江西省南昌市中考数学试卷及答案 (2)

合集下载

南昌市中考数学试题及答案

南昌市中考数学试题及答案

南昌市中考数学试题及答案一、选择题1. 已知函数 f(x) 的图象如下所示,那么在下列四个点中,哪个点对应的函数值最大?A. (-2, 6)B. (-1, 2)C. (0, 0)D. (3, -1)答案:B. (-1, 2)2. 若 a, b 是正整数,且满足 a/b = 2/3,那么 a/b 的值为:A. 2/3B. 3/2C. 2D. 3答案:C. 23. 已知正方形 ABCD 的边长为 3cm,点 E、F、G 分别是边 AB、BC、CD 上的点,且 AE = BF = CG,那么三角形 EFG 的周长是:A. 6cmB. 9cmC. 12cmD. 18cm答案:C. 12cm4. 在直角坐标系中,点 P (m, n) 在平面内的动点,若点 P 到三条坐标轴的距离之和为 7,则点 P 可能位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A. 第一象限二、填空题1. 一个正方体,若其中一条边长为 3cm,则体积为 ________ cm³。

答案:27 cm³2. 某班级共有男生 32 人,女生比男生多 8 人,则女生人数为________ 人。

答案:40 人3. 在等差数列 -7, -3, 1, 5, ... 中,数列的第 10 项为 ________。

答案:254. 已知函数 y = 2x - 1,那么当 x = 3 时,y 的值为 ________。

答案:5三、解答题1. 将一个边长为 6cm 的正方形沿对角线分割成两个三角形,请你计算其中一个三角形的面积。

解答:设正方形的顶点为 A, B, C, D,对角线 AC 将正方形分割成两个三角形。

通过计算,可以得出三角形 ABC 的面积为 9 cm²。

2. 某商店举行促销活动,打折力度为原价的 20%,小明购买了一件原价为 120 元的商品,请你计算小明购买此商品的实际价格。

解答:打折力度为20%,即小明购买此商品的价格为80% 的原价。

江西省南昌市中考数学试题

江西省南昌市中考数学试题

江西省南昌市年初中毕业暨中等学校招生考试数 学 试 卷说明:1.答卷前将密封线内的各项目填写清楚,并在“座位号”方框内填入自己的座位号.2.本卷共有六个大题、24个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内. 1.计算(-2)3的值等于 ( )A .-6B .6C .-8D .8 2.如图,在△ABC 中,D 是AC延长线上的一点,∠BCD 等于( ) A .72° B .82° C .98° D .124°3.用代数式表示“2a 与3的差”为( ) A .2a -3 B .3-2a C .2(a -3) D .2(3-a) 4.如图,数轴上的点A 所表示的是实数a ,则点A 到原点的距离是 ( )A .aB .-aC .±aD .-|a|5.化简aba b a +-222的结果是( )A .aba 2- B .aba - C .aba + D .ba ba +- 6.αααcos ,3tan ,则为锐角=等于( )A .21 B .22C .23 D .33 7.如图,在平面直角坐标系中,⊙O ′ 与两坐标轴分别交于A 、B 、C 、D四点.已知:A (6,0),B (0,-3),C (-2,0),则点D 的坐标是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5)8.(针孔成像问题)根据图中尺寸(AB//A ′B ′),那么物像长y(A ′B ′的长)与物长x (AB的长)之间函数关系的图象大致是 ( )9.如图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若用x 、y 表示小矩形的两边长(x>y ),请观察图案,指出以下关系 式中不正确...的是 ( ) A .x+y=7 B .x -y=2 C .4xy+4=39 D .x 2+y 2=2510.右图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的 规则是:把跳棋棋子在棋盘内沿直线隔着棋子 对称跳行,跳行一次称为一步.已知点A 为已方 一枚棋子,欲将棋子A 跳进对方区域(阴影部 分的格点),则跳行的最少步数为( ) A .2步 B .3步 C .4步 D .5步二、填空题(本大题共6小题,每小题4分,共24分) 11.化简555-= .12.据报道:某省年中小学共装备计算机16.42万台,平均每 42名中小学生拥有一台计算机. 年在学生数不变的情况下, 计划平均每35名中小学生拥有 一台计算机,则还需装备计算机 万台. 13.如图,点P 是反比例函数xy 2-=上 的一点,PD ⊥x 轴于点D ,则△POD 的面积为 .14.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每个顶点处剪去一个四边形,例如图1中的四边形AGA′H那么∠GA′H的大小是度.15.欣赏下面的各等式:32+42=52102+112++122=132+142请写出下一个由7个连续正整数组成、前4个数的平方和等于后3个数的平方和的等式为 .16.如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出一个..点P,使点P落在∠AOB的平分线上.三、(三大题共2小题,每小题7分,共14分)17.先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5.18.已知关于x的方程x2-2(m+1)x+m2=0.(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数....,使原方程有两个实数根,并求这两个实数根的平方和.四、(本大题共2小题,每小题7分,共16分)19.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C. (1)BT是否平分∠OBA?证明你的结论;(2)若已知AT=4,试求AB的长.20.如图,已知△ABC、△DCE、△FEG是三个全等的等腰三角形,底边BC、CE、EG在同一直线上,且AB=3,BC=1.连结BF,分别交AC、DC、DE于点P、Q、R.(1)求证:△BFG∽△FEG,并求出BF的长;(2)观察图形,请你提出一个与点..P.相关..的问题,并进行解答(根据提出问题的层次和解答过程评分).小朋友,本来你用10元钱买一盒饼干是有多的,但要再买一袋牛奶就不够了!今天是儿童节,我给你买的饼干 打9折,两样东西请拿好!还有找你 的8角钱. 阿姨,我买一盒 饼干和一袋牛奶(递上10元钱).五、(本大题共2小题,每小题8分,共16分) 21.仔细观察下图,认真阅读对话:根据对话的内容,试求出饼干和牛奶的标价各是多少元?22.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班.现对这三个班进行综合素质考评,下表是它们五项班级 行为规范 学习成绩 校运动会 艺术获奖 劳动卫生 初三(1)班 10 10 6 10 7初三(4)班 10 8 8 9 8初三(8)班9 10 9 6 9(1)请问各班五项考评分的平均数、中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班级作为市级先进班集体的候选班.六、(本大题共2小题,每小题10分,共20分)23.在平面直角坐标系中,给定以下五点A (-2,0),B (1,0)C (4,0),D (-2,29),E (0,-6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y 轴的直线为对称轴.我们约定:把经过三点A 、E 、B 的抛物线表示为抛物线AEB (如图所示).(1)问符合条件的抛物线还有哪几条.....不求解析式,请用约定的方法一一表示出来; (2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求出抛物线及直线的解析式;如果不存在,请说明理由.24.如图,在矩形ABCD中,AB=3,AD=2,点E、F分别在AB、DC上,AE=DF=2.再把一块直径为2的量角器(圆心为O)放置在图形上,使其0°线MN与EF重合;若将量角器0°线上的端点N固定在点F上,再把量角器绕点F顺时针方向旋转∠α(0°<α<90°),此时量角器的半圆弧与EF相交于点P,设点P处量角器的读数为n°.(1)用含n°的代数式表示∠α的大小;(2)当n°等于多少时,线段PC与M′F平行?(3)在量角器的旋转过程中,过点M′作GH⊥M′F,交AE于点G,交AD于点H.设GE=x,△AGH的面积为S,试求出S关于x的函数关系式,并写出自变量x的取值范围.江西省南昌市年初中毕业暨中等学校招生考试数学试卷参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.1.C 2.C 3.A 4.B 5.B 6.A 7.C 8.C 9.D 10.B二、填空题(本大题共6小题,每小题4分,共24分)11.1-5 12.3.284 13.1 14.6015.212+222+232+242=252+262+27216.(见右图,P1、P2、P3均可)三、(本大题共2小题,每小题7分,共14分)17.解法一:原式=(x-y)[(x-y)+(x+y)]÷2x…………3分=(x-y)·2x÷2x ………………………………………………4分=x-y. ………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5.……………………………………………7分解法二:原式=[(x2-2xy+y2)+(x2-y2)] ÷2x ………………………………………3分=(2x2-2xy) ÷2x ……………………………………………………4分=x-y. …………………………………………………………………5分当x=3,y=-1.5时,原式=3-(-1.5)=4.5 ……………………………………………7分18.解:(1)△=[-2(m+1)]2-4m2………………………………………………………1分=4(m2+2m+1)-4m2=4(2m+1)<0. ……………………………………………………… 2分∴m<-21. 当m<-21时,原方程没有实数根; …………………………………………………3分 (2)取m=1时,原方程为x 2-4x+1=0.…………………………………………………4分 设此方程的两实数根为x 1, x 2,则x 1+x 2=4, x 1·x 2=1.…………………………………5分 ∴x 12+x 22=(x 1+x 2)2-2x 1x 2=42-2×1=14.…………………………………………………7分 【m 取其它符合要求的值时,解答正确可参照评分标准给分.】 四、(本大题共2小题,每小题8分,共16分) 19.(1)BT 平分∠OBA.………………1分 证法一:连结OT ,∵AT 是切线,∴OT ⊥AP.又∵∠PAB 是直角,即AQ ⊥AP ,∴AB ∥OT , ∴∠TBA=∠BTO.又∵OT=OB ∴∠OTB=∠OBT.∴∠OBT=∠TBA ,即BT 平分∠OBA.……………4分 (2)解法一:过点B 作BH ⊥OT 于点H ,则在Rt △OBH 中,OB=5,BH=A T=4 ∴OH=3.…………6分 ∴AB=HT=OT -OH=5-3=2…………………………………8分【(1)证法二:可作直径BD ,连结DT ,构成Rt △TBD ,也可证得BT 平分∠OBA ; (2)解法二:设AB=x 则由Rt △ABT 得BT 2=x 2+16, 又由Rt △ABT ∽Rt △TBD 得BT 2=BD ·AB=10x ,得方程x 2+16=10x, 解之并取舍,得AB=2. 解法三:过点O 作OM ⊥BC 于M ,则MO=AT=4.在Rt △OBM 中,∵OB=5,∴BM=3,∴BC=2BM=6.由AT 2=AB ·AC ,得AB=2.】 评分说明:方法二、三的得分可参照方法一评定. 20.(1)证明:∵△ABC ≌△DCE ≌△FEG333,3.3,131===∴==∴=====∴FG BG EG FG AB FG BG BG EG CE BC 即又∠BGF=∠FGE ,∴△BFG ∽△FEG.…………3分∵△FEG 是等腰三角形,∴△BFG 是等腰三角形,∴BF=BG=3.………………4分 (2)A 层问题(较浅显的,仅用到了1个知识点).例如:①求证:∠PCB=∠REC.(或问∠PCB 与REC 是否相等?)等;②求证:PC//RE.(或问线段PC 与RE 是否平行?)等. B 层问题(有一定思考的,用到了2~3个知识点).例如:①求证:∠BPC=∠BFG 等,求证:BP=PR 等;②求证:△ABP ∽△CQP 等,求证:△BPC ∽△BRE 等;③求证;△ABP ∽△DQR 等;④求BP :PF 的值等. C 层问题(有深刻思考的,用到了4个或4个以上知识点、或用到了(1)中结论).例如:①求证:△ABP ∽△BPC ∽ERF ;②求证:PQ=RQ 等; ③求证:△BPC 是等腰三角形;④求证:△PCQ ≌△RDQ 等;⑤求AP :PC 的值等;⑥求BP 的长;⑦求证:PC=33(或求PC 的长)等. A 层解答举列.求证:PC//RE.证明:∵△ABC ≌△DCE ,∴∠PCB=∠REB ,∴PC//RE.B 层解答举例.求证:BP=PR.证明:∵∠ACB=∠REC ,∴AC//DE. 又∵BC=CE ,∴BP=PR.C 层解答举例.求AP :PC 的值. 解:.3,33,31,//==∴==∴AC PC BG BC FG PC FG AC 而 .2:332333=∴=-=∴PC AP AP 评分说明:①考生按A 层、B 层、C 层中某一层次提出问题均给1分,若继续给出正确的解答则分别再加1分、2分、3分;②若考生提出其它问题,并作正确解答,可参照各相应层次的评分标准评分;③在本题中,若考生提出的是与点P 无关的问题,却是正确的结论及解答,就不再考虑其层次,只给1分.五、(本大题共2小题,每小题8分,共16分)21.解:设饼干的标价为每盒x 元,牛奶的标价为每袋y 元,则 x+y>10, (1)0.9x+y=10-0.8,...... (2)..................................................................2分 x<10. (3)由(2)得y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.…………………………………4分 由(3)综合得 ∴8<x<10. ………………………………………………………5分又∵x 是整数,∴x=9.………………………………………………………………6分 把x=9代入(4)得:y=9.2-0.9×9=1.1(元).…………………………………7分 答:一盒饼干标价9元,一袋牛奶标价1.1元.……………………………………8分 评分说明:①若x<10没在混合组中出现,但求整数解时用到,不扣分;②若用其它方法解答正确,可参照评分标准给分.22.解:(1)设P 1、P 4、P 8顺次为3个班考评分的平均数;W 1、W 4、W 8顺次为3个班考评分的中位数;Z 1、Z 4、Z 8顺次为3个班考评分的众数.则:P 1=51(10+10+6+10+7)=8.6分), P 4=51(8+8+8+9+10)=8.6(分),P 8=51(9+10+9+6+9)=8.6(分).………………………………………………1分 W 1=10(分),W 4=8(分),W 8=9(分).(Z 1=10(分),Z 4=8(分),Z 8=9(分)).………………………………………2分 ∴平均数不能反映这3个班的考评结果的差异,而用中位数(或众数)能反映差异, 且W 1>W 8>W 4(Z 1>Z 8>Z 4).……………………………………………………………3分(2)(给出一种参考答案)选定:行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:2:3:1:1…………5分 设K 1、K 4、K 8顺次为3个班的考评分,则:K 1=0.3×10+0.2×10+0.3×6+0.1×10+0.1×7=8.5,K 4=0.3×10+0.2×8+0.3×8+0.1×9+0.1×8=8.7,………………………………………………7分 K 8=0.3×9+0.2×10+0.3×9+0.1×6+0.1×9=8.9.∵K 8>K 4<K 1,∴推荐初三(8)班为市级先进班集体的候选班.………………………8分 评分说明:如按比例式的值计算,且结果正确,均不扣分.六、(本大题共2小题,每小题10分,共20分)23.解:(1)符合条件的抛物线还有5条,分别如下:①抛物线AEC ;②抛物线CBE ; ③抛物线DEB ;④抛物线DEC ;⑤抛物线DBC.评分说明:正确写出每一条抛物线给1分,共5分.(填错可酌情倒扣1分,不出现负分).(2)在(1)中存在抛物线DBC ,它与直线AE 不相交.…………7分设抛物线DBC 的解析式为y=ax 2+bx+c ,将D (-2,29),B (1,0),C (4,0)三点坐标分别代入,得: 4a -2b+c=29, a+b+c=0, …………………………8分16a+4b+c=0.解这个方程组,得:a=41,b=-45,c=1. ∴抛物线DBC 的解析式为y=41x 2-45x+1.……………………………………9分【另法:设抛物线为y=a(x -1)(x -4),代入D (-2,29),得a=41也可.】 又设直线AE 的解析式为y=mx+n.将A (-2,0),E (0,-6)两点坐标分别代入,得:-2m+n=0,解这个方程组,得m=-3,n=-6.n=-6.∴直线AE 的解析式为y=-3x -6.……………………………………………………10分24.解:(1)连结O ′P ,则∠P O ′F=n °.………………1分⌒ ⌒ ⌒ ∵O ′P =O ′F ,∴∠O ′PF=∠O ′FP=∠α.∴n °+2∠α=180° 即∠α=90°-21 n °……3分 (2)连结M ′P ,∵M ′F 是半圆O ′的直径,∴M ′P ⊥PF.又∵FC ⊥PF ,∴FC//M ′P.若PC// M ′F ,∴四边形M ′PCF 是平行四边形.……4分∴PC= M ′F=2FC ,∠α=∠CPF=30°.…………5分代入(1)中关系式得:30°=90°-21 n °,即n °=120 °.……………6分 (3)以点F 为圆心,FE 的长为半径画ED.∵G M ′⊥M ′F 于点M ′,∴GH 是ED的切线. 同理GE 、HD 也都是ED的切线,∴GE=G M ′,H M ′=HD.……………………7分 【另法:连结GF ,证明得Rt △GEF ≌Rt △G M ′F ,得EG= M ′G ,同理可证H M ′=HD.】设GE=x ,则AG=2-x,再设DH=y ,则H M ′=y,AH=2-y,在Rt △AGH 中,AG 2+AH 2=GH 2,得:(2-x)2+(2-y)2=(x+y)2.…………………8分 即:4-4x+x 2+4-4y+y 2=x 2+2xy+y 2 ∴y=2242+-x x x ,…………………………9分 S=21AG ·AH=21(2-x)(2-y)= 2242+-x x x ,自变量x 的取值范围为0<x<2.S 与x 的函数关系式为S =2242+-x x x (0<x<2).………………………………………10分。

