第12讲 二次函数的图象和性质

合集下载

二次函数图像与性质ppt课件

二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式

二次函数讲义

二次函数讲义

第1页共12页二次函数【知识点1】二次函数的图象和性质1.二次函数的定义与解析式(1)二次函数的定义:形如f (x )=ax 2+bx +c (a ≠0)的函数叫做二次函数.(2)二次函数解析式的三种形式①一般式:f (x )=___ax 2+bx +c (a ≠0)___.已知三个点的坐标时,宜用一般式.②顶点式:f (x )=__a (x -m )2+n (a ≠0)____.已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③零点式:f (x )=___a (x -x 1)(x -x 2)(a ≠0)__.已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更方便.点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.2.二次函数的图象和性质图象函数性质a >0定义域x ∈R (个别题目有限制的,由解析式确定)值域a >0a <0y ∈[4ac -b 24a,+∞)y ∈(-∞,4ac -b 24a]a <0奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈(-∞,-b2a]时递减,x ∈[-b2a ,+∞)时递增x ∈(-∞,-b 2a]时递增,x ∈[-b2a,+∞)时递减图象特点①对称轴:x =-b 2a;②顶点:(-b 2a ,4ac -b 24a)3.二次函数f (x )=ax 2+bx +c (a ≠0),当Δ=b 2-4ac >0时,图象与x 轴有两个交点M 1(x 1,0)、第2页共12页M 2(x 2,0),|M 1M 2|=|x 1-x 2|=Δ|a |.【知识点2】二次函数、一元二次方程及一元二次不等式之间的关系当0∆<⇔()f x =2ax bx c ++的图像与x 轴无交点⇔20ax bx c ++=无实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆=⇔()f x =2ax bx c ++的图像与x 轴相切⇔20ax bx c ++=有两个相等的实根⇔20(0)ax bx c ++><的解集为∅或者是R;当0∆>⇔()f x =2ax bx c ++的图像与x 轴有两个不同的交点⇔20ax bx c ++=有两个不等的实根⇔20(0)ax bx c ++><的解集为(,)αβ()αβ<或者是(,)(,)αβ-∞+∞ 。

考点12 二次函数(精讲)(解析版)

考点12 二次函数(精讲)(解析版)

考点12.二次函数(精讲)【命题趋势】二次函数作为初中三大函数考点最多,出题最多,难度最大的函数,一直都是各地中考数学中最重要的考点,年年都会考查,总分值为15-20分。

而对于二次函数图象和性质的考查,也主要集中在二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等几大方面。

题型变化较多,考生复习时需要熟练掌握相关知识,熟悉相关题型,认真对待该考点的复习。

【知识清单】1:二次函数的相关概念(☆☆)1)二次函数的概念:一般地,形如y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的函数,叫做二次函数.2)二次函数解析式的三种形式(1)一般式:y =ax 2+bx +c (a ,b ,c 为常数,a ≠0).(2)顶点式:y =a (x –h )2+k (a ,h ,k 为常数,a ≠0),顶点坐标是(h ,k ).(3)交点式:y =a (x –x 1)(x –x 2),其中x 1,x 2是二次函数与x 轴的交点的横坐标,a ≠0.2:二次函数的图象与性质(☆☆☆)解析式二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)对称轴x =–2b a顶点(–2b a ,244ac b a-)a 的符号a >0a <0图象开口方向开口向上开口向下最值当x =–2b a 时,y 最小值=244ac b a-。

当x =–2b a 时,y 最大值=244ac b a-。

最点抛物线有最低点抛物线有最高点增减性当x <–2ba时,y 随x 的增大而减小;当x >–2ba时,y 随x 的增大而增大当x <–2ba时,y 随x 的增大而增大;当x >–2ba时,y 随x 的增大而减小(1)二次函数图象的翻折与旋转抛物线y=a (x -h )²+k ,绕顶点旋转180°变为:y =-a (x -h )²+k ;绕原点旋转180°变为:y =-a (x+h )²-k ;沿x 轴翻折变为:y =-a (x-h )²-k ;沿y 轴翻折变为:y =a (x+h )²+k ;(2)二次函数平移遵循“上加下减,左加右减”的原则;二次函数图象的平移可看作顶点间的平移,可根据顶点之间的平移求出变化后的解析式.3:二次函数与各项系数之间的关系(☆☆☆)1)抛物线开口的方向可确定a 的符号:抛物线开口向上,a >0;抛物线开口向下,a <02)对称轴可确定b 的符号(需结合a 的符号):对称轴在x 轴负半轴,则2b x a =-<0,即ab >0;对称轴在x 轴正半轴,则2bx a=->0,即ab <03)与y 轴交点可确定c 的符号:与y 轴交点坐标为(0,c ),交于y 轴负半轴,则c <0;交于y 轴正半轴,则c >04)特殊函数值符号(以x =1的函数值为例):若当x =1时,若对应的函数值y 在x 轴的上方,则a+b+c >0;若对应的函数值y 在x 轴上方,则a+b+c =0;若对应的函数值y 在x 轴的下方,则a+b+c <0;5)其他辅助判定条件:1)顶点坐标24,24b ac b a a ⎛⎫-- ⎪⎝⎭;2)若与x 轴交点()1,0A x ,()2,0B x ,则可确定对称轴为:x =122x x +;3)韦达定理:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩具体要考虑哪些量,需要视图形告知的条件而定。

最新中考数学总复习第一部分数与代数 第12讲 二次函数

最新中考数学总复习第一部分数与代数 第12讲 二次函数
题23, 题23, 题23, 题10,
10, 题25
数的
题22,
题25 题25 题25 题25
图象和性质
题25
题25
二次函数的 题12,4 题7,
平移

3分
返回
数学
二次函数的
解析式
(待定系数)
二次函数图
象的
顶点坐标、
对称轴

25(1),
2分
题7,3分


25(1),
25(3),
1分
1分

23(3),
2
2
∴k= 3 或 k=2,即 k 的值为 2 或 3.
返回
数学
(3)∵函数的对称轴为直线 x=2,当 m<2 时,当 x=m 时,y 有最大
4m
1
值, 3 =- 3 (m-2)+3,解得 m=± 5,∴m=- 5;
4m
当 m≥2 时,当 x=2 时,y 有最大值,∴
3
9
=3,∴m= .
4
9
综上所述,m 的值为- 5或 4.

题23(1) 3分
23(2),
(2),6分 题
3分
25(3),
2分
题10,
3分

23(3),
1分
返回
数学
二次函数与一元
二次方程、不等

题25(1), 题10,3
题23(3),
25(1),

5分

4分
(与x轴的交点坐
2分
标)
题10,3分
题25(3), 题25(3), 题25(3), 题25(3),
A,B(-1,0)两点,则下列说法正确的是( D )

中考备考数学总复习第12讲二次函数(含解析)

中考备考数学总复习第12讲二次函数(含解析)

