初一数学有理数复习资料及经典习题

合集下载

初一数学上册 有理数及其运算

初一数学上册 有理数及其运算

有理数及其运算(复习)一、正负数有理数的分类:_____________统称整数,试举例说明。

_____________统称分数,试举例说明。

____________统称有理数。

正确理解非负数和非正数。

练习:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …};正有理数集{ …};负有理数集{ …} 负整数集{ …};自然数集{ …};正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。

二、数轴规定了 、 、 的直线,叫数轴练习:1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。

4,-|-2|, -4.5, 1, 03、下列语句中正确的是( )A数轴上的点只能表示整数B数轴上的点只能表示分数C数轴上的点只能表示有理数D所有有理数都可以用数轴上的点表示出来4、①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。

③有理数中,最大的负整数是 ,最小的正整数是 。

最大的非正数是 。

④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。

5、在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) A.-5, B.-4 C.-3 D.-26、画出数轴,把下列各组数分别在数轴上表示出来,并按从大到小的顺序排列,用“>”连接起来:⑴ 1,-2,3,-4 ⑵31,0,3,-0.2三、相反数1、像2和-2、-5和5、2.5和-2.5这样,只有 不同的两个数叫做互为相反数。

0的相反数是 。

一般地:若a 为任一有理数,则a 的相反数为-a2、相反数的相关性质:a 、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。

【绝对经典】初一数学有理数30题含详细答案

【绝对经典】初一数学有理数30题含详细答案
(3)当代数式|x+1|+|x﹣2|+|x﹣3|取最小值时,x的值为_____.
30.a、b、c三个数在数轴上位置如图所示,且|a|=|b|
(1)求出a、b、c各数的绝对值;
(2)比较a,﹣a、﹣c的大小;
(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.
参考答案
1.D
【解析】
【分析】
负数小于0,可将各项化简,然后再进行判断.
3.C
【解析】
【分析】
(25±0.2)的字样表明质量最大为25.2,最小为24.8,二者之差为0.4.
【详解】
解:根据题意得:标有质量为(25±0.2)的字样,
(3)如果点A、C表示的数互为相反数,求点B表示的数.
29.数轴上两点之间的距离等于相应两数差的绝对值,如2与3的距离可表示为|2﹣3|=1,2与﹣3的距离可表示为|2﹣(﹣3)|=5
(1)数轴上表示3和8的两点之间的距离是_____;数轴上表示﹣3和﹣9的两点之间的距离是_____;
(2)数轴上表示x和﹣2的两点A和B之间的距离是_____;如果|AB|=4,则x为_____;
2.B
【解析】
【分析】
根据有理数的分类逐一作出判断即可.
【详解】
解:A.0既不是正数也不是负数,故A错误;B.整数和分数统称为有理数;故B正确;C.若|a|=|b|,则a=b或a与b互为相反数.故C错误;D.整数包括正整数、0和负整数,故D错误.
【点睛】
本题考查了有理数的分类,掌握有理数的分类是解题的关键.
A.0.2 kgB.0.3 kgC.0.4 kgD.50.4 kg
4.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()

七年级数学有理数知识点章节复习及练习题

七年级数学有理数知识点章节复习及练习题

有理数章节复习知识详解一、有理数概念及意义整数与分数统称为有理数.有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 0的特殊性:0既不是正数也不是负数,是整数,不是分数。

0是最小的自然数,1是最小的正整数,-1是最大的负整数。

有限小数:小数部分的位数是有限的小数。

无限小数:小数部分的位数是无限的小数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如: 0.333 …, 5.32727 …等等。

注意 :循环小数是无限小数,也称作无限循环小数。

整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。

1.下列说法中正确的是(???)A 、一个有理数,不是正数就是负数 ? ?B 、一个有理数,不是整数就是分数C 、有理数可分为非负有理数和非正有理数??D 、整数和小数统称有理数2.若两个有理数的和是正数,那么一定有结论(?????)?A 、两个加数都是正数B 、两个加数有一个是正数C 、一个加数正数,另一个加数为零D 、两个加数不能同为负数3.下列数中,为有理数的是()二、数轴的概念及应用规定了原点、正方向和单位长度的直线叫做数轴.1.数轴上表示2和5的两点之间的距离是_______个单位长度;表示1和-3两点之间的距离是___个单位长度;2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a三、相反数 1 0 -1 a b B A(第1题图)1. 概念:只有符号不同的两个数叫做互为相反数。

0的相反数仍是0.2. 几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。

3. 任何一个数都有它的相反数4. 相反数性质:a 与b 互为相反数,则a+b=0.1.如果a 和b 是符号相反的两个数,在数轴上a 所对应的数和b 所对应的点相距6个单位长度,如果a=-2,则b 的值为_________________.????2.已知x 、y 互为相反数,则-15(x +y )=__________________.3.如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b=___________.????四、绝对值在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

七年级数学有理数运算知识点整理(复习,填空题,好用)