南昌初升高数学试卷及答案

南昌初升高数学试卷及答案

南昌初升高数学试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个角是直角的一半,那么这个角的度数是多少?A. 45°B. 90°C. 180°D. 360°答案:A3. 一个数的平方根等于它本身,这个数可以是:A. 0B. 1C. -1D. 4答案:A4. 以下哪个是二次方程的解?A. x = 0B. x = 1C. x = 2D. x = 3方程为:x^2 - 4x + 4 = 0答案:C5. 一个等腰三角形的底边长为6cm,两腰相等,若底角为60°,则腰长为:A. 3cmB. 6cmC. 9cmD. 12cm答案:B6. 一个圆的半径为4cm,那么它的面积是多少平方厘米?A. 16πB. 32πC. 64πD. 100π答案:B7. 一个数列的前四项为2, 4, 6, 8,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列答案:A8. 一个函数f(x) = 3x^2 + 2x - 5,当x=1时,函数的值是:A. -4B. -2C. 0D. 2答案:B9. 以下哪个选项是方程2x + 5 = 9的解?A. x = 2B. x = 3C. x = 4D. x = 5答案:A10. 如果一个正方体的棱长为a,那么它的表面积是:A. 6a^2B. 8a^2C. 10a^2D. 12a^2答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可能是________。

答案:±512. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是________。

答案:513. 一个圆的周长是2πr,其中r是圆的半径,如果周长为12π,那么半径r是________。

答案:614. 一个数的立方根等于它本身,这个数可能是________。

2024年江西南昌中考数学试题及答案(1)

2024年江西南昌中考数学试题及答案(1)

2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本. (2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ; (2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.2024年江西中考数学试题及答案说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.1. 实数5-的相反数是( )A. 5B. 5-C. 15 D. 15-2. “长征是宣言书,长征是宣传队,长征是播种机”,二万五千里长征是中国历史上的伟大壮举,也是人类史上的奇迹,将25000用科学记数法可表示为( )A. 60.2510´B. 52.510´ C. 42.510´ D. 32510´3. 如图所示的几何体,其主视图为()A. B. C. D.4. 将常温中的温度计插入一杯60℃的热水(恒温)中,温度计的读数()y ℃与时间()min x 的关系用图象可近似表示为( )A. B. C. D.5. 如图是某地去年一至六月每月空气质量为优的天数的折线统计图,关于各月空气质量为优的天数,下列结论错误的是( )A. 五月份空气质量为优的天数是16天B. 这组数据的众数是15天C. 这组数据的中位数是15天D. 这组数据的平均数是15天6. 如图是43´的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A. 1种B. 2种C. 3种D. 4种二、填空题(本大题共6小题,每小题3分,共18分)7. 计算:()21-=____.8. 因式分解:22a a +=_________.9. 在平面直角坐标系中,将点()1,1A 向右平移2个单位长度,再向上平移3个单位长度得到点B ,则点B 的坐标为______.10. 观察a ,2a ,3a ,4a ,…,根据这些式子的变化规律,可得第100个式子为______.11. 将图1所示的七巧板,拼成图2所示的四边形ABCD ,连接AC ,则tan CAB Ð=______.12. 如图,AB 是O e 的直径,2AB =,点C 在线段AB 上运动,过点C 的弦DE AB ^,将¼DBE沿DE 翻折交直线AB 于点F ,当DE 的长为正整数时,线段FB 的长为______.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:0π5+-;(2)化简:888x x x ---.14. 如图,AC 为菱形ABCD 的对角线,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹)(1)如图1,过点B 作AC 的垂线;(2)如图2,点E 为线段AB 的中点,过点B 作AC 的平行线.15. 某校一年级开设人数相同的A ,B ,C 三个班级,甲、乙两位学生是该校一年级新生,开学初学校对所有一年级新生进行电脑随机分班.(1)“学生甲分到A 班”的概率是______;(2)请用画树状图法或列表法,求甲、乙两位新生分到同一个班的概率.16. 如图,AOB V 是等腰直角三角形,90Ð=°ABO ,双曲线()0,0k y k x x=>>经过点B ,过点()4,0A 作x 轴的垂线交双曲线于点C ,连接BC .(1)点B 的坐标为______;(2)求BC 所在直线的解析式.17. 如图,AB 是半圆O 的直径,点D 是弦AC 延长线上一点,连接BD BC ,,60D ABC Ð=Ð=°.(1)求证:BD 是半圆O 的切线;(2)当3BC =时,求»AC 的长.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,书架宽84cm ,在该书架上按图示方式摆放数学书和语文书,已知每本数学书厚0.8cm ,每本语文书厚1.2cm .(1)数学书和语文书共90本恰好摆满该书架,求书架上数学书和语文书各多少本;(2)如果书架上已摆放10本语文书,那么数学书最多还可以摆多少本?19. 图1是世界第一“大碗”——景德镇昌南里文化艺术中心主体建筑,其造型灵感来自于宋代湖田窑影青斗笠碗,寓意“万瓷之母”,如图2,“大碗”的主视图由“大碗”主体ABCD 和矩形碗底BEFC 组成,已知AD EF ∥,AM ,DN 是太阳光线,AM MN ^,DN MN ^,点M ,E ,F ,N 在同一条直线上,经测量20.0m ME FN ==,40.0m EF =, 2.4m BE =,152ABE Ð=°.(结果精确到0.1m )(1)求“大碗”的口径AD 的长;(2)求“大碗”的高度AM 的长.(参考数据:sin620.88°»,cos620.47°»,tan62 1.88°»)20. 追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在ABC V 中,BD 平分ABC Ð,交AC 于点D ,过点D 作BC 的平行线,交AB 于点E ,请判断BDE V 的形状,并说明理由.方法应用:(2)如图2,在ABCD Y 中,BE 平分ABC Ð,交边AD 于点E ,过点A 作AF BE ⊥交DC 的延长线于点F ,交BC 于点G .①图中一定是等腰三角形的有( )A .3个B .4个C .5个D .6个②已知3AB =,5BC =,求CF 的长.五、解答题(本大题共2小题,每小题9分,共18分)21. 近年来,我国肥胖人群的规模快速增长,目前,国际上常用身体质量指数(Body Mass Index ,缩写BMI )来衡量人体胖瘦程度,其计算公式是22)kg (()m BMI =体重单位:身高单位:.中国人的BMI 数值标准为:18.5BMI <为偏瘦;18.524BMI £<为正常;2428BMI £<为偏胖;28BMI ³为肥胖.某数学兴趣小组对本校七年级学生的胖瘦程度进行统计调查,从该校所有七年级学生中随机抽出10名男生、10名女生,测得他们的身高和体重值,并计算出相应的BMI 数值,再参照BMI 数值标准分成四组:A .1620BMI £<;B .2024BMI £<;C .2428BMI £<;D .2832BMI £<.将所得数据进行收集、整理、描述.收集数据七年级10名男生数据统计表编号12345678910身高(m )1.56 1.50 1.66 1.58 1.50 1.70 1.51 1.42 1.59 1.72体重(kg )52.549.545.640.355.256.148.542.867.290.5BMI 21.6s 16.516.124.519.421.321.226.630.6七年级10名女生数据统计表编号12345678910身高(m )1.46 1.62 1.551.65 1.58 1.67 1.55 1.46 1.53 1.62体重(kg )46.449.061.556.552.975.550.347.652.446.8BMI 21.818.725.620.821.227.120.922.322.417.8整理、描述数据七年级20名学生BMI 频数分布表组别BMI 男生频数女生频数A1620BMI £<32B2024BMI £<46C2428BMI £<t 2D 2832BMI £<10应用数据(1)s =______,t =______a =______;(2)已知该校七年级有男生260人,女生240人.①估计该校七年级男生偏胖的人数;②估计该校七年级学生24BMI ³的人数(3)根据以上统计数据,针对该校七年级学生的胖瘦程度,请你提出一条合理化建议.22. 如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:x 012m 4567…y 07261528152n 72…(1)①m =______,n =______;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =-+.①小球飞行的最大高度为______米;②求v 的值.六、解答题(本大题共12分)23. 综合与实践如图,在Rt ABC △中,点D 是斜边AB 上的动点(点D 与点A 不重合),连接CD ,以CD 为直角边在CD 的右侧构造Rt CDE △,90DCE Ð=°,连接BE ,CE CB m CD CA==.特例感知(1)如图1,当1m =时,BE 与AD 之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当1m ¹时,猜想BE 与AD 之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F 与点C 关于DE 对称,连接DF ,EF ,BF ,如图3.已知6AC =,设AD x =,四边形CDFE 的面积为y .①求y 与x 的函数表达式,并求出y 的最小值;②当2BF =时,请直接写出AD 长度.的江西省2024年初中学业水平考试数学试题卷说明:1.本试题卷满分120分,考试时间120分钟.2.请按试题序号在答题卡相应位置作答,答在试题卷或其它位置无效.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填涂在答题卡相应位置.错选、多选或未选均不得分.【1题答案】【答案】A【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B二、填空题(本大题共6小题,每小题3分,共18分)【7题答案】【答案】1【8题答案】a a+【答案】(2)【9题答案】3,4【答案】()【10题答案】a【答案】100【11题答案】【答案】12##0.5【12题答案】【答案】2或2+或2三、解答题(本大题共5小题,每小题6分,共30分)【13题答案】【答案】(1)6;(2)1【14题答案】【答案】(1)作图见解析;(2)作图见解析.【15题答案】【答案】(1)13(2)甲、乙两位新生分到同一个班的概率为13.【16题答案】【答案】(1)()2,2(2)132y x =-+【17题答案】【答案】(1)见解析(2)2p 四、解答题(本大题共3小题,每小题8分,共24分)【18题答案】【答案】(1)书架上有数学书60本,语文书30本.(2)数学书最多还可以摆90本【19题答案】【答案】(1)“大碗”的口径AD 的长为80.0m ;(2)“大碗”的高度AM 的长为40.0m .【20题答案】【答案】(1)BDE V 等腰三角形;理由见解析;(2)①B ;②2CF =.五、解答题(本大题共2小题,每小题9分,共18分)【21题答案】是【答案】(1)22;2;72°;(2)①52人;②126人(3)见解析【22题答案】【答案】(1)①3,6;②1515,28æöç÷èø;(2)①8,②v =六、解答题(本大题共12分)【23题答案】【答案】(1)AD BE ^,AD BE =(2)BE 与AD 之间的位置关系是AD BE ^,数量关系是BE m AD =;(3)①y 与x 的函数表达式((2180y x x =-+<£,当x =y 的最小值为18;②当2BF =时,AD 为或.。

2023年南昌数学中考卷

2023年南昌数学中考卷

2023年南昌数学中考卷一、选择题(每题1分,共5分)1. 下列哪个数是实数?A. √1B. √4C. √9D. √3.14答案:B2. 已知函数f(x)=2x+3,那么f(1)的值为?A. 1B. 3C. 5D. 2答案:D3. 下列关于x的方程中,哪一个是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x^3 4x^2 + 3x 1 = 0C. 4x^2 3x + 2 = 0D. x^3 2x^2 + x 1 = 0答案:A4. 下列哪个图形是平行四边形?A. 等腰梯形B. 矩形C. 正方形D. 梯形答案:BA. 3B. 0C. 3.14D. √2答案:B二、判断题(每题1分,共5分)1. 任何两个实数都可以比较大小。

()答案:×2. 一元二次方程的解一定是实数。

()答案:×3. 平行四边形的对角线互相平分。

()答案:√4. 相似三角形的面积比等于边长比的平方。

()答案:√5. 互质的两个数一定是质数。

()答案:×三、填空题(每题1分,共5分)1. 若a=3,b=4,则a+b=______。

答案:72. 已知函数f(x)=x^22x+1,那么f(1)=______。

答案:03. 两个平行线的夹角是______度。

答案:04. 三角形的内角和等于______度。

答案:1805. 10以内的质数有______个。

答案:4四、简答题(每题2分,共10分)1. 请简述一元二次方程的求根公式。

答案:略2. 什么是平行线?请举例说明。

答案:略3. 简述三角形面积的计算方法。

答案:略4. 请列举4种常见的概率分布。

答案:略5. 举例说明什么是等差数列。

答案:略五、应用题(每题2分,共10分)1. 已知一元二次方程x^25x+6=0,求解该方程。

答案:略2. 计算三角形ABC的面积,已知AB=6cm,BC=8cm,AC=10cm。

答案:略3. 某商店进行打折促销,原价为200元的商品,打8折后售价是多少?答案:略4. 在一组数据中,最大值为10,最小值为2,求这组数据的中位数。

江西省南昌市中考数学试卷(含答案)