第12讲 二次函数[锁定目标考试]考标要求考查角度1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 二次函数是中考考查的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.[导学必备知识]知识梳理一、二次函数的概念一般地,形如y =______________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的两种形式:(1)一般形式:____________________________;(2)顶点式:y =a (x -h )2+k (a ≠0),其中二次函数的顶点坐标是________.二、二次函数的图象及性质二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0) 图象(a >0)(a <0) 开口方向 开口向上 开口向下对称轴 直线x =-b 2a 直线x =-b 2a顶点坐标 ⎝⎛⎭⎫-b 2a ,4ac -b 24a ⎝⎛⎭⎫-b 2a ,4ac -b 24a增减性 当x <-b 2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大 当x <-b 2a时,y 随x 的增大而增大;当x >-b 2a时,y 随x 的增大而减小最值 当x =-b 2a 时,y 有最______值4ac -b 24a 当x =-b 2a 时,y 有最______值4ac -b 24a三、二次函数图象的特征与a ,b ,c 及b 2-4ac 的符号之间的关系四、二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的________和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.3.设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式.六、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A (x 1,0),B (x 2,0),则x 1+x 2=________,x 1·x 2=________.自主测试1.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-32. 如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四个结论:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )A .2个B .3个C .4个D .1个3.当m =__________时,函数y =(m -3)xm 2-7+4是二次函数.4.(上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________.5.(广东珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.[探究重难方法]考点一、二次函数的图象及性质【例1】 (1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b 2a=--62×(-3)=-1, 4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A .(2)点(-1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y3),∵抛物线对称轴为直线x=1,∴点(0,y3)与点(2,y2)关于直线x=1对称.∴y3=y2.∵a>0,∴当x<1时,y随x的增大而减小.∴y1>y3.∴y1>y2.答案:(1)A(2)>方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应用对称轴公式x=-b2a ,顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法:(1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;(3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根考点二、利用二次函数图象判断a,b,c的符号【例2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a +b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a+b+c=0;根据-b2a=-1,推出b=2a;根据图象关于对称轴对称,得出与x轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.答案:①③方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个C.4个 D.5个考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y=-2x2+4x+1=-2(x-1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y=-2x2的图象.答案:C方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.解:(1)由抛物线的对称性可知AE=BE.∴△AOD≌△BEC.∴OA=EB=EA.设菱形的边长为2m,在Rt△AOD中,m2+(3)2=(2m)2,解得m=1.∴DC=2,OA=1,OB=3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3). (2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧ a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧ a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标.考点五、二次函数的实际应用【例5】 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少;(3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通5一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.[品鉴经典考题]1.(湖南株洲)如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是( )A .(-3,0)B .(-2,0)C .x =-3D .x =-2 2.(湖南郴州)抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3. (湖南娄底)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1x 2=12.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.4.(湖南长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x ,25≤x ≤30,25-0.5x ,30<x ≤35(年获利=年销售收入-生产成本-成本).(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.5. (湖南湘潭)如图,抛物线y =ax 2-32x -2(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.[研习预测试题]1.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( )A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由. 参考答案【知识梳理】一、ax 2+bx +c (1)y =ax 2+bx +c (a ,b ,c 是常数,a ≠0) (2)(h ,k )二、小 大三、y 轴 左 右四、形状六、2.横坐标 4.-b a c a导学必备知识自主测试1.C2.D ∵抛物线与x 轴有两个交点,∴b 2-4ac >0;与y 轴交点在(0,0)与(0,1)之间,∴0<c <1,∴(2)错;∵-b 2a >-1,∴b 2a<1,∵a <0,∴2a <b ,∴2a -b <0; 当x =1时,y =a +b +c <0,故选D.3.-3 由题意,得m 2-7=2且m -3≠0,解得m =-3.4.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3).∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎪⎨⎪⎧ 0=k +b ,3=4k +b ,解得⎩⎪⎨⎪⎧ k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.探究考点方法触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0;∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0.由题图知当x =-1时,y >0,即a -b +c >0.对称轴是直线x =13, ∴-b 2a =13,即2a +3b =0; 由⎩⎪⎨⎪⎧a -b +c >0,2a +3b =0,得c -52b >0. 又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0. ∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3. ∴m =6.(2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3). 触类旁通5.解:(1)(10+7x ) (12+6x )(2)y =(12+6x )-(10+7x )=2-x .(3)∵w =2(1+x )(2-x )=-2x 2+2x +4,∴w =-2(x -0.5)2+4.5.∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元. 品鉴经典考题1.A 点A 到对称轴的距离为2,由抛物线的对称性知,另一个交点的横坐标为-3,所以另一个交点坐标为(-3,0).2.D3.解:(1)由已知得x 1+x 2=m 2-2,x 1x 2=-2m .∵1x 1+1x 2=12,即x 1+x 2x 1x 2=12, ∴m 2-2-2m =12, 解得m =1或m =-2.当m =1时,y =x 2+x -2,得A (-2,0),B (1,0);当m =-2时,y =x 2-2x +4,与x 轴无交点,舍去.∴这个二次函数的解析式为y =x 2+x -2.(2)由(1)得A (-2,0),B (1,0),C (0,-2).假设存在一点P ,使四边形P ACB 是平行四边形,则PB ∥AC 且PB =AC ,根据平移知识可得P (-1,2),经验证P (-1,2)在直线y =x +3上,故在直线y =x +3上存在一点P (-1,2),使四边形P ACB 为平行四边形.4.解:(1)当x =28时,y =40-28=12.所以,产品的年销售量为12万件.(2)①当25≤x ≤30时,W =(40-x )(x -20)-25-100=-x 2+60x -925=-(x -30)2-25,故当x =30时,W 最大为-25,即公司最少亏损25万元;②当30<x ≤35时,W =(25-0.5x )(x -20)-25-100=-12x 2+35x -625=-12(x -35)2-12.5,故当x =35时,W 最大为-12.5,及公司最少亏损12.5万元,综上所述,的第一年,公司亏损,最少亏损是12.5万元;(3)①当25≤x ≤30时,W =(40-x )(x -20-1)-12.5-10=-x 2+61x -862.5, 令W =67.5,则-x 2+61x -862.5=67.5,化简得x 2-61x +930=0,x 1=30,x 2=31,此时,当两年的总盈利不低于6.75万元时,x =30.②当30<x ≤35时,W =(25-0.5x )(x -20-1)-12.5-10=-12x 2+35.5x -547.5, 令W =67.5,则-12x 2+35.5x -547.5=67.5, 化简得x 2-71x +1 230=0,x 1=30,x 2=41,此时,当两年的总盈利不低于67.5万元时,30<x ≤35.所以,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x ≤35.5.解:(1)将点B (4,0)代入y =ax 2-32x -2(a ≠0)中,得a =12.∴抛物线的解析式为y =12x 2-32x -2. (2)∵当12x 2-32x -2=0时,解得x 1=4,x 2=-1, ∴A 点坐标为(-1,0),则OA =1.∵当x =0时,y =12x 2-32x -2=-2,∴C 点坐标为(0,-2),则OC =2.在Rt △AOC 与Rt △COB 中,OA OC =OC OB =12, ∴Rt △AOC ∽Rt △COB .∴∠ACO =∠CBO .∴∠ACB =∠ACO +∠OCB =∠CBO +∠OCB =90°.∴△ABC 为直角三角形.∴△ABC 的外接圆的圆心为AB 中点,其坐标为⎝⎛⎭⎫32,0.(3)连接OM .设M 点坐标为⎝⎛⎭⎫x ,12x 2-32x -2,则S △MBC =S △OBM +S △OCM -S △OBC =12×4×⎝⎛⎭⎫-12x 2+32x +2+12×2×x -12×2×4 =-(x -2)2+4.∴当x =2时,△MBC 的面积有最大值为4,点M 的坐标为(2,-3).研习预测试题1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D.4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎪⎨⎪⎧1-b +c =0,1+b +c =-2,解得⎩⎪⎨⎪⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2, ∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y 取得最大值,②错误. 7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b -2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎪⎨⎪⎧ 4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧ a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t . ∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295. ∴10-t =7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L 2与L 1有关图象的两条相同的性质:对称轴为直线x =2或顶点的横坐标为2;都经过A (1,0),B (3,0)两点.②线段EF 的长度不会发生变化.∵直线y =8k 与抛物线L 2交于E ,F 两点,∴kx 2-4kx +3k =8k ,∵k ≠0,∴x 2-4x +3=8,解得x 1=-1,x 2=5.∴EF =x 2-x 1=6,∴线段EF 的长度不会发生变化.。

二次函数的图象与性质(共46张PPT)

二次函数的图象与性质(共46张PPT)
第12讲 二次函数的图象与性质
┃考点自主梳理与热身反馈 ┃ 考点1 求二次函数的解析式
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
【归纳总结】
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
考点2
二次函数的图象与性质 C
第12讲┃ 二次函数的图象与性质
A
第12讲┃ 二次函数的图象与性质
A
第12讲┃ 二次函数的图象与性质
【归纳总结】 抛物线
第12讲┃ 二次函数的图象与性质
减小
增大
第12讲┃ 二次函数的图象与性质
考点3 抛物线的平移 A
第12讲┃ 二次函数的图象与性质
D
第12讲┃ 二次函数的图象与性质
【归纳总结】
第12讲┃ 二次函数的图象与性质
考点4 二次函数的图象与a,b,c的关系
D
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
D
第12讲┃ 二次函数的图象与性质
【归纳总结】
原点
第12讲┃ 二次函数的图象与性质
【知识树】
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
D
第Байду номын сангаас2讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
┃考向互动探究与方法归纳┃ 探究一 求二次函数的最值
第12讲┃ 二次函数的图象与性质
[中考点金]

中考一轮复习--第12讲 二次函数的图象及性质

中考一轮复习--第12讲 二次函数的图象及性质
A.1个
B.2个
C.3个
D.4个
答案:A
解析:由函数图象可知a<0,对称轴-1<x<0,图象与y轴的交点c>0,
函数与x轴有两个不同的交点,∴b-2a>0,b<0;Δ=b2-4ac>0;abc>0;当
x=1时,y<0,即a+b+c<0;当x=-1时,y>0,即a-b+c>0;∴(a+b+c)(ab+c)<0,即(a+c)2<b2;∴只有④是正确的.故选A.
考法1
考法2
考法3
二次函数的图象