七年级数学有理数运算知识点整理(复习,填空题,好用)

第一章:有理数总复习一、有理数的根本概念1.大于0的数叫做________;小于0的数叫做_________备注:在正数前面加“-〞的数是_______数;“0〞既不是_______,也不是______。

2.有理数:整数和分数统称有理数。

有理数的分类:3.数轴:规定了______、________和_________的直线。

性质:〔1〕在数轴上表示的两个数,右边的数总比左边的数______;〔2〕正数都______0,负数都_____0;正数______一切负数;〔3〕所有有理数都可以用数轴上的点表示。

4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。

性质:〔1〕数a 的相反数是______〔a 是任意一个有理数〕;〔2〕0的相反数是_____;〔3〕假设a 、b 互为相反数,那么________;假设a 、b 互为相反数且a 、b 都不等于零,那么_____a b;5.倒数 :乘积是___的两个数互为倒数 。

性质:〔1〕a 的倒数是____〔a ≠0〕; 〔2〕0没有倒数 (为什么);〔3〕假设a 与b 互为倒数,那么______;假设a 与b 互为负倒数,那么______。

倒数与相反数的区别和联系:〔1〕a 与-a 互为______; a 与a 1〔a ≠ 0〕互为______;〔2〕符号上:互为相反数〔除0外〕的两数的符号_____;互为倒数的两数符号______〔3〕a、b互为相反数那么_______;a、b互为倒数 ,那么_______;〔4〕相反数是本身的数是______,倒数是本身的数是______ 。

6.绝对值:一个数a的绝对值就是数轴上表示数a的点_________。

性质:〔1〕数a的绝对值记作________;〔2〕假设a>0,那么︱a︱= _____;假设a<0,那么︱a︱=______;假设a =0,那么︱a ︱=_____;〔3〕对任何有理数a,总有︱a︱≥0.7.有理数大小的比拟:〔1〕可通过数轴比拟:在数轴上的两个数,右边的数总比左边的数____;正数都____0,负数都_____0;正数____一切负数;〔2〕两个负数,绝对值大的______。

七年级第一章有理数---全章复习知识点加例题

七年级第一章有理数---全章复习知识点加例题

复习练习: 1、下面关于有理数的说法正确的是( ) A.整数集合和分数集合合在一起就是有理数集合 B.正数集合与负数集合合在一起就构成整数集合 C.正数和负数统称为有理数 D.正数、负数和零统称为有理数 2、如果两个数的有理数的和是正数,那么这两个数( ) A.一定都是整数 B.一定都是负数 C.一定都是非负数 D.至少有一个数是正数 4.下面说法正确的有( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正数就是负数 ④一个分数不是正数就是负数 A.1个 B.2个 C.3个 D.4个 二、数轴 1、像这样规定了原点、正方向和单位长度的直线叫做数轴. 2、数轴的三要素:原点、正方向、单位长度,缺一不可. 3、在数轴上比较两个有理数大小的法则:①在数轴上表示的两个数,右边的数总比左边的大。

②正数都大于0,负数都小于0,正数大于负数。

考场_____________ 班级________________ 姓名________________ 学号______________ ………密…………………封…………………装…………………订…………………线…………1、如果在数轴上点A 表示-4,将A 向右移动7个单位长度,那么终点B 表示的数为________, 那么AB 间的距离为______。

与点A 相距7个单位长度的点所表示的数为_____或_____。

2、如果点A 表示-4,将A 向右移动7个单位长度,再向左移动4个单位长度,那么终点B 表示的数为______.3、下面语句正确的是( )A.数轴上的点都只能表示整数B.两个不同的有理数可以用数轴上的同一个点表示C.数轴上的一个点,只能表示一个数D.数轴上的点所表示的数都是有理数三、相反数:只有正负号不同的两个数叫做互为相反数。

注意:①相反数是成对出现的.②若a 和b 是互为相反数,则a+b=0③我们规定:零的相反数仍然是零.复习联系:1、判断下面句子的对错:①符号不同的两个数是相反数。

初一数学有理数经典例题

初一数学有理数经典例题

初一数学有理数经典例题初一数学有理数经典例题:1.有理数的表示方法例题:给出以下有理数的表示方法:a) 5/3b) -2.4c) 1.25解析:a) 5/3可以表示为5÷3,表示的是一个分数。

b) -2.4可以表示为-2 2/5,表示的是一个带分数。

c) 1.25表示的是一个小数。

2.有理数的相反数例题:求出以下有理数的相反数:a) 2/3b) -1.5解析:a) 2/3的相反数是-2/3,因为两个数相加等于0。

b) -1.5的相反数是1.5,因为两个数相加等于0。

3.有理数的加法和减法例题:计算以下有理数的和或差:a) 3/4 + 1/2b) 5.6 - 2.3解析:a) 3/4 + 1/2 = (3×2 + 1×4) / 4×2 = 6/8 + 4/8 = 10/8 = 1 1/4b) 5.6 - 2.3 = 5.6 + (-2.3) = 3.34.有理数的乘法和除法例题:计算以下有理数的积或商:a) 3/4 × 2/3b) -9 ÷ 6解析:a) 3/4 × 2/3 = (3×2) / (4×3) = 6/12 = 1/2b) -9 ÷ 6 = -9/6 = -3/25.有理数的比较例题:判断以下有理数的大小关系(用>、<或=表示):a) -1/2 ? 1/3b) -5.7 ? -5.6解析:a) -1/2 > 1/3,因为-1/2表示的数比1/3小。