江西省南昌市中考数学试卷(含答案)

江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2014•南昌)下列四个数中,最小的数是()A.B.0C.﹣2 D.2﹣分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=﹣、B=0、C=﹣2、D=2标于数轴之上,可得:∵C点位于数轴最左侧,∴C选项数字最小.故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.2.(3分)(2014•南昌)据相关报道,截止到今年四月,我国已完成5.78万个农村教学点的建设任务.5.78万可用科学记数法表示为()A.5.78×103B.57.8×103C.0.578×104D.5.78×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5.78万有5位整数,所以可以确定n=5﹣1=4.解答:解:5.78万=57 800=5.78×104.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.(3分)(2014•南昌)某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是()A.25、25 B.28、28 C.25、28 D.28、31考点:众数;中位数.分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答:解:将这组数据从小到大的顺序排列23,25,25,28,28,28,31,在这一组数据中28是出现次数最多的,故众数是28℃.处于中间位置的那个数是28,那么由中位数的定义可知,这组数据的中位数是28℃;故选B.点评: 本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错. 4.(3分)(2014•南昌)下列运算正确的是( )A . a 2+a 3=a 5B . (﹣2a 2)3=﹣6a 6C . (2a+1)(2a ﹣1)=2a 2﹣1D . (2a 3﹣a 2)÷a 2=2a﹣1考点: 整式的除法;合并同类项;幂的乘方与积的乘方;平方差公式.分析: A .根据合并同类项法则判断;B .根据积的乘方法则判断即可;C .根据平方差公式计算并判断;D .根据多项式除以单项式判断.解答: 解:A .a 2与a 3不能合并,故本项错误; B .(﹣2a 2)3=﹣8a 6,故本项错误;C .(2a+1)(2a ﹣1)=4a 2﹣1,故本项错误;D .(2a 3﹣a 2)÷a 2=2a ﹣1,本项正确, 故选:D . 点评: 本题主要考查了积的乘方运算、平方差公式以及多项式除以单项式和合并同类项,熟练掌握运算法则是解题的关键. 5.(3分)(2014•南昌)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是( )A .B .C .D .考点: 简单几何体的三视图. 分析: 根据从正面看得到的图形是主视图,可得答案. 解答: 解:压扁后圆锥的主视图是梯形,故该圆台压扁后的主视图是A 选项中所示的图形.故选:A . 点评: 本题考查了简单组合体的三视图,压扁是主视图是解题关键. 6.(3分)(2014•南昌)小锦和小丽购买了价格分别相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.设每支中性笔x 元和每盒笔芯y 元,根据题意列方程组正确的是( ) A . B .C.D.考点:由实际问题抽象出二元一次方程组.分析:设每支中性笔x元和每盒笔芯y元,根据20支笔和2盒笔芯,用了56元;买了2支笔和3盒笔芯,用了28元.列出方程组成方程组即可.解答:解:设每支中性笔x元和每盒笔芯y元,由题意得,.故选:B.点评:此题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.7.(3分)(2014•南昌)如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.A B=DE B.∠B=∠E C.E F=BC D.E F∥BC考点:全等三角形的判定.分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解答:解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;点评:本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.8.(3分)(2014•南昌)如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40°B.45°C.50°D.55°考点:圆周角定理;平行线的性质.分析:连接OC,由AO∥DC,得出∠ODC=∠AOD=70°,再由OD=OC,得出∠ODC=∠OCD=70°,求得∠COD=40°,进一步得出∠AOC,进一步利用圆周角定理得出∠B的度数即可.解答:解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选:D.点评:此题考查平行线的性质,等腰三角形的性质,三角形的内角和,圆周角定理,正确作出辅助线是解决问题的关键.9.(3分)(2014•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.10.(3分)(2014•南昌)如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC 的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C 重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°考点:旋转的性质;平移的性质.分析:利用旋转和平移的性质得出,∠A′B′C=60°,AB=A′B′=A′C=4,进而得出△A′B′C是等边三角形,即可得出BB′以及∠B′A′C的度数.解答:解:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°.故选:B.点评:此题主要考查了平移和旋转的性质以及等边三角形的判定等知识,得出△A′B′C是等边三角形是解题关键.11.(3分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b考点: 整式的加减;列代数式.专题: 几何图形问题.分析: 根据题意列出关系式,去括号合并即可得到结果. 解答: 解:根据题意得:2(a ﹣b+a ﹣3b )=2(2a ﹣4b )=4a ﹣8b ,故选B 点评: 此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.12.(3分)(2014•南昌)已知反比例函数y=的图象如图,则二次函数y=2kx 2﹣4x+k 2的图象大致为( )A .B .C .D .考点: 二次函数的图象;反比例函数的图象. 分析: 本题可先由反比例函数的图象得到字母系数k <﹣1,再与二次函数的图象的开口方向和对称轴的位置相比较看是否一致,最终得到答案. 解答:解:∵函数y=的图象经过二、四象限,∴k <0,由图知当x=﹣1时,y=﹣k >1,∴k <﹣1,∴抛物线y=2kx 2﹣4x+k 2开口向下, 对称为x=﹣=,﹣1<<0,∴对称轴在﹣1与0之间, 故选:D . 点评: 此题主要考查了二次函数与反比例函数的图象与系数的综合应用,正确判断抛物线开口方向和对称轴位置是解题关键.属于基础题.二、填空题(本大题4小题,每小题3分,共12分) 13.(3分)(2014•沈阳)计算:= 3 .考点: 算术平方根. 分析: 根据算术平方根的定义计算即可.解答:解:∵32=9,∴=3.点评:本题较简单,主要考查了学生开平方的运算能力.14.(3分)(2014•南昌)不等式组的解集是x>.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x>﹣2,故此不等式组的解集为:x>.故答案为:x>.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)(2014•南昌)如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.16.(3分)(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.考点:解直角三角形.专题:分类讨论.分析:根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.解答:解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.点评:本题考查了解直角三角形,熟悉特殊角的三角函数值是解题的关键.三、(本大题共4小题,每小题6分,共24分)17.(6分)(2014•南昌)计算:(﹣)÷.考点:分式的混合运算.专题:计算题.分析:原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=•=x﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•南昌)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.考点:作图—应用与设计作图.分析:(1)求出三角形CD边上的高作图,(2)找出BE及它的高相乘得20,以AB为一边作平行四边形..解答:解:设小正方形的边长为1,则S梯形ABCD=(AD+BC)×4=×10×4=20,(1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,(2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.点评:本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.19.(6分)(2014•南昌)有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√,×,×”,如图1.(1)若将卡片无标记的一面朝上摆在桌上再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率.(请用“树形图法”或“列表法“求解)(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图2所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.考点:列表法与树状图法.专题:计算题.分析:(1)列表得出所有等可能的情况数,找出两种卡片上标记都是“√”的情况数,即可求出所求的概率;(2)①根据题意得到所有等可能情况有3种,其中看到的标记是“√”的情况有2种,即可求出所求概率;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,即可求出所求概率.解答:解:(1)列表如下:√×√√(×,√)(√,√)(√,√)×(√,×)(×,×)(√,×)×(√,×)(×,×)(√,×)所有等可能的情况有9种,两种卡片上标记都是“√”的情况有2种,则P=;(2)①所有等可能的情况有3种,其中随机揭开其中一个盖子,看到的标记是“√”的情况有2种,则P=;②所有等可能的情况有2种,其中揭开盖子,看到的卡片正面标记是“√”后,它的反面也是“√”的情况有1种,则P=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.20.(6分)(2014•南昌)如图,在平面直角坐标系中,Rt△PBD的斜边PB落在y轴上,tan∠BPD=.延长BD交x轴于点C,过点D作DA⊥x轴,垂足为A,OA=4,OB=3.(1)求点C的坐标;(2)若点D在反比例函数y=(k>0)的图象上,求反比例函数的解析式.考点:反比例函数与一次函数的交点问题.分析:(1)根据正切值,可得PD的斜率,根据直线垂直,可得BD的斜率,可得直线BC,根据函数值为0,可得C点坐标;(2)根据自变量的值,可得D点坐标,根据待定系数法,可得函数解析式.解答:解:Rt△PBD的斜边PB落在y轴上,∴BD⊥PB,k PD=cot∠BPD=,k BD•k PD=﹣1,k BD=﹣,直线BD的解析式是y=﹣x+3,当y=0时,﹣x+3=0,x=6,C点坐标是(6,0);(2)当x=4时,y=﹣×4+3=1,∴D(4,1).点D在反比例函数y=(k>0)的图象上,∴k=4×1=4,∴反比例函数的解析式为y=.点评:本题考查了反比例函数与一次函数的交点问题,先求出PD的斜率求出BD的斜率,求出直线BD,再求出点的坐标.四、(本大题共3小题,每小题8分,共24分)21.(8分)(2014•南昌)某教研机构为了了解在校初中生阅读数学教科书的现状,随机抽取某校部分初中学生进行了调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:某校初中生阅读数学教科书情况统计图表类别人数占总人数比例重视 a 0.3一般57 0.38不重视 b c说不清楚9 0.06(1)求样本容量及表格中a,b,c的值,并补全统计图;(2)若该校共有初中生2300名,请估计该校“不重视阅读数学教科书”的初中人数;(3)①根据上面的统计结果,谈谈你对该校初中生阅读数学教科书的现状的看法及建议;②如果要了解全省初中生阅读数学教科书的情况,你认为应该如何进行抽样?考点:频数(率)分布直方图;用样本估计总体.分析:(1)利用类别为“一般”人数与所占百分比,进而得出样本容量,进而得出a,b,c 的值;(2)利用“不重视阅读数学教科书”在样本中所占比例,进而估计全校在这一类别的人数;(3)根据(1)中所求数据进而分析得出答案,再从样本抽出的随机性进而得出答案.解答:解:(1)由题意可得出:样本容量为:57÷0.38=150(人),∴a=150×0.3=45,b=150﹣57﹣45﹣9=39,c=39÷150=0.26,如图所示:(2)若该校共有初中生2300名,该校“不重视阅读数学教科书”的初中人数约为:2300×0.26=598(人);(3)①根据以上所求可得出:只有30%的学生重视阅读数学教科书,有32%的学生不重视阅读数学教科书或说不清楚,可以看出大部分学生忽略了阅读数学教科书,同学们应重视阅读数学教科书,从而获取更多的数学课外知识和对相关习题、定理的深层次理解与认识.②如果要了解全省初中生阅读数学教科书的情况,应随机抽取不同的学校以及不同的年级进行抽样,进而分析.点评:此题主要考查了频数分布直方表以及条形统计图和利用样本估计总体等知识,理论联系实际进而结合抽样调查的随机性进而得出是解题关键.22.(8分)(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.23.(8分)(2014•南昌)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)求△OPC的最大面积;(2)求∠OCP的最大度数;(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.考点:切线的判定与性质.分析:(1)在△OPC中,底边OC长度固定,因此只要OC边上高最大,则△OPC的面积最大;观察图形,当OP⊥OC时满足要求;(2)PC与⊙O相切时,∠OCP的度数最大,根据切线的性质即可求得;(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线.解答:(1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPC=OC•h=2h,∴当h最大时,S△OPC取得最大值.观察图形,当OP⊥OC时,h最大,如答图1所示:此时h=半径=2,S△OPC=2×2=4.∴△OPC的最大面积为4.(2)解:当PC与⊙O相切时,∠OCP最大.如答图2所示:∵tan∠OCP===,∴∠OCP=30°∴∠OCP的最大度数为30°.(3)证明:如答图3,连接AP,BP.∴∠A=∠D=∠APD=∠ABD,∵=,∴=,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C∴∠A=∠D=∠APD=∠ABD∠C,在△ODB与△BPC中,∴△ODB≌△BPC(SAS),∴∠D=∠BPC,∵PD是直径,∴∠DBP=90°,∴∠D+∠BPD=90°,∴∠BPC+∠BPD=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.点评:本题考查了全等三角形的判定和性质,切线的判定和性质,作出辅助线构建直角三角形是解题的关键.五、(本大题共2小题,每小题12分,共24分)24.(12分)(2014•南昌)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依次操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围;(3)若经过多次操作可得到首尾顺次相接的多边形,其最大边数是多少?它可能是正多边形吗?如果是,请直接写出其边长;如果不是,请说明理由.考点:几何变换综合题.分析:(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.(3)如答图2所示,经过多次操作可得到首尾顺次相接的多边形,可能是正多边形,最大边数为8,边长为4﹣4.解答:解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x+42=[(4﹣x]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.(3)经过多次操作可得到首尾顺次相接的多边形,其最大边数是8,它可能为正多边形,边长为4﹣4.如答图2所示,粗线部分是由线段EF经过7次操作所形成的正八边形.设边长EF=FG=x,则BF=CG=x,BC=BF+FG+CG=x+x+x=4,解得:x=4﹣4.点评:本题是几何变换综合题,以旋转变换为背景考查了正方形、全等三角形、等边三角形、等腰直角三角形、正多边形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.25.(12分)(2014•南昌)如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x 轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶,点M到线段AB的距离称为碟高.(1)抛物线y=x2对应的碟宽为4;抛物线y=4x2对应的碟宽为;抛物线y=ax2(a>0)对应的碟宽为;抛物线y=a(x﹣2)2+3(a>0)对应的碟宽为;(2)抛物线y=ax2﹣4ax﹣(a>0)对应的碟宽为6,且在x轴上,求a的值;(3)将抛物线y=a n x2+b n x+c n(a n>0)的对应准蝶形记为F n(n=1,2,3…),定义F1,F2,…,F n为相似准蝶形,相应的碟宽之比即为相似比.若F n与F n﹣1的相似比为,且F n的碟顶是F n﹣1的碟宽的中点,现将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.①求抛物线y2的表达式;②若F1的碟高为h1,F2的碟高为h2,…F n的碟高为h n,则h n=,F n的碟宽有端点横坐标为2+;F1,F2,…,F n的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.考点:二次函数综合题.分析:(1)根据定义易算出含具体值的抛物线y=x2,抛物线y=4x2的碟宽,且都利用端点(第一象限)横纵坐标的相等.推广至含字母的抛物线y=ax2(a>0),类似.而抛物线y=a(x﹣2)2+3(a>0)为顶点式,可看成y=ax2平移得到,则发现碟宽只和a 有关.(2)根据(1)的结论,根据碟宽易得a的值.(3)①由y1,易推y2.②结合画图,易知h1,h2,h3,…,h n﹣1,h n都在直线x=2上,但证明需要有一般推广,可以考虑h n∥h n﹣1,且都过F n﹣1的碟宽中点,进而可得.另画图时易知碟宽有规律递减,所以推理也可得右端点的特点.对于“F1,F2,…,F n的碟宽右端点是否在一条直线上?”,如果写出所有端点规律似乎很难,找规律更难,所以可以考虑基础的几个图形关系,如果相邻3个点构成的两条线段不共线,则结论不成立,反正结论成立.求直线方程只需考虑特殊点即可.解答:解:(1)4;1;;.分析如下:∵a>0,∴y=ax2的图象大致如下:其必过原点O,记AB为其碟宽,AB与y轴的交点为C,连接OA,OB.∵△DAB为等腰直角三角形,AB∥x轴,∴OC⊥AB,∴∠OCA=∠OCB=∠AOB=90°=45°,∴△ACO与△BCO亦为等腰直角三角形,∴AC=OC=BC,∴x A=y A,x B=y B,代入y=ax2,∴A(﹣,),B(,),C(0,),∴AB=,OC=,即y=ax2的碟宽为.①抛物线y=x2对应的a=,得碟宽为4;②抛物线y=4x2对应的a=4,得碟宽为为;③抛物线y=ax2(a>0),碟宽为;④抛物线y=a(x﹣2)2+3(a>0)可看成y=ax2向右平移2个单位长度,再向上平移3个单位长度后得到的图形,∵平移不改变形状、大小、方向,∴抛物线y=a(x﹣2)2+3(a>0)的准碟形≌抛物线y=ax2的准碟,∵抛物线y=ax2(a>0),碟宽为,∴抛物线y=a(x﹣2)2+3(a>0),碟宽为.(2)∵y=ax2﹣4ax﹣=a(x﹣2)2﹣(4a+),∴同(1),其碟宽为,∵y=ax2﹣4ax﹣的碟宽为6,∴=6,解得a=,∴y=(x﹣2)2﹣3.(3)①∵F1的碟宽:F2的碟宽=2:1,∴,∵a1=,∴a2=.∵y=(x﹣2)2﹣3的碟宽AB在x轴上(A在B左边),∴A(﹣1,0),B(5,0),∴F2的碟顶坐标为(2,0),∴y2=(x﹣2)2.②∵F n的准碟形为等腰直角三角形,∴F n的碟宽为2h n,∵2h n:2h n﹣1=1:2,∴h n=h n﹣1=()2h n﹣2=()3h n﹣3=…=()n+1h1,∵h1=3,∴h n=.∵h n∥h n﹣1,且都过F n﹣1的碟宽中点,∴h1,h2,h3,…,h n﹣1,h n都在一条直线上,∵h1在直线x=2上,∴h1,h2,h3,…,h n﹣1,h n都在直线x=2上,∴F n的碟宽右端点横坐标为2+.另,F1,F2,…,F n的碟宽右端点在一条直线上,直线为y=﹣x+5.分析如下:考虑F n﹣2,F n﹣1,F n情形,关系如图2,F n﹣2,F n﹣1,F n的碟宽分别为AB,DE,GH;C,F,I分别为其碟宽的中点,都在直线x=2上,连接右端点,BE,EH.∵AB∥x轴,DE∥x轴,GH∥x轴,∴AB∥DE∥GH,∴GH平行相等于FE,DE平行相等于CB,∴四边形GFEH,四边形DCBE都为平行四边形,∴HE∥GF,EB∥DC,∵∠GFI=•∠GFH=•∠DCE=∠DCF,∴GF∥DC,∴HE∥EB,∵HE,EB都过E点,∴HE,EB在一条直线上,∴F n﹣2,F n﹣1,F n的碟宽的右端点是在一条直线,∴F1,F2,…,F n的碟宽的右端点是在一条直线.∵F1:y1=(x﹣2)2﹣3准碟形右端点坐标为(5,0),F2:y2=(x﹣2)2准碟形右端点坐标为(2+,),∴待定系数可得过两点的直线为y=﹣x+5,∴F1,F2,…,F n的碟宽的右端点是在直线y=﹣x+5上.点评:本题考查学生对新知识的学习、理解与应用能力.题目中主要涉及特殊直角三角形,二次函数解析式与图象性质,多点共线证明等知识,综合难度较高,学生清晰理解有一定困难.。

