈[33+1,7).22. 解:(1)把(0,3)代入y =2cos(ωx +θ)中, 得cos θ=32. ∵0≤θ≤π2,∴θ=π6.∵T =π,且ω>0,∴ω=2πT =2ππ=2.(2)∵点A ⎝⎛⎭⎫π2,0,Q (x 0,y 0)是P A 的中点,y 0=32,∴点P 的坐标为⎝⎛⎭⎫2x 0-π2,3.∵点P 在y =2cos ⎝⎛⎭⎫2x +π6的图象上,且π2≤x 0≤π,∴cos ⎝⎛⎭⎫4x 0-5π6=32,且7π6≤4x 0-5π6≤19π6. ∴4x 0-5π6=11π6或4x 0-5π6=13π6.∴x 0=2π3或x 0=3π4.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),=( )2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)3.已知平面向量a =(1,-3),b =(4,-2),若λa +b 与a 垂直,则λ的值是( ) A .-1 B .1 C .-2 D .24.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2A.12 B .-12 C.32 D .-326.已知向量满足:|a |=2,|b |=3,|a -b |=4,则|a +b |=( ) A. 6 B.7 C.10 D.11A .内心B .外心C .垂心D .重心8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( ) A .0 B.π4 C.π2 D.3π49.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设=a ,=b ,则等于( )A.43a +23b B.23a +43b C.23a -43b D .-23a +43bA.⎝⎛⎭⎫0,π3B.⎝⎛⎭⎫π3,5π6C.⎝⎛⎭⎫π2,2π3D.⎝⎛⎭⎫2π3,5π611.已知a =(-1,3),=a -b ,=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积是( )A. 3 B .2 C .2 2 D .412.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1) 二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a =(2x +3,2-x ),b =(-3-x ,2x )(x ∈R ).则|a +b |的取值范围为________. 14.设e 1,e 2为两个不共线的向量,若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ等于________. 15.在边长为2的菱形ABCD 中,∠BAD =60°,E 为CD 的中点,则=________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R . (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.18.(12分)设向量a =(cos α,sin α)(0≤α<2π),b =⎝⎛⎭⎫-12,32,且a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若向量3a +b 与a -3b 的模相等,求角α. 19.(12分)如图,平行四边形ABCD 中,=a ,=b ,H ,M 是AD ,DC 的中点,BF =13BC ,(1)以a ,b 为基底表示向量(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求20.(12分)在边长为1的正△ABC 中,AD 与BE 相交于点F .21.(12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝⎛⎭⎫0≤θ≤π2.22.(12分)已知e 1,e 2是平面内两个不共线的非零向量,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若e 1=(2,1),e 2=(2,-2),求的坐标;(3)已知D (3,5),在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.答 案1. 解析:选B ∵==.2. 解析:选B ∵a ∥b ,∴-21=m2,∴m =-4,∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 3. 解析:选A 由题意可知(λa +b )·a =λa 2+b ·a =0. ∵|a |=10,a ·b =1³4+(-3)³(-2)=10, ∴10λ+10=0,λ=-1.4. 解析:选B 由于(a -b )⊥a ,所以(a -b )·a =0,即|a|2-a ·b =0,所以a ·b =|a|2=2,所以 cos 〈a ,b 〉=a ·b |a||b|=222=22,即a 与b 的夹角是π4. 5.6. 解析:选C 由题意|a -b |2=a 2+b 2-2a ·b =16, ∴a ·b =-32.∴|a +b |2=a 2+b 2+2a ·b =10, ∴|a +b |=10. 7.∴P 是△ABC 的垂心.8. 解析:选C 由题意知b -c =(-3,1-y ),a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2³1+1³2=0, ∴b ⊥c . 9.10.11. 解析:选D 由题意||=||且⊥,所以(a -b )2=(a +b )2且(a -b )·(a +b )=0, 所以a ·b =0,且a 2=b 2, 所以|a |=|b |=2,所以S △AOB =12||·||=12(a -b )2(a +b )2=12(a 2+b 2)2=4. 12. 解析:选A 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0. 由于对任意m =(a ,b ), 都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0. 所以p =(1,0).故选A.13. 解析:因为a +b =(x ,x +2), 所以|a +b |=x 2+(x +2)2=2x 2+4x +4 =2(x +1)2+2≥2, 所以|a +b |∈[2,+∞). 答案:[2,+∞)14. 解析:因为a ,b 共线,所以由向量共线定理知,存在实数k ,使得a =k b , 即e 1+λe 2=-k (2e 1-3e 2)=-2k e 1+3k e 2 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧1=-2k ,λ=3k ,解得λ=-32.答案:-3215. 解析:以A 为原点,AB 所在的直线为x 轴,过A 且垂直于AB 的直线为y 轴建立平面直角坐标系.则由A (0,0),B (2,0),E (2,3),D (1,3,可得=1.答案:1 16.答案:[1,4]17. 解:(1)若a ⊥b ,则a ·b =(1,x )·(2x +3,-x ) =1³(2x +3)+x (-x )=0.整理得x 2-2x -3=0,解得x =-1或x =3. (2)若a ∥b ,则有1³(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2. 当x =0时,a =(1,0),b =(3,0), ∴a -b =(-2,0),|a -b |=2;当x =-2时,a =(1,-2),b =(-1,2), ∴a -b =(2,-4),∴|a -b |=4+16=2 5. 综上所述,|a -b |为2或2 5.18. 解:(1)证明:由题意,得a +b =⎝⎛⎭⎫cos α-12,sin α+32,a -b =⎝⎛⎭⎫cos α+12,sin α-32,因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为向量3a +b 与a -3b 的模相等, 所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0,因为|a |=1,|b |=⎝⎛⎭⎫-122+⎝⎛⎭⎫322=1,所以|a |2=|b |2,所以a ·b =0, 所以-12cos α+32sin α=0,所以tan α=33, 又因为0≤α<2π, 所以α=π6或α=7π6.19. 解:(1)∵M 为DC 的中点,(2)由已知得a ·b =3³4³cos 120°=-6,=12a 2+⎝⎛⎭⎫1-112a ·b -16b 2 =12³32+1112³(-6)-16³42 =-113.20. 解:(1)由题意,D 为BC 边的中点,而△ABC 是正三角形,所以AD ⊥BC ,=12(a +b )·⎝⎛⎭⎫23b -a =13b 2-12a 2-16a ·b =13-12-16³1³1³12=-14.根据平面向量的基本定理有⎩⎪⎨⎪⎧-λ-22(λ+1)=-μ,λ2(λ+1)=2μ3,解得λ=4. 21.∴t =-2k sin θ+16.∵t sin θ=(-2k sin θ+16)sin θ =-2k ⎝⎛⎭⎫sin θ-4k 2+32k , ∵k >4,∴1>4k>0,当sin θ=4k 时,t sin θ取最大值为32k .由32k =4,得k =8,此时θ=π6,=(4,8),∴·=(8,0)·(4,8)=32.22. 解:(1)=(2e 1+e 2)+(-e 1+λe 2)=e 1+(1+λ)e 2.∵A ,E ,C 三点共线, ∴存在实数k ,使得,即e 1+(1+λ)e 2=k (-2e 1+e 2),得(1+2k )e 1=(k -1-λ)e 2.∵e 1,e 2是平面内两个不共线的非零向量,∴⎩⎪⎨⎪⎧1+2k =0,λ=k -1,解得k =-12,λ=-32.(2)=-3e 1-12e 2=(-6,-3)+(-1,1)=(-7,-2).(3)∵A ,B ,C ,D 四点按逆时针顺序构成平行四边形,即点A 的坐标为(10,7).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2cos 2x2+1的最小正周期是( )A .4πB .2πC .π D.π22.sin 45°²cos 15°+cos 225°²sin 15°的值为( ) A .-32B .-12C.12D.323.已知α是第二象限角,且cos α=-35,则cos ⎝⎛⎭⎫π4-α的值是( )A.210B .-210C.7210D .-72104.若sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( ) A .-79B .-13C.13D.795.已知tan(α+β)=14,tan α=322,那么tan(2α+β)等于( )A.25B.14C.1318D.1322 6.1-3tan 75°3+tan 75°的值等于( )A .2+3B .2-3C .1D .-17.在△ABC 中,已知tan A +B2=sin C ,则△ABC 的形状为( )A .正三角形B .等腰三角形C .直角三角形D .等腰直角三角形8.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( )A.32B .-32C .±32D .±129.若函数g (x )=a sin x cos x (a >0)的最大值为12,则函数f (x )=sin x +a cos x 的图象的一条对称轴方程为( )A .x =0B .x =-3π4C .x =-π4D .x =-5π410.已知tan α,tan β是方程x 2+33x +4=0的两个根,且-π2<α<π2,-π2<β<π2,则α+β为( )A.π6 B .-2π3C.π6或-5π6 D .-π3或2π311.设a =22(sin 17°+cos 17°),b =2cos 213°-1,c =sin 37°²sin 67°+sin 53°sin 23°,则( ) A .c <a <b B .b <c <aC .a <b <cD .b <a <c12.在△ABC 中,A ,B ,C 是其三个内角,设f (B )=4sin B ²cos 2⎝⎛⎭⎫π4-B 2+cos 2B ,当f (B )-m <2恒成立时,实数m 的取值范围是( )A .m <1B .m >-3C .m <3D .m >1二、填空题(本大题共4小题,每小题5分,共20分)13.已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan 2α=________. 14.已知等腰△ABC 的腰为底的2倍,则顶角A 的正切值是________.15.已知θ∈⎝⎛⎭⎫π2,π,1sin θ+1cos θ=22,则sin ⎝⎛⎭⎫2θ+π3的值为________. 16.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分 )已知cos θ=1213,θ∈(π,2π),求sin ⎝⎛⎭⎫θ-π6以及tan ⎝⎛⎭⎫θ+π4的值. 18.(12分)已知函数f (x )=sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0. 19.(12分)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.20.(12分)已知f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2.(1)若f (α)=22,α∈⎝⎛⎭⎫-π2,0,求α的值; (2)若sin x 2=45,x ∈⎝⎛⎭⎫π2,π,求f (x )的值. 21.(12分)已知函数f (x )=cos 2x 2-sin x 2cos x 2-12. (1)求函数f (x )的最小正周期和值域;(2)若f (α)=3210,求sin 2α的值. 22.(12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ).(1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)若f (x 0)=65,x 0∈⎣⎡⎦⎤π4,π2,求cos 2x 0的值.答 案1. 解析:选B ∵y =2cos 2x 2+1=⎝⎛⎭⎫2cos 2 x 2-1+2=cos x +2, ∴函数的最小正周期T =2π.2. 解析:选C sin 45°cos 15°+cos 225°sin 15°=sin 45°cos 15°-cos 45°sin 15°=sin(45°-15°)=sin 30°=12. 3. 解析:选A 由题意,sin α=45, cos ⎝⎛⎭⎫π4-α=cos π4cos α+sin π4sin α=210. 4. 解析:选A cos(2π3+2α)=cos[π-2(π6-α)]=-cos[2(π6-α)]=2sin 2⎝⎛⎭⎫π6-α-1=-79. 5. 解析:选A tan(2α+β)=tan (α+β)+tan α1-tan (α+β)tan α=25. 6. 解析:选D 1-3tan 75°3+tan 75°=33-tan 75°1+33tan 75° =tan 30°-tan 75°1+tan 30°·tan 75°=tan(30°-75°) =tan(-45°)=-1.7. 解析:选C 在△ABC 中,tan A +B 2=sin C =sin(A +B )=2sin A +B 2cos A +B 2,∴2cos 2A +B 2=1,∴cos(A +B )=0,从而A +B =π2,即△ABC 为直角三角形.8. 解析:选B 由sin θ-cos θ=22两边平方得,sin 2θ=12,又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ,所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B. 9. 解析:选B g (x )=a 2sin 2x (a >0)的最大值为12, 所以a =1,f (x )=sin x +cos x =2sin ⎝⎛⎭⎫x +π4, 令x +π4=π2+k π,k ∈Z 得x =π4+k π,k ∈Z .故选B. 10. 解析:选B 由题意得⎩⎨⎧tan α+tan β=-33,tan α·tan β=4>0, 所以tan α<0,tan β<0, 所以-π2<α<0,-π2<β<0,-π<α+β<0. 又tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. 所以α+β=-2π3.故选B. 11. 解析:选A a =cos 45°sin 17°+sin 45°cos 17°=sin 62°,b =cos 26°=sin 64°,c =sin 37°cos 23°+cos 37°sin 23°=sin 60°,故c <a <b .12. 解析:选D f (B )=4sin B cos 2⎝⎛⎭⎫π4-B 2+cos 2B =4sin B ·1+cos ⎝⎛⎭⎫π2-B 2+cos 2B =2sin B (1+sin B )+(1-2sin 2B )=2sin B +1.∵f (B )-m <2恒成立,∴2sin B +1-m <2恒成立,即m >2sin B -1恒成立.∵0<B <π,∴0<sin B ≤1.∴-1<2sin B -1≤1,故m >1.13. 解析:因为sin α=55,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-255. 所以tan α=sin αcos α=-12,所以tan 2α=2tan α1-tan 2α=-11-14=-43. 答案:-4314. 解析:由题意,sin A 2=14,∴cos A 2=154, ∴tan A 2=1515.∴tan A =2tan A 21-tan 2A 2=157. 答案:157 15. 解析:由已知条件可得sin ⎝⎛⎭⎫θ+π4=sin 2θ, 又θ∈⎝⎛⎭⎫π2,π,由三角函数图象可知θ+π4+2θ=3π, 即θ=11π12,sin ⎝⎛⎭⎫2θ+π3=sin 13π6=12. 答案:1216. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin(α+π6)=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=22³1725=17250. 答案:1725017. 解:因为cos θ=1213,θ∈(π,2π), 所以sin θ=-513,tan θ=-512, 所以sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-513³32-1213³12=-53+1226, tan ⎝⎛⎭⎫θ+π4=tan θ+tanπ41-tan θtan π4=-512+11-⎝⎛⎭⎫-512³1=717. 18. 解:(1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+sin ⎝⎛⎭⎫x -3π4+π2 =sin ⎝⎛⎭⎫x -π4+sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.(2)证明:由已知得cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴[f (β)]2-2=4sin 2π4-2=0. 19. 解:(1)由|a|2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,及|a |=|b |,得4sin 2x =1.又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈⎣⎡⎦⎤0,π2时,sin ⎝⎛⎭⎫2x -π6取最大值1,此时f (x )取得最大值,最大值为32. 20. 解:(1)f (x )=sin x +2sin ⎝⎛⎭⎫π4+x 2cos ⎝⎛⎭⎫π4+x 2 =sin x +sin ⎝⎛⎭⎫x +π2=sin x +cos x =2sin ⎝⎛⎭⎫x +π4. 由f (α)=22,得2sin ⎝⎛⎭⎫α+π4=22,∴sin ⎝⎛⎭⎫α+π4=12. ∵α∈⎝⎛⎭⎫-π2,0,∴α+π4∈⎝⎛⎭⎫-π4,π4. ∴α+π4=π6,∴α=-π12. (2)∵x ∈⎝⎛⎭⎫π2,π,∴x 2∈⎝⎛⎭⎫π4,π2. 又∵sin x 2=45,∴cos x 2=35. ∴sin x =2sin x 2cos x 2=2425, cos x =-1-sin 2x =-725. ∴f (x )=sin x +cos x =2425-725=1725. 21. 解:(1)f (x )=cos 2x 2-sin x 2cos x 2-12=12(1+cos x )-12sin x -12=22cos ⎝⎛⎭⎫x +π4.所以f (x )的最小正周期为2π,值域为⎣⎡⎦⎤-22,22. (2)由(1)知f (α)=22cos ⎝⎛⎭⎫α+π4=3210, 所以cos ⎝⎛⎭⎫α+π4=35. 所以sin 2α=-cos ⎝⎛⎭⎫π2+2α=-cos 2⎝⎛⎭⎫α+π4 =1-2cos 2⎝⎛⎭⎫α+π4=1-1825=725. 22. 解:(1)由f (x )=23sin x cos x +2cos 2x -1,得f (x )=3(2sin x cos x )+(2cos 2x -1)=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. ∴函数f (x )的最小正周期为π.∵f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎝⎛⎦⎤π6,π2上为减函数,又f (0)=1,f ⎝⎛⎭⎫π6=2, f ⎝⎛⎭⎫π2=-1,∴函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)由(1)可知f (x 0)=2sin ⎝⎛⎭⎫2x 0+π6. 又∵f (x 0)=65,∴sin ⎝⎛⎭⎫2x 0+π6=35. 由x 0∈⎣⎡⎦⎤π4,π2,得2x 0+π6∈⎣⎡⎦⎤2π3,7π6. 从而cos ⎝⎛⎭⎫2x 0+π6=- 1-sin 2⎝⎛⎭⎫2x 0+π6=-45. ∴cos 2x 0=cos ⎣⎡⎦⎤⎝⎛⎭⎫2x 0+π6-π6 =cos ⎝⎛⎭⎫2x 0+π6cos π6+sin ⎝⎛⎭⎫2x 0+π6sin π6 =3-4310.。