b) -5.7 < -5.6,因为-5.7表示的数比-5.6小。

6.有理数的绝对值例题:求出以下有理数的绝对值:a) 8b) -4/5解析:a) 8的绝对值是8,因为它本身就是正数。

b) -4/5的绝对值是4/5,因为绝对值就是去掉符号。

这些例题涵盖了有理数的表示方法、相反数、加法减法、乘法除法、比较大小和绝对值等知识点。

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。

七年级有理数经典例题

七年级有理数经典例题

七年级有理数经典例题一、有理数的概念相关例题例1:判断下列数哪些是有理数:公式, -3, 0,公式,公式, 0.333…(循环节为3), -0.1212212221…(相邻两个1之间2的个数逐次加1)。

解析:有理数是整数(正整数、0、负整数)和分数的统称。

-3是负整数,属于有理数。

0是整数,属于有理数。

公式是分数,属于有理数。

0.333…(循环节为3)是无限循环小数,可化为分数公式,属于有理数。

而公式是无限不循环小数,公式也是无限不循环小数, -0.1212212221…(相邻两个1之间2的个数逐次加1)是无限不循环小数,它们都不是有理数。

所以有理数有 -3,0,公式,0.333…(循环节为3)。

二、有理数的分类相关例题例2:把下列有理数分类: -1,公式,0, -0.5,3, -2.5,公式解析:1. 按整数和分数分类整数有: -1,0,3。

分数有:公式, -0.5, -2.5,公式。

2. 按正有理数、负有理数和0分类正有理数有:公式,3,公式。

负有理数有: -1, -0.5, -2.5。

0单独一类。

三、有理数的数轴表示相关例题例3:在数轴上表示下列有理数: -2,公式,0, -1.5,1解析:1. 画数轴,确定原点(表示0)、正方向(一般向右为正方向)和单位长度。

2. -2在原点左边2个单位长度处。

3. 公式,在原点右边1.5个单位长度处。

4. 0就在原点处。

5. -1.5在原点左边1.5个单位长度处。

6. 1在原点右边1个单位长度处。

四、有理数的大小比较相关例题例4:比较下列有理数的大小: -3与 -2.5,0与 -1,公式与公式解析:1. 对于 -3与 -2.5:两个负数比较大小,绝对值大的反而小。

公式,公式。

因为3>2.5,所以 -3< -2.5。

2. 对于0与 -1:0大于负数,所以0> -1。

3. 对于公式与公式:先通分,公式,公式。

因为公式,所以公式。

五、有理数的运算相关例题例5:计算:1. 公式2. 公式3. 公式4. 公式解析:1. 对于公式:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

(必考题)初中七年级数学上册第一章《有理数》经典复习题(1)

(必考题)初中七年级数学上册第一章《有理数》经典复习题(1)

1.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--= C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】 (2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.3.下列计算正确的是( )A .|﹣3|=﹣3B .﹣2﹣2=0C .﹣14=1D .0.1252×(﹣8)2=1D 解析:D【分析】根据绝对值的性质,有理数的减法法则,有理数的乘方法则即可求出答案.【详解】A 、原式=3,故A 错误;B 、原式=﹣4,故B 错误;C 、原式=﹣1,故C 错误;D 、原式=[0.125×(﹣8)]2=1,故D 正确.故选:D .【点睛】本题考查了绝对值的化简,有理数的运算法则,熟练掌握有理数运算的运算法则是本题的关键,要注意符号变号问题.4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.7.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.8.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.9.绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4C解析:C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C.10.下列关系一定成立的是()A .若|a|=|b|,则a =bB .若|a|=b ,则a =bC .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|D解析:D【分析】 根据绝对值的定义进行分析即可得出正确结论.【详解】选项A 、B 、C 中,a 与b 的关系还有可能互为相反数,故选项A 、B 、C 不一定成立,D.若a =﹣b ,则|a|=|b|,正确,故选D .【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5± A解析:A【分析】通过ab <0可得a 、b 异号,再由|a |=1,|b |=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a +b 的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab <0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.12.计算-3-1的结果是( )A .2B .-2C .4D .-4D 解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.13.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.14.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.已知四个互不相等的整数a ,b ,c ,d 满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a 、b 、c 、d 的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.2.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.已知a 是7的相反数,b 比a 的相反数大3,则b 比a 大____.17【分析】先根据相反数的定义求出a 和b 再根据有理数的减法法则即可求得结果【详解】由题意得a =-7b =7+3=10∴b -a =10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a 和b ,再根据有理数的减法法则即可求得结果.【详解】由题意,得a =-7,b =7+3=10.∴b -a =10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.4.33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.5.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.6.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两解析:1010-【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】原式(12)(34)(20192020)11111010=-+-++-=-----=-.故答案为:1010-.【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.7.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.8.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__;(2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题.【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n =m n a a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36.【点睛】 本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.9.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 10.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理数的除法解题关键在于这个数看成单位1解析:−8【分析】把这个数看成单位“1”,它的25对应的数量是165-,求这个数用除法 【详解】(165-)÷25=−8.故答案为−8.【点睛】此题考查有理数的除法,解题关键在于这个数看成单位“1”11.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.1.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.3.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.4.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。