南昌中考数学试题答案

南昌中考数学试题答案

数学参考答案、选择题(本大题共 12个小题,每小题3分 ,共36分) 1. D 2. A 3. C 4. B5. C6. B7. C8. D9. C 10. D 11. A 12. A 、填空题 (本大题共4个小题,每小题3分, 共 12分)13.二 1 14. x x T x -1 15. 90 16.①②③④ 说明:第16题填了 1个或2个序号的得1分,填了 3个序号的得2分. 三、(本大题共2个小题,每小题各 5分,共10分)17•解:原式=空_2 -―旦J 丄. ................................. 3分a -1 a -1 a -1 a a -1当a = • 2 1时,原式二一1 二1 -■..................... 5分(2 十 1 _1 V - 218. Lt - 2i = -14x-y=2-2y②解:①—②,得_y 二;・2y ,…y =1 .把y =1代入①得x =1 .x =1,/. <y =1-四、(本大题共2个小题,每小题各 19. 解:(1)方法一画树状图如下:第一次 甲 乙 丙 丁••• P (恰好选中甲、乙两位同学)=1 6.................... 4分方法二 列表格如下:甲 乙 丙 丁甲-甲 甲 甲•、乙、 丙 、丁乙乙..乙 乙、甲 、 丙.、丁丙丙 丙 丙、、甲 、乙、丁丁 丁 丁 丁、甲、乙丙.................... 2分・ .................... 4分.................... 5分共12分)P (恰好选中甲、乙两位同学)=1. ................... 4分 6 (2) P (恰好选中乙同学)=1 ..................... 6分320. 解:(1) •/ A(0,4), B(;,0) , ••• OB=3,OA=4, /. AB =5.在菱形 ABCD 中,AD = AB =5 , • OD =1 ,• D 0,-1 . .......................... 3 分(2 )T BC // AD , BC =AB =5 ,• C _3,_5 .设经过点C 的反比例函数解析式为 y =k .xk k15把 $,与 代入 y 二―中,得:-5=— ,•- k 二15 ,••• y 二—. ...................... 6 分f x -3x五、(本大题共2个小题,每小题7分,共14分)BE J3 在Rt A OBE 中,OB=2,T sin. BOE 二 OB 2/BOE =60:,./BOC =120:',1 • Z BAC BOC =60:'. .................... 4 分2解法二连接BO 并延长,交O O 于点D ,连接CD. •/ BD 是直径,• BD=4,乙DCB =90:. 在 Rt A DBC 中,sin BDC 二匹=芬 3 ,BD 4 2• •• /BDC =60:' ,• /BAC ZBDC =60: .........................(2)解法一因为△ ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ ABC 的面积最大, 此时点A 落在优弧BC 的中点处. 5分过O 作OE 丄BC 于E ,延长EO 交O O 于点A ,则A 为优弧BC 的中点.连接AB ,1 吟AC 」AB=AC , BAE BAC 二 30 .在 Rt A ABE 中,I BE = .3,. BAE =30',3• Sx ABC =— 2仁:3 3 =3\l 3 .2答:△ ABC 面积的最大值是3 3. 解法答: (2)依题意得, 4d 1.5 1.5 3 2.8 2.6 - 2.4 • 2.2 =214d 16 =21 ,• d........ 7分 相邻两圆的间距为5 cm. 422.解: (1)解法一• AE =21.解:(1)其余四个圆的直径依次为: 2.8cm, 2.6cm, 2.4cm, 2.2cm.连接OB , OC,过O 作OE 丄BC 于点E.•/ OE 丄 BC, BC=2 一3 , • - BE = EC = 3. .................... 1 分2分BE tan 30、因为△ ABC的边BC的长不变,所以当BC边上的高最大时,△ ABC的面积最大,此时点A落在优弧BC的中点处. ........... 5分过O作0E丄BC于E,延长EO交O O于点A,则A为优弧BC的中点•连接AB,AC」AB=AC.••• . BAC =60:, •••△ABC是等边三角形.在Rt A ABE 中,T BE = 3,. BAE =30?,BE 翻…AE 3,tan 30V1•- S^ABC= 2 3 3=3 3.2答:△ ABC面积的最大值是 3 3. ...................... 7分六、(本大题共2个小题,每小题8分,共16分).23.解法一连接OB,过点O作OG丄BC于点G. ..................... 1分在Rt A ABO 中,AB=5, AO=17,AO 17• tan / ABO=一=一=3.4, ABO=73.6 : ........................ 3 分AB 5•••/ GBO=Z ABC—/ ABO=149°- 73.6 =75.4 °. .................. 4 分又T OB = .52172= 314 :17.72 , ................... 5 分•••在Rt A OBG 中,OG =OB sin £OBG =17.72 0.97 :17.19 17. ................... 7 分•水桶提手合格. ....... 8分解法二:连接OB,过点O作OG丄BC于点G. ................. 1分在Rt A ABO 中,AB=5, AO=17,AO 17「tan / ABO= 3.4 ,AB 5•••/ ABO=73.6 °.................... 3 分要使OG》OA,只需/ OBO Z ABO,T/ OBC=Z ABC- / ABO=149°—73.6 丄75.4 °>73.6 °……7 分•水桶提手合格. .......... 8分EF学校在校学教师所数生数数(所(万(万)人)人)小125 440 20学0024 .解:初200 200 12 (1) 2010年全省教育发展情况统计表中0高450 75 5中苴丿、100 280 11它50合250 995 48计00(说明:"合计”栏不列出来不扣分)(2)(3)①全小学级各类学校所数扇形统计图5分初中师生比~ 1 : 16.7, 高中师生比=1 : 15,•••小学学段的师生比最小•...... 6分②女口:小学在校学生数最多等•.... 7分③如:高中学校所数偏少等•..... 8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分.七、(本大题共2个小题,每小题10分,共20分)25•解:(1)当a=-1,b=1时,抛物线m的解析式为:y = -x2• 1.令x =0,得:y =1. • C (0,1 ).令y = 0,得:x =1. • A (-1,0 ), B (1,0 )•/ C与C1关于点B中心对称,2 o•抛物线n的解析式为:y=(x—2)—1=x —4x+3 ....................... 4分(2)四边形AGAC是平行四边形. .... 5分理由:••• C与C1、A与A1都关于点B中心对称,.• AB = BA,, BC = BG ,•四边形AC1A1C是平行四边形.(3)令x =0,得:y =b. • C (0, b )2令y 二0 ,得:ax b 二0,要使平行四边形AGA1C是矩形,必须满足AB二BC,10分26•解:(1)能.(2)① 22.5 ° ......②方法一T A A i =A l A 2=A 2A 3=1, A 1A 2 丄 A 2A 3,• A i A 3= 2 , AA 3=i .2.又A 2A 3丄 A 3A 4 , • A i A 2// A 3A 4.同理:A 3A 4 / A 5A 6,A=Z AA 2A i = / AA t A 3=/ AA 6A 5, • AA 3 =A 3A 4, AA 5=A 5A S• - a 2=A 3A 4=AA 3 =i ■「・ 2 , ........... 3 分a 3=AA 3+ A 3A 5=a 2+ A 3A 5.T A 3A 5= . 2 a 2,--a 3=A 5A 6=AA 5=a 2 亠、2a ? = 2 “i j . ................ 4 "分 方法二T A A i =A i A 2=A 2A 3=I , A i A 2丄 A 2A 3,• A i A 3= 2 , AA 3=I 、2.又 T A 2A 3丄 A 3A 4 , • A i A 2 / A 3A 4. 冋理:A 3A 4 // A 5A 6.•/ A 2A 3A 4=Z A 4A 5A 6=90 °, / A 2A 4A 3=Z A 4 A 6A 5 ,・• A 2A 3A 4^^ A 4A 5A 6,2• a %2,• a 3= J =( .2 伏.••…a 2 a31.............. 4分—n _la n2 i...... ............. 5分3) p_2二... .............6分 E _ 3 J....................7分 2 4d……............. 8分4 r :- 90(4)由题意得:90,5 二 _90,• I8‘ 乞二:::22.5‘;.I0分• • ab 二—3 .••• a, b 应满足关系式ab 二;.。