高中数学必修四期末试题和答案解析
必修四期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.sin 150°的值等于( ). A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ). A .2B .3C .4D .53.在0到2?范围内,与角-34π终边相同的角是( ). A .6πB .3πC .32π D .34π 4.若cos ?>0,sin ?<0,则角 ??的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°s in 40°的值等于( ). A .41B .23 C .21D .43 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ). A .= B .-= C .+= D .+=7.下列函数中,最小正周期为 ??的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ). A .10B .5C .-25 D .-109.若tan ?=3,tan ?=34,则tan(?-?)等于( ). A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-111.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥BC ,那么c 的值是( ). A .-1B .1C .-3D .3BAC (第6题)12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos x B .y =sin x C .y =tan xD .y =sin(x -3π) 13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ). A .254B .257 C .2512 D .2524 14.设向量a =(m ,n ),b =(s ,t ),定义两个向量a ,b 之间的运算“⊗”为a ⊗b =(ms ,nt ).若向量p =(1,2),p ⊗q =(-3,-4),则向量q 等于( ).A .(-3,-2)B .(3,-2)C .(-2,-3)D .(-3,2)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 ??的终边经过点P (3,4),则cos ??的值为 .16.已知tan ?=-1,且 ?∈[0,?),那么 ??的值等于 .17.已知向量a =(3,2),b =(0,-1),那么向量3b -a 的坐标是 .18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin(?t +?)+b (其中2π<?<?),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的 函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<?<2π,sin ?=54.(1)求tan ??的值; (2)求cos 2?+sin ⎪⎭⎫ ⎝⎛2π + α的值.(第18题)20.(本小题满分10分)已知非零向量a ,b 满足|a |=1,且(a -b )·(a +b )=21. (1)求|b |;(2)当a ·b =21时,求向量a 与b 的夹角 ??的值.21.(本小题满分10分) 已知函数f (x )=sin ?x (?>0).(1)当 ?=?时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ??的值.期末测试题参考答案一、选择题: 1.A解析:sin 150°=sin 30°=21. 2.B=0+9=3. 3.C解析:在直角坐标系中作出-34π由其终边即知. 4.D解析:由cos ?>0知,??为第一、四象限或 x 轴正方向上的角;由sin ?<0知,??为第三、四象限或y 轴负方向上的角,所以 ??的终边在第四象限.5.B解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 6.C解析:在平行四边形ABCD 中,根据向量加法的平行四边形法则知+=. 7.B 解析:由T =ωπ2=?,得 ?=2.8.D解析:因为a ∥b ,所以-2x =4×5=20,解得x =-10. 9.D解析:tan(?-?)=βαβαtan tan +1tan -tan =4+134-3=31. 10.B解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.11.D解析:易知=(2,2),=(-1,c -2),由⊥,得2×(-1)+2(c -2)=0,解得c =3.12.A解析:画出函数的图象即知A 正确. 13.D解析:因为0<A <2π,所以sin A =54=cos -12A ,sin 2A =2sin A cos A =2524.14.A解析:设q =(x ,y ),由运算“⊗”的定义,知p ⊗q =(x ,2y )=(-3,-4),所以q =(-3,-2).二、填空题: 15.53. 解析:因为r =5,所以cos ?=53. 16.43π. 解析:在[0,?)上,满足tan ?=-1的角 ??只有43π,故 ?=43π. 17.(-3,-5).解析:3b -a =(0,-3)-(3,2)=(-3,-5). 18.20;y =10sin(8πx +43π)+20,x ∈[6,14]. 解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin(?x +?)+b 的半个周期的图象,所以A =21(??-??)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ?=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<?<?,可得 ?=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题: 19.解:(1)因为0<?<2π,sin ?=54, 故cos ?=53,所以tan ?=34.(2)cos 2?+sin ⎪⎭⎫ ⎝⎛α + 2π=1-2sin 2? +cos ?=?-2532+53=258.20.解:(1)因为(a -b )·(a +b )=21,即a 2-b 2=21, 所以|b |2=|a |2-21=1-21=21,故|b |=22.(2)因为cos ?=ba ba ·=22,故 ?=??°.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32π?=0,所以32π?=k ?,k ∈Z .即 ?=23k ,k ∈Z .又?>0,所以k ∈N*. 当k =1时,?=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,?≥3,f (x )=sin ?x 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,?=23.。
(典型题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)(1)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.函数()2cos 3⎛⎫=+ ⎪⎝⎭πf x x 在[]0,π的单调递增区间是( ) A .20,3π⎡⎤⎢⎥⎣⎦B .2,33ππ⎡⎤⎢⎥⎣⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .2π,π33.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 4.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .D .5.将函数()sin 25f x x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度后得到函数()y g x =的图象,对于函数()y g x =有以下四个判断: ①该函数的解析式为2sin 210y x π⎛⎫=+ ⎪⎝⎭; ②该函数图象关于点,02π⎛⎫⎪⎝⎭对称; ③该函数在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增; ④该函数在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增. 其中,正确判断的序号是( ) A .②③B .①②C .②④D .③④6.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦7.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .8.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭9.使函数()3)cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π 10.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.如图,摩天轮是一种大型转轮状的机械建筑设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周景色.某摩天轮最高点距离地面高度为120m ,转盘直径为110m 设置有48个座舱,开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,转一周大约需要20min .游客甲坐上摩天轮的座舱,开始转动t min 后距离地面的高度为H m ,则在转动一周的过程中,高度H 关于时间t 的函数解析式是( )A .()55cos 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭B .()55sin 65020102H t t ππ⎛⎫=-+≤≤ ⎪⎝⎭C .()55cos 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭D .()55sin 65020102H t t ππ⎛⎫=++≤≤ ⎪⎝⎭12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.已知3()tan 1f x a x x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.14.已知定义在R 上的函数()f x 满足:()()2f x f x π+=,且当[]0,x π∈时,()sin f x x =.若对任意的(],x m ∈-∞,都有()2f x ≤,则实数m 的取值范围是______. 15.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .16.若函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π)的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为________. 17.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________.18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.20.将函数()sin (0)f x x ωω=>的图象向右平移6π个单位长度,得到函数()y g x =的图像,若()y g x =是偶函数,则ω的最小值为________.三、解答题21.已知函数()12sin 26x f x π⎛⎫=+⎪⎝⎭,x ∈R .(1)用“五点法”画出函数()f x 一个周期内的图象; (2)求函数()f x 在[],ππ-内的值域; (3)若将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象,求函数()g x 在[],ππ-内的单调增区间.22.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.23.已知向量a =(cosωx -sinωx ,sinωx),b =(-cosωx -sinωx,2cosωx).设函数f(x)=a b ⋅+λ(x ∈R)的图象关于直线x =π对称,其中ω,λ为常数,且ω∈1,12⎛⎫⎪⎝⎭.(1)求函数f(x)的最小正周期; (2)若y =f(x)的图象经过点,04π⎛⎫⎪⎝⎭,求函数f(x)在区间30,5π⎡⎤⎢⎥⎣⎦上的取值范围 24.已知函数()()()f x g x h x =,其()22g x x =,()h x =_____. (1)写出函数()f x 的一个周期(不用说明理由); (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值和最小值. 从①cos 4x π⎛⎫+⎪⎝⎭,②2sin 24x π⎛⎫- ⎪⎝⎭这两个条件中任选一个,补充在上面问题中并作答, 注:如果选择多个条件分别解答.按第一个解答计分. 25.已知sin(3)(),cos x f x x R xπ-=∈(1)若α为第三象限角,且3sin 5α=-,求()f α的值. (2)若,34x ππ⎡⎤∈-⎢⎥⎣⎦,且21()2()1cos g x f x x =++,求函数()g x 的最小值,并求出此时对应的x 的值.26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值,所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=- ⎪⎝⎭,代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.C解析:C 【分析】先求出函数的单调增区间,再给k 取值即得解. 【详解】 令22223+<+<+ππk πx πk π(k ∈Z ) ∴42233+<<+ππk πx k π(k ∈Z ), 所以函数的单调递增区间为4[2,2]33ππk πk π++(k ∈Z ), 当1k =-时,5233ππx -<<- 当0k =时,433x ππ<<又∵[]0,x π∈, 故选:C 【点睛】方法点睛:求三角函数()cos()f x A wx ϕ=+的单调区间,一般利用复合函数的单调性原理解答:首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.3.B解析:B 【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B 的纵坐标满足的关系式,则吊舱到底面的距离为点B 的纵坐标减2. 【详解】如图所示,以点M 为坐标原点,以水平方向为x 轴,以OM 所在直线为y 轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.4.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.5.A解析:A 【分析】根据函数平移变换得sin 2y x =,再根据正弦函数的性质依次讨论即可得答案. 【详解】解:由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知: 将sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后 解析式为sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,选项①错误; 令2x k =π,k Z ∈,求得2k x =π,k Z ∈, 故函数的图象关于点,02k ⎛⎫⎪⎝⎭π对称, 令1k =,故函数的图象关于点,02π⎛⎫⎪⎝⎭对称,选项②正确; 则函数的单调递增区间满足:222()22k x k k Z ππππ-≤≤+∈,即()44k x k k Z ππππ-≤≤+∈,令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项③正确,④错误.故选:A. 【点睛】本题考查三角函数平移变换,正弦型函数的单调区间,对称中心等,考查运算求解能力,解题的易错点在于平移变换时,当1ω≠时,须将ω提出,平移只针对x 进行平移,具体的在本题中,sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度之后得sin 2sin 2105y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,而不是sin 2sin 251010y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,是中档题. 6.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=- ⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 7.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.8.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增, 因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.9.B解析:B 【解析】1())cos(2))cos(2))2sin(2)26f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