(必考题)初中七年级数学上册第一章《有理数》经典复习题(答案解析)

(必考题)初中七年级数学上册第一章《有理数》经典复习题(答案解析)

一、选择题1.(0分)下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.(0分)下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A 解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C 解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.(0分)下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 6.(0分)如果用+0.02克表示一只乒乓球质量超出标准质量0.02克,那么一只乒乓球质量低于标准质量0.02克记作().A .+0.02克B .-0.02克C .0克D .+0.04克B 解析:B【解析】-0.02克,选A.7.(0分)一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米B .512⎛⎫ ⎪⎝⎭米C .612⎛⎫ ⎪⎝⎭米D .1212⎛⎫ ⎪⎝⎭米C 解析:C【分析】 根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.8.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.9.(0分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m , 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(0分)有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键. 二、填空题11.(0分)在数轴上,若点A 与表示3-的点相距6个单位,则点A 表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.12.(0分)数轴上,如果点 A所表示的数是3 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.13.(0分)计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.14.(0分)计算:5213(15.5)65772⎛⎫⎛⎫⎛⎫-+++-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________.0【分析】将同分母的分数分别相加再计算加法即可【详解】原式故答案为:0【点睛】此题考查有理数的加法计算法则掌握有理数加法的运算律:交换律和结合律是解题的关键解析:0【分析】将同分母的分数分别相加,再计算加法即可.【详解】原式5213615.5510100772⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-=-+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:0.【点睛】此题考查有理数的加法计算法则,掌握有理数加法的运算律:交换律和结合律是解题的关键.15.(0分)下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1; (2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1; (3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.16.(0分)在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.17.(0分)在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.18.(0分)如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.19.(0分)绝对值小于100的所有整数的积是______.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.(0分)用计算器计算:(1)-5.6+20-3.6=____;(2)-6.25÷25=____;(3)-7.2×0.5×(-1.8)=____;(4)-15×(-2.4)÷(-1.2)=____;(5)4.6÷113-6×3=____;(6)42.74.2 3.5≈____(精确到个位).【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理解析:10.8 0.25- 6.48 30- 14.55- 76【分析】(1)利用计算器计算有理数的加减法即可得;(2)利用计算器计算有理数的除法即可得;(3)利用计算器计算有理数的乘法即可得;(4)利用计算器计算有理数的乘除法即可得;(5)利用计算器先计算有理数的乘除法、再计算有理数的减法即可得;(6)利用计算器先计算有理数的乘方与减法、再计算有理数的除法即可得.【详解】(1)原式14.4 3.610.8=-=;(2)原式0.25=-;(3)原式 3.6 1.8() 6.48-==-⨯;(4)原式 1.236()30=÷-=-;(5)原式434.618 4.618 4.60.7518 3.451814.5534÷-=⨯-=⨯-=-=-; (6)原式53.1441760.7=≈; 故答案为:10.8,0.25-,6.48,30-,14.55-,76.【点睛】本题考查了利用计算器计算有理数的加减乘除法与乘方运算、近似数,掌握计算器的使用是解题关键.三、解答题21.(0分)计算:2334[28(2)]--⨯-÷-解析:21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(0分)计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(0分)计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=---- 34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.27.(0分)计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.28.(0分)计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]解析:(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+=1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。