南昌中考数学试题答案

南昌中考数学试题答案

南昌中考数学试题答案————————————————————————————————作者:————————————————————————————————日期:数学参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.D 2.A 3.C 4.B 5.C 6.B7.C 8.D 9. C 10. D 11. A 12. A 二、填空题(本大题共4个小题,每小题3分,共12分)13. 3- 14.()()11x x x +- 15. 90 16. ①②③④说明:第16题填了1个或2个序号的得1分,填了3个序号的得2分. 三、(本大题共2个小题,每小题各5分,共10分)17.解:原式=2111111aa a a a a a a a ⎛⎫-÷=⨯= ⎪----⎝⎭. ………………3分 当21a =+时, 原式=112.22112==+- ………………5分18.解:①-②,得 32y y -=-+,∴1y =. ………………2分 把1y =代入①得 1x =. ………………4分 ∴1,1.x y =⎧⎨=⎩ ………………5分 四、(本大题共2个小题,每小题各6分,共12分) 19.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. ………………4分方法二列表格如下:甲 乙 丙 丁甲 甲、乙 甲、丙 甲、丁乙乙、甲 乙、丙 乙、丁丙丙、甲 丙、乙 丙、丁丁丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种.甲 乙 丙 丁 丙 甲 乙 丁 乙 甲 丙 丁 丁甲 乙 丙第第∴P (恰好选中甲、乙两位同学)=16. ………………4分(2) P (恰好选中乙同学)=13. ………………6分20.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. ………………3分(2)∵BC ∥AD , 5BC AB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为k y x=. 把()3,5--代入k y x =中,得:53k -=-, ∴15k =,∴15y x=. …………6分 五、(本大题共2个小题,每小题7分,共14分)21.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm. ………………2分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ………………5分 ∴41621d +=, ∴54d =. ………………6分 答:相邻两圆的间距为54cm. ………………7分 22.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =23,∴3BE EC ==. ………………1分在Rt △OBE 中,OB =2,∵3sin 2BE BOE OB ∠==, ∴60BOE ∠=o , ∴120BOC ∠=o ,∴1602BAC BOC ∠=∠=o . ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠=o .在Rt △DBC 中,233sin 42BC BDC BD ∠===, ∴60BDC ∠=o ,∴60BAC BDC ∠=∠=o .………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠=o .在Rt △ABE 中,∵3,30BE BAE =∠=o , ∴33tan 3033BEAE ===o,∴S △ABC =1233332⨯⨯=.答:△ABC 面积的最大值是33. ………………7分A B C O EA BCO D A BCO E解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠=o , ∴△ABC 是等边三角形. 在Rt △ABE 中,∵3,30BE BAE =∠=o , ∴33tan 3033BEAE ===o,∴S △ABC =1233332⨯⨯=.答:△ABC 面积的最大值是33. ………………7分六、(本大题共2个小题,每小题8分,共16分). 23.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分 在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==, ∴∠ABO =73.6°,………………3分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………4分又 ∵2251731417.72OB =+=≈, ………………5分 ∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =⨯∠=⨯≈>. ……………7分∴水桶提手合格. ……………8分 解法二:连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°. ………………3分 要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……7分 ∴水桶提手合格. ………………8分学校所数 (所)在校学生数 (万人)教师数 (万人)图AB C D E FO3G24.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………5分 (3)①小学师生比=1︰22, 初中师生比≈1︰16.7, 高中师生比=1︰15,∴小学学段的师生比最小. ………6分②如:小学在校学生数最多等. ………7分 ③如:高中学校所数偏少等. ………8分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分.七、(本大题共2个小题,每小题10分,共20分)25.解:(1)当1,1a b =-=时,抛物线m 的解析式为:21y x =-+.令0x =,得:1y =. ∴C (0,1).令0y =,得:1x =±. ∴A (-1,0),B (1,0) ∵C 与C 1关于点B 中心对称, ∴抛物线n 的解析式为:()222143y x x x =--=-+ ………4分 (2)四边形AC 1A 1C 是平行四边形. ………5分理由:∵C 与C 1、A 与A 1都关于点B 中心对称, ∴11,AB BA BC BC ==,∴四边形AC 1A 1C 是平行四边形. ………8分(3)令0x =,得:y b =. ∴C (0,b ).令0y =,得:20ax b +=, ∴b x a=±-, ∴(,0),(,0)b bA B a a---, ………9分∴2222,b bAB BC OC OB b a a=-=+=-.要使平行四边形AC 1A 1C 是矩形,必须满足AB BC =,小学12500 440 20 初中 2000 200 12 高中 450 75 5 其它 10050 280 11 合计 25000 995 48 高全省各级各类学校小学其它初∴22b b b a a -=-, ∴24b b b a a ⎛⎫⨯-=- ⎪⎝⎭, ∴3ab =-.∴,a b 应满足关系式3ab =-. ………10分26.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3=2,AA 3=12+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=12+, ………………3分 a 3=AA 3+ A 3A 5=a 2+ A 3A 5.∵A 3A 5=2a 2, ∴a 3=A 5A 6=AA 5=()222221a a +=+. ………………4分方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3=2,AA 3=12+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=222(21)1a =+. ………………4分()121n n a -=+ ………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩oo∴1822.5θ≤<o o . ………………10分。

江西南昌市2022中考试卷-数学(解析版)

江西南昌市2022中考试卷-数学(解析版)

江西南昌市2022中考试卷-数学(解析版)一.选择题(共12小题)1.(2020江西)﹣1的绝对值是()A. 1 B. 0 C.﹣1 D.±1考点:绝对值。

分析:依照绝对值的性质进行解答即可.解答:解:∵﹣1<0,∴|﹣1|=1.故选A.点评:本题考查的是绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是零.2.(2020南昌)在下列表述中,不能表示代数式“4a”的意义的是()A. 4的a倍B. a的4倍C. 4个a相加D.4个a相乘考点:代数式。

分析:说出代数式的意义,实际上确实是把代数式用语言叙述出来.叙述时,要求既要说明运算的顺序,又要说出运算的最终结果.解答:解:A.4的a倍用代数式表示4a,故本选项正确;B.a的4倍用代数式表示4a,故本选项正确;C.4个a相加用代数式表示a+a+a+a=4a,故本选项正确;D.4个a相乘用代数式表示a•a•a•a=a4,故本选项错误;故选D.点评:本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为动身点.3.(2020江西)等腰三角形的顶角为80°,则它的底角是()A. 20°B. 50°C. 60°D.80°考点:等腰三角形的性质。

分析:依照三角形内角和定理和等腰三角形的性质,能够求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.4.(2020江西)下列运算正确的是()A. a3+a3=2a6B. a6÷a﹣3=a3C. a3a3=2a3D.(﹣2a2)3=﹣8a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

南昌中考数学试题及答案

南昌中考数学试题及答案

南昌中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 3x + 5 = 11B. 3x - 5 = 11C. 3x + 5 = 7D. 3x - 5 = 7答案:B2. 计算下列表达式的结果:A. (2x - 3)(2x + 3) = 4x^2 - 9B. (2x - 3)(2x + 3) = 4x^2 + 9C. (2x - 3)(2x + 3) = 7x^2 - 6xD. (2x - 3)(2x + 3) = 7x^2 + 6x答案:A3. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B4. 如果一个数的平方等于9,那么这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 已知函数y = 2x + 3,当x = 2时,y的值是多少?A. 7B. 5C. 9D. 11答案:A6. 以下哪个选项是不等式?A. 3x + 5 = 11B. 3x - 5 > 11C. 3x + 5 < 7D. 3x - 5 = 7答案:B7. 计算下列表达式的值:A. √16 = 4B. √16 = -4C. √16 = ±4D. √16 = 16答案:A8. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 2:3 = 4:5C. 2:3 = 6:9D. 2:3 = 6:8答案:C10. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,它的体积是多少?A. 480立方厘米B. 560立方厘米C. 640立方厘米D. 720立方厘米答案:A二、填空题(每题3分,共15分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,它的周长是______厘米。

2022年江西南昌中考数学试题及答案

2022年江西南昌中考数学试题及答案

2022年江西南昌中考数学试题及答案说明:1.全卷满分120分,考题时间120分钟. 2.请将答案写在答题卡上,否则不给分.一、单项选择题(本大题共6小题,每小题3分,共18分) 1.下列各数中,负数是A.-1B.0C.2D.2.实数a ,b 在数轴上的对应点的位置如图所示,则下列结论中,正确的是A.a>bB.a=bC.a<bD.a=-b3.下列计算正确的是A.236m m m ⋅= B.()m n m n --=-+ C.2()m m n m n +=+ D.222()m n m n +=+4.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是A.9B.10C.11D.125.如图是四个完全相同的小正方体搭成的几何体,它的俯视图为6.甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至℃时,甲的溶解度比乙的溶解度大 C .当温度为0℃时,甲、乙的溶解度都小于20gD .当温度为30℃时,甲、乙的溶解度相等二、填空题(本大题共6小题,每小题3分,共18分)7.因式分解:a 2-3a =8.正五边形的外角和为度.9.关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值为 .10.甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为。

11.沐沐用七巧板拼了一个对角线长为2的正方形,再用这副七巧板拼成一个长方形(如图所示),则长方形的对角线长为12.已知点A 在反比例函数12xy =(x >0)的图象上,点B 在x 轴正半轴上,若ΔOAB 为等腰三角形,且腰长为5,则AB 的长为三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:0|2|42-+-(2)解不等式组:>2 <635 2x x x ⎧⎨⎩-+14.以下是某同学化简分式2113()422x x x x +-÷-+-的部分运算过程:(1)上面的运算过程中第步出现了错误; (2)请你写出完整的解答过程.15.某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员,其余3人均是共产党员.医院决定用随机抽取的方式确定人选.(1)“随机抽取1人,甲恰好被抽中”是事件: A.不可能 B.必然 C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.16.如图是4×4的正方形网格,请仅用无刻度的直尺......按要求完成以下作图(保留作图痕迹). (1)在图1中作∠ABC 的角平分线;(2)在图2中过点C 作一条直线1,使点A ,B 到直线l 的距离相等.17.如图,四边形ABCD为菱形,点E在AC的延长线上,∠ACD=∠ABE.(1)求证:ΔABC∽ΔAEB;(2)当AB=6,AC=4时,求AE的长.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,点A(m,4)在反比例函数的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.19.课本再现(1)在OO中,∠AOB是AB所对的圆心角,∠C是AB所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与∠C的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明12C AOB∠∠=;(2)如图4,若ΘO的半径为2,PA,PB分别与ΘO相切于点A,B,∠C=60°,求PA的长.20.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知A B / / C D / / F G。

江西南昌中考数学试卷(含答案)

江西南昌中考数学试卷(含答案)

江西省南昌市2011年初中毕业暨中等学校招生考试数学试题卷一、选择题1.下列各数中,最小的是( )A .0B .1C .—1D .2-2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人,这个数据可以 用科学计数法表示为( )A .74.45610⨯人B .64.45610⨯人C .44.45610⨯人D .34.45610⨯人 3.将两个大小相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( )4.下列运算正确的是( )A. ab b a =+B.532a a a =⋅C. 222)(2b a b ab a -=-+ D 123=-a a 5.下列各数中是无理数的是( ) A.400 B. 4 C. 4.0 D 04.06.把点A(—2,1)向上平移2个单位长度再向右平移3个单位长度后得到点B ,点B 的坐标是( ) A. (—5,3) B.(1,3) C.(1,—3) D.(—5,—1)7.不等式028>-x 的解集在数轴上表示正确的是( )8.已知一次函数b x y +=的图象经过第一、二、三象限,则b 的值可以是( ) A. —2 B. —1 C. 0 D. 29.已知1x =是方程220x bx +-=的一个根,则方程的另一个根是( ) A. 1 B.2 C. —2 D.—1 10.如图,在下列条件中,不能证明ABD ACD ∆≅∆的是( )A.,BD DC AB AC ==B. ,ADB ADC BD DC ∠=∠=C. ,B C BAD CAD ∠=∠∠=∠D. ,B C BD DC ∠=∠= 11.下列函数中自变量x 的取值范围是x>1的是( )A. 1y x =- B. 1y x =- C. 1y x =- D. 1y x=-12.时钟在正常运行时,分针每分钟转动6︒,时针每分钟转动0.5︒。

在运动过程中,时针与分针的夹角会随着时间的变化而变化。

江西省南昌市2020版中考数学试卷(II)卷(精编)

江西省南昌市2020版中考数学试卷(II)卷(精编)

江西省南昌市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) 3的倒数是()A .B . -C . 3D . -32. (2分) (2019七上·昌平期中) 2018年9月14日,北京新机场名称确定为“北京大兴国际机场”,2019年建成的新机场一期将满足年旅客吞吐量45 000 000人次的需求.将45 000 000用科学记数法表示应为()A .B .C .D .3. (2分)(2018·龙湾模拟) 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A . 主视图B . 俯视图C . 左视图D . 一样大4. (2分)(2016·漳州) 上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m)8.28.08.27.57.8A . 8.2,8.2B . 8.0,8.2C . 8.2,7.8D . 8.2,8.05. (2分)(2017·银川模拟) 太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A . 1.9×1014B . 2×1014C . 76×1015D . 7.6×10146. (2分) (2017七下·西华期末) 已知是二元一次方程组的解,则的值是()A . 1B . 2C . 3D . 47. (2分)如图所示,平行四边形ABCD 中∠C=108°,BE平分∠ABC,则∠AEB等于()A . 180°B . 36°C . 72°D . 108°8. (2分)如图,在Rt△ABC纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点。

江西省南昌市2020版中考数学试卷(II)卷(新版)

江西省南昌市2020版中考数学试卷(II)卷(新版)

江西省南昌市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018八上·厦门期中) 若,,,则a , b , c的大小关系正确的是()A . b<a<cB . c<a<bC . b<c<aD . c<b<a2. (2分) (2017七下·博兴期末) 如图,在平面直角坐标系中,小猫遮住的点的坐标可能是()A . (﹣2,1)B . (2,3)C . (3,﹣5)D . (﹣6,﹣2)3. (2分)(2018·泰州) 下列几何体中,主视图与俯视图不相同的是()A . 正方体B . 四棱锥C . 圆柱D . 球4. (2分) (2020八上·德城期末) 下列运算正确的是()A .B .C .D .5. (2分)(2019·株洲) 关于的分式方程的解为()A .B .C . 2D . 36. (2分) (2018九上·灌云月考) 如图,一个可以自由转动的转盘,被分成了白色和红色两个区域,任意转动转盘一次,当转盘停止转动时(若指针停在边界处,则重新转动转盘),指针落在红色区域内的概率是()A .B .C .D .7. (2分) (2017八下·萧山期中) 如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()A . AE=CFB . BE=FDC . BF=DED . ∠1=∠28. (2分) (2019九上·岑溪期中) 二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的不等式ax2+bx+c<0的解集是()A . x<﹣1B . x<2C . x<﹣1或x<2D . ﹣1<x<2二、填空题 (共10题;共16分)9. (2分) (2015七上·永定期中) ﹣5 的相反数是________;倒数是________.10. (1分)(2017·大连模拟) 在函数y= 中,自变量x的取值范围是________.11. (1分) (2019七下·余姚月考) 如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°,则下列结论中①∠C′EF=32°;②∠AEC=116°;③∠BGE=64°;④∠BFD=116°,正确的有________.12. (5分) (2020八下·海港期中) 为纪念建国70周年,我市某中学团委拟组织学生开展唱红歌比赛活动,为此,该校随机抽取部分学生就“你是否喜欢红歌”进行问卷调查,并将调查结果统计后绘制成如下统计表和扇形统计图.态度非常喜欢喜欢一般不知道频数90b3010频率a请你根据统计图、表提供的信息解答下列问题:(1)该校这次随机抽取了________名学生参加问卷调查;(2)确定统计表中的值: ________, ________;(3)在统计图中“喜欢”部分扇形所对应的圆心角是________度;(4)若该校共有2000名学生,估计全校态度为“非常喜欢”的学生有________人13. (1分)(2017·江阴模拟) 已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为________.14. (2分)(2017·天桥模拟) 如图,直线y= x与双曲线y= (x>0)交于点A,将直线y= x向下平移个6单位后,与双曲线y= (x>0)交于点B,与x轴交于点C,则C点的坐标为________;若 =2,则k=________.15. (1分)(2018·柳州模拟) 在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)16. (1分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为实现平均每月10000元的销售利润,则这种台灯的售价应定为________元.17. (1分)如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D 作直径DF,连结AF,则∠DEA=________。