例1(2018·山东青岛)已知一次函数y= x+c的图象如图,则二次函
数y=ax2+bx+c在平面直角坐标系中的图象可能是(
)
答案:A
考法1
考法2
考法3


解析:观察函数图象可知: <0,c>0,∴二次函数 y=ax2+bx+c 的图象

2
对称轴 x=- >0,与 y 轴的交点在 y 轴正半轴.故选 A.
第12讲 二次函数的图象及性质
考点梳理
自主测试
考点一 二次函数概念及表达式
定义:一般地,形如y=ax2+bx+c (a,b,c为常数,a≠0)的函数叫做二
次函数.
(1)一般形式:y = ax 2 + bx + c
;
(2)顶点式:y = a(x-h)2 + k(a ≠ 0),其中
二次函数的顶点坐标是(h,k)
顶点
坐标
对称轴
b 4ac-b2

2021年中考数学第十二讲 二次函数的图像和性质(33PPT)

2021年中考数学第十二讲 二次函数的图像和性质(33PPT)

【解析】(1)∵抛物线y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.
∴抛物线的对称轴为直线x=1.
(2)∵抛物线的顶点在x轴上,
∴2a2-a-3=0,解得a=3 或a=-1,
2
∴抛物线为y= 3x2-3x+3或y=-x2+2x-1.
2
2
(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(-1,y2),
(x-5)2+2上有两个点(x1,y1)和(x2,y2),若x1>x2>5,则
y1____>__y2.
高频考点·疑难突破
考点一 二次函数的图象和性质 【示范题1】(2020·常德中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下 列结论: ①b2-4ac>0;②abc<0; ③4a+b=0;④4a-2b+c>0. 其中正确结论的个数是 ( B ) A.4 B.3 C.2 D.1
二、二次函数y=ax2+bx+c(a≠0)的图象与性质
1.当a>0时
(1)开口方向:向上. (2)顶点坐标: (__2_ba_,4ac b2 ).
4a
(3)对称轴:直线_x_____2b_a_.
(4)增减性:当x<- b 时,y随x的增大而___减__小____;
2a
当x>- b 时,y随x的增大而___增__大____.
考点三 二次函数与方程、不等式
【示范题3】(2020·贵阳中考)已知二次函数y=ax2+bx+c的图象经过(-3,0)与
(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x

2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

2020 最新中考数学复习 第12讲第1课时 二次函数的图象与性质

第12讲 二次函数第1课时 二次函数的图象与性质知识点1 二次函数的概念1.关于x 的函数y =(m +1)x 2+(m -1)x +m ,当m =0时,它是二次函数;当m =-1时,它是一次函数.知识点2 二次函数的图象与性质2.已知h 与t 的函数关系式为h =12gt 2(g 为常数,t 为时间),则函数图象为(A )3.抛物线y =12x 2,y =x 2,y =-x 2的共同性质是:①都是开口向上;②都以(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数有(B )A .1个B .2个C .3个D .4个4.如图,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C )A .x >3B .x <3C .x >1D .x <15.二次函数y =x 2-2x -3的最小值是-4.知识点3 二次函数图象的平移6.抛物线y =(x +2)2-3由抛物线y =x 2先向左平移2个单位长度,再向下平移3个单位长度得到.7.将抛物线y =2(x -1)2+2向左平移3个单位长度,再向下平移4个单位长度,那么得到的抛物线的表达式为y =2(x +2)2-2.知识点4 确定二次函数的解析式8.已知二次函数的图象如图,则其解析式为(B)A.y=x2-2x+3B.y=x2-2x-3C.y=x2+2x-3D.y=x2+2x+39.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为y=-x2+4x-3.知识点5二次函数与方程、不等式10.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是(A)A.m<2 B.m>2C.0<m≤2 D.m<-211.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是(A)A.-1<x<3B.x>3C.x<-1D.x>3或x<-1重难点1二次函数的图象和性质(2017·枣庄)已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是(D)A.当a=1时,函数图象经过点(-1,1)B.当a=-2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【思路点拨】(1)将a=1代入原函数解析式,令x=-1求出y值,由此得出A选项不符合题意;(2)将a=2代入原函数解析式,令y=0,根据根的判别式Δ=8>0,可得出当a=-2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;(3)利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;(4)利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.【变式训练1】(2016·兰州)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是(D)A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【变式训练2】(2017·泰安)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x -1 0 1 3y -3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为x =1;③当x<1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个,方法指导解决二次函数图象和性质相关题,首先需明确二次函数图象的开口方向、对称轴、顶点坐标等与解析式中相关字母的关系,若确定解析式,也可通过将解析式配方,得出函数的对称轴,顶点坐标,函数图象与坐标轴的交点等,从而画出函数大致图象,再利用数形结合思想解题.方法指导比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.重难点2 同一坐标系中的函数图象共存问题(2016·毕节)一次函数y =ax +c(a ≠0)与二次函数y =ax 2+bx +c(a ≠0)在同一个坐标系中的图象可能是(D )【变式训练3】 函数y =kx与y =-kx 2+k(k ≠0)在同一直角坐标系中的图象可能是(B )方法指导解决函数图象共存问题主要有以下三种方法:(1)排除法:根据已知条件中得出的结论直接排除某选项,如:本例由已知条件可知两个函数的常数项都是c ,说明两个函数图象与y 轴交于同一个点,所以排除A 选项;(2)同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:本例B 选项,若一次函数图象正确,则a<0,c<0,这与抛物线开口向上相矛盾.故B 选项错误.重难点3 二次函数图象与字母系数的关系(2016·随州)二次函数y =ax 2+bx +c(a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a +b =0;(2)9a +c>3b ;(3)8a +7b +2c>0;(4)若点A(-3,y 1),点B(-12,y 2)、点C(72,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a(x +1)(x -5)=-3的两根为x 1和x 2,且x 1<x 2,则x 1<-1<5<x 2.其中正确的结论有(B )A.2个B.3个C.4个D.5个【思路点拨】(1)利用对称轴公式判别;(2)观察形式发现当x=-3时,y=9a-3b+c<0,可得9a+c<3b;(3)根据对称轴为x=2,得b=-4a,则8a+7b+2c=-20a+2c,由a<0,c>0,可得-20a+2c>0;(4)抛物线的开口向下,距离对称轴越远,纵坐标越小;(5)方程a(x+1)(x-5)=-3的两根x1和x2为直线y=-3与抛物线y=a(x +1)(x-5)的两个交点的横坐标,这两个交点在抛物线y=a(x+1)(x-5)与x轴两交点的两侧,因此x1<-1<5<x2.【变式训练4】(2017·荆门)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是(D)A.a<0,b<0,c>0B.-b2a=1C.a+b+c<0D.关于x的方程ax2+bx+c=-1有两个不相等的实数根变式训练4图变式训练5图【变式训练5】(2017·广安)如图所示,抛物线y=ax2+bx+c的顶点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a=3,其中正确的有(B)A.1个B.2个C.3个D.4个方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小.1.(人教九上教材P37练习的变式题)(2017·长沙)抛物线y=2(x-3)2+4的顶点坐标是(A)A.(3,4) B.(-3,4)C.(3,-4) D.(2,4)。