初一数学有理数复习资料及经典习题.docx

初一数学有理数复习资料及经典习题.docx

一、有理数代数式几个重要的代数式:( m、n 表示整数)用运算符号+-× ÷ 连接数及字母的式子称为代数式(单独一个数或一个字母也是代数式)(1)a 与 b 的平方差是:;a与b差的平方是:;(2)若 a、b、c 是正整数,则两位整数是:,则三位整数是:;( 3)若m、 n 是整数,则被 5 除商m 余 n 的数是:;偶数是:,奇数是:;三个连续整数是:;一、有理数1.有理数:凡能写成q( p, q为整数且 p 0) 形式的数,都是有理数. p正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数 .注意: 0 即不是正数,也不是负数; -a 不一定是负数, +a 也不一定是正数;不是有理数;正有理数正整数正整数正分数整数零① 有理数零② 有理数负整数负有理数负整数分数正分数负分数负分数注意:有理数有理数中, 1、 0、 -1 是三个特殊的数,它们有自己的特性;的分类这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;自然数0 和正整数; a>0 a 是正数; a<0 a 是负数;a≥ 0 a 是正数或 0 a 是非负数;a≤ 0 a 是负数或 0 a 是非正数 .数轴数轴是规定了原点、正方向、单位长度的一条直线相反数绝对值有理数比大小倒数用式子表示:只有符号不同的两个数,我们说其中一个是另一个的相反数; 0 的相反数还是 0注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b ;相反数的和为 0a+b=0 a 、b 互为相反数 .正数的绝对值是其本身,0 的绝对值是0,负数的绝对值是它的相反数可表示为:a(a0)a(a 0)a0(a 0) 或 a a ( a 0) ;a (a0)注意:绝对值的问题经常分类或者分段讨论;a;a1 a 0;1 a 0aa|a| 是重要的非负数,即 |a|≥0;注意: |a| ·|b|=|a·b|,a ab ba2是重要的非负数,即 a2≥0;若 a2+|b|=0a=0,b=0比较大小的两种方法:1,相减法:(用于多项式的大小比较)a 与b 比较大小三种情况: a-b >0 则 a>b a-b=0则 a=b a-b <0则a< b2,相除法:(分式的大小比较)a 与b 比较大小三种情况: a÷b>1 则 a> b a÷ b=1则a=b a÷b<1则a< b注意,多项式,分式,或者先需要化简再比较大小!!!用式子表示:乘积为 1 的两个数互为倒数;注意: 0 没有倒数;若 a ≠0,那么a的倒数是1;倒数是本身的a数是± 1;若 ab=1 a、 b 互为倒数;若 ab=-1a、 b 互为负倒数.有理数 加法的交换律: a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c )a-b+c=a- ( )a- ( b-c )=加法的a- ( -b-c ) = a-b-c= a-( ) 运算律a-b=a+( )有理数 交换律:ab=ba ;结合律:(ab )c=a ( bc );分配律:a (b+c )=ab+ac乘法的a (b+c )= ab+ac=a( )运算律 ab+ac+ad=a() a( b+c+d )=有理数 除以一个数等于乘以这个数的倒数;除法法 注意:零不能做除数, 即 a无意义则有理数 乘方的法则正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数; 当 n 为正奇数时 : (-a) n = 或(a -b)n=当 n 为正偶数时 : (-a)n= 或 (a-b) n =先看完整个题目,再想解题办法,由已知条件得出解题思路已知条件中,相反数,倒数,积,整数,取值区间,等等不同情况来判断需要的解题方法,绝对值类:首要想到化简绝对值,化简时注意绝对值里面大于等于 0 或者小于 0如不能化简,看绝对值能不能合并化简,移项(等号左边移动右边,把绝对值的都移动到左边,数字移动到右边) 解题方1.在数轴上分段讨论,取值注意等于的情况法2. 分类讨论大于 0 或者小于 0 的不同情况3. 利用有理式的相乘相除法则,进行计算。

七年级有理数知识点及典型例题

七年级有理数知识点及典型例题

1.1 有理数【知识点清单】(一)学习温故小学里学过的数可分为三类: 、 和 ,它们都是由于实际需要而产生的。

(二)正数1、正数:大于0的数叫做正数。

如:2,0.6,37,,…… ※正数都比0要 。

2、正数的表示方法:在正数前面加上一个“+”,读作“正”号。

如:3+,1110+, 1.9+,……其中“+”号可以省略。

(三)负数1、负数:在正数前面加上一个“-”号,这样的数叫做负数。

如:2-,0.6-,37-,……※负数都比0要 。

2、负数的表示方法:一个负数前的“-”号不可以省略。

3、0既不是正数也不是负数。

4、正数和负数的意义在同一个问题中,分别用正数与负数表示的量具有__________的意义。

如:如果80m 表示向东走80m ,那么-60m 表示:______________。

(四)有理数1、有理数的概念:整数和分数统称为有理数。

2、有理数的分类【经典例题:】例 1:把下列各数分别填在题后相应的集合中:25-,0,1-,0.73,2,5-,87,52.29-,+28,27-,8,-311,-3.5,102.3,-35,1(1)整数集合: { ……} (2)负整数集合:{ ……} (3)负分数集合:{ ……} (4)自然数集合:{ ……} (5)非负数集合:{ ……}例 2:在下面每个集合中任意写出3个符合条件的数:例 3:下列选项中均为负数的是( ) A .2-, 1.9-,0B .0.3,5-, 3.3-C .19-,1-,0.6-D .6-,80,4.0例 4:下列说法中正确的是() A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数例 5:下列说法正确的个数是( )。