南昌市2020版中考数学试卷(II)卷

南昌市2020版中考数学试卷(II)卷

南昌市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)是()A .B .C .D .2. (2分)(2020·枣阳模拟) 下列运算正确的是()A .B .C .D .3. (2分) (2019七上·富阳期中) 已知,则的值是A . 0B . 2C . 5D . 84. (2分) (2019七下·梁子湖期中) 在平面直角坐标系中,把点P(﹣5,2)先向左平移3个单位长度,再向上平移5个单位长度后得到的点的坐标是()A . (﹣8,6)B . (﹣8,7)C . (﹣2,7)D . (﹣2,﹣3)5. (2分)(2016·武汉) 如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .6. (2分) (2020八上·淮阳期末) 元旦联欢会上,王老师购买的香蕉苹果、香梨的总千克数之比为,若制成一个如图所示的扇形统计图,则表示香梨千克数的扇形的圆心角度数为()A .B .C .D .7. (2分) (2020八下·哈尔滨月考) 若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为()A . ﹣3B . ﹣1C . 1D . 38. (2分) (2017八上·杭州月考) 已知等腰三角形的两条边长分别是 7 和 3,则第三条边长是()A . 8B . 7C . 4D . 39. (2分)(2017·深圳模拟) 如图,在 ABC中,AD平分 BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是().A . 2B . 4C . 6D . 810. (2分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,则她至少要答对()A . 10道题B . 12道题C . 13道题D . 16道题11. (2分)下列等式正确的是A .B .C .D .12. (2分)(2019·威海) 如图,与x轴交于点,,与轴的正半轴交于点.若,则点的纵坐标为()A .B .C .D .二、填空题 (共5题;共5分)13. (1分)用度、分、秒表示24.18°= ________14. (1分) (2019八上·金平期末) 光的速度约为3×105 km/s,太阳系以外距离地球最近的一颗恒星(比邻星)发出的光需要4年的时间才能到达地球.若一年以3×107 s计算,则这颗恒星到地球的距离是________km.15. (1分)(2020·海门模拟) 在四张完全相同的卡片上分别印有等边三角形、平行四边形、矩形、圆的图案,现将印有图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案都是轴对称图形的概率为________.16. (1分) (2019八上·哈尔滨月考) 如图,AB=AC,BD=CD,AD=AE,∠BAD=28°,则∠EDC= ________.17. (1分) (2019七下·贵池期中) 若是完全平方式,则k的值为________。

2021年江西省南昌市中学考试数学试卷及问题详解Word解析汇报版

2021年江西省南昌市中学考试数学试卷及问题详解Word解析汇报版

2021年江西省南昌市中学考试数学试卷及问题详解Word解析汇报版文档2021年江西省南昌市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题每小题3分满分36分)每小题只有一个正确选项。