高中数学必修四训练题(1)
高中数学《必修4》训练题(1)一、选择题:1.sin 150°的值等于( ).A .21B .-21 C .23 D .-23 2.已知=(3,0)等于( ).A .2B .3C .4D .53.在0到2π范围内,与角-34π终边相同的角是( ). A .6π B .3πC .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ).A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ).A .41B .23 C .21 D .43 6.如图,在平行四边形ABCD 中,下列结论中正确的是( ).A .AB = B .AB -=BDC .+AB =D .+=0 7.下列函数中,最小正周期为 π 的是( ).A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 8.已知向量a =(4,-2),向量b =(x ,5),且a ∥b ,那么x 等于( ).A .10B .5C .-25 D .-109.若tan α=3,tan β=34,则tan (α-β)等于( ). A .-3B .3C .-31D .3110.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 11.已知△ABC 三个顶点的坐标分别为A (-1,0),B (1,2),C (0,c ),若⊥,那么c 的值是( ).C (第6题)A .-1B .1C .-3D .312.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos x B .y =sin x C .y =tan xD .y =sin (x -3π) 13.已知0<A <2π,且cos A =53,那么sin 2A 等于( ).A .254 B .257 C .2512 D .252414.-215°是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 15.角α的终边过点P (4,-3),则αcos 的值为 ( ) A.4 B.-3C.54 D.53- 16.若0cos sin <αα,则角α的终边在A.第二象限B.第四象限C.第二、四象限D.第三、四象限 17.函数x x y 22sin cos -=的最小正周期是 ( ) A.πB.2πC.4πD.π218.给出下面四个命题:① 0=+BA AB ;②AC C =+B AB ;③BC AC =-AB ; ④00=⋅。
高中数学必修四各章节练习题(附带答案解析)
1.已知中学生一节课的上课时间一般是45分钟,那么,经过一节课,分针旋转形成的角是( )A .120°B .-120°C .270°D .-270°解析:分针旋转形成的角是负角,每60分钟转动一周,所以一节课45分钟分针旋转形成的角是-360°×4560=-270°.答案:D2.下列叙述正确的是( )A .第一或第二象限的角都可作为三角形的内角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:-330°角是第一象限角,但不能作为三角形的内角,故A 错;280°角是第四象限角,它是正角,故C 错;-100°角是第三象限角,它比钝角小,故D 错.答案:B3.若α是第四象限角,则180°-α是第________象限角. 解析:∵角α与角-α的终边关于x 轴对称, 又∵角α的终边在第四象限,∴角-α终边在第一象限,又角-α与180°-α的终边关于原点对称,∴角180°-α的终边在第三象限. 答案:三4.在0°~360°范围内:与-1 000°角终边相同的最小正角是________,是第________象限角.解析:-1 000°=-3×360°+80°,∴与-1 000°角终边相同的最小正角是80°,为第一象限角. 答案:80° 一5.在角的集合{α|α=k ·90°+45°,k ∈Z }中, (1)有几种终边不相同的角?(2)若-360°<α<360°,则集合中的α共有多少个?解:(1)在给定的角的集合中终边不相同的角共有四种,分别是与45°、135°、-135°、-45°终边相同的角.(2)令-360°<k ·90°+45°<360°,得-92<k <72. 又∵k ∈Z ,∴k =-4,-3,-2,-1,0,1,2,3, ∴满足条件的角共有8个.1.下列命题中,正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧C .1弧度是长度等于半径的弧所对的圆心角D .1弧度是1度的弧与1度的角之和解析:利用弧度的概念可直接推得C 为正确选项. 答案:C2.2 100°化成弧度是( ) A.35π3 B .10π C.28π3D.25π3解析:2 100°=2 100×π180=35π3. 答案:A3.若扇形的圆心角为60°,半径为6,则扇形的面积为________. 解析:扇形的面积S =12|α|r 2=12×π3×62=6π. 答案:6π4.若θ角的终边与8π5角的终边相同,在[0,2π)内与θ4角的终边相同的角是________.解析:由题设知θ=2k π+8π5,k ∈Z ,则θ4=k π2+2π5,k ∈Z . ∴当k =0时,θ4=2π5; 当k =1时,θ4=9π10; 当k =2时,θ4=7π5; 当k =3时,θ4=19π10. 答案:2π5,9π10,7π5,19π105.已知α=-800°.(1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α的终边在第几象限;(2)求 γ角,使γ与α角的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.解:(1)∵-800°=-3×360°+280°,280°=14π9, ∴α=14π9+(-3)×2π,α角与14π9的终边相同, ∴α是第四象限角.(2)∵与α角终边相同的角为2k π+α,k ∈Z ,α与14π9终边相同, ∴γ=2k π+14π9,k ∈Z .又∵γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2, 当k =-1时,不等式成立, ∴γ=-2π+14π9=-4π9.1.有下列说法:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-xx 2+y2, 其中不正确的个数为( ) A .0 B .1 C .2 D .3答案:D2.若点P 的坐标是(sin2,cos2),则点P 位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案:D3.sin420°=________.答案:324.使得lg(cos αtan α)有意义的角α是第________象限角. 解析:要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.答案:一或二 5.求下列各式的值.(1)sin1 470°;(2)cos 9π4;(3)tan(-116π). 解:(1)sin1 470°=sin(4×360°+30°)=sin30°=12. (2)cos 9π4=cos(2π+π4)=cos π4=22. (3)tan(-11π6)=tan(-2π+π6)=tan π6=33.1.已知角α的正弦线的长度为单位长度,那么角α的终边( ) A .在x 轴上 B .在y 轴上 C .在直线y =x 上 D .在直线y =-x 上答案:B2.已知11π6的正弦线为MP ,正切线为AT ,则有( ) A .MP 与AT 的方向相同 B .|MP |=|AT | C .MP >0,AT <0D .MP <0,AT >0 解析:三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan 11π6<0.答案:A3.若角α的正弦线的长度为12,且方向与y 轴的正方向相反,则sin α的值为________.答案:-124.函数y =lg(sin x -cos x )的定义域为________.解析:利用三角函数线,如下图,MN 为正弦线,OM 为余弦线,要使sin x ≥cos x ,即MN ≥OM ,则π4≤x ≤54π,(在[0,2π]内).∴定义域为{x |π4+2k π≤x ≤54π+2k π,k ∈Z }. 答案:{x |π4+2k π≤x ≤54π+2k π,k ∈Z }5.在单位圆中画出满足cos α=12的角α的终边,并写出α组成的集合.解:如图所示,作直线x =12交单位圆于M ,N ,连接OM ,ON ,则OM ,ON 为α的终边.由于cos π3=12,cos 5π3=12,则M 在π3的终边上,N 在5π3的终边上,则α=π3+2k π或α=5π3+2k π,k ∈Z . 所以α组成的集合为S =⎩⎨⎧⎭⎬⎫αα=π3+2k π或α=5π3+2k π,k ∈Z .1.已知α是第二象限角,sin α=513,则cos α=( ) A .-1213 B .-513 C.513D.213解析:因为α是第二象限角,所以cos α<0, 故cos α=-1-sin 2α=-1-(513)2=-1213.答案:A2.已知cos α-sin α=-12,则sin αcos α的值为( ) A.38 B .±38 C.34D .±34解析:由已知得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38,故选A.答案:A3.若sin θ=-45,tan θ>0,则cos θ=________.解析:由已知得θ是第三象限角,所以cos θ=-1-sin 2θ=-1-(-45)2=-35. 答案:-354.已知tan α=3,则2sin 2α+4sin αcos α-9cos 2α的值为________. 解析:原式=2sin 2α+4sin αcos α-9cos 2αsin 2α+cos 2α=2tan 2α+4tan α-9tan 2α+1 =2×32+4×3-932+1=2110.答案:21105.若π2<α<π,化简cos α1-cos 2α+sin α1-sin 2α1-cos 2α.解:因为π2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos αsin α=0.1.cos(-20π3)等于( ) A.12 B.32 C .-12D .-32解析:cos(-20π3)=cos 20π3 =cos(6π+2π3)=cos 2π3=-12. 答案:C2.sin600°+tan240°的值是( ) A .-32 B.32 C .-12+ 3 D.12+3 解析:sin600°+tan240°=sin(360°+240°)+tan(180°+60°) =sin240°+tan60°=sin(180°+60°)+tan60° =-sin60°+tan60°=-32+3=32. 答案:B3.已知sin(45°+α)=513,则sin(135°-α)=________.解析:sin(135°-α)=sin[180°-(45°+α)] =sin(45°+α)=513. 答案:5134.已知α∈(0,π2),tan(π-α)=-34,则sin α=________. 解析:由于tan(π-α)=-tan α=-34, 则tan α=34,解方程组⎩⎨⎧sin αcos α=34,sin 2α+cos 2α=1,得sin α=±35,又α∈(0,π2),所以sin α>0. 所以sin α=35. 答案:355.化简tan (2π-θ)sin (-2π-θ)cos (6π-θ)cos (θ-π)sin (5π+θ).解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)(-sin θ)=(-tan θ)(-sin θ)cos θcos θsin θ=tan θ.1.已知sin40°=a ,则cos130°等于( ) A .a B .-a C.1-a 2D .-1-a 2解析:cos130°=cos(90°+40°)=-sin40°=-a .答案:B2.已知sin(α-π4)=13,则cos(π4+α)的值等于( ) A.223 B .-232 C.13D .-13解析:∵π4+α-(α-π4)=π2, ∴cos(π4+α)=cos[π2+(α-π4)] =-sin(α-π4)=-13. 答案:D3.已知sin(π6-θ)=13,则cos(π3+θ)等于________. 解析:cos(π3+θ)=cos[π2-(π6-θ)] =sin(π6-θ)=13. 答案:134.已知cos α=15,且α为第四象限角,那么cos(α+π2)等于________. 解析:∵α为第四象限角且cos α=15, ∴sin α=-1-cos 2α=-25 6. ∴cos(α+π2)=-sin α=25 6. 答案:2655.化简1+2sin (π2-2)·cos (π2+2).解:原式=1+2cos2·(-sin2)=1-2sin2cos2=(sin2-cos2)2=|sin2-cos2|. 又∵sin2>cos2,∴原式=sin2-cos2.1.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:用特殊点来验证.x =0时,y =-sin0=0,排除选项A ,C ;又x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,排除选项B.答案:D2.方程x +sin x =0的根有( ) A .0个 B .1个 C .2个D .无数个解析:设f (x )=-x ,g (x )=sin x ,在同一直角坐标系中画出 f (x )和g (x )的图象,如图所示.由图知f (x )和g (x )的图象仅有一个交点,则方程x +sin x =0仅有一个根.答案:B3.用“五点法”画y =1-cos x ,x ∈[0,2π]的图象时,五个关键点的坐标是________.答案:(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝⎛⎭⎪⎫3π2,1,(2π,0)4.函数y =2cos x -2的定义域是________. 解析:由2cos x -2≥0得cos x ≥22, 借助y =cos x 的图象可得cos x ≥22的解集为 ⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |2k π-π4≤x ≤2k π+π4,k ∈Z 5.在[0,2π]内用五点法作出y =-sin x -1的简图. 解:(1)按五个关键点列表xπ2π3π22πy -1 -2 -1 0 -1(2)描点并用光滑曲线连接可得其图象,如图所示:1.函数y =2cos(π3-ωx )的最小正周期是4π,则ω等于( ) A .2 B.12 C .±2D .±12解析:4π=2π|ω|,∴ω=±12. 答案:D2.定义在R 上的周期函数f (x )的一个周期为5,则f (2 011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 解析:f (2 011)=f (402×5+1)=f (1). 答案:A3.若函数f (x )=sin ωx (ω>0)的周期为π,则ω=________. 解析:由于周期T =2πω,所以2πω=π,解得ω=2. 答案:24.已知函数f (x )是定义在R 上的周期为6的奇函数,且f (1)=1,则f (5)=________.解析:由于函数f (x )是定义在R 上的周期为6的奇函数,则f (5)=f (5-6)=f (-1)=-f (1).又f (1)=1,则f (5)=-1. 答案:-15.若函数f (x )是以π2为周期的奇函数,且f (π3)=1,求 f (-176π)的值.证明:∵f (x )的周期为π2,且为奇函数, ∴f (-17π6)=f (-3π+π6)=f (-6×π2+π6) =f (π6).而f (π6)=f (π2-π3)=f (-π3)=-f (π3)=-1, ∴f (-17π6)=-1.1.函数y =sin(2x +52π)的图象的一条对称轴方程是( ) A .x =-π2 B .x =-π4 C .x =π8D .x =54π解析:y =sin(2x +52 π)=cos2x ,令2x =k π(k ∈Z ),则x =k2 π(k ∈Z ).当k =-1时,x =-π2.答案:A2.函数y =2sin(2x -π4)的一个单调递减区间是( ) A .[3π8,7π8] B .[-π8,3π8] C .[3π4,5π4]D .[-π4,π4]解析:令z =2x -π4,函数y =sin z 的单调递减区间是[π2+2k π,3π2+2k π](k ∈Z ).由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z , 得3π8+k π≤x ≤7π8+k π,k ∈Z . 令k =0,3π8≤x ≤7π8. 答案:A3.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°解析:∵sin168°=sin(180°-168°)=sin12°,cos10°=sin80°, ∴sin11°<sin12°<sin80°. ∴sin11°<sin168°<cos10°. 答案:C4.设ω>0,若函数f (x )=2sin ωx 在[-π3,π4]上单调递增,则ω的取值范围是________.解析:令-π2≤ωx ≤π2,-π2ω≤x ≤π2ω,则[-π2ω,π2ω]是函数的关于原点对称的递增区间中范围最大的,即[-π3,π4]⊆[-π2ω,π2ω],则⎩⎪⎨⎪⎧π4≤π2ω,-π3≥-π2ω.⇒ω≤32.答案:[0,32]5.求函数y =1-2cos 2x +5sin x 的最大值和最小值. 解:y =1-2cos 2x +5sin x =2sin 2x +5sin x -1 =2(sin x +54)2-338.∵sin x ∈[-1,1],而y 在[-1,1]上是增函数, ∴当sin x =-1时,函数取得最小值-4; 当sin x =1时,函数取得最大值6.1.y =tan(x +π)是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶函数答案:A2.函数y =2tan ⎝ ⎛⎭⎪⎫3x -π4的一个对称中心是( )A.⎝ ⎛⎭⎪⎫π3,0B.⎝ ⎛⎭⎪⎫π6,0 C.⎝ ⎛⎭⎪⎫-π4,0 D.⎝ ⎛⎭⎪⎫-π2,0 解析:由3x -π4=k π2,得x =k π6+π12 令k =-2得x =-π4.故选C. 答案:C3.函数y =2tan ⎝ ⎛⎭⎪⎫π3-x 2的定义域是________.解析:由π3-x 2≠k π+π2,得x ≠-2k π-π3,k ∈Z ,故函数y =2tan ⎝⎛⎭⎪⎫π3-x 2的定义域是:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x |x ≠-π3-2k π,k ∈Z4.