①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的就是负的;④一个分数不是正的就是负的。

A .1B .2C .3D .4例 6:把下列各数填在相应的集合中:…………正数集 负数集 整数集 自然数1.2 数轴【学习目标】一、认识数轴1、数轴的三要素:, ________, _________。

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题

有理数知识点归纳及典型例题一、正负数有理数分为正数、负数和0,其中正整数、负整数、0都属于整数;分数属于有理数。

有理数是指可以表示成两个整数比值的数,例如2、-5/3都是有理数。

基础练:1.正整数集{1.25.6/7};正有理数集{1.25.6/7};负有理数集{-789.-20.-590};负整数集{-789.-20};自然数集{1.25};正分数集{6/7};负分数集{-5/3}。

2.元表示价格上涨,原价为76元的食用油现在的卖价无法确定,需要给出更多信息。

二、数轴数轴是一条直线,上面的每个点都表示一个实数。

在数轴上,规定原点为0,正方向为右,负方向为左。

基础练:1.图中正确的数轴为D。

2.-|2|-4>1.3.数轴上的点可以表示有理数。

4.(1) 比-3大的负整数是-2;(2) -3,-2,-1,0,1,2;(3) 最大的负整数是-1,最小的正整数是1,最大的非正数是0;(4) 6个点,分别表示-3,-2,-1,1,2,3.5.点A表示-3.三、相反数相反数指的是互为相反的两个数,例如2和-2.一个数a的相反数为-a,互为相反数的两个数和为0.基础练:1.-(-5)=5;-(-(-8))=-8;-1/2的相反数是1/2;a的相反数是-a;-的相反数的倒数是-1/2.2.a和b互为相反数,则a+b=0.3.(1) -(-13)=13;(2) a=-1;(3) x=6;(4) x=-9.1.A。

-52 = 25.B。

(-1)1996 = -1.C。

(-1)2003 - (-1) = -1.D。

(-1)99 - 1 = -2正确答案:A2.此题需要讨论符号优先级,按照先乘除后加减的原则,应该先算32×(-6),再加上2,即:2+32×(-6)=2-192=-190.3.小幅度改写:① -3×[-5-(2/9)] = -3×[-45/9-(2/9)] = -3×[-47/9] = 141/9 = 47/3② (-1)×2+(-2)÷4 = -1×2+(-0.5) = -2.5③ -5³-3×(-4) = -125+12 = -113④ 4×(-1)×(1/5)÷(-3) = 4/15⑤ (-4)²-(3+3×2) = 16-9 = 7⑥ [-4×(-3)] = 12⑦ [2-(1-(-2/5))]×24 = (9/5)×24 = 216/5⑧ [-10+8×(-2)²-(-4)×(-3)]÷(-5) = [-10+32+12]/(-5) = -2⑨ -0.252÷(-0.5)³+(-1)¹⁰ = -0.252÷(-0.125)+1 = -2.016+1 = -1.016⑩ -3×(-2)²-4×(1-(-1))÷2 = -3×4-4×2/2 = -12-4 = -164.此题需要小幅度改写:1☆ 0 = 0×10⁰。