第3章 第12讲 二次函数的图象与性质

第3章  第12讲 二次函数的图象与性质

第12讲二次函数的图象与性质(建议用时∶60分钟)一、选择题1.(2019·衢州)二次函数y=(x-1)2+3图象的顶点坐标是(A)A.(1,3)B.(1,-3)C.(-1,3) D.(-1,-3)2.(2019·重庆)抛物线y=-3x2+6x+2的对称轴是(C)A.直线x=2 B.直线x=-2C.直线x=1 D.直线x=-13.(2019·荆门)抛物线y=-x2+4x-4与坐标轴的交点个数为(C)A.0B.1C.2D.34.(2019·兰州)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是(A)A.2>y1>y2B.2>y2>y1C.y1>y2>2 D.y2>y1>25.(2019·河南)已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n 的值为(B)A.-2 B.-4C.2 D.46.(2019·巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2>4ac;②abc<0;③2a+b-c>0;④a+b+c<0.其中正确的是(A)A.①④B.②④C.②③D.①②③④二、填空题7.(2019·陇南)将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为y =(x-2)2+1 .8.(2019·荆州)二次函数y=-2x2-4x+5的最大值是7 .9.(2019·宜宾)将抛物线y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,所得图象的解析式为y=2(x+1)2-2 .10.(2019·贺州)已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②a-b+c<0;③3a+c=0;④当-1<x<3时,y>0,正确的是①③④(填写序号).三、解答题11.(2019·泰州)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,-3),该图象与x轴相交于点A,B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.解:(1)由题意可设该二次函数的表达式为y=a(x-4)2-3(a≠0).把A(1,0)代入,得0=a(1-4)2-3,解得a=1 3.故该二次函数的表达式为y=13(x-4)2-3.(2)令x=0,则y=13(0-4)2-3=73.∴OC=7 3.∵二次函数图象的顶点坐标为(4,-3),A(1,0),则点B与点A关于直线x=4对称,∴B(7,0).∴OB=7.∴在Rt△OBC中,tan∠OBC=OCOB=737=13,即tan∠ABC=13.12. (2019·宁波)如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和二次函数图象的顶点坐标.(2)若点Q(m,n)在该二次函数图象上:①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据函数图象直接写出n的取值范围.解:(1)把P(-2,3)代入y=x2+ax+3,得3=(-2)2-2a+3,解得a=2.∴y=x2+2x+3=(x+1)2+2.∴二次函数图象的顶点坐标为(-1,2). (2)①当m =2时,n =11. ②∵点Q 到y 轴的距离小于2, ∴|m |<2. ∴-2<m <2. ∴2≤n <11.13.(2019·威海)在画二次函数y =ax 2+bx +c (a ≠0)的图象时,甲写错了一次项的系数,列表如下:(1)求原二次函数y =ax 2+bx +c (a ≠0)的表达式;(2)对于二次函数y =ax 2+bx +c (a ≠0),当x 时,y 的值随x 值的增大而增大;(3)若关于x 的方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根,求k 的取值范围.解:(1)∵根据甲同学的错误可知c =3,根据乙同学提供的数据,选择x =-1,y =-2;x =1,y =2代入, 得⎩⎨⎧a -b +3=-2,a +b +3=2,解得⎩⎨⎧a =-3,b =2.∴原二次函数y =ax 2+bx +c (a ≠0)的表达式为y =-3x 2+2x +3. (2)<13.(3)∵关于x 的方程ax 2+bx +c =k (a ≠0)有两个不相等的实数根, 即-3x 2+2x +3-k =0有两个不相等的实数根, ∴Δ=4+12(3-k )>0.解得k <103.14.(2019·永州)如图,已知抛物线经过A (-3,0),B (0,3)两点,且其对称轴为直线x =-1.(1)求此抛物线的解析式;(2)若点P 是抛物线上位于点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.解:(1)设此抛物线的解析式为y =ax 2+bx +c .根据题意,得 ⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. ∴此抛物线的解析式为y =-x 2-2x +3. (2)易知直线AB 的解析式为y =x +3.设P (m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,如解图, 则C (m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m . ∴S △PAB =12×(-m 2-3m )×3=-32(m 2+3m )=-32⎝ ⎛⎭⎪⎫m +32 2+278.∵-32<0,-3<m <0,∴当m =-32时,S △PAB 有最大值278,此时点P 的坐标为⎝ ⎛⎭⎪⎫-32,154.一、选择题1.(2019·益阳)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②b-2a<0;③b2-4ac<0;④a-b+c<0.其中正确的是(A)A.①②B.①④C.②③D.②④2.(2019·鄂州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x =1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m 为实数).其中正确的个数为(C)A.1B.2C.3D.43.(2019·达州)如图,边长都为4的正方形ABCD和正△EFG如图放置,AB 与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位长度的速度匀速运动,当点F与点B重合时停止运动.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是(C)A B C D二、填空题4.(2019·济宁)如图,抛物线y =ax 2+c 与直线y =mx +n 交于A (-1,p ),B (3,q )两点,则不等式ax 2+mx +c >n 的解集是 x <-3或x >1 .第4题图第5题图5.(2019·雅安)已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为 0<m <14. 三、解答题6.(2019·温州)如图,在平面直角坐标系中,二次函数y =-12x 2+2x +6的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;(2)把点B向上平移m个单位长度得点B1.若点B1向左平移n个单位长度,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位长度,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.解:(1) 令-12x2+2x+6=0,解得x1=-2,x2=6.又∵点A在点B的左侧,∴A(-2,0),B(6,0).由函数图象得,当y≥0时,x的取值范围为-2≤x≤6.(2) 由题意得B1(6,m),B2(6-n,m),B3(-n,m),易得函数图象的对称轴为直线x=-2+62=2.∵点B2,点B3在二次函数图象上且纵坐标相同,∴6-n+(-n)2=2,解得n=1.∴m=-12×(-1)2+2×(-1)+6=72.∴m,n的值分别为7 2,1.7.(2019·内江)两条抛物线C1:y1=3x2-6x-1与C2:y2=x2-mx+n的顶点相同,C2的图象如图所示.(1)求抛物线C2的解析式.(2)点A是抛物线C2在第四象限内图象上的一动点,过点A作AP⊥x轴,P 为垂足,求AP+OP的最大值.(3)设抛物线C2的顶点为点C,点B的坐标为(-1,-4),问在C2的对称轴上是否存在点Q,使线段QB绕点Q顺时针旋转90°得到线段QB′,且点B′恰好落在抛物线C2上?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵y1=3x2-6x-1的顶点为(1,-4),抛物线C1:y1=3x2-6x-1与C2:y2=x2-mx+n的顶点相同,∴m=2,n=-3.∴抛物线C2的解析式为y2=x2-2x-3.(2)过点A作AP⊥x轴,如解图1.设A(a,a2-2a-3).∵点A 在第四象限,∴0<a <3.∴AP =-a 2+2a +3,PO =a .∴AP +OP =-a 2+3a +3=-⎝⎛⎭⎪⎫a -322+214. ∵-1<0,0<a <3,∴当a =32时,AP +OP 的最大值为214. (3)假设在C 2的对称轴上存在符合条件的点Q .如解图2,过点B ′作B ′D ⊥l 于点D ,则∠B ′DQ =90°.①当点Q 在顶点C 的下方时,∵B (-1,-4),C (1,-4),抛物线C 2的对称轴为直线x =1, ∴BC ⊥l ,BC =2,∠BCQ =90°.∴△BCQ ≌△QDB ′.∴B ′D =QC ,QD =BC .设Q (1,b ),则B ′D =CQ =-4-b ,QD =BC =2. 可知B ′(-3-b ,2+b ).∴(-3-b )2-2(-3-b )-3=2+ B .解得b =-2或b =-5.∵b <-4,∴b =-5,则Q (1,-5).②当点Q在顶点C的上方时,同理可得Q(1,-2).综上所述,符合条件的点Q的坐标为(1,-5)或(1,-2).。

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件

设直线BC的解析式为y=kx+b′.
将点B(-3,0),C(0,3)代入,

3k b b 3,
0,解得
k b
1, 3,
∴直线BC的解析式为y=x+3.
∵S△CPD∶S△BPD=1∶2,即
1 CD PN 2 1 BD PN
,1
2

CD BD
1 2
2
,∴BD=2CD,

BD BC
BD BD CD
4.(2021·绍兴)关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正 确的是( D )
A.有最大值4 C.有最大值6
B.有最小值4 D.有最小值6
5.对于二次函数y=3(x-2)2+1的图象,下列说法正确的是( C )
A.开口向下 C.有最低点
B.对称轴是直线x=-2 D.与x轴有两个交点
中考先锋数学 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给
那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午7时13分22.3.319:13March 3, 2022
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月3日星期四7时13分37秒19:13:373 March 2022
解得
a
b
1, 2,
∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,
∴顶点坐标为(-1,4).
(2)连接PB,PO,PC,BC.PO交BC于点D,当S△CPD∶S△BPD=1∶2时,求点
D的坐标.
解:过点D作DM⊥y轴于点M,过点P作PN⊥BC于点N.