使函数y =2tan x 与y =cos x 同时为单调增的区间是________. 解析:由y =2tan x 与y =cos x 的图象知,同时为单调增的区间为(2k π-π2,2k π)(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z ).答案:⎝ ⎛⎭⎪⎫2k π-π2,2k π(k ∈Z )和(2k π+π,2k π+3π2)(k ∈Z )5.求函数y =tan(π-x ),x ∈⎝⎛⎭⎪⎫-π4,π3的值域.解:y =tan(π-x )=-tan x ,在⎝ ⎛⎭⎪⎫-π4,π3上为减函数,所以值域为(-3,1).1.把函数y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π8个单位长度,所得到的图象对应的函数是( )A .奇函数B .偶函数C .既是奇函数也是偶函数D .非奇非偶函数解析:y =sin ⎝⎛⎭⎪⎫2x -π4=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π8,向左平移π8个单位长度后为y =sin[2(x -π8+π8)]=sin2x ,为奇函数,故选A.答案:A2.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象,只需把函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的图象( )A .向左平移π4个单位长度 B .向右平移π4个单位长度 C .向左平移π2个单位长度 D .向右平移π2个单位长度 解析:由y =sin ⎝ ⎛⎭⎪⎫2x +π6――→x →x +φy=sin ⎣⎢⎡⎦⎥⎤2(x +φ)+π6=sin ⎝ ⎛⎭⎪⎫2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平移π4个单位长度.答案:B3.用“五点法”画函数y =2sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)在一个周期内的简图时,五个关键点是(-π6,0),(π12,2),(π3,0),(712 π,-2),(5π6,0),则ω=________.解析:周期T =5π6-(-π6)=π. ∴2πω=π,ω=2. 答案:24.把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象对应的一个解析式为________.解析:把函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4的图象上所有的点向右平移π6个单位长度,得函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π6+π4=2sin ⎝ ⎛⎭⎪⎫3x -π4的图象,再把所有点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =2sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫12x -π4的图象,即y =2sin ⎝ ⎛⎭⎪⎫32x -π4.答案:y =2sin ⎝ ⎛⎭⎪⎫32x -π45.已知函数y =sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)用“五点法”画出函数的草图.(2)函数图象可由y =sin x 的图象怎样变换得到? 解:(1)列表:2x +π4 0 π2 π 3π2 2π x -π8 π8 3π8 5π8 7π8 y1211描点、连线如图所示.将y =sin ⎝ ⎛⎭⎪⎫2x +π4+1在⎣⎢⎡⎦⎥⎤-π8,7π8上的图象向左(右)平移k π(k ∈Z )个单位,即可得到y =sin(2x +π4)+1的整个图象.1.函数y =2sin(x 2+π5)的周期、振幅依次是( ) A .4π,-2 B .4π,2 C .π,2D .π,-2解析:在y =A sin(ωx +φ)(A >0,ω>0)中,T =2πω,A 叫振幅(A >0),故y =2sin(x 2+π5)的周期T =2π12=4π,振幅为2,故选B.答案:B2.已知函数f (x )=2 sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数 解析:∵函数f (x )的最小正周期为6π,∴2πω=6π,得ω=13,在x =π2时,函数f (x )取得最大值, ∴13×π2+φ=2k π+π2,k ∈Z . 又∵-π<φ≤π,∴φ=π3. ∴f (x )=2sin(13x +π3).由2k π-π2≤13x +π3≤2k π+π2(k ∈Z ), 得6k π-52π≤x ≤6k π+12π(k ∈Z ).∴f (x )的增区间是[6k π-52π,6k π+π2](k ∈Z ). 取k =0,得[-52π,π2]是f (x )的一个增区间. ∴函数f (x )在区间[-2π,0]上是增函数. 答案:A3.函数y =|5sin(2x +π3)|的最小正周期为________. 解析:∵y =5sin(2x +π3)的最小正周期为π, ∴函数y =|5sin(2x +π3)|的最小正周期为π2. 答案:π24.使函数f (x )=3sin(2x +5θ)的图象关于y 轴对称的θ为________. 解析:∵函数f (x )=3sin(2x +5θ)的图象关于y 轴对称, ∴f (-x )=f (x )恒成立,∴3sin(-2x +5θ)=3sin(2x +5θ). ∴sin(-2x +5θ)=sin(2x +5θ).∴-2x +5θ=2x +5θ+2k π(舍去)或-2x +5θ+2x +5θ=2k π+π(k ∈Z ).即10θ=2k π+π,故θ=k π5+π10(k ∈Z ). 答案:θ=k π5+π10,k ∈Z5.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象如图,试求这个函数的解析式.解:方法一:易知A =22,T4=6-2=4. ∴T =16,∴2πω=16,∴ω=π8. 又∵图象过点(2,22). ∴22sin(π8×2+φ)=2 2. 又∵|φ|<π2,∴φ=π4. 于是y =22sin(π8x +π4).方法二:易知A =22,由图可知,第二、第三两关键点的横坐标分别为2和6.∵⎩⎨⎧2ω+φ=π2,6ω+φ=π,∴⎩⎪⎨⎪⎧ω=π8,φ=π4.∴y =22sin(π8x +π4).1.已知某人的血压满足函数解析式f (t )=24sin(160πt )+115.其中f (t )为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( )A .60B .70C .80D .90解析:由题意可得频率f =1T =160π2π=80(次/分),所以此人每分钟心跳的次数是80.答案:C2.如图表示电流I 与时间t 的关系I =A sin(ωt +φ)(A >0,ω>0)在一个周期内的图象,则该函数的解析式为( )A .I =300sin ⎝ ⎛⎭⎪⎫50πt +π3B .I =300sin ⎝ ⎛⎭⎪⎫50πt -π3C .I =300sin ⎝ ⎛⎭⎪⎫100πt +π3D .I =300sin(100πt -π3)解析:由图象得周期T =2(1150+1300)=150,最大值为300,图象经过点(1150,0),则ω=2πT =100π,A =300,∴I =300sin(100πt +φ). ∴0=300sin(100π×1150+φ). ∴sin(2π3+φ)=0.取φ=π3, ∴I =300sin(100πt +π3). 答案:C 3.如图为某简谐运动的图象,则这个简谐运动需要________s 往复一次.解析:由图象知周期T =0.8-0=0.8,则这个简谐运动需要0.8 s 往复一次.答案:0.84.据市场调查,某种商品每件的售价按月呈f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|<π2)的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元,则f (x )=________.解析:由题意得⎩⎪⎨⎪⎧A +B =8,-A +B =4,解得A =2,B =6.周期T =2(7-3)=8,∴ω=2πT =π4,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x +φ+6. 又当x =3时,y =8,∴8=2sin ⎝ ⎛⎭⎪⎫3π4+φ+6. ∴sin ⎝ ⎛⎭⎪⎫3π4+φ=1.由于|φ|<π2,∴φ=-π4, ∴f (x )=2sin ⎝ ⎛⎭⎪⎫π4x -π4+6.答案:2sin ⎝ ⎛⎭⎪⎫π4x -π4+65.如图所示,摩天轮的半径为40 m ,O 点距地面的高度为50 m ,摩天轮做匀速转动,每3 min 转一圈,摩天轮上的P 点的起始位置在最低点处.(1)试确定在时刻t min 时P 点距离地面的高度;(2)在摩天轮转动的一圈内,有多长时间P 点距离地面超过70 m? 解:(1)以中心O 为坐标原点建立如图所示的坐标系,设t min 时P 距地面的高度为y ,依题意得y =40sin ⎝⎛⎭⎪⎫2π3t -π2+50.(2)令40sin ⎝ ⎛⎭⎪⎫2π3t -π2+50>70,则sin ⎝ ⎛⎭⎪⎫2π3t -π2>12,∴2k π+π6<2π3t -π2<2k π+5π6(k ∈Z ),∴2k π+2π3<2π3t <2k π+4π3(k ∈Z ),∴3k +1<t <3k +2(k ∈Z ).令k =0得1<t <2. 因此,共有1 min P 点距地面超过70 m.单元综合测试一时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.若角600°的终边上有一点(-4,a ),则a 的值是( ) A .-4 3 B .±43 C. 3D .43解析:因为tan600°=a-4=tan(540°+60°)=tan60° =3,故a =-4 3. 答案:A2.已知cos(π2+φ)=32,且|φ|<π2,则tan φ=( ) A .-33 B.33 C .- 3D.3 解析:由cos(π2+φ)=32,得sin φ=-32,又|φ|<π2,∴cos φ=12,∴tan φ=- 3. 答案:C3.下列函数中,最小正周期为π,且图象关于直线x =π3对称的是( )A .y =sin(2x +π6) B .y =sin(x 2+π6) C .y =sin(2x -π6)D .y =sin(2x -π3)解析:∵最小正周期为π,∴ω=2,又图象关于直线x =π3对称, ∴f (π3)=±1,故只有C 符合. 答案:C4.若2k π+π<θ<2k π+5π4(k ∈Z ),则sin θ,cos θ,tan θ的大小关系是( )A .sin θ<cos θ<tan θB .cos θ<tan θ<sin θC .cos θ<sin θ<tan θD .sin θ<tan θ<cos θ解析:设π<α<54π,则有sin θ=sin α, cos θ=cos α,tan θ=tan α, ∵tan α>0,而sin α<0,cos α<0,∴B 、D 排除,又∵cos α<-22<sin α,即cos α<sin α,排除A.选C. 答案:C5.已知A 是三角形的内角,且sin A +cos A =52,则tan A 等于( )A .4+15B .4-15C .4±15D .以上均不正确解析:因为sin A +cos A =52,所以2sin A cos A =14>0.所以A 为锐角.又(sin A -cos A )2=1-2sin A cos A =1-14=34,所以sin A -cos A =±32.从而可求出sin A ,cos A 的值,从而求出tan A =4±15.答案:C6.函数y =2sin(π6-2x )(x ∈[0,π])的单调递增区间是( ) A .[0,π3] B .[π12,7π12] C .[π3,5π6]D .[5π6,π]解析:由π2+2k π≤2x -π6≤3π2+2k π 可得π3+k π≤x ≤5π6+k π(k ∈Z ).∵x ∈[0,π],∴单调递增区间为[π3,5π6]. 答案:C7.为得到函数y =cos ⎝⎛⎭⎪⎫x +π3的图象,只需将函数y =sin x 的图象( )A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移5π6个单位长度D .向右平移5π6个单位长度 解析:∵y =cos ⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3+π2 =sin ⎝ ⎛⎭⎪⎫x +5π6, ∴只需将y =sin x 的图象向左平移5π6个单位长度. 答案:C8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-7π12,5π12 B.⎣⎢⎡⎦⎥⎤-7π12,-π12 C.⎣⎢⎡⎦⎥⎤-π4,π6 D.⎣⎢⎡⎦⎥⎤11π12,17π12 解析:由图形可得14T =23π-512π,∴T =π,则ω=2,又图象过点⎝ ⎛⎭⎪⎫512π,2.∴2sin ⎝ ⎛⎭⎪⎫2×512π+φ=2, ∴φ=-π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π3, 其单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+512π(k ∈Z ), 取k =1,即得选项D. 答案:D9.设a 为常数,且a >1,0≤x ≤2π,则函数f (x )=cos 2x +2a sin x -1的最大值为( )A .2a +1B .2a -1C .-2a -1D .a 2解析:f (x )=cos 2x +2a sin x -1 =1-sin 2x +2a sin x -1 =-(sin x -a )2+a 2,∵0≤x ≤2π,∴-1≤sin x ≤1,又a >1,∴f (x )max =-(1-a )2+a 2=2a -1. 答案:B 10.函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A ,B 分别为最高点与最低点,并且两点间的距离为22,则该函数图象的一条对称轴方程为( )A .x =2π B .x =π2 C .x =1D .x =2解析:函数y =cos(ωx +φ)(ω>0,0<φ<π)的最大值为1,最小值为-1,所以周期T =2(22)2-22=4,所以ω=π2,又函数为奇函数,所以cos φ=0(0<φ<π)⇒φ=π2,所以函数解析式为y =cos(π2x +π2)=-sin π2x ,所以直线x =1为该函数图象的一条对称轴.答案:C11.中国最高的摩天轮是“南昌之星”,它的最高点离地面160米,直径为156米,并以每30分钟一周的速度匀速旋转,若从最低点开始计时,则摩天轮进行5分钟后离地面的高度为( )A .41米B .43米C .78米D .118米解析:摩天轮转轴离地面高160-⎝ ⎛⎭⎪⎫1562=82(米),ω=2πT =π15,摩天轮上某个点P 离地面的高度h 米与时间t 的函数关系是h =82-78cos π15t ,当摩天轮运行5分钟时,其离地面高度为h =82-78cos π15t =82-78×12=43(米).答案:B12.设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3解析:方法一:函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后得到函数y =sin[ω(x -4π3)+π3]+2=sin(ωx -4π3ω+π3)+2的图象.∵两图象重合,∴ωx +π3=ωx -4π3ω+π3+2k π,k ∈Z ,解得ω=32k ,k ∈Z .又ω>0,∴当k =1时,ω的最小值是32.方法二:由题意可知,4π3是函数y =sin(ωx +π3)+2(ω>0)的最小正周期T 的正整数倍,即4π3=kT =2k πω(k ∈N *),ω=32k ,ω的最小值为32. 答案:C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:圆心角α=l r =128=32, 扇形面积S =12lr =12×12×8=48.答案:32 4814.方程sin x =lg x 的解的个数为________.解析:画出函数y =sin x 和y =lg x 的图象(图略),结合图象易知这两个函数的图象有3个交点.答案:315.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β为非零常数.若f (2 013)=-1,则f (2 014)=________.解析:f (2 013)=a sin(2 013π+α)+b cos(2 013π+β) =-1,f (2 014)=a sin(2 014π+α)+b cos(2 014π+β) =a sin[π+(2 013π+α)]+b cos[π+(2 013π+β)] =-[a sin(2 013π+α)+b cos(2 013π+β)]=1. 答案:116.关于函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3+1有以下结论:①函数f (x )的值域是[0,2];②点⎝⎛⎭⎪⎫-512π,0是函数f (x )的图象的一个对称中心;③直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数是偶函数.其中,所有正确结论的序号是________.解析:①∵-1≤cos ⎝ ⎛⎭⎪⎫2x +π3≤1, ∴0≤cos ⎝⎛⎭⎪⎫2x +π3+1≤2;②∵f ⎝ ⎛⎭⎪⎫-5π12=cos ⎝ ⎛⎭⎪⎫-5π6+π3+1=cos ⎝ ⎛⎭⎪⎫-π2+1=1≠0,∴点⎝ ⎛⎭⎪⎫-512π,0不是函数f (x )图象的一个对称中心;③∵f ⎝ ⎛⎭⎪⎫π3=cos ⎝ ⎛⎭⎪⎫2π3+π3+1=cosπ+1=0,函数取得最小值,∴直线x =π3是函数f (x )的图象的一条对称轴;④将函数f (x )的图象向右平移π6个单位长度后,与所得图象对应的函数解析式为g (x )=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3+1=cos2x +1,此函数是偶函数.综上所述,①③④正确.答案:①③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知sin θ=45,π2<θ<π, (1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值.解:(1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π,∴cos θ=-35. ∴tan θ=sin θcos θ=-43.(2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.18.(12分)(1)已知cos(75°+α)=13,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值;(2)已知π<θ<2π,cos(θ-9π)=-35,求tan(10π-θ)的值. 