1.(3分)﹣1的倒数是()A.1B.﹣1C.±1D.0考点:倒数.分析:根据倒数的定义得出﹣1×(﹣1)=1即可得出答案.解答:解:∵﹣1×(﹣1)=1∴﹣1的倒数是﹣1.故选:B.点评:此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1我们就称这两个数互为倒数.2.(3分)下列计算正确的是()3252223226623A.B.D.C.(﹣ab)=abab﹣3ab)=9a﹣b÷a=aba+a=a(考点:完全平方公式;合并同类项;幂的乘方与积的乘方;整式的除法.分析:根据同类项的定义完全平方公式幂的乘方以及单项式的除法法则即可判断.解答:解:A、不是同类项不能合并选项错误;222=9a﹣6ab+b故选项错误;3aB、(﹣b)C、正确;624÷、aba=ab选项错误.D故选C.点评:本题考查了幂的运算法则以及完全平方公式理解公式的结构是关键人分别到井冈山和瑞金进行革命传统教育到井冈山的人数是到瑞金的人分)某单位组织34.(33人.下y人求到两地的人数各是多少?设到井冈山的人数为x人到瑞金的人数为数的2倍多面所列的方程组正确的是(...B.CDA考实际问题抽象出二元一次方程组人进行革命传统教育到井冈人到瑞金的人数人根据3分析到井冈山的人数x1人即可得出方程组.的人数是到瑞金的人数的2倍多解解答::设到井冈山的人数为x人到瑞金的人数为y人由题意得:.故选B.点评:本题考查了有实际问题抽象出二元一次方程组难度一般关键是读懂题意设出未知数找出等量关系.文档4.(3分)下列数据是2021年3月7日6点公布的中国六大城市的空气污染指数情况:城市北京合肥南京哈尔滨成都南昌污染指数34216316545227163则这组数据的中位数和众数分别是()A.164和163B.105和163C.105和164D.163和164考点:众数;中位数.分析:根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大(或从大到小)的顺序排列如果数据的个数是奇数则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数则中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.解答:解:把数据从小到大排列:45163163165227342位置处于中间的数是163和165故中位数是(163+165)÷2=164 163出现了两次故众数是163;故答案为:A.点评:此题主要考查了众数和中位数关键是掌握两种数的定义.5.(3分)某机构对30万人的调查显示沉迷于手机上网的初中生大约占7%则这部分沉迷于手机上网的初中生人数可用科学记数法表示为()5354A.B.C.D.2.1×1021×100.21×102.1×10考点:科学记数法—表示较大的数.n分析:科学记数法的表示形式为a×10的形式其中1≤|a|<10n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n 是正数;当原数的绝对值<1时n是负数.4解答:解:将30万×7%=21000用科学记数法表示为:2.1×10.故选:D.n点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10的形式其中1≤|a|<10n为整数表示时关键要正确确定a的值以及n的值.6.(3分)如图直线y=x+a﹣2与双曲线y=交于A、B两点则当线段AB的长度取最小值时a的值为()A.0B.1C.2D.5比例函数与一次函数的交点问题.:考点反文档的方程解方程即a经过原点时线段AB的长度取最小值依此可得关于当直线y=x+a﹣2分析:的值.可求得a经过原点y=x+a﹣2解:∵要使线段AB的长度取最小值则直线解答:﹣2=0∴a.解得a=2.故选C经过原点时2y=x+a﹣点评:考查了反比例函数与一次函数的交点问题本题的关键是理解当直线的长度取最小值.线段AB)(3分)一张坐凳的形状如图所示以箭头所指的方向为主视方向则它的左视图可以是(7.D.C..A.B单组合体的三视图.:简考点到从左面看所得到的图形即可注意所有的看到的棱都应表现在主视图中.分析:找解答:.解:从几何体的左边看可得.故选:题考查了三视图的知识左视图是从物体的左面看得到的视图点评)3分)将不等式组的解集在数轴上表示出来正确的是(8.(..DC.A.B在数轴上表示不等式的解集;解一元一次不等式组.:考点求出两个不等式的解集然后表示在数轴上即可.分析:解答:解:1x解不等式①得≥﹣3<x解不等式②得在数轴上表示如下:文档.故选D.题考查了一元一次不等式组的解法在数轴上表示不等式组的解集需要把每个不等式的点评:本“≤”要用实解集在数轴上表示出来(>≥向右画;<≤向左画)在表示解集时“≥”“>”要用空心圆点表示.心圆点表示;“<”).(3分)下列因式分解正确的是(922223B.A.b)=a(a ﹣x﹣y)a﹣2ab+abxy+x=_______﹣(222D.C.)(x﹣3)+3ax﹣9=a(x+3)(x﹣2x+4=x﹣1提公因式法.式分解-运用公式法;因式分解-考点:因用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.分析:利2解答:故此选项错误;﹣y+1)A、x﹣xy+x=x(x 解:2232(a﹣b)故此选项正确;B、a﹣2ab+ab=a22+3不是因式分解故此选项错误;﹣1)C、x﹣2x+4=(x2无法因式分解故此选项错误.ax﹣9D、.故选:B题主要考查了公式法和提公因式法分解因式关键是注意口诀:找准公因式一次要提净;此点评:全家都搬走留1把家守;提负要变号变形看奇偶.°且°∠E=70A(3分)如图将△ABC绕点逆时针旋转一定角度得到△ADE.若∠CAE=6510.)AD⊥BC∠BAC的度数为(°.90C.85°DBA.60°.75°转的性质考中°则在直角ABBAD=6°对应角CE=7分析据旋转的性质知旋转角EAC的度数即可BAAB的内角和18°来求求B=3°所以利用△°.C=∠E=70∠解答:解:根据旋转的性质知∠EAC=BAD=65°∠.则∠AFB=90°如图设AD⊥BC于点F°°﹣∠ABF中∠B=90BAD=35△∴在Rt的度数为BAC75°.°即∠°°﹣°﹣﹣∠°﹣∠中∠∴在△ABCBAC=180BC=1803570=75.故选B文档题考查了旋转的性质.解题的过程中利用了三角形内角和定理和直角三角形的两个锐角点评:本互余的性质来求相关角的度数的.)AP的中点连接AP则的长为(.(3分)如图正六边形ABCDEF中AB=2点P是ED11D.4C..A.B2股定理.考点:勾°并求AEP=90∠EAF=30°然后求出∠连接AE求出正六边形的∠F=120°再求出∠AEF=分析:△AEP中利用勾股定理列式进行计算即可得解.的长最后在出AE的长再求出PERt:如图连接AE解答:解=120°2)?180°6在正六边形中∠F=×(﹣AF=EF∵°°﹣120°)=30∠∴∠AEF=EAF=(18°3=9∴AEP=12°﹣=22×2cos30°=2××AE=2的中点P是ED∵点2=1∴EP=×AEP中AP==.=△在Rt故选C.题考查了勾股定理正六边形的性质等腰三角形三线合一的性质作辅助线构造出直角本点评:文档三角形是解题的关键.2x0)(≠0)的图象与x轴有两个交点坐标分别为(x12.(3分)若二次函数y=ax+bx+c(a21)轴下方则下列判断正确的是(M(xy)在x0)且x<x图象上有一点00122..D>0B.CaA.)x﹣x)a(x﹣x(b﹣4ac≥0x<x<x<物线与x轴的交点.考点:抛、0两种情况对Ca>0和a<分析:根据抛物线与x轴有两个不同的交点根的判别式△>0再分D选项讨论即可得解.2解答:负情况故本轴有两个交点无法确定a 的正a≠0)的图象与x解:A、二次函数y=ax+bx+c(选项错误;<xB、∵x212故本选项错误;>0∴△=b﹣4ac<x0则x<xC、若a>210故本选项错误;<x或x<xa<0则x<x<x若0212100x﹣x<0则x﹣x>0、若Da>21000x﹣x)<所以(x﹣x)(21000﹣x)<(x﹣x)(x∴a2100)同号x﹣x则(<0x﹣x)与(若a20__x)<0x)(x﹣(∴ax﹣20__正确故本选项正确.)<0)(x﹣x综上所述a(x﹣x20__.故选D次函数图象以及图象上点的坐标特征是轴的交点问题熟练掌握二题考查了二次函数与x点评:本D选项要注意分情况讨论.C解题的关键、12分)4小题每小题3分满分二、填空题(本大题共.65°1=155°则∠B的度数为∥A=90ABC中∠°点D在AC边上DEBC若∠如图△.13(3分)性质;直角三角形的性质行线考究型.探专题:根据三角形内角和C的度数根据平角的定义求出∠EDC的度数再由平行线的性质得出∠先分析:B的度数.定理即可求出∠°1=155解:∵∠解答:°155°=25∴∠EDC=180°﹣∥BC∵DEEDC=25°∴∠C=∠°A=90°∠C=25ABC∵△中∠°.25°﹣°=6590B=180∴∠°﹣°.65故答案为:文档本题考查的是平行线的性质用到的知识点为:两直线平行内错角相等.点评:个图形中所有点的个数分)观察下列图形中点的个数若按其规律再画下去可以得到第n14.(32.(用含n的代数式表示)为(n+1)规律型:图形的变化类.考点:规律型.专题:个图形中点的个数的表达式再察不难发现点的个数依次为连续奇数的个数写出第n分析:观根据求和公式列式计算即可得解.1+3=4:第1个图形中点的个数为:解答:解2个图形中点的个数为:1+3+5=9第3个图形中点的个数为:1+3+5+7=16第…2n+1).2n+1)==(第n个图形中点的个数为:1+3+5+…+(2.n+1)故答案为:(题是对图形变化规律的考查比较简单观察出点的个数是连续奇数的和是解题的关键本点评:还要注意求和公式的利用.请写出一个=3的两条直角边长且S分)若一个一元二次方程的两个根分别是Rt△ABC15.(3ABC△2.x﹣5x+6=0(答案不唯一)符合题意的一元二次方程与系数的关系考放型专分析得出两根之积进而根据根与系数的关系写出一个符合要求的一元二次方程=AB可解答的两条直角边长=:∵一个一元二次方程的两个根分别RABAB2=∴一元二次方程的两个根的乘积为5x+6=∴此方程可以为故答案为5x+6=(答案不唯一题主要考查了根与系数的关系以及直角三角形的面积根据已知得出两根之积进而得出点评案是解题关键.则满足题意的°AO=BO=2C、其中∠AOB=120°∠ACB=60O316.(分)平面内有四个点A、、B.34OC 长度为整数的值可以是2垂径定理;等边三角形的判定与性质.:考点为圆心的圆上;在以点根据圆周角定理可以退出点类讨论:如图分析:分1CO文档共圆.分类讨论:、CO、B根据已知条件可知对角∠AOB+∠ACB=180°则四个点A、如图2OC的长度.在不同的四边形中利用垂径定理、等边△MAO的性质来求如图1如图2°AOB=120°∠ACB=60解解答::如图1∵∠∠AOB=60°∴∠ACB=为圆心的圆上且在优弧AB上.∴点C 在以点O∴OC=AO=BO=2;°∠ACB=60°如图2∵∠AOB=120ACB=180°∴∠AOB+∠C共圆.、O、B、∴四个点AAB上运动.M上.点C在优弧设这四点都在⊙.ABAM、、MB连接OM、°∵∠ACB=60°.∴∠AMB=2∠ACB=120∵AO=BO=2∠BMO=60°.∴∠AMO=又∵MA=MO∴△AMO的等边三角形MA=AO=2∴4即2<OC≤OC∴MA<≤2MA.OC可以取整数3和4∴34.综上所述OC可以取整数24.3故答案是:2题考查了垂径定理、等边三角形的判定与性质.此题需要分类讨论以防漏解.在解题时点评:本还利用了圆周角定理圆周角、弧、弦间的关系.分)6分满分24(本大题共三、4小题每小题在半圆内请仅用无刻中点1C在半圆外;图2C中点是半圆的直径图分)如图(17.6AB度的直尺按要求画图.11()在图中画出△的三条高的交点;ABC文档(2)在图2中画出△ABC中AB边上的高.考点:作图—复杂作图.分析:(1)根据圆周角定理:直径所对的圆周角是90°画图即可;(2)与(1)类似利用圆周角定理画图.解答:解:(1)如图所示:点P就是三个高的交点;(2)如图所示:CT就是AB上的高.点评:此题主要考查了复杂作图关键是掌握三角形的三条高交于一点直径所对的圆周角是90°.18.(6分)先化简再求值:÷+1在012三个数中选一个合适的代入求值.考点:分式的化简求值.分析:首先将原式能分解因式的分解因式然后利用除以一个数等于乘以这个数的倒数将除法运化为乘法运算约分得到最简结果最后根据分式的性质选出有意义的值即可得原式的值解答解:÷+1=÷+1=×+1=+1=当x=0或2时分式无意义文档x只能等于1故原式=.题考查了分式的化简求值分式的加减运算关键是通分通分的关键是找最简公分母;分:此点评式的乘除运算关键是约分约分的关键是找出公因式约分时分式的分子分母出现多项式应将多项式分解因式后再约分.人聚会每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有分)甲、乙、丙319.(63件礼物放在一起每人从中随机抽取一件.颜色不同)将)(1)下列事件是必然事件的是(、乙抽到一件礼物A、乙恰好抽到自己带来的礼物B、乙没有抽到自己带来的礼物C、只有乙抽到自己带来的礼物D的所有可能的结A人抽到的都不是自己带来的礼物(记为事件A)请列出事件(2)甲、乙、丙3的概率.果并求事件A:列表法与树状图法;随机事件.考点:图表型.专题(1)根据必然事件、随机事件的定义对各选项分析判断后利用排除法求解;分析:(2)画出树状图然后根据概率公式列式进行计算即可得解.A、乙抽到一件礼物是必然事件;:解答:解(1)B、乙恰好抽到自己带来的礼物是随机事件;、乙没有抽到自己带来的礼物是随机事件;CD、只有乙抽到自己带来的礼物是随机事件;;故选A、b、c)设甲、乙、丙三人的礼物分别记为(2a根据题意画出树状图如下:、cab)、)(bca)、(、、6一共有种等可能的情况三人抽到的礼物分别为(abc)(acb)(bac(cba))有2种cabbca3人抽到的都不是自己带来的礼物的情况有()、(.A所以P()==所求情况数与总情况数之比.=本点评:题考查了列表法与树状图法用到的知识点为:概率文档y=(x>0)的图象和矩形ABCD在第一象限20.(6分)如图在平面直角坐标系中反比例函数AD平行于x轴且AB=2AD=4点A 的坐标为(26).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移矩形的两个顶点恰好同时落在反比例函数的图象上猜想这是哪两个点并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.分析:(1)根据矩形性质得出AB=CD=2AD=BC=4即可得出答案;(2)设矩形平移后A的坐标是(26﹣x)C的坐标是(64﹣x)得出k=2(6﹣x)=6(4﹣x)求出x即可得出矩形平移后A的坐标代入反比例函数的解析式求出即可.解答:解:(1)∵四边形ABCD是矩形平行于x轴且AB=2AD=4点A的坐标为(26).∴AB=CD=2AD=BC=4∴B(24)C(64)D(66);(2)A、C落在反比例函数的图象上设矩形平移后A的坐标是(26﹣x)C的坐标是(64﹣x)∵A、C落在反比例函数的图象上∴k=2(6﹣x)=6(4﹣x)x=3即矩形平移后A的坐标是(23)代入反比例函数的解析式得k=3=即A、C落在反比例函数的图象上矩形的平移距离是3反比例函数的解析式是y=.点评:本题考查了矩形性质用待定系数法求反比例函数的解析式平移的性质的应用主要考查学生的计算能力.四、解答题(本大题共3小题每小题8分共24分)21.(8分)生活中很多矿泉水没有喝完便被扔掉造成极大的浪费为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查为期半天的会议中每人发一瓶500ml的矿泉水会后对所发矿泉水喝的情况进行统计大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图根据统计图提供的信息解答下列问题:文档D所在扇形的圆心角是多少度?并补全条形统计图;)参加这次会议的有多少人?在图(2)中(1)若开瓶但基本未喝算全部浪费试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结(2果请保留整数))2人之间请用(每次会议人数约在该单位每年约有此类会议60次40至60(3)据不完全统计瓶)约有多少瓶?(可使用科500ml/中计算的结果估计该单位一年中因此类会议浪费的矿泉水(学记算器)形统计图;用样本估计总体;扇形统计图.:条考点代表的人数;所代表的数据求出总人数即可得出CB分析:(1)根据扇形统计图和条形统计图中)中所求得出浪费掉的总量进而得出平均数;)根据(1(2进而求出总数.)中所求人利用(2至(3)根据每次会议人数约在4060人之间可以为5050%=501)参加这次会议的人数:25÷(解答:解:100%=36°所在扇形的圆心角:360°××D5=10如图所示:﹣10﹣C的人数:50﹣25;≈183(毫升)×10+500×5)÷50500(2)(××25+500×109(瓶65018×1098瓶.500ml/答:浪费的矿泉水(瓶)约有此题主要考查了条形统计图与扇形统计图的综合应用根据图象得出正确信息是解题关键.点评:4P(A为圆心半径为2的圆与y轴交于点点822.(分)如图在平面直角坐标系中以点O.x轴于点CBPBO)是⊙外一点连接AP 直线与⊙O相切于点交2的切线;O1()证明PA是⊙的坐标.B2()求点文档线的判定与性质;坐标与图形性质.切考点:计算题.专题:OAP为圆PA与AO垂直即可得到P的纵坐标为2得到AP与x 轴平行即分析:(1)由AO=2的切线;为角平分线进而POOC由切线长定理得到PA=PB=4OB过B作BQ垂直于)连接(2OP平行利用两直线平行内错角相等得到一对角相等等量代与OC得到一对角相等根据AP利用勾股定理列出关于OB=2PC=4﹣xOC=CP设OC=xBC=BP ﹣换并利用等角对等边得到中利用面OBC与BC的长在直角三角形x的方程求出方程的解得到x的值确定出OC的坐标.B在第四象限即可求出B积法求出BQ的长再利用勾股定理求出OQ的长根据2)42P(解答:(1)证明:∵圆O的半径为⊥OA∴AP的切线;为圆O则AP⊥OC过B作BQ(2)解:连接OPOBO的切线PA、PB为圆∵PA=PB=4APO=∠BPO∴∠OC∵AP∥POC∴∠APO=∠POC∴∠BPO=∠∴OC=COB=BC=PPC=ROB中OC=PC==OO+B=4根据勾股定理得解得x=2.BC=x=1.BQBC=OCBQ?=∵SOBBC=OC?即OBOBC△∴BQ==1.2OQ=OBQ 中根据勾股定理得:△在Rt=1.6.)﹣坐标为(则B1.61.2 文档题考查了切线的性质与判定坐标与图形性质勾股定理三角形的面积求法平行线的此点评:性质以及切线长定理熟练掌握切线的性质与判定是解本题的关键.一辆汽车的背面有一种特殊性状的刮雨器忽略刮雨器的宽度可抽象为一条1(8分)如图23.°.若启动一次48cm∠OAB=120OA长为10cm雨刮杆AB长为折线OAB如图2所示量得连杆的位置如图3所示.刮雨器雨刮杆AB正好扫到水平线CD0.01)B旋转的最大角度及O、两点之间的距离;(结果精确到(1)求雨刮杆AB°=°=cos60sin60(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)(参考数据:可使用科学记算器)tan60°=≈26.851直角三角形的应用;扇形面积的计算.考点:解旋转的最大角度再利用锐角三角函数关系和勾股定AB(1)根据平行线的性质得出雨刮杆分析:的长即可;AEBO理求出EO扫过的最大面积即为AB为半径的半圆进而得出答案即可)根据雨刮正好扫到点启动一次刮雨器雨刮A点转点转点解答)如图所示C的位置平18°故雨刮A旋转的最大角度为延长线于连B过OBB°∵OAB=120∴∠OAE=60°∴∠EOA=30°10cm∵OA长为OA=5(cm)EA=∴cm)EO=∴=5(AB∵长为48cmcmEB=48+5=53∴()文档(cm);∴BO===2≈53.70;两点之间的距离为53.70cmO答:雨刮杆AB旋转的最大角度为180°、B中心对称关于点O旋转180°得到CD即△OCD与△OAB(2)∵雨刮杆ABDCO△BAO≌△DCO∴S△BAO=S∴△222.=1392π(cm)∴雨刮杆AB扫过的最大面积S=π(OB﹣OA)2πcm.答:雨刮杆AB扫过的最大面积为1392题主要考查了解直角三角形的应用以及勾股定理和扇形面积求法、勾股定理等知识利用此点评:平行线的性质得出旋转的最大角是解题关键.分)24小题每小题12分共五、(本大题共2分)某数学活动小组在作三角形的拓展图形研究其性质时经历了如下过程:.(1224的外侧作等腰直角三角AC为斜边向△AB C分别以(1)操作发现:在等腰△ABC中AB=ACAB和则下列结论和MEAC于点GM是BC的中点连接MDEG1形如图所示其中DF⊥AB于点F⊥(填序号即可)正确的是①②③④.AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME①的外侧作等腰直角三角形如ABC中分别以AB和AC为斜边向△ABC(2)数学思考:在任意△具有怎样的数量关系?请给出证明过程;MD则和ME是图2所示MBC的中点连接MD和ME)类比探究:(3所示的内侧作等腰直角三角形如图3AC(i)在任意△ABC中仍分别以AB和为斜边向△ABC和ME试判断△MED的形状.答:等腰直角三角形.BCM是的中点连接MD的内侧作(非ABC和ABAC为斜边向△ABC(ii)在三边互不相等的△中(见备用图)仍分别以)中MEBCACE和(非等腰)直角三角形M是的中点连接MD和要使(2ABD等腰)直角三角形的结论此时仍然成立你认为需增加一个什么样的条件?(限用题中字母表示)并说明理由.四边形综合题.考点:分析:)由条件可以通过三角形全等和轴对称的性质直角三角形的性质就可以得出结论;1(文档根据三角形的中位线的性质和等腰直角MGEG连接DFMF(2)作AB、AC的中点F、G根据其性质就≌△MGE三角形的性质就可以得出四边形AFMG是平行四边形从而得出△DFM可以得出结论;根据三角形的中相交于H和MGDFMGG连接DFMFEG、(3)i作ABAC 的中点F、MGE由全等三角形的性质就可以得出结论;K可以得出△DFM≌△位线的性质时作∠CAE∠AEC=90°当∠BAD=如图4作直角三角形ADB和直角三角形AEC∠ADB=ii根据三角形的中位线的性质相交于HDF和MGMFEGMG的中点AB、ACF、G连接DFDM=EM.≌△MGE由全等三角形的性质就可以得出结论K可以得出△DFM是等腰直角三角形ADB和△AEC(解答:解:1)∵△°ADB=∠AEC=90DAB=∠ACE=∠EAC=45°∠∴∠ABD=∠中ADB 和△AEC∵在△)≌△∴△ADBAEC(AASAD=AE∴BD=CEGEG⊥AC于点AB∵DF⊥于点FAG=GC=GE=.AC∴AF=BF=DF=AB∵AB=ACAB故①正确;∴AF=AG=BC的中点∵M是.∴BM=CM∵AB=AC∴∠ABC=∠ACBABD=∠ACB+∠ACE∴∠ABC+∠即∠DBM=∠ECMDB和EC在△)DBM∴△≌△ECM(SAS.故②正确;∴MD=ME沿连接AM根据前面的证明可以得出将图形1AM对折左右两部分能完全重合∴整个图形是轴对称图形故③正确.∵AB=ACBM=CMAM⊥BC∴AMC=90°∠∴∠AMB=°∵∠ADM=90∴四边形ADBM四点共圆°.∠∴∠AMD=ABD=45AM是对称轴∵∴∠AME=°AMD=45∠文档°∴∠DME=90故④正确⊥ME∴MD)MD=ME(2MGMFEGAB、AC的中点F、G连接DF理由:作.ABAG=AC∴AF=ABD和△AEC是等腰直角三角形∵△ACDF=ABEG⊥ACEG=∴DF⊥ABGE=AG.∴∠AFD=∠AGE=90°DF=AF的中点∵M是BCMF∥ACMG∥AB∴是平行四边形∴四边形AFMG.MG=AF∠AFM=∠AGM∴AG=MFAFD=∠AGM+∠AGE∴MF=GEDF=MG ∠AFM+∠∴∠DFM=∠MGE.∵在△DFM和△MGE中SAS)(∴△DFM≌△MGE∴DM=ME;AC的中点、MF、G分别是BC、AB、(3)i∵点ABMG=MG∥AB∴MF∥ACMF=ACMFAG是平行四边形∴四边.AFMAGMG=AMF=AG是等腰直角三角形ADB和△AEC∵△AGE=90°∠∴DF=AFGE=AG∠AFD=∠BFD=∠MF=EGDF=MGAF M﹣∠AFD=∠AGM﹣∠AGE∴即∠DFM=∠MGE.中和△MGE∵在△DFMSAS)(∴△DFM≌△MGE.MDF=∴MD=ME∠∠EMG∵MG∥AB°BFD=90MHD=∴∠∠∠MDF=90°HMD+∴∠HMD+∴∠∠°EMG=90DME=90即∠°文档为等腰直角三角形;∴△DME.时DM=EMAEC=90°当∠BAD=∠CAEADBii如图4△和△AEC是直角三角形∠ADB=∠MGMFEGAB理由:作、AC的中点F、G连接D FMG∥ABMF∥ACMG=AB∴MF=AC∴四边形AFMG是平行四边形∠AGM.∴MF=AGMG=AF∠AFM=AEC=90°ADB=∵∠∠EG=AG∴DF=AF.DAF∠AGE=∠GAEFDA=∴DF=MGMF=EG∠∠∵∠BAD=∠CAEAGE=∠GAEF DA=∴∠∠DAF=∠∠AGE∴∠AFD=AGMAFD∴∠﹣∠AFM=∠AGE﹣∠.即∠DFM=∠MGEDFM∵在△和△MGE中SASDFM∴△≌△MGE ().∴DM=ME故答案为:①②③④.文档题考查了等腰直角三角形的性质的运用等腰三角形的性质的运用全等三角形的判定及点评:本性质的运用三角形的中位线的性质的运用直角三角形的斜边上的中线的性质的运用平行四边形的判定及性质的运用解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.2轴的交点为x<a<…<a)与﹣a)+a(n为正整数且0<a=25.(12分)已知抛物线y﹣(xnnnn212轴的交点为xA(0=﹣(x﹣a)+a与时第A(b0)和A(b0)当n=11条抛物线y011n﹣1nn﹣11n0)其他依此类推.0)和A(b11b的值及抛物线y的解析式;(1)求a2112n;依此类推第n条抛物线y的顶点坐标为()(2)抛物线y的顶点坐标为(99n32y=x;)n;所有抛物线的顶点坐标满足的函数关系式是3)探究下列结论:(;A轴截得的线段长直接写出AA的值并求出A表示第①若用AAn条抛物线被xnn10n1﹣n﹣1)的直线和所有抛物线都相交且被每一条抛物线截得的线段的长度都0②是否存在经过点A(2相等?若存在直接写出直线的表达式;若不存在请说明理由.二次函数综合题.考点:22分析:;+1﹣1)a=1则y=﹣(x上可求得﹣(((1)因为点A00)在抛物线y=x﹣a)+a1111102上求得a=4))在抛物线0y=﹣(x﹣a+a(;2求得y令=0A(0)b=2再由点A2211221122+4.﹣y=﹣(x4)2依此类推)94)y的顶点坐标(94的顶点坐标(11的顶点坐标()求得(2y)y32122.因为所有抛物线顶点的横坐标等于纵坐标所以顶点坐标满足的nn的顶点坐标为(y)n文档.函数关系式是:y=x2222n(求得A﹣(x﹣n)+n令y=00(0)A(20)求得AA=2;y=(3)①由A1﹣nn0011n222=2n;(=n+n)﹣(n﹣n)﹣n0)A(n+n0)所以AAn﹣1nn222y)n)+n 交于E(x②设直线解析式为:y=kx﹣2k设直线y=kx﹣2k与抛物线y=﹣(x﹣11n224.然后作2k?_______=n﹣n﹣F(xy)两点联立两式得一元二次方程得到x+x=2n﹣k22212122222可见+8k]?(1﹣k)+k辅助线构造直角三角形求出EF的表述式为:EF=(k+1)[4n2.EF=9为定值.所以满足条件的直线为:y=x﹣2当k=1时2解答:(00)a条抛物线y=﹣(x﹣)+a与x轴的交点为A解:(1)∵当n=1时第112a=1或a=0.∴0=﹣(0﹣a)+a解得11110∴a=1由已知a>112﹣1)+1.∴y=﹣(x12x=0或x=2y令=0即﹣(x﹣1)+1=0解得1.b=2∴A(20)1120)﹣a)+a经过点A (2时第由题意当n=22条抛物线y=﹣(x12222=4)﹣a+a解得a=1或a∴0=﹣(22222a∵a=1且已知a>121=4∴a22.=﹣(x﹣4)+4∴y22.﹣(x﹣4)+4=1∴ab=2y=21122或x=6.=0+4令y即﹣(x﹣4)+4=0解得x=2﹣((2)抛物线y=x﹣4)22)(∵A201).∴A(6022经过点A(60))y由题意当n=3时第3条抛物线=﹣(x﹣a+a23332=9.=4或a解得﹣(∴0=6﹣a)+aa3333>aa∵a=4且已知223a=9∴32.=∴y﹣(x ﹣9)+的顶点坐标为的顶点坐标的顶点坐标的顶点坐标的顶点坐标为依此类推∵所有抛物线顶点的横坐标等于纵坐标y=∴顶点坐标满足的函数关系式是:文档20)00)A((3)①∵A(10.∴AA=210222222)+n=0令y=0即﹣(x﹣ny=﹣(x﹣n)+nnn22﹣n解得x=n+n或x=n2222=2n.+n)﹣(n﹣n)(An+n0)即AA=(n∴A(n﹣n0)nn1nn﹣1﹣②存在.2k则有:0=2k+b得b=﹣y=kx+b设过点(20)的直线解析式为2k.∴y=kx﹣222y)两点x交于E(y)F (xy=kx设直线﹣2k与抛物线y=﹣(x﹣n)+n2212k=0(k﹣2n)x+n﹣n﹣+n联立两式得:kx﹣2k=﹣(x﹣n)整理得:x+224.=nx?x﹣n﹣2k∴x+x=2n﹣k2211FG于点G则EG=x﹣x作过点F作FG⊥x轴过点EEG⊥122222222.﹣_______)+x(x﹣2n)(x﹣x)=k(﹣)yFG=y﹣=[﹣(x﹣n+n]﹣[﹣(xn)+n]=1211211222222+FGEF=EG在Rt△EFG中由勾股定理得:2222222)﹣4x?x]x)+1=(k)(x﹣x=(k+1)[(+x]﹣+[k﹣=即:EF(_______)(_______)22121111222242222[4n(1﹣k)+k+8k]k代入整理得:﹣?k+x将x=2n﹣_______=nn﹣2kEF=(+1)21122EF=3=9∴为定值1+8(k=1当时EF=1+1)().2k=1∴满足条件此时直线解析式为y=x﹣y=x∴存在满足条件的直线该直线的。