中考数学第12讲 二次函数的图象与性质

中考数学第12讲 二次函数的图象与性质

3. (2019·梧州)已知m>0,关于x的一元二次方程(x+1)(x-2)-m=0的解 为x1,x2(x1<x2),则下列结论正确的是(A ) A. x1<-1<2<x2 B. -1<x1<2<x2 C. -1<x1<x2<2 D. x1<-1<x2<2 4. (2020·菏泽)一次函数y=acx+b与二次函数y=ax2+bx+c 在同一平面直角坐标系中的图象可能是( B )
其部分图象如图所示.以下结论错误的是(C)
A. abc>0
B. 4ac-b2<0
C. 3a+c>0
D. 关于x的方程ax2+bx+c=n+1无实数根
6. (2019·荆门)抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物 线经过点A(-1,0),B(m,0),C(-2,n)(1<m<3,n<0),下列结论:
9. (2020·河南)如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交 于点A,B,且OA=OB,点G为抛物线的顶点. (1)求抛物线的解析式及点G的坐标; (2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3 个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个 动点,求点Q的纵坐标yQ的取值范围.
+ra2
=0,即
1 a(r
)2+b·1r
+1=0,
∴1r 是方程 ax2+bx+1=0 的一个实数根,
即函数 y2 的图象经过点(1r ,0).
(3)解:由题意 a>0,∴m=4a-4 b2 ,n=4a4-a b2 ,
∵m+n=0,∴4a-4 b2
+4a-b2 4a
=0,
∴(4a-b2)(a+1)=0, ∵a+1>0,∴4a-b2=0,∴m=n=0.

【2014中考复习方案】(江西专版)中考数学复习权威课件:12二次函数的图象和性质

【2014中考复习方案】(江西专版)中考数学复习权威课件:12二次函数的图象和性质

赣考解读
考点聚焦
赣考探究
第12讲┃二次函数的图象和性质
赣 考 探 究
探究一 二次函数的图象特征与a,b,c之间的关系
例1 [2013· 滨州] 如图12-2,二次函数y=ax2+bx+c(a≠0)的图象 与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为 (-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac >0;④当y<0时,x<-1或x>2.其中正确的个数是( )
赣考解读 考点聚焦 赣考探究
第12讲┃二次函数的图象和性质
1 3.对于抛物线y=- (x+1)2+3,下列结论: 2 ①抛物线的开口向下; ②对称轴为直线x=1; ③顶点坐标为(-1,3); ④x>1时,y随x的增大而减小. 其中正确结论的个数为( C ) A.1 B. 2 C.3 D. 4
赣考解读
考点聚焦
赣考探究
第12讲┃二次函数的图象和性质 【归纳总结】
函数 二次函数y=ax2+bx+c(a,b,c为常 数,a≠0) a>0 a<0
图象
开口方向 对称轴 顶点坐标
赣考解读
抛物线开口向上, 并向上无限延伸
抛物线开口向下, 并向下无限延伸 b 直线x=- 2a 2 4 ac - b b -2a, 4a
图12-2
A.1
B.2
赣考解读
C.3
考点聚焦
D.4
赣考探究
第12讲┃二次函数的图象和性质
由对称轴的位置确定①的对错;由图象上x=-2的点的纵坐 标确定②的对错;由开口方向和图象与y轴的交点确定a,c的符号,确 定③的对错;由图象在x轴下方对应的x的值确定④的对错. b ∵- =1,∴b=-2a,即2a+b=0,∴①正确;∵图象上横坐标 2a x=-2的点在x轴下方,则y<0,即4a-2b+c<0,∴②正确;∵图象 开口向下,∴a<0.∵图象与y轴交于正半轴,∴c>0,∴ac<0,∴③错 误;∵抛物线是轴对称图形,∴A点的坐标为(3,0).∵图象在x轴下方 的部分对应的x的值分别是x<-1或x>3,∴④错误.综上所述,选B.