解:(1)cos(105°-α)=cos[180°-(75°+α)] =-cos(75°+α)=-13,sin(α-105°)=-sin[180°-(75°+α)] =-sin(75°+α). ∵α为第三象限角,∴75°+α为第三或第四象限角,又cos(75°+α)=13>0, ∴75°+α为第四象限角,∴sin(75°+α)=-1-cos 2(75°+α) =-1-⎝ ⎛⎭⎪⎫132=-223, ∴cos(105°-α)+sin(α-105°) =-13+223=22-13. (2)由已知得cos(θ-9π)=-35, ∴cos(π-θ)=-35,∴cos θ=35, ∵π<θ<2π,∴3π2<θ<2π,∴sin θ=-45, ∴tan θ=-43,∴tan(10π-θ)=tan(-θ)=-tan θ=43.19.(12分)已知函数f (x )=2cos(2x -π4),x ∈R . (1)求函数f (x )的最小正周期和单调递增区间.(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.解:(1)因为f (x )=2cos(2x -π4),所以函数f (x )的最小正周期为T =2π2=π.由-π+2k π≤2x -π4≤2k π(k ∈Z ),得-3π8+k π≤x ≤π8+k π(k ∈Z ),故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)因为f (x )=2cos(2x -π4)在区间[-π8,π8]上为增函数,在区间[π8,π2]上为减函数,又f (-π8)=0,f (π8)=2,f (π2)=2cos(π-π4)=-2cos π4=-1,所以函数f (x )在区间[-π8,π2]上的最大值为2,此时x =π8;最小值为-1,此时x =π2.20.(12分)函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图象过点(0,1),如图所示.(1)求函数f 1(x )的表达式;(2)把f 1(x )的图象向右平移π4个单位长度得到f 2(x )的图象,求f 2(x )取得最大值时x 的取值.解:(1)由图知,T =π,于是ω=2πT =2.将y =A sin2x 的图象向左平移π12,得y =A sin(2x +φ)的图象,于是φ=2×π12=π6.将(0,1)代入y =A sin(2x +π6),得A =2.故f 1(x )=2sin(2x +π6).(2)依题意,f 2(x )=2sin[2(x -π4)+π6] =-2cos(2x +π6),当2x +π6=2k π+π(k ∈Z ),即x =k π+5π12(k ∈Z )时, y max =2.此时x 的取值为{x |x =k π+5π12,k ∈Z }. 21.(12分)已知函数f (x )=2sin(2x +π6)-1.(1)若点P (1,-3)在角α的终边上,求f (α2-π12)的值; (2)若x ∈[-π6,π3],求f (x )的值域.解:(1)因为点P (1,-3)在角α的终边上, 所以sin α=-32,cos α=12,所以f (α2-π12)=2sin[2×(α2-π12)+π6]-1 =2sin α-1=2×(-32)-1=-3-1. (2)令t =2x +π6,因为x ∈[-π6,π3],所以-π6≤2x +π6≤5π6,而y =sin t 在[-π6,π2]上单调递增, 在[π2,5π6]上单调递减, 且sin(-π6)=-12,sin 5π6=12,所以函数y =sin t 在[-π6,5π6]上的最大值为1, 最小值为-12,即-12≤sin(2x +π6)≤1, 所以f (x )的值域是[-2,1].22.(12分)已知函数f (x )=A sin(ωx +φ)+B (A >0,ω>0)的一系列对应值如下表:(1)(2)根据(1)的结果,若函数y =f (kx )(k >0)的最小正周期为2π3,当x ∈[0,π3]时,方程f (kx )=m 恰有两个不同的解,求实数m 的取值范围. 解:(1)设f (x )的最小正周期为T , 得T =11π6-(-π6)=2π, 由T =2πω,得ω=1.又⎩⎪⎨⎪⎧ B +A =3,B -A =-1.解得⎩⎪⎨⎪⎧A =2,B =1.令ω·5π6+φ=π2,即5π6+φ=π2,解得φ=-π3, ∴f (x )=2sin(x -π3)+1.(2)∵函数y =f (kx )=2sin(kx -π3)+1的最小正周期为2π3, 又k >0,∴k =3,令t =3x -π3, ∵x ∈[0,π3],∴t ∈[-π3,2π3],若sin t =s 在[-π3,2π3]上有两个不同的解, 则s ∈[32,1),∴方程f (kx )=m 在x ∈[0,π3]时恰好有两个不同的解,则m ∈[3+1,3),即实数m的取值范围是[3+1,3).1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由题知OB →,OC →,AO →对应的有向线段都是圆的半径,因此它们的模相等.答案:C2.下列说法中正确的是( ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a ∥bD .若a ≠b ,则a 与b 不是共线向量解析:向量不能比较大小,所以A 不正确;a =b 需满足两个条件:a ,b 同向且|a |=|b |,所以B 不正确,C 正确;a 与b 是共线向量只需方向相同或相反,所以D 不正确.答案:C3.设O 是正方形ABCD 的中心,则OA →,BO →,AC →,BD →中,模相等的向量是________.解析:∵四边形ABCD 为正方形,O 为正方形的中心, ∴OA =BO ,即|OA →|=|BO →|,|AC →|=|BD →|. 答案:OA →与BO →,AC →与BD →4.如图所示,四边形ABCD 和ABDE 都是平行四边形. (1)与向量ED →相等的向量为______;(2)若|AB →|=3,则向量EC →的模等于________. 解析:(1)在平行四边形ABCD 和ABDE 中, ∵AB →=ED →,AB →=DC →,∴ED →=DC →. (2)由(1)知ED →=DC →,∴E 、D 、C 三点共线,|EC →|=|ED →|+|DC →|=2|AB →|=6. 答案:(1)AB →、DC →(2)65.一个人从点A 出发沿东北方向走了100 m 到达点B ,然后改变方向,沿南偏东15°方向又走了100 m 到达点C .(1)画出AB →,BC →,CA →. (2)求|CA →|. 解:(1)如图所示. (2)|AB →|=100 m , |BC →|=100 m ,∠ABC =45°+15°=60°, 则△ABC 为正三角形. 故|CA →|=100 m.1.在四边形ABCD 中,AC →=AB →+AD →,则( ) A .ABCD 一定是矩形 B .ABCD 一定是菱形 C .ABCD 一定是正方形D .ABCD 一定是平行四边形解析:由AC →=AB →+AD →知由A ,B ,C ,D 构成的四边形一定是平行四边形.答案:D2.下列等式不成立的是( ) A .0+a =a B .a +b =b +a C.AB →+BA →=2BA →D.AB →+BC →=AC →解析:对于C ,∵AB →与BA →是相反向量, ∴AB →+BA →=0. 答案:C3.化简(AB →+MB →)+(BO →+BC →)+OM →=________.解析:原式=(AB →+BO → )+(OM →+MB → )+BC →=AO →+OB →+BC →=AB →+BC →=AC →.答案:AC →4.若a =“向北走8 km ”,b =“向东走8 km ”,则|a +b |=________;a +b 的方向是________.解析:由向量加法的平行四边形法则,知|a +b |=82,方向为东北方向.答案:8 2 km 东北方向5.在水流速度为4 3 km/h 的河中,要使船以12 km/h 的实际航速与河岸成直角行驶,求船在静水中的航行速度的大小和方向.解:设AB →表示水流的速度,AC →表示船的实际航行速度,如图,作出AB →,AC →,连接BC ,作AD 綊BC ,连接DC ,则AD →为所求船的静水航速,且AD →+AB →=AC →.∵|AB →|=43,|AC →|=12, tan ∠ACB =4312=33. ∴∠ACB =30°=∠CAD , |AD →|=|BC →|=83,∠BAD =120°.∴船在静水中的航行速度的大小为8 3 km/h ,方向与水流速度成120°角.1.下列等式: ①0-a =-a ②-(-a )=a ③a +(-a )=0 ④a +0=a ⑤a -b =a +(-b ) ⑥a +(-a )=0正确的个数是( )A .3B .4C .5D .6解析:根据向量的加减运算易知①②③④⑤均正确. 答案:C2.设AB →,BC →,AC →是三个非零向量,且AB →+BC →=AC →,则( ) A .线段AB ,BC ,AC 一定构成一个三角形 B .线段AB ,BC 一定共线 C .线段AB ,BC 一定平行D .线段AB ,BC ,AC 构成三角形或共线解析:由于三角形法则对于共线时也成立,因此线段AB ,BC ,AC 可以构成三角形,也可以共线,但线段AB ,BC 不可能平行.答案:D3.若向量a 与b 共线,且|a |=|b |=1,则|a -b |=________. 解析:∵a 与b 共线, ∴两向量同向或反向. 又|a |=|b |=1,∴|a -b |=0或2. 答案:0或24.化简:(1)(AD →-BM →)+(BC →-MC →)=________. (2)(PQ →-MO →)+(QO →-QM →)=________. 答案:(1)AD → (2)PQ →5.如图,在五边形ABCDE 中,若四边形ACDE 是平行四边形,且AB →=a ,AC →=b ,AE →=c ,试用a ,b ,c 表示向量BD →,BE →,CE →.解:∵四边形ACDE 为平行四边形, ∴CD →=AE →=c ,BC →=AC →-AB →=b -a . ∴BD →=BC →+CD →=b -a +c , BE →=AE →-AB →=c -a , CE →=AE →-AC →=c -b .1.在四边形ABCD 中,若AB →=-12CD →,则此四边形是( ) A .平行四边形 B .菱形 C .梯形D .矩形解析:由AB →=-12CD →可得,在四边形ABCD 中有AB ∥CD ,但|AB |≠|CD |,故为梯形.答案:C2.已知非零向量a ,b 满足a =λb ,b =λa (λ∈R ),则λ=( ) A .-1 B .±1 C .0D .0解析:∵a =λb ,b =λa ,∴a =λ2a ,∴λ±1.答案:B3.化简:2(a -2b )+3(13a +b )=________. 答案:3a -b4.若|a |=5,b 与a 的方向相反,且|b |=7,则a =________b . 解析:∵b 与a 方向相反,∴设a =λb (λ<0) ∴|a |=|λ||b |,∴5=|λ|×7,∴|λ|=57, ∴λ=±57,又λ<0,∴λ=-57. 答案:-57 5.如图,在梯形ABCD 中,AB ∥CD ,且AB =2CD ,M ,N 分别是DC 和AB 的中点,若AB →=a ,AD →=b ,试用a ,b 表示BC →和MN →.解:在四边形ANMD 中,有 MN →=MD →+DA →+AN → =-12DC →-AD →+12AB → =-AD →-12(12AB →)+12AB →=-AD →+14AB →=14a -b . 在四边形ABCD 中,有BC →=BA →+AD →+DC →=-AB →+AD →+12AB → =AD →-12AB →=b -12a .1.已知e 1,e 2是表示平面内所有向量的一组基底,那么下面四组向量中,不能作为一组基底的是( )A .e 1,e 1+e 2B .e 1-2e 2,e 2-2e 1C .e 1-2e 2,4e 2-2e 1D .e 1+e 2,e 1-e 2解析:因为4e 2-2e 1=-2(e 1-2e 2),从而e 1-2e 2与4e 2-2e 1共线.答案:C2.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,以b 与c 作为基底,则AD →=( )A.23b +13cB.53c -23bC.23b -13cD.13b +23c解析:∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →), ∴AD →-c =2(b -AD →),∴AD →=13c +23b . 答案:A。
北师大版高中数学必修四:第一、二章综合测试题(含答案)
阶段性测试题三(第一、二章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.下列各式中,不能化简为AD →的是( ) A .(AB →+CD →)+BC →B .(AD →+MB →)+(BC →+CM →) C .MB →+AD →-BM → D .OC →-OA →+CD →[答案] C[解析] A 中,(AB →+CD →)+BC →=AB →+BC →+CD →=AD →; B 中,(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →. C 中,MB →+AD →-BM →=MB →+AD →+MB →=2MB →+AD →; D 中,OC →-OA →+CD →=AC →+CD →=AD →,故选C. 2.设a 、b 、c 是非零向量,下列命题正确的是( ) A .(a·b )·c =a·(b·c )B .|a -b|2=|a|2-2|a||b|+|b|2C .若|a|=|b|=|a +b|,则a 与b 的夹角为60°D .若|a|=|b|=|a -b|,则a 与b 的夹角为60° [答案] D[解析] 对于A ,数量积的运算不满足结合律,A 错;对于B ,|a -b|2=|a|2-2a ·b +|b |2=|a |2-2|a||b |·cos<a ,b>+|b |2,B 错,对于C 、D ,由三角形法则知|a |=|b |=|a -b |组成的三角形为正三角形,则<a ,b >=60°,∴D 正确.3.(2014·山东曲阜师范附属中学高一模块测试)已知一个扇形的半径为1,弧长为4,则该扇形的面积为( )A .1B .2C .3D .4[答案] B[解析] 扇形的面积S =12lR =12×4×1=2.4.(2014·湖北长阳一中高一月考)下列说法正确的是( ) A .第三象限的角比第二象限的角大B .若sin α=12,则α=π6C .三角形的内角是第一象限角或第二象限角D .不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关 [答案] D[解析] -120°是第三象限角,120°是第二象限角,而-120°<120,排除A ;若sin α=12,则α=π6+2k π或α=5π6+2k π(k ∈Z ),排除B ;当三角的内角等于90°时,它既不是第一象限,也不是第二象限,排除C ,故选D.5.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23B .43C .-3D .0[答案] D[解析] CD →=AD →-AC →,DB →=AB →-AD →, ∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →,又AC →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D.6.在△ABC 中,D 、E 、F 分别是BC 、CA 、AB 的中点,点M 是△ABC 的重心,则MA →+MB →-MC →等于( )A .0B .4MD →C .4MF →D .4ME →[答案] C [解析] 如图,由已知得,MA →+MB →=2MF →,又∵M 为△ABC 的重心, ∴|MC |=2|MF |,∴-MC →=CM →=2MF →, ∴MA →+MB →-MC →=4MF →.7.如图所示,点P 在∠AOB 的对角区域MON 内,且满足OP →=xOA →+yOB →,则实数对(x ,y )可以是( )A .(12,-13)B .(14,12)C .(-23,-13)D .(-34,25)[答案] C[解析] 向量OP →用基底OA →、OB →表示具有惟一性,结合图形知x <0,y <0,故选C. 8.(2014·江西九江外国语高一月考)已知sin(α+75°)=12,则cos(α-15°)=( )A .32B .-32 C .12D .-12[答案] C[解析] ∵cos(15°-α)=sin(α+75°)=12,∴cos(α-15°)=cos(15°-α)=12.9.函数f (x )=sin ⎝⎛⎭⎫32x +π4的图象相邻的两个零点之间的距离是( ) A .π3B .2π3C .4π3D .2π[答案] B[解析] 函数y =sin ⎝⎛⎭⎫32x +π4的图象相邻的两个零 点之间的距离为半个周期,又T =2π32=4π3,∴T 2=2π3.10.函数y =cos ⎝⎛⎭⎫-3x +π3的一个对称中心为( ) A .⎝⎛⎭⎫π6,0 B .⎝⎛⎭⎫π3,0 C .⎝⎛⎭⎫5π18,0 D .⎝⎛⎭⎫π2,0[答案] C[解析] y =cos ⎝⎛⎭⎫-3x +π3=cos ⎝⎛⎭⎫3x -π3, 令3x -π3=k π+π2(k ∈Z ),∴x =k π3+5π18(k ∈Z ).当k =0时,x =5π18,故选C.11.已知向量OA →=(4,6),OB →=(3,5),且OC →⊥OA →,AC →∥OB →,则向量OC →等于( ) A .(-37,27)B .(-27,421)C .(37,-27)D .(27,-421)[答案] D[解析] 设OC →=(x ,y ),则AC →=OC →-OA →=(x -4,y -6).∵OC →⊥OA →,AC →∥OB →,∴⎩⎪⎨⎪⎧4x +6y =0x -43=y -65,解得⎩⎨⎧x =27y =-421.∴OC →=(27,-421).12.△ABC 为等边三角形,且边长为2,点M 满足BM →=2AM →,则CM →·CA →=( ) A .6 B .3 C .15 D .12[答案] A [解析] 如图,∵BM →=2AM →,∴AB =AM =2, 又∵△ABC 为等边三角形, ∴∠BAC =60°,即∠CAM =120°.又AM =AC ,∴∠AMC =∠ACM =30°,∴∠BCM =90°. ∴CM =BM 2-BC 2=16-4=2 3. ∴CM →·CA →=|CM →|·|CA →|cos30°=23×2×32=6.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.已知sin α、cos α是方程2x 2-x -m =0的两根,则m =________. [答案] 34[解析] 由题意,得⎩⎨⎧sin α+cos α=12sin αcos α=-m2,解得m =34,又m =34时满足方程2x 2-x -m =0有两根.14.已知向量a =(1,0),b =(1,1),则(1)与2a +b 同向的单位向量的坐标表示为________; (2)向量b -3a 与向量a 夹角的余弦值为________. [答案] (1)(31010,1010) (2)-255[解析] (1)2a +b =2(1,0)+(1,1)=(3,1),∴与2a +b 同向的单位向量为(31010,1010).(2)cos 〈a ,b -3a 〉=a ·(b -3a )|a |·|b -3a |=(1,0)·(-2,1)5=-255.15.已知函数f (x )=a sin2x +cos2x (a ∈R )的图象的一条对称轴方程为x =π12,则a 的值为________.[答案]33[解析] 由题意,得f (0)=f ⎝⎛⎭⎫π6,即a sin0+cos0=a sin π3+cos π3,∴32a =12,∴a =33. 16.设单位向量m =(x ,y ),b =(2,-1).若m ⊥b ,则|x +2y |=________. [答案]5[解析] 本题考查了向量垂直,坐标运算、数量积等.