初一数学 有理数复习一

初一数学 有理数复习一

初一数学有理数复习一一.选择题(共50小题)1.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A.25.28千克B.25.18千克C.24.69千克D.24.25千克2.在数0.73,0,﹣39,1,,,2.43,,23%,98,中,分数有()个.A.4B.5C.6D.73.下列说法正确的是()A.所有的整数都是正数B.整数和分数统称有理数C.0是最小的有理数D.零既可以是正整数,也可以是负整数4.下列说法正确的是()A.一个有理数不是正数就是负数B.分数包括正分数、负分数和零C.有理数分为正有理数、负有理数和零D.整数包括正整数和负整数5.下列说法正确的是()A.自然数就是非负整数B.正数和负数统称为有理数C.零是最小的有理数D.有最小的正整数,没有最大的负整数6.在数轴上表示数﹣1和2024的两点分别为A和B,则A和B两点间的距离为()A.2026B.2025C.2024D.20237.数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5B.5C.5或﹣5D.2.5或﹣2.58.若数轴上的点A表示的数是﹣2,则与点A相距5个单位长度的点表示的数是()A.±7B.±3C.3或﹣7D.﹣3或79.在数轴上,到表示﹣1的点的距离等于6的点表示的数是()A.5B.﹣7C.5或﹣7D.810.数轴上与表示﹣1的点距离10个单位的数是()A.10B.±10C.9D.9或﹣1111.在数轴上,点A表示数﹣5,将点A在数轴上移动7个单位长度到达点B,则点B所表示的数为()A.7B.2C.﹣12D.2或﹣1212.如果在数轴上A点表示﹣3,那么在数轴上与点A距离2个长度单位的点所表示的数是()A.﹣1B.﹣1和﹣5C.+1或﹣5D.﹣513.在数轴上与﹣3的距离等于4的点表示的数是()A.﹣7或﹣1B.1C.﹣7D.1或﹣714.已知有理数a、b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.a<﹣b C.﹣a<b D.﹣a<﹣b15.有理数a、b、c在数轴上的位置如图所示,下列结论错误的是()A.c<b<a B.﹣c>a C.b<0,c<0D.﹣a>﹣c16.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0B.a﹣b<0C.a>﹣b D.﹣b>a17.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>018.2的相反数是()A.2B.﹣2C.﹣D.419.﹣2024的相反数是()A.﹣2024B.2024C.±2024D.20.下列化简正确的是()A.﹣(+1)=1B.﹣(﹣1)=﹣1C.﹣[﹣(﹣1)]=﹣1D.﹣[﹣(+1)]=﹣121.下列各式中,化简正确的是()A.﹣(﹣1)=﹣1B.﹣(+1)=+1C.+(﹣1)=﹣1D.﹣[+(﹣1)]=﹣122.下列两个数中,互为相反数的是()A.+3和﹣(﹣3)B.3和C.﹣2和D.+(﹣4)和﹣(﹣4)23.下列两数互为相反数的是()A.和﹣0.5 B.﹣1和﹣(+1)C.+(+2)和﹣(﹣2)D.和24.下列各对数:“①﹣(﹣4)与+(+4);②﹣与﹣;③﹣与+;④﹣[+(﹣1)]与﹣[+(+1)]”中,互为相反数的有()A.1对B.2对C.3对D.4对25.若a与5互为相反数,则a+1的值为()A.6B.4C.﹣4D.﹣6 26.有理数a+b的相反数是()A.a−b B.−a+b C.−a−b D.a+b 27.a﹣b的相反数是()A.﹣a+b B.﹣a﹣b C.a+b D.a﹣b 28.a+b﹣c的相反数是()A.﹣a﹣b+c B.a﹣b+c C.﹣a+b+c D.﹣a﹣b﹣c 29.﹣2024的绝对值是()A.2024B.﹣2024C.±2024D.030.=()A.B.C.﹣2024D.2024 31.的相反数是()A.B.C.2024D.﹣2024 32.﹣|﹣2024|的相反数是()A.﹣2024B.2024C.﹣D.33.若|x+2|+|y﹣3|=0,则xy的值为()A.﹣8B.﹣6C.5D.634.若|x﹣2|+|y+1|=0,则x﹣y的值为()A.﹣3B.3C.﹣2D.235.如果|a+2|+|b﹣1|=0,那么(a+b)2023的值为()A.﹣2023B.2023C.﹣1D.136.若|x﹣2|+|2y﹣6|=0,则x+y的值为()A.9B.5C.﹣5D.﹣6 37.已知|x|=4,则x的值是()A.4B.﹣4C.±4D.不存在38.﹣|x|=﹣8,则x的值为()A.8B.﹣8C.8或﹣8D.以上答案都不对39.已知|m|=3,|n|=5,且m>n,则2m+n的值为()A.1B.﹣11C.11D.1或﹣1140.已知|x|=3,|y|=7,且|x+y|=x+y,则y﹣x的值为()A.10B.﹣4C.10或4D.﹣10或﹣441.如果x为有理数,式子2023﹣|x+2|存在最大值,这个最大值是()A.2025B.2024C.2023D.202242.已知y=﹣2﹣|x﹣1|,则y有最____值____()A.大,﹣3B.小,﹣3C.大,﹣2D.小,﹣243.式子|x﹣7|﹣1的值可能是()A.﹣7B.﹣5C.﹣3D.144.如图所示,则|﹣3﹣a|﹣|b+1|等于()A.4+a﹣b B.2+a﹣b C.﹣4﹣a﹣b D.﹣2﹣a+b45.已知a、b、c的大致位置如图所示,化简|c﹣a|﹣|b﹣c|+|a+b|的结果是()A.2c B.﹣2a C.2b D.﹣2a﹣2b+2c46.已知a,b,c在数轴上对应的点如图所示,则代数式|b﹣a|﹣|c+b|+|a﹣c|化简后的结果为()A.2b﹣2c B.2b+2a C.2b D.﹣2a47.﹣1、0、、﹣2的大小顺序是()A.B.C.D.48.如图所示,根据有理数a,b,c在数轴上的位置,比较a,b,c的大小关系是()A.a>b>c B.a>c>b C.b>c>a D.c>b>a49.下列各组数中,大小关系正确的是()A.﹣7<﹣5<﹣2B.﹣7>﹣5>﹣2C.﹣7<﹣2<﹣5D.﹣2>﹣7>﹣550.若a、b为有理数,a<0,b>0,且|a|>|b|,那么a,b,﹣a,﹣b的大小关系是()A.﹣b<a<b<﹣a B.b<﹣b<a<﹣a C.a<﹣b<b<﹣a D.a<b<﹣b<﹣a二.填空题(共10小题)51.数轴上两个点之间的距离是5,其中一个点表示的数为3,则另一个点表示的数为.52.数轴上,与表示﹣3的点的距离为4的点表示的数是.53.若a、b互为相反数,则a﹣(﹣b)+2的值为.54.化简:+[﹣(﹣3)]=.55.已知|x﹣4|+|5﹣y|=0,则x﹣y的值为.56.若,则x=.57.已知a为有理数,则|a﹣2|+4的最小值为.58.若x为有理数,则5﹣|x﹣2|的最大值为.59.式子|x﹣2023|﹣2的最小值为.60.有理数a、b、c在数轴上的位置如图所示,化简式子:|a﹣b|+|a+b|﹣|c﹣a|=.。