备战高考数学复习考点知识与题型讲解12---二次函数、幂函数

备战高考数学复习考点知识与题型讲解12---二次函数、幂函数

备战高考数学复习考点知识与题型讲解第12讲二次函数、幂函数考向预测核心素养二次函数一般与其他知识综合考查,幂函数的考查以图象、性质为主,题型一般为选择题、填空题,中档难度.直观想象、逻辑推理、数学抽象一、知识梳理1.常见的五种幂函数的图象2.幂函数y=xα的性质(1)幂函数在(0,+∞)上都有定义;(2)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(3)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.3.二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0);顶点式:f(x)=a(x-h)2+k(a≠0);两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 4.二次函数的图象和性质解析式f (x )=ax 2+bx+c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 RR值域⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞⎝⎛⎦⎥⎤-∞,4ac -b 24a单调性在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递减;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递增 在⎝⎛⎦⎥⎤-∞,-b 2a 上单调递增;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上单调递减 对称性 函数的图象关于直线x =-b2a对称 常用结论1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限; (2)幂函数的图象过定点(1,1),如果幂函数的图象与坐标轴相交,则交点一定是原点.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0;若在(0,+∞)上单调递减,则α<0.二、教材衍化1.(人A 必修第一册P 58T 6改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎪⎫0,120B.⎝ ⎛⎭⎪⎫-∞,-120C.⎝ ⎛⎭⎪⎫120,+∞ D.⎝⎛⎭⎪⎫-120,0 解析:选C.由题意知⎩⎨⎧a >0,Δ<0,即⎩⎨⎧a >0,1-20a <0,解得a >120. 2.(人A 必修第一册P 91练习T 1改编)已知幂函数f (x )=kx α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.解析:因为函数f (x )=kx α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32.答案:32一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)y =2x 12是幂函数.( )(2)根据二次函数的两个零点就可以确定函数的解析式.( )(3)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值是4ac -b24a.( )答案:(1)× (2)× (3)× 二、易错纠偏1.(二次函数性质不明致误)已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( )A .[3,+∞) B.(-∞,3] C .(-∞,-3)D.(-∞,-3]解析:选D.函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧,所以-2a ≥6,解得a ≤-3,故选D.2.(二次函数图象特征不清致误)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”)解析:f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,所以m ∈(0,1),所以m -1<0,所以f (m -1)>0.答案:>3.(幂函数概念不清致误)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上单调递减.解析:设y =f (x )=x α,因为图象过点⎝⎛⎭⎪⎫2,22,代入解析式得α=-12,则y =x -12,由性质可知函数y =x -12在(0,+∞)上单调递减.答案:y=x-12(0,+∞)考点一幂函数的图象及性质(自主练透)复习指导:通过实例,了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=1x,y=x 12的图象,了解它们的变化情况.1.已知点⎝⎛⎭⎪⎫33,3在幂函数f(x)的图象上,则f(x)是( )A.奇函数 B.偶函数C.定义域内的减函数 D.定义域内的增函数解析:选A.设f(x)=xα,由已知得⎝⎛⎭⎪⎫33α=3,解得α=-1,因此f(x)=x-1,易知该函数为奇函数.2.(链接常用结论2)已知函数f(x)=(m2-m-1)·x m2-2m-3是幂函数,且在(0,+∞)上单调递减,则实数m=( )A.2 B.-1C.4D.2或-1解析:选A.由题意知m2-m-1=1,解得m=-1或m=2,当m=-1时,m2-2m-3=0,则f(x)在(0,+∞)上为常数,不合题意.当m=2时,m2-2m-3=-3,则f(x)=x-3在(0,+∞)上单调递减,符合题意.所以m=2.3.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一平面直角坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >a B.a >b >c >d C .d >c >a >bD.a >b >d >c解析:选B.由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B.4.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)的图象经过点(2,2),则m =________,满足条件f (2-a )>f (a -1)的实数a 的取值范围为________.解析:因为f (x )的图象过点(2,2),所以2=2(m 2+m )-1,所以m 2+m =2,又m ∈N *,所以m =1.即f (x )=x 12,其定义域为{x |x ≥0},且在定义域上函数为增函数, 所以由f (2-a )>f (a -1)得0≤a -1<2-a ,解得1≤a <32.答案:1 1≤a <32幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断.考点二 二次函数的解析式(综合研析)复习指导:理解二次函数的定义,能够根据已知条件求二次函数的解析式.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求二次函数f (x )的解析式.【解】 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎨⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7.求二次函数解析式的策略|跟踪训练|已知二次函数f (x )的图象经过点(4,3),在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.解:因为f (2-x )=f (2+x )对x ∈R 恒成立, 所以y =f (x )的图象关于x =2对称.又y=f(x)的图象在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1,2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图象上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图象和性质(多维探究)复习指导:理解二次函数的定义,能够根据二次函数的图象讨论性质,从数形结合的观点研究和二次函数有关的问题.角度1 二次函数的图象(1)(多选)(2022·济南月考)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象过点A(-3,0),对称轴为x=-1,则( )A.b2>4ac B.2a-b=1C.a-b+c=0 D.5a<b(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则( )A.f(m+1)≥0 B.f(m+1)≤0C.f(m+1)>0 D.f(m+1)<0【解析】(1)因为图象与x轴交于两点,所以b2-4ac>0,即b2>4ac,A正确;对称轴为x=-1,即-b2a=-1,2a-b=0,B错误;结合图象,当x=-1时,y>0,即a-b+c>0,C错误;由对称轴为x=-1知,b=2a.根据抛物线开口向下,知a<0,所以5a<2a,即5a<b,D正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图象如图所示.由f(m)<0,得-1<m<0,所以m+1>0,所以f(m+1)>f(0)>0.【答案】(1)AD (2)C识别二次函数图象应学会“三看”角度2 二次函数的单调性与最值(1)若函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a 的取值范围是( )A.[-3,0) B.(-∞,-3]C.[-2,0] D.[-3,0](2)若函数f (x )=ax 2+2ax +1在区间[1,2]上有最大值4,则a 的值为________. 【解析】 (1)当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意; 当a ≠0时,f (x )的对称轴为x =3-a2a, 由f (x )在[-1,+∞)上单调递减,知⎩⎨⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. (2)f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[1,2]上的值为常数1,不符合题意,舍去; ②当a >0时,函数f (x )在区间[1,2]上单调递增,最大值为f (2)=8a +1=4,解得a =38;③当a <0时,函数f (x )在区间[1,2]上单调递减,最大值为f (1)=3a +1=4,解得a =1,不符合题意,舍去.综上可知,a 的值为38.【答案】 (1)D (2)38若本例(1)中函数f (x )=ax 2+(a -3)x +1的单调递减区间是[-1,+∞),则a =________.解析:由题意知f (x )必为二次函数且a <0, 又3-a 2a =-1,所以a =-3. 答案:-3(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.(2)二次函数的单调性问题主要依据二次函数图象的对称轴进行分类讨论求解.|跟踪训练|1.已知函数f (x )=ax 2+bx +c ,若a >b >c ,且a +b +c =0,则函数f (x )的图象可能是( )解析:选D.由a >b >c 且a +b +c =0,得a >0,c <0,所以函数图象开口向上,排除A ,C ;又f (0)=c <0,排除B ,故选D.2.若函数y =x 2-3x +4的定义域为[0,m ],值域为⎣⎢⎡⎦⎥⎤74,4,则m 的取值范围为( )A .(0,4] B.⎣⎢⎡⎦⎥⎤32,4 C.⎣⎢⎡⎦⎥⎤32,3 D.⎣⎢⎡⎭⎪⎫32,+∞ 解析:选C.y =x 2-3x +4=⎝ ⎛⎭⎪⎫x -322+74的定义域为[0,m ],显然,在x =0时,y =4,又值域为⎣⎢⎡⎦⎥⎤74,4,根据二次函数图象的对称性知32≤m ≤3.3.(多选)(2022·邯郸九校联盟期中)若函数f (x )=x |x -a |在[0,2]上的最大值为2,则a 的取值可以为( )A .1 B.3 C.2 2D.42-4解析:选AC.若a ≤0时,f (x )在[0,2]上单调递增,f (x )max =f (2)=2|2-a |=2,解得a =1(舍去)或a =3(舍去). 若a >0时,f (x )=⎩⎨⎧-x (x -a ),x ≤a ,x (x -a ),x >a ,当a2>2即a >4时,f (x )max =f (2)=-2(2-a )=2,解得a =3(舍去). 当x >a 时,令f (x )=f ⎝ ⎛⎭⎪⎫a 2,解得x =(2+1)a 2(负值舍去).当a2≤2≤(2+1)a 2即4(2-1)≤a ≤4时,f (x )max =f ⎝ ⎛⎭⎪⎫a 2=a24=2,解得a =2 2. 当2>(2+1)a2即a <4(2-1)时,f (x )max =f (2)=2(2-a )=2.解得a =1.[A 基础达标]1.若幂函数的图象经过点⎝⎛⎭⎪⎫2,14,则它的单调递增区间是( ) A .(0,+∞) B.[0,+∞) C .(-∞,+∞)D.(-∞,0)解析:选D.设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).2.若幂函数f (x )=(m 2-4m +4)·xm 2-6m +8在(0,+∞)上为增函数,则m 的值为( )A.1或3 B.1C.3D.2解析:选B.由题意得m2-4m+4=1,m2-6m+8>0,解得m=1.3.(2022·潍坊模拟)已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则( )A.a>0,4a+b=0 B.a<0,4a+b=0C.a>0,2a+b=0 D.a<0,2a+b=0解析:选A.由f(0)=f(4),得f(x)=ax2+bx+c图象的对称轴为x=-b2a=2,所以4a+b=0,又f(0)>f(1),f(4)>f(1),所以f(x)先减后增,于是a>0.4.(多选)(2022·淄博模拟)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(4+t)=f(-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的可能是( ) A.f(-1) B.f(1)C.f(2)D.f(5)解析:选ACD.因为对任意实数t都有f(4+t)=f(-t)成立,所以函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2,当a>0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(2);当a<0时,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).5.已知幂函数f(x)=(n2+2n-2)x n2-3n(n∈Z)的图象关于y轴对称,且在(0,+∞)上是减函数,则n的值为( )A.-3 B.1C.2D.1或2解析:选B.由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意.6.(多选)由于被墨水污染,一道数学题仅能见到如下文字:“已知二次函数y =ax 2+bx +c 的图象过点(1,0),…,求证:这个二次函数的图象关于直线x =2对称.”根据现有信息,题中的二次函数可能具有的性质是( )A .在x 轴上截得的线段的长度是2B .与y 轴交于点(0,3)C .顶点是(-2,-2)D .过点(3,0)解析:选ABD.由已知得⎩⎨⎧a +b +c =0,-b 2a =2,解得b =-4a ,c =3a ,所以二次函数为y =a (x 2-4x +3),其顶点的横坐标为2,所以顶点一定不是(-2,-2),故选ABD.7.(2022·山东烟台模拟)若二次函数y =8x 2-(m -1)x +m -7的值域为[0,+∞),则m =________.解析:y =8⎝ ⎛⎭⎪⎫x -m -1162+m -7-8⎝ ⎛⎭⎪⎫m -1162, 因为值域为[0,+∞),所以m -7-8⎝⎛⎭⎪⎫m -1162=0, 解得m =9或m =25. 答案:9或258.若(3-2m )12>(m +1)12,则实数m 的取值范围为________. 解析:因为y =x 12在定义域[0,+∞)上是增函数,所以⎩⎨⎧3-2m ≥0,m +1≥0,3-2m >m +1,解得-1≤m <23.故实数m 的取值范围为⎣⎢⎡⎭⎪⎫-1,23. 答案:⎣⎢⎡⎭⎪⎫-1,239.(2022·潍坊质检)已知函数f (x )=⎩⎨⎧x 2+x ,-2≤x ≤c ,1x ,c <x ≤3.若c =0,则f (x )的值域是________;若f (x )的值域是⎣⎢⎡⎦⎥⎤-14,2,则实数c 的取值范围是________.解析:当c =0时,即x ∈[-2,0]时,f (x )∈⎣⎢⎡⎦⎥⎤-14,2,当x ∈(0,3]时,f (x )∈⎣⎢⎡⎭⎪⎫13,+∞,所以f (x )的值域为⎣⎢⎡⎭⎪⎫-14,+∞.作出y =x 2+x 和y =1x 的图象如图所示,当f (x )=-14时,x =-12;当x 2+x =2时,x =1或x =-2;当1x =2时,x =12,由图象可知当f (x )的值域为⎣⎢⎡⎦⎥⎤-14,2时,需满足12≤c ≤1.答案:⎣⎢⎡⎭⎪⎫-14,+∞⎣⎢⎡⎦⎥⎤12,110.已知值域为[-1,+∞)的二次函数f (x )满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x 1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]上的最大值为f (2),最小值为f (-1),求实数k 的取值范围.解:(1)由f (-1+x )=f (-1-x )可得f (x )的图象关于直线x =-1对称,设f (x )=a (x +1)2+h =ax 2+2ax +a +h (a ≠0),由函数f (x )的值域为[-1,+∞),可得h =-1, 根据根与系数的关系可得x 1+x 2=-2,x 1x 2=1+h a,所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=-4ha=2,解得a =1,所以f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上单调递增, 又g (x )=f (x )-kx =x 2-(k -2)x . 所以g (x )的对称轴方程为x =k -22,则k -22≤-1,即k ≤0,故k 的取值范围为(-∞,0].[B 综合应用]11.(多选)(2022·潍坊模拟)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x -x 2,则下列说法正确的是( )A .f (x )的最大值为14B .f (x )在(-1,0)上是增函数C .f (x )>0的解集为(-1,1)D .f (x )+2x ≥0的解集为[0,3]解析:选AD.由题意,得当x ≥0时,f (x )=x -x 2=-⎝⎛⎭⎪⎫x -122+14;当x <0时,f (x )=-x 2-x =-⎝⎛⎭⎪⎫x +122+14,f (x )的最大值为14,A 正确;f (x )在⎝⎛⎭⎪⎫-12,0上是减函数,B 错误; f (x )>0的解集为(-1,0)∪(0,1),C 错误; 当x ≥0时,f (x )+2x =3x -x 2≥0的解集为[0,3], 当x <0时,f (x )+2x =x -x 2≥0无解,故D 正确.12.(2022·合肥质检)已知函数f (x )=-2x 2+bx +c ,不等式f (x )>0的解集为(-1,3).若对任意的x ∈[-1,0],f (x )+m ≥4恒成立,则m 的取值范围是( )A .(-∞,2] B.[4,+∞) C .[2,+∞)D.(-∞,4]解析:选B.因为f (x )>0的解集为(-1,3),故-2x 2+bx +c =0的两个根分别为-1,3,所以⎩⎪⎨⎪⎧-c 2=-1×3,b 2=-1+3,即⎩⎨⎧b =4,c =6,令g (x )=f (x )+m ,则g (x )=-2x 2+4x +6+m =-2(x -1)2+8+m ,由x ∈[-1,0]可得g (x )min =m ,又g (x )≥4在[-1,0]上恒成立,故m ≥4.13.(多选)(2022·菏泽模拟)已知函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题,其中是真命题的是( )A .若a 2-b ≤0,则f (x )在区间[a ,+∞)上单调递增 B .存在a ∈R ,使得f (x )为偶函数C .若f (0)=f (2),则f (x )的图象关于x =1对称D .若a 2-b -2>0,则函数h (x )=f (x )-2有2个零点解析:选AB.对于选项A ,若a 2-b ≤0,则f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2在区间[a ,+∞)上单调递增,正确;对于选项B ,当a =0时,f (x )=|x 2+b |显然是偶函数,正确;对于选项C ,取a =0,b =-2,函数f (x )=|x 2-2ax +b |化为f (x )=|x 2-2|,满足f (0)=f (2),但f (x )的图象不关于x =1对称,错误;对于选项D ,如图,a 2-b -2>0,即a 2-b >2,则h (x )=|(x -a )2+b -a 2|-2有4个零点,错误.14.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2.若对任意的x ∈[a ,a +2],不等式f (x +a )≥2f (x )恒成立,求实数a 的取值范围.解:由题意知f (x )=⎩⎨⎧x 2,x ≥0,-x 2,x <0,则2f (x )=f (2x ),因此原不等式等价于f (x +a )≥f (2x ).易知f (x )在R 上是增函数,所以x +a ≥2x ,即a ≥(2-1)x .又x ∈[a ,a +2],所以当x =a +2时,(2-1)x 取得最大值(2-1)(a +2),因此a ≥(2-1)(a +2),解得a ≥ 2.故a 的取值范围是[2,+∞).[C 素养提升]15.(2022·兰州模拟)已知幂函数f (x )的部分对应值如表:x 112则不等式f (|x |)≤2的解集是________.解析:设幂函数为f (x )=x α,则⎝ ⎛⎭⎪⎫12α=22,所以α=12,所以f (x )=x 12.不等式f (|x |)≤2等价于|x |12≤2,所以|x |≤4, 所以-4≤x ≤4.所以不等式f (|x |)≤2的解集是[-4,4]. 答案:[-4,4]16.定义:如果在函数y =f (x )定义域内的给定区间[a ,b ]上存在x 0(a <x 0<b ),满足f (x 0)=f (b )-f (a )b -a ,则称函数y =f (x )是[a ,b ]上的“平均值函数”,x 0是它的一个均值点,如y =x 4是[-1,1]上的“平均值函数”,0就是它的均值点.现有函数f (x )=-x 2+mx +1是[-1,1]上的“平均值函数”,求实数m 的取值范围.解:设x 0为均值点,所以f (1)-f (-1)1-(-1)=m =f (x 0),即关于x 0的方程-x 20+mx 0+1=m 在(-1,1)内有实数根,解方程得x 0=1(舍去)或x 0=m -1.所以必有-1<m -1<1,即0<m <2,所以实数m 的取值范围是(0,2).。