由m ⊥b 知m ·b =0,即2x -y =0①,又由m 为单位向量,所以|m |=1,即x 2+y 2=1 ②,由①②联立解得⎩⎨⎧x =55y =255或⎩⎨⎧x =-55y =-255,所以|x +2y |= 5.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(2014·安徽合肥市撮镇中学高一月考) (1)已知A (1,2)、B (3,5)、C (9,14),求证:A 、B 、C 三点共线; (2)已知|a |=2,|b |=3,(a -2b )·(2a +b )=-1,求a 与b 的夹角. [解析] (1)AB →=(2,3),AC →=(8,12), ∴AC →=4AB →, ∴AC →与AB →共线. 又∵AC →与AB →有公共点A , ∴A 、B 、C 三点共线. (2)设a 与b 的夹角为θ,则(a -2b )·(2a +b )=2a 2-3a ·b -2b 2=2×4-3×2×3×cos θ-2×9=-10-18cos θ=-1,∴cos θ=-12.∵θ∈[0,π],∴θ=2π3.18.(本小题满分12分)已知两个非零向量a 、b 满足(a +b )⊥(2a -b ),(a -2b )⊥(2a +b ),求a 与b 的夹角的余弦值.[解析] 由(a +b )⊥(2a -b ),(a -2b )⊥(2a +b ),得⎩⎪⎨⎪⎧(a +b )·(2a -b )=0,(a -2b )·(2a +b )=0,即⎩⎪⎨⎪⎧2a 2+a ·b -b 2=0,①2a 2-3a ·b -2b 2=0.② 由①×3+②得a 2=58b 2,∴|a |2=58|b |2,即|a |=58|b |.③由①得a ·b =b 2-2a 2=|b |2-2×58|b |2=-14b 2,④由③④可得cos θ=a ·b|a |·|b |=-14|b |258|b |·|b |=-1010.∴a 、b 的夹角的余弦值为-1010. 19.(本小题满分12分)函数f (x )=A sin(ωx -π6)+1(A >0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;(2)设α∈(0,π2),f (α2)=2,求α的值.[解析] (1)∵函数f (x )的最大值为3, ∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2,∴最小正周期T =π,∴ω=2.故函数f (x )的解析式为y =2sin(2x -π6)+1.(2)∵f (α2)=2sin(α-π6)+1=2,即sin(α-π6)=12,∵0<α<π2,∴-π6<α-π6<π3,∴α-π6=π6,故α=π3.20.(本小题满分12分)已知a =3i -4j ,a +b =4i -3j , (1)求向量a 、b 的夹角;(2)对非零向量p 、q ,如果存在不为零的常数α、β使αp +βq =0,那么称向量p 、q 是线性相关的,否则称向量p 、q 是线性无关的.向量a 、b 是线性相关还是线性无关的?为什么?[解析] (1)b =(a +b )-a =i +j ,设a 与b 夹角为θ,根据两向量夹角公式: cos θ=a ·b |a ||b |=3-452=-210.故夹角θ=π-arccos210. (2)设常数α,β使得αa +βb =0,那么⎩⎪⎨⎪⎧ 3α+β=0-4α+β=0⇒⎩⎪⎨⎪⎧α=0β=0,所以不存在非零常数α,β,使得αa +βb =0成立.故a 和b 线性无关.21.(本小题满分12分)如图所示,函数y =A sin(ωx +φ)(A >0,ω>0,|φ|≤π2)的图象上相邻的最高点与最低点的坐标分别为⎝⎛⎭⎫5π12,3和⎝⎛⎭⎫11π12,-3,求该函数的解析式.[解析] 由题意知A =3,设最小正周期为T , 则T 2=11π12-5π12=π2, ∴T =π,又T =2πω,∴ω=2.∴函数解析式为y =3sin(2x +φ). ∵点⎝⎛⎭⎫5π12,3在图象上, ∴3=3sin ⎝⎛⎭⎫2×5π12+φ, ∴sin ⎝⎛⎭⎫5π6+φ=1. ∴5π6+φ=2k π+π2, ∴φ=2k π-π3,k ∈Z .∵|φ|≤π2,∴φ=-π3.∴函数的解析式为y =3sin ⎝⎛⎭⎫2x -π3.22.(本小题满分14分)已知函数f (x )=23sin(3ωx +π3),其中ω>0.(1)若f (x +θ)是周期为2π的偶函数,求ω及θ的值; (2)若f (x )在(0,π3]上是增函数,求ω的最大值.[解析] (1)由函数解析式f (x )=23sin(3ωx +π3),ω>0整理可得f (x +θ)=23sin[3ω(x +θ)+π3]=23sin(3ωx +3ωθ+π3),由f (x +θ)的周期为2π,根据周期公式2π=2π3ω,且ω>0,得ω=13,∴f (x +θ)=23sin(x +θ+π3), ∵f (x +θ)为偶函数,定义域x ∈R 关于原点对称, 令g (x )=f (x +θ)=23sin(x +θ+π3),∴g (-x )=g (x ),23sin(x +θ+π3)=23sin(-x +θ+π3),∴x +θ+π3=π-(-x +θ+π3)+2k π,k ∈Z ,∴θ=k π+π6,k ∈Z .∴ω=13,θ=k π+π6,k ∈Z .(2)∵ω>0,∴2k π-π2≤3ωx +π3≤π2+2k π,k ∈Z ,∴2k π3ω-15π18ω≤x ≤π18ω+2k π3ω,k ∈Z ,若f (x )在(0,π3]上是增函数,∴(0,π3]为函数f (x )的增区间的子区间,∴π18ω≥π3,∴ω≤16,∴ωmax =16.。
(人教版B版)高中数学必修第四册 第十一章综合测试试卷02及答案
第十一章综合测试一、选择题1.已知两个平面相互垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线②一个平面内已知直线必垂直于另一个平面内的无数条直线③一个平面内任意一条直线必垂直于另一个平面④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面其中正确命题个数是()A.1B.2C.3D.42.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d»,人们还用p»L判断,下列近似公式中最精确的一个是()过一些类似的近似公式,根据 3.14159A.d»B.d»C.d»D.d»∥的充要条件是()3.设a,b为两个平面,则a bA.a内有无数条直线与b平行B.a内有两条相交直线与b平行C.a,b平行于同一条直线D.a,b垂直于同一平面4.如图,在直角梯形SABC中,90^交SC于点D,以AD为折痕把ABC BCS°Ð=Ð=,过点A作AD SC-的的体积最大时,则下列命题中正确的个数是()△折起,当几何体S ABCDSAD①AC SB^②AB∥平面SCD③SA与平面SBD所成的角等于SC与平面SBD所成的角④AB与SC所成的角等于DC与SA所成的角A.4B.3C.2D.15.(多选题)设l为直线,a,b是两个不同的平面,下列命题中错误的是()A .若l a ∥,l b ∥,则a b∥B .若l a ^,l b ^,则a b ∥C .若l a ^,l b ∥,则a b ∥D .若a b ^,l a ∥,则l b^6.(多选题)如图正方体ABCD —A 1B 1C 1D 1的棱长为a ,以下结论正确的是()A .异面直线A 1D 与AB 1所成的角为60°B .直线A 1D 与BC 1垂直C .直线A 1D 与BD 1平行D .三棱锥A —A 1CD 的体积为316a 二、填空题7.一个正方体内接于一个球(即正方体的8个顶点都在球面上),过球心作一截面,则截面的图形可能是________.8.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.9.在正方体ABCD —A'B'C'D'中,过对角线BD'的一个平面交AA'于点E ,交CC'于点F ,则:①四边形BFD'E 一定是平行四边形;②四边形BFD'E 有可能是正方形;③四边形BFD'E 在底面ABCD 内的投影一定是正方形;④平面BFD'E 有可能垂直于平面BB'D .以上结论正确的为________.(写出所有正确结论的编号)10.如图所示,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕,使ABD △和ACD △折成互相垂直的两个平面,则:(1)BD与CD的关系为________;(2)BACÐ=________.三、解答题11.如图,直四棱柱ABCD—A1B1C1D1的底面是菱形,14AA=,2AB=,60BADÐ=°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.12.如图,在三棱锥P—ABC中,90ACBÐ=°,PA^底面ABC.(1)求证:平面PAC^平面PBC;(2)若AC BC PA==,M是PB的中点,求AM与平面PBC所成角的正切值.第十一章综合测试答案解析一、1.【答案】B【解析】由题意,对于①,当两个平面垂直时,一个平面内的不垂直于交线的直线不垂直于另一个平面内的任意一条直线,故①错误;对于②,设平面m a b =I 平面,n a Ì,l b Ì,Q 平面a ^平面b ,\当l m ^时,必有l a ^,而n a Ì,l n \^,而在平面b 内与l 平行的直线有无数条,这些直线均与n 垂直,故一个平面内的已知直线必垂直于另一个平面内的无数条直线,即②正确;对于③,当两个平面垂直时,一个平面内的任一条直线不垂直于另一个平面,故③错误;对于④,当两个平面垂直时,过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面,这是面面垂直的性质定理,故④正确;故选:B 。
(必考题)高中数学必修四第一章《三角函数》测试(有答案解析)
一、选择题1.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图像如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=- ⎪⎝⎭B .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭C .()3sin 26f x x π⎛⎫=-⎪⎝⎭D .1()3sin 26f x x π⎛⎫=-⎪⎝⎭ 2.已知关于x 的方程2cos ||2sin ||20(0)+-+=≠a x x a a 在(2,2)x ππ∈-有四个不同的实数解,则实数a 的取值范围为( ) A .(,0)(2,)-∞+∞B .(4,)+∞C .(0,2)D .(0,4)3.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .454.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积12=(弦⨯矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有弧AB 长为83π,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )3 1.73≈)A .6平方米B .9平方米C .12平方米D .15平方米5.函数1sin3y x =-的图像与直线3x π=,53x π=及x 轴所围成的图形的面积是( ) A .23π B .πC .43π D .53π 6.已知奇函数()f x 满足()(2)f x f x =+,当(0,1)x ∈时,函数()2x f x =,则12log 23f ⎛⎫= ⎪⎝⎭( ) A .1623-B .2316-C .1623D .23167.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591698.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于09.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x10.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④11.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 12.函数22y cos x sinx =- 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.15.sin 75=______.16.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .17.如图,游乐场所的摩天轮匀速旋转,每转一周需要l2min ,其中心O 离地面45米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请问:当你第六次距离地面65米时,用了________分钟?18.函数251612()sin (0)236x x f x x x x ππ-+⎛⎫=--> ⎪⎝⎭的最小值为_______. 19.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()()1sin 226f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)填写下表,并用“五点法”画出()f x 在[0,]π上的图象;26x π+6π 136πxπ ()f x(2)将()y f x =的图象向上平移1个单位,横坐标缩短为原来的2,再将得到的图象上所有点向右平移4π个单位后,得到()g x 的图象,求()g x 的对称轴方程. 22.现给出以下三个条件:①()f x 的图象与x 轴的交点中,相邻两个交点之间的距离为2π;②()f x 的图象上的一个最低点为2,23A π⎛⎫- ⎪⎝⎭; ③()01f =.请从上述三个条件中任选两个,补充到下面试题中的横线上,并解答该试题. 已知函数()()2sin 05,02f x x πωϕωϕ⎛⎫=+<<<< ⎪⎝⎭,满足________,________. (1)根据你所选的条件,求()f x 的解析式; (2)将()f x 的图象向左平移6π个单位长度,得到()g x 的图象求函数()()1y f x g x =-的单调递增区间.23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.24.已知函数π()3sin 26f x x ⎛⎫=+⎪⎝⎭. (1)用“五点法”画出函数()y f x =在一个周期内的简图;(2)说明函数()y f x =的图像可以通过sin y x =的图像经过怎样的变换得到?(3)若003()[2π3π]2f x x =∈,,,写出0x 的值. 25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域. 26.已知函数()2sin(2)(0)6f x x πωω=+>.(1)若点5(,0)8π是函数()f x 图像的一个对称中心,且(0,1)ω∈,求函数()f x 在3[0,]4π上的值域; (2)若函数()f x 在(,)33π2π上单调递增,求实数ω的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】 本题首先可根据33π44T 求出ω,然后根据当43x π=时函数()f x 取最大值求出ϕ,最后代入30,2⎛⎫- ⎪⎝⎭,即可求出A 的值. 【详解】因为4π7π3π3124,所以33π44T ,T π=,因为2T πω=,所以2ω=,()sin(2)f x A x ϕ=+,因为当43x π=时函数()sin(2)f x A x ϕ=+取最大值, 所以()42232k k Z ππϕπ⨯+=+∈,()26k k Z πϕπ=-+∈,因为2πϕ<,所以6πϕ=-,()sin 26f x A x π⎛⎫=-⎪⎝⎭, 代入30,2⎛⎫- ⎪⎝⎭,3sin 26A π⎛⎫-=- ⎪⎝⎭,解得3A =,()3sin 26f x x π⎛⎫=- ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查根据函数图像求函数解析式,对于()sin()f x A x ωϕ=+,可通过周期求出ω,通过最值求出A ,通过代入点坐标求出ϕ,考查数形结合思想,是中档题.2.D解析:D 【分析】令2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,易知函数()f x 是偶函数,将问题转化为研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,令sin t x =,则转化为2()22(0)=--≠h t at t a 有一个根(1,1)t ∈-求解.【详解】当(2,2)x ππ∈-,2()cos ||2sin ||2(0)=+-+≠f x a x x a a ,则()()f x f x -=,函数()f x 是偶函数,由偶函数的对称性,只需研究当(0,2)x π∈时,2()cos 2sin 2=+-+f x a x x a 有两个零点,设sin t x =,则2()22(0)=--≠h t at t a 有一个根(1,1)t ∈- ①当0a <时,2()22=--h t at t 是开口向下,对称轴为10t a=<的二次函数,(0)20h =-<则(1)0->=h a ,这与0a <矛盾,舍去;②当0a >时,2()22=--h t at t 是开口向上,对称轴为10t a=>的二次函数, 因为(0)20h =-<,(1)220-=+->=h a a , 则存在(1,0)t ∈-,只需(1)220=--<h a ,解得4a <, 所以04a <<.综上,非零实数a 的取值范围为04a <<. 故选:D . 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解3.B解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值. 【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 4.B解析:B 【分析】根据已知求出矢2=,弦2AD ==. 【详解】由题意可得:823=43AOB ππ∠=,4OA =,在Rt AOD 中,可得:3AOD π∠=,6DAO π∠=,114222OD AO ==⨯=, 可得:矢422=-=, 由3sin4233AD AO π==⨯=, 可得:弦243AD ==, 所以:弧田面积12=(弦⨯矢+矢221)(4322)43292=⨯+=+≈平方米.故选:B 【点睛】方法点睛:有关扇形的计算,一般是利用弧长公式l r α=、扇形面积公式12S lr =及直角三角函数求解.5.C解析:C 【分析】作出函数1sin3y x =-的图像,利用割补法,补成长方形,计算面积即可. 【详解】作出函数1sin3y x =-的图象,如图所示,利用割补法,将23π到π部分的图象与x 轴围成的图形补到图中3π到23π处阴影部分,凑成一个长为3π,宽为2的长方形,后面π到53π,同理;∴1sin3y x =-的图象与直线3x π=,53x π=及x 轴所围成的面积为24233ππ⨯=,故选:C. 【点睛】用“五点法”作()sin y A ωx φ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取0,2π,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 6.B解析:B【分析】由已知得到(2)()f x f x +=,即得函数的周期是2,把12(log 23)f 进行变形得到223()16f log -, 由223(0,1)16log ∈满足()2x f x =,求出即可. 【详解】(2)()f x f x +=,所以函数的周期是2.根据对数函数的图象可知12log 230<,且122log 23log 23=-;奇函数()f x 满足(2)()f x f x +=和()()f x f x -=-则2312222223(log 23)(log )(log 23)(log 234)()16f f f f f log =-=-=--=-, 因为223(0,1)16log ∈ 2231622323()21616log f log ∴-=-=-,故选:B . 【点睛】考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.7.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.8.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫⎪⎝⎭和23f π⎛⎫⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