南昌市中考数学试卷

南昌市中考数学试卷

南昌市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列计算正确的是()A . (﹣2)0=﹣1B .C . ﹣2﹣3=﹣8D .2. (2分) (2019七下·昭平期中) 下列计算正确的是()A . x3•x3=2x3B . x•x3=x3C . x3•x2=x6D . x3•x4=x73. (2分)据报道,投资270亿元的西环高铁预计今年底建成通车,通车后能使西环高铁经过的市县约4360000人受益,数据4360000用科学记数法表示为()A . 436×104B . 4.36×105C . 4.36×106D . 4.36×1074. (2分)为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A . 289(1﹣x)2=256B . 256(1﹣x)2=289C . 289(1﹣2x)=256D . 256(1﹣2x)=2895. (2分)下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。

四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有()A . 1个B . 2个C . 3个D . 4个6. (2分)(2017·顺义模拟) 手鼓是鼓中的一个大类别,是一种打击乐器.如图是我国某少数民族手鼓的轮廓图,其俯视图是()A .B .C .D .7. (2分) (2019九上·象山期末) 下列命题中,真命题为()任意三点确定一个圆;平分弦的直径垂直于弦;的圆周角所对的弦是直径;同弧或等弧所对的圆周角相等.A .B .C .D .8. (2分)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB 的面积分别为S,S1 , S2 .若S=3,则S1+S2的值为()A . 24B . 12C . 6D . 3二、填空题 (共10题;共20分)9. (1分) (2016七上·凤庆期中) 若a、b互为相反数,c、d互为倒数,则2a+3cd+2b=________.10. (7分)在数学中,用一条直线上的点表示数,这条直线叫做________,在直线上任取一点表示0,这个点叫做________;通常规定直线上向右的方向为________;选取适当的长度作为________,数轴的三要素为________、________、________.11. (1分) (2019七上·简阳期末) 若1与互为相反数,则(3x+2)2019的值等于________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机密★2010年6月19日2010江西省南昌市年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,30个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题上作答,否则不给分.一、选择题(本大题共12个小题,每小题3分,共36分)每小题只有一个正确选项。

1.计算62--的结果是 ( ) A. 8- B.8 C.4- D.4 2.计算2)3(a --的结果是A. 26a - B. 29a - C. 26a D. 29a要3.(2010江西省南昌)某学生某月有零花钱a 元,其支出情况如图所示,那么下列说法不正确...的是 A .该学生捐赠款为a 6.0元 B.捐赠款所对应的圆心角为︒240C.捐赠款是购书款的2倍D.其他支出占10%(第3题)4.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是 ( )A. B. C. D. 第3题图5.已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边长是 ( ) A.8 B. 7 C. 4 D.3要6.下列图案中既是轴对称图形又是中心对称图形的是 ( )7.不等式组⎩⎨⎧>+-<-,12,62x x 的解集是 ( )A. 3->xB. 3>xC.33<<-xD. 无解8.如图,反比例函数xy 4=图象的对称轴的条数是 ( ) A.0 B. 1 C. 2 D.3(第8题)9.化简)31(33--的结果是 ( ) A. 3 B. 3- C. 3 D.3-要10. (2010江西省南昌)如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,︒>∠60BEG ,现沿直线EG 将纸片折叠,使点B 落在约片上的点H 处, 连接AH ,则与BEG ∠相等的角的个数为 ( ) A.4 B. 3 C.2 D.1(第10题) 要11.(2010江西省南昌)如图.⊙O 中,AB 、AC 是弦,O 在∠ABO 的内部,α=∠ABO ,β=∠ACO ,θ=∠BOC ,则下列关系中,正确的是 ( )A.βαθ+=B. βαθ22+= C .︒=++180θβα D. ︒=++360θβα(第11题)要12. (2010江西省南昌)某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V 与时间t 的函数图象(不考虑图象端点情况)大致为( )二、填空题(本大题共8小题,每小题3分,共24分) 13.因式分解:=-822a .,2,则给出的值为 . 15.选做题(从下面两题中只选做一题...........,如果做了两题的.......,只按第...(I ) 题评分...). (I )如图,从点C 测得树的顶端的仰角为︒33,20=BC 米,则树高≈AB 米(用计算器计算,结果精确到1.0米).(Ⅱ)计算:=︒-︒∙︒30tan 30cos 30sin .(结果保留根号).(第15题)16.一大门的栏杆如图所示,BA 垂直于地面AE 于A ,CD 平行于地面AE ,则=∠+∠BCD ABC 度.(第16题)17.如图所示,半圆AB 平移到半圆CD 的位置时所扫过的面积为 .(第17题)要18. (2010江西省南昌)某班有40名同学去看演出,购甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元.设购买了甲种票x 张,乙种票y 张,由此可列出方程组: .19.如图,以点P 为圆心的圆弧与x 轴交于B A ,两点,点P 的坐标为(4,2),点A 的坐标为(2,0),则点B 的坐标为 .(第19题)要20. (2010江西省南昌)如图,一根直立于水平地面的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影子为AC (假定AC>AB ),影长的最大值为m.最小值为n,那么下列结论:①m>AC;②m =AC;③n =AB;④影子的长度先增大后减小.其中,正确结论的序号是 . (多填或错填的得0分,少填的酌情给分)(第20题) 三、(本大题共4小题,每小题4分,共16分) 要21.(2010江西省南昌)化简:)31(2)31(2a a ---.要22. (2010江西省南昌)已知直线经过点(1,2)和点(3,0),求这条直线的解析式.要23. (2010江西省南昌)解方程:144222=-++-x x x .24.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).⑴求事件“转动一次,得到的数恰好是0”发生的概率;⑵用树状图或表格,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.四、(本大题共4小题,每小题5分,共20分)25剃须刀由刀片和刀架组成,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是 刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍.问这段时间内 乙厂家销售了多少把刀架?多少片刀片?26.某校九年级全体500名女生进行仰卧起坐训练,下面两图是随机抽取的若干名女生训练前后“1分钟仰卧起坐”测试的成绩统计图(其中,右图不完整).(1)根据上图提供的信息,补全右上图;(2)根据上图提供的信息判断,下列说法不正确...的是 A .训练前各成绩段中人数最多的是第三成绩段B .“33-35”成绩段中,训练前成绩的平均数一定大于训练后成绩的平均数C .训练前后成绩的中位数所落在的成绩段由第三成绩段到了第四成绩段(3)规定39个以上(含39个)为优秀等级,请根据两次测试成绩,估算该校九年级全体女生优秀等级人数训练后比训练前增加了多少人.27.“6”字形图中,FM 是大⊙O 的直径,BC 与大⊙O 相切于B ,OB 与小⊙O 相交于A ,AD ∥BC ,CD ∥BH ∥FM ,BH DH ⊥于H ,设︒=∠30FOB ,4=OB ,6=BC(1)求证:AD 为小⊙O 的切线; (2)求DH 的长(结果保留根号).28.图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点P 与点A 重合; 当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到过点B 时,伞张得最开.已知伞在撑开的过程中,总有0.6====CN CM PN PM 分米,0.18==CF CE 分米,0.2=BC 分米(1)求AP 长的取值范围;(2)当︒=∠60CPN 时,求AP 的值;(3)在阳光垂直照射下,伞张得最开,求伞下的阴影(假定为圆面)面积为S (结果保留π).图2图1 五、(本大题共1小题,共12分)29.如图,已知经过原点的抛物线x x y 422+-=与x 轴的另一交点为A ,现将它向右平移m (0>m )个单位,所得抛物线与x 轴交于C 、D 两点,与原抛物线交于点P .(1)求点A 的坐标,并判断∆PCA 存在时它的形状(不要求说理);(2)在x 轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,请说明理由;(3)设∆PCD 的面积为S ,求S 关于m 的关系式.25.课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题. 实验与论证设旋转角)(2111A A A B A A O O ∠<=∠αα,3θ,4θ,5θ,6θ所表示的角如图所示.图1 图2 图3 图4αθ4HB 2B 3A 3A 22A 2B 10A 1A 011(1)用含α的式子表示角的度数:3θ= ,4θ = ,5θ = ; (2)图1—图4中,连接H A o 时,在不添加其他辅助线的情况下,是否存在与直线H A o 垂直且被它平分的线段?若存在,请选择其中一个图给出证明;若不存在,请说明理由; 归纳与猜想设正n 边形121-n O A A A A 与正n 边形121-n O B B B A 重合(其中1A 与1B 重合),现将正n 边形121-n O B B B A 绕顶点o A 逆时针旋转α)1800(n︒<<︒α. (3)设n θ与上述“3θ,4θ,…”的意义一样,请直接写出n θ的度数;(4)试猜想在正n 边形的情况下,是否存在与直线H A o 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.(除“要”其余题目同江西中考题)机密★2010年6月19日江西省南昌市2010年初中毕业暨中等学校招生考试数学试题参考答案及评分意见说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅;当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共12小题,每小题3分,共36分) 1. A 2. B 3. B 4. D 5. B 6. C 7. B 8. C 9.A 10.B 11.B 12.A二、填空题(本大题共8小题,每小题3分,共24分) 13. )2)(2(2-+a a 14. 7 15 (Ⅰ)13.0;(Ⅱ) 123-16 270 17. 6 18.⎩⎨⎧=+=+.370810,40y x y x 19.(6,0) 20.①③④(说明:1。

第15(Ⅰ)题中填成了“13”的,不扣分;2.第20小题,填了②的,不得分;未填②的,①、③、④中每填一个得1分. 三、(本大题共4小题,每小题4分,共16分)21.解:原式=a a a 62)961(2+-+- ··································· 3分 =192-a ·················································· 4分22.解:设这条直线的解析式为b kx y +=,把两点的坐标(1,2),(3,0)代入,得⎩⎨⎧=+=+.03,2b k b k ······································ 2分解得⎩⎨⎧=-=.3,1b k ······································ 3分所以,这条直线的解析式为3+-=x y . ······································ 4分23.解:方程两边同乘以42-x ,得44)2(22-=+-x x . ···································· 2分解得3=x . ······································ 3分检验:当3=x 时42-x ≠0.所以. 3=x 是原分式方程的解 ····································· 4分24.解:(1)P (得到的数恰好为0)=31. ················································ 2分(2)方法一:画树状图如下:········································ 3分所有可能出现的结果共有9种,其中满足条件的结果有5种。

相关文档
最新文档