(完整版)非常好的讲义二次函数图像与性质

(完整版)非常好的讲义二次函数图像与性质

二次函数图像及性质一、二次函数的定义一般地,形如2y ax bx c =++(a b c ,,为常数,0a ≠)的函数称为x 的二次函数,其中x 为自变量,y 为因变量,a 、b 、c 分别为二次函数的二次项、一次项和常数项系数.注意:和一元二次方程类似,二次项系数0a ≠,而b 、c 可以为零.二次函数的自变量的取值范围是全体实数.二、二次函数的图象 1.二次函数图象与系数的关系 (1)a 决定抛物线的开口方向 当0a >时,抛物线开口向上;当0a <时,抛物线开口向下.反之亦然.a 决定抛物线的开口大小:a 越大,抛物线开口越小;a 越小,抛物线开口越大. 温馨提示:几条抛物线的解析式中,若a 相等,则其形状相同,即若a 相等,则开口及形状相同,若a 互为相反数,则形状相同、开口相反. (2)b 和a 共同决定抛物线对称轴的位置(抛物线的对称轴:2b x a=-) 当0b =时,抛物线的对称轴为y 轴; 当a 、b 同号时,对称轴在y 轴的左侧; 当a 、b 异号时,对称轴在y 轴的右侧.(3)c 的大小决定抛物线与y 轴交点的位置(抛物线与y 轴的交点坐标为()0c ,) 当0c =时,抛物线与y 轴的交点为原点; 当0c >时,交点在y 轴的正半轴;当0c <时,交点在y 轴的负半轴.2.二次函数图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 3。