高中人教A版数学必修4(课时习题与单元测试卷):第一章 章末检测 含解析
第一章章末检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12题,每题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.下列命题中正确的是( )A .终边相同的角一定相等B .锐角都是第一象限角C .第一象限角都是锐角D .小于90°的角都是锐角答案:B2.已知sin(2π-α)=45,α∈⎝⎛⎭⎫3π2,2π,则sin α+cos αsin α-cos α等于( ) A.17 B .-17C .-7D .7答案:A解析:∵sin(2π-α)=sin(-α)=-sin α=45, ∴sin α=-45. ∵α∈⎝⎛⎭⎫3π2,2π,∴cos α=1-sin 2α=35. ∴sin α+cos αsin α-cos α=-45+35-45-35=-15-75=17. 3.已知角α的终边经过点(3,-1),则角α的最小正值是( )A.2π3B.11π6C.5π6D.3π4答案:B解析:∵sin α=-12=-12,且α的终边在第四象限,∴α=116π. 4.若函数y =2cos ωx 在区间⎣⎡⎦⎤0,2π3上递减,且有最小值1,则ω的值可以是( ) A .2 B.12C .3 D.13答案:B解析:由y =2cos ωx 在⎣⎡⎦⎤0,2π3上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫2π3=1,即2×cos ⎝⎛⎭⎫ω×2π3=1,cos ⎝⎛⎭⎫2π3ω=12,检验各选项,得出B 项符合. 5.sin(-1740°)的值是( )A .-32B .-12C.12D.32答案:D解析:sin(-1740°)=sin60°=32. 6.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 答案:B解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1,故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3,即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 7.下列函数中,在⎝⎛⎭⎫0,π2上是增函数的偶函数是( ) A .y =|sin x | B .y =|sin2x |C .y =|cos x |D .y =tan x答案:A解析:作图比较可知.8.要得到函数y =cos(3x +2)的图象,只要将函数y =cos3x 的图象( )A .向左平移2个单位B .向右平移2个单位C .向左平移23个单位 D .向右平移23个单位 答案:C解析:∵y =cos(3x +2)=cos3⎝⎛⎭⎫x +23, ∴只要将函数y =cos3x 的图象向左平移23个单位即可. 9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为( ) A .-12 B.32C .-32 D.12答案:B解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫π3=sin π3=32. 10.若函数f (x )=2sin ⎝⎛⎭⎫ax +π4(a >0)的最小正周期为1,且g (x )=⎩⎪⎨⎪⎧sin ax (x <0)g (x -1)(x ≥0),则g ⎝⎛⎭⎫56等于( )A .-12 B.12C .-32 D.32答案:C解析:由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,∴g ⎝⎛⎭⎫56=g ⎝⎛⎭⎫-16=sin ⎝⎛⎭⎫-a 6= sin ⎝⎛⎭⎫-π3=-32. 11.已知ω>0,函数f (x )=sin(ωx +π4)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2] 答案:A解析:因为ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,所以ωπ2+π4≤ωx +π4≤ωπ+π4,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A. 12.下图为一半径为3m 的水轮,水轮圆心O 距离水面2m ,已知水轮自点A 开始旋转,15s 旋转一圈.水轮上的点P 到水面距离y (m)与时间x (s)满足函数关系式y =A sin(ωx +φ)+2,则有( )A .ω=2π15,A =3B .ω=152π,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 答案:A解析:∵T =15,故ω=2πT =2π15,显然y max -y min 的值等于圆O 的直径长,即y max -y min =6,故A =y max -y min 2=62=3. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.已知sin ⎝⎛⎭⎫π4-α=m ,则cos ⎝⎛⎭⎫π4+α=________. 答案:m解析:cos ⎝⎛⎭⎫π4+α=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4-α=m . 14.已知f (x )的定义域为(0,1],则f (sin x )的定义域是________.答案:(2k π,2k π+π),k ∈Z解析:由0<sin x ≤1得2k π<x <2k π+π(k ∈Z ).15.函数y =sin x +cos x -12的定义域为________. 答案:{x |2k π≤x ≤2k π+π3,k ∈Z }.解析:由题意知⎩⎪⎨⎪⎧ sin x ≥0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x ≥0cos x ≥12, 如图,结合三角函数线知: ⎩⎪⎨⎪⎧2k π≤x ≤2k π+π (k ∈Z )2k π-π3≤x ≤2k π+π3 (k ∈Z ), 解得2k π≤x ≤2k π+π3(k ∈Z ), ∴函数的定义域为{x |2k π≤x ≤2k π+π3,k ∈Z }. 16.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题,其中正确的是________. ①y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ②y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ③y =f (x )的最小正周期为2π;④y =f (x )的图象的一条对称轴为x =-π6. 答案:①②解析:4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫2x -π6,故①②正确,③④错误. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知角α的终边经过点P ⎝⎛⎭⎫45,-35. (1)求sin α的值;(2)求sin ⎝⎛⎭⎫π2-αsin (α+π)·tan (α-π)cos (3π-α)的值. 解:(1)∵|OP |=1,∴点P 在单位圆上.由正弦函数的定义得sin α=-35. (2)原式=cos α-sin α·tan α-cos α=sin αsin α·cos α=1cos α. 由余弦函数的定义得cos α=45,故所求式子的值为54. 18.(12分)已知sin θ,cos θ是关于x 的方程x 2-2 2ax +a =0的两个根.(1)求实数a 的值;(2)若θ∈⎝⎛⎭⎫-π2,0,求sin θ-cos θ的值. 解:(1)∵(sin θ+cos θ)2-2sin θcos θ=1, 又∵⎩⎨⎧sin θ+cos θ=2 2a ,sin θ·cos θ=a , ∴a =12或a =-14,经检验Δ≥0都成立, ∴a =12或a =-14.(2)∵θ∈⎝⎛⎭⎫-π2,0,∴a <0, ∴a =-14且sin θ-cos θ<0, ∴sin θ-cos θ=-62. 19.(12分)若函数f (x )=a -b cos x 的最大值为52,最小值为-12,求函数g (x )=-4a sin bx 的最值和最小正周期.解:当b >0时,⎩⎨⎧ a +b =52a -b =-12⇒⎩⎪⎨⎪⎧ a =1,b =32, g (x )=-4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. 当b <0时,⎩⎨⎧ a -b =52a +b =-12⇒⎩⎪⎨⎪⎧a =1,b =-32, g (x )=-4sin(-32x )=4sin 32x . 最大值为4,最小值为-4,最小正周期为4π3. b =0时不符合题意.综上所述,函数g (x )的最大值为4,最小值为-4,最小正周期为4π3. 20.(12分)如图,单摆从某点开始来回摆动,离开平衡位置的距离s (cm)和时间t (s)的函数关系是s =A sin(ω t +φ),0<φ<π2,根据图象,求:(1)函数解析式;(2)单摆摆动到最右边时,离开平衡位置的距离是多少?(3)单摆来回摆动一次需要多长时间?解:(1)由图象知,34T =1112-16=34,所以T =1.所以ω=2πT=2π. 又因为当t =16时取得最大值,所以令2π·16+φ=π2+2k π, ∵φ∈⎝⎛⎭⎫0,π2. 所以φ=π6.又因为当t =0时,s =3, 所以3=A sin π6,所以A =6,所以函数解析式为s =6sin ⎝⎛⎭⎫2πt +π6. (2)因为A =6,所以单摆摆动到最右边时,离开平衡位置6cm.(3)因为T =1,所以单摆来回摆动一次需要 1s.21.(12分)设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期. (1)求f (0);(2)求f (x )的解析式;(3)已知f ⎝⎛⎭⎫α4+π12=95,求sin α的值.解:(1)f (0)=3sin ⎝⎛⎭⎫ω×0+π6=3sin π6=32. (2)∵T =2πω=π2,∴ω=4,所以f (x )的解析式为:f (x )=3sin(4x +π6). (3)由f ⎝⎛⎭⎫α4+π12=95得3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6=95,即sin ⎝⎛⎭⎫α+π2=35,∴cos α=35, ∴sin α=±1-cos 2α=± 1-⎝⎛⎭⎫352=±45. 22.(12分)已知函数f (x )=2cos ⎝⎛⎭⎫2x -π4,x ∈R . (1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎡⎦⎤-π8,π2时,方程f (x )=k 恰有两个不同的实数根,求实数k 的取值范围; (3)将函数f (x )=2cos ⎝⎛⎭⎫2x -π4的图象向右平移m (m >0)个单位后所得函数g (x )的图象关于原点中心对称,求m 的最小值.解:(1)因为f (x )=2cos ⎝⎛⎭⎫2x -π4,所以函数f (x )的最小正周期为T =2π2=π, 由-π+2k π≤2x -π4≤2k π,得-3π8+k π≤x ≤π8+k π,故函数f (x )的递增区间为⎣⎡⎦⎤-3π8+k π,π8+k π(k ∈Z ); (2)因为f (x )=2cos ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤-π8,π8上为增函数,在区间⎣⎡⎦⎤π8,π2上为减函数 又f ⎝⎛⎭⎫-π8=0,f ⎝⎛⎭⎫π8=2,f ⎝⎛⎭⎫π2=2cos ⎝⎛⎭⎫π-π4=-2cos π4=-1, ∴当k ∈[0,2)时方程f (x )=k 恰有两个不同实根.(3)∵f (x )=2sin ⎝⎛⎭⎫-2x +3π4=2sin ⎝⎛⎭⎫2x +π4=2sin2⎝⎛⎭⎫x +π8 ∴g (x )=2sin2⎝⎛⎭⎫x +π8-m = 2sin ⎝⎛⎭⎫2x +π4-2m 由题意得π4-2m =2k π,∴m =-k π+π8,k ∈Z 当k =0时,m =π8,此时g (x )=2sin2x 关于原点中心对称.。
(压轴题)高中数学必修四第一章《三角函数》检测卷(包含答案解析)
一、选择题1.已知角α顶点在坐标原点,始边与x 轴非负半轴重合,终边过点()3,4P -,将α的终边逆时针旋转180︒,这时终边所对应的角是β,则cos β=( ) A .45-B .35C .35D .452.已知函数f (x )=2sinxsin (x+3φ)是奇函数,其中(0,)2πϕ∈ ,则函数g (x )=cos (2x-φ)的图象( ) A .关于点(,0)12π对称 B .关于轴512x π=-对称 C .可由函数f (x )的图象向右平移6π个单位得到 D .可由函数f (x )的图象向左平移3π个单位得到 3.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .84.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( )A .4149,66⎡⎫⎪⎢⎣⎭B .4953,66⎡⎫⎪⎢⎣⎭C .3741,66⎡⎫⎪⎢⎣⎭D .[8,9)5.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻两条对称轴之间的距离为π2,将函数()y f x =的图象向左平移π6个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭对称 B .关于点π,012⎛⎫-⎪⎝⎭对称 C .关于直线π12x =对称 D .关于直线π12x =-对称6.使函数())cos(2)f x x x θθ=+++是偶函数,且在0,4⎡⎤⎢⎥⎣⎦π上是减函数的θ的一个值是( ) A .6π B .3π C .23π D .56π7.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A B C D 8.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=- ⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C9.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3410.已知函数()[][]sin cos cos sin f x x x =+,其中[]x 表示不超过实数x 的最大整数,则( )A .()f x 是奇函数B .π2π33f f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭C .()f x 的一个周期是πD .()f x 的最小值小于011.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 12.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+⎪⎝⎭二、填空题13.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.14.若函数()f x 为定义在R 上的偶函数,且在(0,)+∞内是增函数,又()20f =,则不等式sin ()0x f x ⋅>,[,]x ππ∈-的解集为_________.15.已知定义在R 上的奇函数()f x 满足()()20f x f x -+=,且当(]0,1x ∈时,()21log f x x=,若函数()()()sin F x f x x π=-在区间[]1,m -上有且仅有10个零点,则实数m 的取值范围是__________. 16.已知3cos 6απ⎛⎫-= ⎪⎝⎭,则54cos sin 63ππαα⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭的值为_____.17.如图,某公园要在一块圆心角为3π,半径为20m 的扇形草坪OAB 中修建一个内接矩形文化景观区域CDEF ,若//EF AB ,则文化景观区域面积的最大值为______2m .18.函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象为C ,以下结论中正确的是______(写出所有正确结论的编号).①图象C 关于直线1112π=x 对称; ②图象C 关于点2,03π⎛⎫⎪⎝⎭对称; ③函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是增函数;④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C . 19.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.20.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数()()cos[6]1,2,...,126y A x B x π=-+=来表示.已知6月份的平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温为______℃. 三、解答题21.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()y f x =图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再将图象上所有点的纵坐标扩大到原来的2倍(横坐标不变),最后向下平移2个单位得到()y g x =图象,求函数()y g x =的解析式及在R 上的对称中心坐标. 22.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的相邻两个交点间的距离为2π,且________.在①函数6f x π⎛⎫+⎪⎝⎭为偶函数;②33f π⎛⎫=⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤⎪⎝⎭;这三个条件中任选一个,补充在上面问题中,并解答. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的单调递增区间. 23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数1()sin 2126f x x a π⎛⎫=+++ ⎪⎝⎭(其中a 为常数). (1)求()f x 的单调减区间; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为2,求a 的值.25.