(word完整版)初中数学初一有理数及其运算知识点及练习题,推荐文档

(word完整版)初中数学初一有理数及其运算知识点及练习题,推荐文档

初中数学有理数及其运算知识点及练习题【知识点汇总】正整数(如:1, 2, 3 ) 整数零(0)负整数(如:1, 2, 3 )1 1正分数(如:㊁,,5.3, 3.8 )11负分数(如:—,-,2.3,4.8232、 数轴的三要素:原点、正方向、单位长度(三者缺一不可) 。

3、 任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数 轴上所有的点都表示有理数)4、 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数, 也称这两个数互为相反数。

(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离 相等。

数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原 点的左边。

6绝对值的定义:一个数a 的绝对值就是数轴上表示数 a 的点与原点的距 离。

数a 的绝对值记作|a 。

7、正数的绝对值是它本身;负数的绝对值是它的数; 0的绝对值是0。

8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a| >09、比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤 如下: ① 先求出两个数负数的绝对值; ② 比较两个绝对值的大小;1、有理数分数a(a 0) |a|0(a0)或|a|a(a 0)a(a 0) a(a 0)越来越大-3-2-10123③根据两个负数,绝对值大的反而小”做出正确的判断。

10、绝对值的性质:①对任何有理数a,都有|a| >0②若|a|=0,贝U |a|=0,反之亦然③若|a|=b,贝U a=±④对任何有理数a都有|a|=|-a|11、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

初一有理数所有知识点总结和常考题提练习含答案解析

初一有理数所有知识点总结和常考题提练习含答案解析

初一有理数所有知识点总结和常考题知识点 1正数和负数 (1 )、大于0的数叫做正数。

(2) 、在正数前面加上负号"-”的数叫做负数。

(3) 、数0既不是正数,也不是负数, 0是正数与负数的分界。

(4) 、在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数 (1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数 注意:0即不是正数,也不是负数; -a 不 不是有理数; 正有理数⑵有理数的分类:①有理数 负有理数一定是负数,如:- (-2 ) =4,这个 正整数 正整数 正分数整数 零 ②有理数负整数 负整数正分数 负分数 分数 负分数a=-2。

a > 0 a 是正数或0 a 是非正数. (3)自然数 0和正整数; a v 0 a 是负数;a > 0 a w 0 a 是负数或0 3、数轴【重点】 (1 )、用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求: a 是正数; 是非负数; -2-i 0 i E 3 在直线上任取一个点表示数 0,这个点叫做原点; ② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;③ 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次 表示1,2,3…;从原点向左,用类似的方法依次表示 -1,-2 , -3… (2) 、数轴的三要素:原点、正方向、单位长度。

(3) 、画数轴的步骤:一画(画一条直线并选取原点) ;二取(取正反向);三选(选取单位 长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

(4)、一般地,设a 是一个正数,则数轴上表示数 a 的点在原点的右边,与原点的距离是 a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是 a 个单位长度。

4、相反数 (1 )、只有符号不同的两个数叫做互为相反数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、有理数
一、有理数
1.有理数:
已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求
220062007()()()x a b cd x a b cd -+++++-的值。

已知|9|x y +-与2(23)x y -+互为相反数,求x y 。

已知2(3)|2|0a b -+-=,求b a 的值是( ) A.2 B.3 C.9 D.6
三个有理数,,a b c 的积为负数,和为正数,且||||||
||||||a b c ab bc ac X a b c ab bc ac
=+++++ 则321ax bx cx +++的值是多少?
如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( ) A.2a B.2a - C.0 D.2b
设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,b
a

b 的形式,求20062007a b +。

若,,a b c 为整数,且20072007||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。

若20a -≤≤,化简|2||2|a a ++- 若0x ,化简
|||2|
|3|||
x x x x ---
设0a ,且||
a
x a ≤
,试化简|1||2|x x +--
若|5||2|7x x ++-=,解该方程。

设a b c d,求||||||||
x a x b x c x d
-+-+-+-的最小值。

如果2
(1)|2|0
a b
-++=,求代数式
22006
2005
()()
2()
b a a b
ab a b
-++
++
的值。

若||
1
abcd
abcd
=-,求
||||||||
a b c d
a b c d
+++的值。

若0,0
a b,求使||||||
x a x b a b
-+-=-成立的x的取值范围。

相关文档
最新文档