已知函数2()22cos 1f x x x =+-.(I )求函数()f x 的最小正周期; (II )求函数()f x 的单调增区间; (III )当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的最小值. 26.已知函数()2sin 213f x x π⎛⎫=++ ⎪⎝⎭,x ∈R . (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)求()f x 在区间06,π⎡⎤⎢⎥⎣⎦上的最大值与最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据已知条件求解出cos α的值,然后根据,αβ之间的关系结合诱导公式求解出cos β的值.【详解】 因为3cos 5α==,且180βα=+︒, 所以()3cos cos 180cos 5βαα=+︒=-=-, 故选:B. 【点睛】结论点睛:三角函数定义有如下推广:设点(),P x y 为角α终边上任意一点且不与原点重合,r OP =,则()sin ,cos ,tan 0y x yx r r xααα===≠. 2.B解析:B 【分析】利用三角函数的奇偶性求得φ,再利用三角函数的图象对称性、函数y=Asin (ωx+φ)的图象变换规律,判断各个选项是否正确,从而得出结论. 【详解】函数f (x )=2sinxsin (x+3φ)是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭, ∴y=2sinxsin (x+3φ)是奇函数,∴3φ=2π,φ=6π,则函数g (x )=cos (2x ﹣φ)=cos (2x ﹣6π). 当12x π=时,206x π-=,112g π⎛⎫= ⎪⎝⎭,则函数不关于点,012π⎛⎫⎪⎝⎭对称,选项A 错误; 当512x π=-时,26x ππ-=-,则函数关于直线512x π=-对称,选项B 正确;函数()2sin sin 2sin cos sin 22f x x x x x x π⎛⎫=+== ⎪⎝⎭, 其图像向右平移6π个单位的解析式为sin 2sin 2sin 263y x x x ππ⎡⎤⎛⎫⎛⎫==-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项C 错误; 其图像向左平移3π个单位的解析式为2sin 2sin 2sin 233y x x x ππ⎡⎤⎛⎫⎛⎫==+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 选项D 错误; 故选B. 【点睛】本题主要考查三角函数的奇偶性、对称性,函数y=Asin (ωx+φ)的图象变换规律,属于中档题.函数()sin y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ ,k Z ∈时,函数()sin y A x ωϕ=+为奇函数;=2k πϕπ+,k Z ∈时,函数()sin y A x ωϕ=+为偶函数.;(2)周期性:()sin y A x ωϕ=+存在周期性,其最小正周期为T =2πω;(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k Z πππωϕπ-≤+≤+∈得单调增区间;由3+22,22k x k k Z πππωϕπ≤+≤+∈得单调减区间;(4)对称性:利用y =sin x 的对称中心为()(),0k k Z π∈求解,令()x k k ωϕπ+=∈Z ,求得x ;利用y =sin x 的对称轴为()2x k k Z ππ=+∈求解,令()+2x k k πωϕπ+=∈Z ,得其对称轴.3.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.4.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=;当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<. 故选:A5.B解析:B 【分析】由相邻两条对称轴之间的距离为2π,可知22T π=,从而可求出2ω=,再由()y f x =的图像向左平移6π个单位后,得到的图象关于y 轴对称,可得sin 13πϕ⎛⎫+=± ⎪⎝⎭,从而可求出ϕ的值,然后逐个分析各个选项即可 【详解】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移6π单位后,所得图像对应的解析式为()g x , 则()sin 23g x x πϕ⎛⎫=++ ⎪⎝⎭,因()g x 的图像关于y 轴对称,故(0)1g =±, 所以sin 13πϕ⎛⎫+=± ⎪⎝⎭,,32k k Z ππϕπ+=+∈,所以,6k k Z πϕπ=+∈, 因||2ϕπ<,所以6π=ϕ. 又()sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,62x k k Z πππ+=+∈,故对称轴为直线,26k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k ππ+=∈Z ,故,212k x k Z ππ=-∈,所以对称中心为,0,212k k Z ππ⎛⎫-∈ ⎪⎝⎭,所以A 错误,B 正确. 故选:B 【点睛】此题考查了三角函数的图像变换和三角函数的图像和性质,属于基础题.6.B解析:B 【解析】1())cos(2)2()cos(2))2sin(2)226f x x x x x x πθθθθθ=+++=+++=++,由于()f x 为偶函数,则(0)2sin()26f πθ=+=±,sin()1,662k πππθθπ+=±+=+,3k πθπ=+,当0k =时,3πθ=,()2sin(2)2sin(2)362f x x x πππ=++=+2cos2x =,当[0,]4x π∈时,2[0,]2x π∈,()2cos2f x x =为减函数,符合题意,所以选B.7.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+ ⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.8.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.9.C解析:C 【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.10.D解析:D 【分析】利用奇函数的性质判断A ,分别求3f π⎛⎫ ⎪⎝⎭和23f π⎛⎫ ⎪⎝⎭判断大小,取特殊值验证的方法判断C ,分区间计算一个周期内的最小值,判断选项D 。
(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+4.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .127.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( )A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 12.函数22y cos x sinx =- 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2二、填空题13.当ϕ=___________时,函数()()sin f x x ϕ=+在区间4,33ππ⎛⎫⎪⎝⎭上单调(写出一个值即可).14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.16.sin 75=______.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.3.D解析:D【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x的解析式,再根据函数sin()y A xωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x xωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=.再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x xπ=+.将函数()f x的图象先向右平移3π个单位长度,可得sin(2)3y xπ=-的图象.然后向上平移1个单位长度,得到函数()g x的解析式为()sin(2)13g x xπ=-+,故选:D【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A xωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A的值,根据最值点求出ϕ的值. 4.B解析:B【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B的纵坐标满足的关系式,则吊舱到底面的距离为点B的纵坐标减2.【详解】如图所示,以点M为坐标原点,以水平方向为x轴,以OM所在直线为y轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.C解析:C 【分析】由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A.【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.(集合或中的任何一个值都行)【分析】由函数的周期和区间长度可以确定和是单调区间的端点值由此列式求值【详解】的周期是而区间的长度是个单位长度则一个周期内完整的一个单调增区间或减区间当时所以解得:或解得解析:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【分析】由函数的周期,和区间长度可以确定3π和43π是单调区间的端点值,由此列式,求ϕ值. 【详解】()f x 的周期是2π,而区间4,33ππ⎛⎫ ⎪⎝⎭的长度是π个单位长度,则4,33ππ⎛⎫⎪⎝⎭一个周期内完整的一个单调增区间或减区间, 当433x ππ<<时,433x ππϕϕϕ+<+<+, 所以2324232k k ππϕπππϕπ⎧+=-+⎪⎪⎨⎪+=+⎪⎩ ,解得:52,6k k Z πϕπ=-+∈, 或23243232k k ππϕπππϕπ⎧+=+⎪⎪⎨⎪+=+⎪⎩,解得:26k πϕπ=+,k Z ∈,所以其中一个6π=ϕ, 故答案为:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【点睛】关键点点睛:本题考查三角函数的性质,求参数的取值范围,本题的关键是确定3π和43π是单调区间的端点值,列式后就比较容易求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间.【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间. 16.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重 解析:120(31)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 4530231tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan156023120603DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60603DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭.(2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+, 又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232fx x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭,由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必
修四测试卷
第I 卷
一、选择题(本题共17道小题,每小题0分,共0分) 1.若点P (-3,4)在角α的终边上,则cos α=() 53-5354-
54的值为()
21232
1
-23-
已知扇形的周长为cm 8,圆心角为2弧度,则该扇形的面积为() 24cm 26cm 28cm 216cm 函数()cos(2)
6f x x π
=-的最小正周期是()
5.已知tan 2α=,则sin cos 2sin cos αα
αα+=
-()
.-.-2
6.函数()sin()f x A x ωϕ=+(其中A >0,ϕ<
π
2
的图象如图所示,为了得到()sin3g x x =的图象,只需将()f x 的图象()
A.右平移
π4个单位长度B.左平移π
4个单位长度 C.右平移π12个单位长度D.左平移π
12
个单位长度
7.将函数
cos()
3y x π
=-的图象上各点的横坐标伸长到原来的2倍(纵
坐标不变),再向左平移6π
个单位,所得函数图象的一条对称轴为() 9
x π
=
8
x π
=
2x π
=
x π=已知平面向量(1,3),(2,0)=-=-a b ,则|2|+=a b
A.32 C.22
9.已知平行四边形OABC (O 为坐标原点),(2,0),(3,1)OA OB ==u u u r u u u r ,则OC u u u r 等于
A .(1,1)
B .(1,-1)
C .(-1,-1)
D .(-1,1)
10.在△ABC 中,若点D 满足3BD DC =u u u r u u u r ,点E 为AC 的中点,则ED =u u u r
A .5163AC A
B +u u u r u u u r B .1144AB A
C +u u u r u u u r C .3144AC AB -u u u r u u u r
D .5163AC AB -u u u r u u u r
11.已知m ,n 为正数,向量()()1,1,1,n m -==,若//,则
12m n +
的最小值为() A .3
B .22.322+
D .7
12.已知3
cos()45x π-=
,则sin 2x =() A .2518B .257C .257-D .2516
-
13.已知2tan =α,则=ααcos sin ()
A .52-
B .52
C 54-
D .54
14.若41)6sin(=-θπ,则=
+)232cos(θπ
A .87
- B .41-
C .41
D .87
15.函数f(x)=sin(2π
﹣x)是( )
A .奇函数,且在区间(0,2π)上单调递增
B .奇函数,且在区间(0,2π
)上单调递减
C .偶函数,且在区间(0,2π)上单调递增
D .偶函数,且在区间(0,2π
)上单调递减
16.若
1
sin 3α=
,则cos2α= A .8
9
B .7
9
C .7
9-
D .8
9-
17.已知O 是ABC ∆内部一点,且3OA OB OC 0++=uu r uu u r uuu r ,6AB AC
?uu u r uuu r
,60BAC
?o ,则OBC ∆的
面积为 A .
35B .335
C .3
D .935 第II 卷(非选择题)
二、填空题(本题共4道小题,每小题0分,共0分)
18.已知向量),2(),5,5(),0,3(k c b a =-==,若)(c a b +⊥,则k =__________ 19.已知2sin 3cos 0θθ+=,则tan 2θ=________.
20.已知为角终边上的一点,则__________.
21.已知函数
()sin(),(,0,)
2f x A x x R π
ωϕωϕ=+∈><
的部分图象
如
图所示.则()f x 的解析式是______________。
三、解答题
22.已知,且α是第二象限的角.
(1)求
的值;
(2)求cos2α的值. 23.已知函数)2sin()4
sin(32)(ππ
+-+=x x x f .
(1)求f (x )的最小正周期; (2)若将f (x )的图象向右平移
3π个单位,得到函数g (x )的图象,求函数g (x )在区间⎪⎭
⎫⎢⎣⎡2,0π上的最大值和最小值,并求出相应的x 的值. 24.已知向量)sin 2,3(),1,cos (x x =-=
(1)当⊥时,求
x
x
x 2
cos 1sin cos 3+的值; (2)已知钝角△ABC 中,角B 为钝角,a ,b ,c 分别为角A ,B ,C 的对边,且)sin(2B A b c +=,若函数2
2
4)(x f -=,求)(B f 的值.
25.已知函数()cos(2)sin 2(0)
6f x x x π
ωωω=-+>的最小正周期为π.
(I)求ω的值;
(Ⅱ)求函数()f x 在0,2π⎡⎤⎢⎥⎣
⎦上的值域. 26.已知函数f (x )=sin 2x –cos 2x –32sin x cos x (x ∈R ).
(Ⅰ)求)32(
πf 的值.
(Ⅱ)求f (x )的最小正周期及单调递增区间.
数学必修四测试卷答案
由三角函数的定义可知
534)3(3cos 22-=+--==
r x αB T 选∴,π2
π2||π2===ωΘ由题意知,
2(3,3)+=--a b ,所以|2|32+=a b .故选
为平行四边形,由向量加法的平行四边形法则知
,∴
.
11
,1001,11//>∴
<<⇒>-=∴=+⇒-=⇒m m m n n m n m b a Θ,
()223232121+≥++=⎪⎭
⎫
⎝⎛++=+∴
m n n m n m n m n m ,当且仅当222n m =时取等号. 【分析】函数=cosx ,即可得出结论.
【解答】解:函数=cosx ,是偶函数,且在区间
上单调递减,
故选
D .
故答案为5
12由条件得2
3
tan -=θ,从而
512)23(1)
23(22tan 2
=---⨯=
θ 521.
22.解:(1)∵,且α是第二象限的角∴cosα=﹣
=
∴
=sinα?cos
﹣cosα?sin
=
(2)cos2α=1﹣2sin 2α=1﹣= 23.解:(1)由
,得
=
=
.∴f(x )的最小正周期为
π;
(2)∵将f (x )的图象向右平移个单位,得到函数g (x )的图象,
∴
=.∵x∈[0,
)时,
,∴当
,即
时,g (x )取得最大值2;
当
,即x=0时,g (x )取得最小值
.
24.(1)∵⊥,∴x x sin 2cos 3=,即2
3tan =
x 3cos sin 3tan 611
x x x ==
(2)2sin()c b A B =+Q ,sin 2sin sin C B C ∴=1
sin 0, sin 2C B ≠∴=
Q
22
()44cos 21
f x m n x =-=+u r r Q 56B π=
5
()4cos 133
f B π∴=+= 由角B 为钝角知25. 26.
(Ⅰ)由2sin
3π=,21cos 32π=-,22211()()()322f π=----.得2()23
f π
=.
(Ⅱ)由22cos2cos sin x x x =-与sin22sin cos x x x =得()cos 22f x x x =--.2sin(2)6
x π
=-+.
所以()f x 的最小正周期是π.由正弦函数的性质得3222,262
k x k k πππ
+π≤+≤+π∈Z ,
解得2,63k x k k ππ+π≤≤+π∈Z ,所以,()f x 的单调递增区间是2[,]63
k k k ππ+π+π∈Z ,.。