二次函数知识点复习

二次函数知识点复习

一、考点讲解: 1.二次函数的定义:形如c bx ax y ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数. 2.二次函数的图象及性质:(1)二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大. (2)二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x 的增大而增大,x <-2ba ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2b a ,y 随x 的增大而增大.(3)当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当x x=-2b a 时,函数有最大值244ac b a - 3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ) 形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.二、针对性训练:1.已知直线y=x 与二次函数y=ax 2 -2x -1的图象的一个交点 M 的横标为1,则a 的值为( )A 、2B 、1C 、3D 、 42.已知反比例函数y= k x的图象在每个象限内y 随x 的增大而增大,则二次函数y=2kx 2 -x+k 2的图象大致为图1-2-3中的( )3.已知二次函数c bx ax y ++=2的图象如图1-2-4 所示,下列结论中①abc >0;②b=2a ;③a +b +c<0;④a+b+c >0正确的个数是( )A .4B .3C .2D .l4.抛物线y=x 2-ax +5的顶点坐标是( )A .(-2,1)B .(-2,-1)C .(2,l )D .(2,-1)5.抛物线y=(x —5)+4的对称轴是( )A .直线x=4B .直线x =-4C .直线x=5D .直线x =-5 6.二次函数c bx ax y ++=2图象如图l -2-5所示,则下列结论正确的( )A .a >0,b <0,c >0B .a <0,b <0,c >0C .a <0,b >0,c <0D .a <0,b >0,c >07.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( )A .开口向下,对称轴x =-3,顶点坐标为(3,5)B .开口向下,对称轴x =3,顶点坐标为(3,5)C .开口向上,对称轴x =-3,顶点坐标为(-3,5)D .开口向上,对称轴x =-3,顶点坐标为(-3,-5)8.二次函数c bx ax y ++=2图象如图l -2-6所示,则点(b c,a ) 在( )A .第一象限B 第二象限C .第三象限D 第四象限 9.已知二次函数c bx ax y ++=2(a ≠0)与一次函数y=kx+m(k ≠0)的图象相交于点A (-2,4),B(8,2),如图1-2-7所示,能使y 1>y 2成立的x 取值范围是_______ 10若二次函数c bx ax y ++=2的图象如图1-2-8,则ac_____0(“<”“>”或“=”)11直线y=x+2与抛物线y=x 2 +2x 的交点坐标为____.12阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线22221y x mx m m =-++-①,有y=2()21x m m -+-②,所以抛物线的顶点坐标为(m ,2m -1),即 2 1 x m y m =⎧⎨=-⎩①②当m 的值变化时,x 、y 的值随之变化,因而y 值也随x 值的变化而变化,将③代人④,得y=2x —1l ⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足关系式y=2x -1,回答问题:(1)在上述过程中,由①到②所用的数学方法是________,其中运用了_________公式,由③④得到⑤所用的数学方法是______;(2)根据阅读材料提供的方法,确定抛物线222231y x mx m m =-+-+顶点的纵坐标与横坐标x 之间的关系式_________.13抛物线经过第一、三、四象限,则抛物线的顶点必在( )A .第一象限B .第二象限C .第三象限D .第四象限14当b <0时,一次函数y=ax+b 和二次函数y=ax 2+bx +c 在同一坐标系中的图象大致是图1-2-9中的( )考点2:二次函数的图象与系数的关系一、考点讲解:1、a 的符号:a 的符号由抛物线的开口方向决定.抛物线开口向上,则a >0;物线开口向下,则a <0.2、b 的符号出的符号由对称轴决定,若对称轴是y 轴,则b=0;若抛物线的顶点在y 轴左侧,顶点的横坐标-2b a <0即2b a >0,则a 、b 为同号;若抛物线的顶点在y 轴右侧,顶点的横坐标-2b a >0,即2ba<0.则a 、b 异号.间“左同有异”.3.c 的符号:c 的符号由抛物线与y 轴的交点位置确定.若抛物线交y 轴于正半,则c >0,抛物线交y 轴于负半轴.则c <0;若抛物线过原点,则c=0.4.△的符号:△的符号由抛物线与x 轴的交点个数决定.若抛物线与x 轴只有一个交点,则△=0;有两个交点,则△>0.没有交点,则△<0 . 5、a+b+c 与a -b+c 的符号:a+b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(1,a+b+c )的纵坐标,a -b+c 是抛物线c bx ax y ++=2(a ≠0)上的点(-1,a -b +c )的纵坐标.根据点的位置,可确定它们的符号.二、针对性训练: 1.已知函数c bx ax y ++=2的图象如图1-2-11所示,给出下列关于系数a 、b 、c 的不等式:①a <0,②b <0,③c >0,④2a +b <0,⑤a +b +c >0.其中正确的不等式的序号为___________- 2.已知抛物线c bx ax y ++=2与x 轴交点的横坐标为-1,则a +c=_________.3.抛物线c bx ax y ++=2中,已知a :b :c=l :2:3,最小值为6,则此抛胸的解析式为____________ 4.已知二次函数的图象开口向下,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数解析式: _______________. 5.抛物线c bx ax y ++=2如图1-2-12 所示,则它关于y 轴对称的抛物线的解析式是___________.6.若抛物线过点(1,0)且其解析式中二次项系数为1,则它的解析式为___________.(任写一个) 7.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点连点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________. 8.已知二次函数c bx ax y ++=2的图象如图1-2-13所示:(1)这个二次函数的解析式是y=__________.(2)当x=_______时,y=3;(3)根据图象回答:当x______时,y >0.图象如图 1-2-14所示,则下列关于a 、b 、c 间的关系判断9.二次函数c bx ax y ++=2的正确的是()A .ab <0B 、bc <0 C .a+b +c >0D .a -b 十c <0 10 已知二次函数c bx ax y ++=2,那么它的图象如图1-2-15大致为( )11.抛物线c bx ax y ++=2>0)的顶点在x 轴上方的条件是( ) A .b 2-4ac <0 B .b 2-4ac > 0 C .b 2-4ac ≥0 D . c <012 二次函数⑴y=3x 2;⑵y= 23 x 2;⑶y= 43x 2的图象的开口大小)顺序应为( ) A .(1)>(2)>(3)B .(1)>(3)>(2)C .(2)>(3)>(1)D .(2)>(1)>(3) 13若二次函数c bx ax y ++=2,当x 取x 1,x 2(x 1,≠x 2)时,函数值相等,则当x 取(x 1+x 2)时,函数值为( )A .a+cB .a -cC . -cD .c考点3:二次函数解析式求法一、考点讲解:1.二次函数的三种表示方法:⑴表格法:可以清楚、直接地表示出变量之间的数值对应关系;⑵图象法:可以直观地表示出函数的变化过程和变化趋势;⑶表达式:可以比较全面、完整、简洁地表示出变量之间的关系.2.二次函数表达式的求法: ⑴若已知抛物线上三点坐标,可利用待定系数法求得c bx ax y ++=2; ⑵若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式:2()y a x h k =-+其中顶点为(h ,k)对称轴为直线x=h ;⑶若已知抛物线与x 轴的交点坐标或交点的横坐标,则可采用交点式:12()()y a x x x x =--,其中与x 轴的交点坐标为(x 1,0),(x 2,0)二、针对性训练:1.二次函数的图象经过点(-3,2),(2,7),(0,-1),求其解析式.2.已知抛物线的对称轴为直线x=-2,且经过点(-l ,-1),(-4,0)两点.求抛物线的解析式.3.已知抛物线与 x 轴交于点(1,0)和(2,0)且过点(3,4),求抛物线的解析式. 4.已知二次函数c bx ax y ++=2的图象经过点A (0,1)B(2,-1)两点.(1)求b 和c 的值;(2)试判断点P (-1,2)是否在此抛物线上?5.已知一个二次函数c bx ax y ++=2的图象如图1-2-25所示,请你求出这个二次函数的表达式,并求出顶点坐标和对称轴方程. 6.已知抛物线c bx ax y ++=2过三点(-1,-1)、(0,-2)、(1,l ).(1)求这条抛物线所对应的二次函数的表达式;(2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少? 7.当 x=4时,函数c bx ax y ++=2的最小值为-8,抛物线过点(6,0).求:(1)顶点坐标和对称轴;(2)函数的表达式;(3)x 取什么值时,y 随x 的增大而增大;x 取什么值时,y 随x 增大而减小.8.在ΔABC 中,∠ABC =90○ ,点C 在x 轴正半轴上,点A 在x 轴负半轴上,点B 在y 轴正半轴上(图1-2-26所示),若tan ∠BAC= 12,求经过 A 、B 、C 点的抛物线的解析式.9.已知:如图1-2-27所示,直线y=-x+3与x 轴、y 轴分别交于点B 、C ,抛物线y=-x 2+bx +c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求抛物线的解析式;(2)若点P 在直线BC 上,且S ΔPAC =12S ΔPAB ,求点P 的坐标.10 四边形DEFH 为△ABC 的内接矩形(图1-2-28),AM 为BC 边上的高,DE 长为x ,矩形的面积为y ,请写出y 与x 之间的函数关系式,并判断它是不是关于x 的二次函数.考点4:根据二次函数图象解一元二次方程的近似解一、考点讲解:1.二次函数与一元二次方程的关系: (1)一元二次方程20ax bx c ++=就是二次函数c bx ax y ++=2当函数y 的值为0时的情况.(2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx +c=0的根. (3)当二次函数c bx ax y ++=2的图象与 x 轴有两个交点时,则一元二次方程c bx ax y ++=2有两个不相等的实数根;当二次函数c bx ax y ++=2的图象与x 轴有一个交点时,则一元二次方程ax 2+bx +c =0有两个相等的实数根;当二次函数y =ax 2+ bx+c 的图象与 x 轴没有交点时,则一元二次方程c bx ax y ++=2没有实数根.二、针对性训练:1.已知函数y=kx 2-7x —7的图象和x 轴有交点,则k 的取值范围是( )77. .k 04477. .k 044A k B k C k D k >-≥-≠≥->-≠且且2.直线y=3x —3与抛物线y=x 2 -x+1的交点的个数是( )A .0B .1C .2D .不能确定 3.函数c bx ax y ++=2的图象如图l -2-30,那么关于x 的方程20ax bx c ++=的根的情况是( )A .有两个不相等的实数根B .有两个异号实数根C .有两个相等实数根D .无实数根4.二次函数c bx ax y ++=2的图象如图l -2-31所示,则下列结论成立的是( ) A .a >0,bc >0,△<0 B.a <0,bc >0,△<0C .a >0,bc <0,△<0 D.a <0,bc <0,△>0 5.函数c bx ax y ++=2的图象如图 l -2-32所示,则下列结论错误的是( )A .a >0B .b 2-4ac >0C 、20ax bx c ++=的两根之和为负D、20++=的两根之积为正ax bx c6.不论m为何实数,抛物线y=x2-mx+m-2()A.在x轴上方B.与x轴只有一个交点C.与x轴有两个交点D.在x轴下方7.画出函数y =x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)b取什么值时,函数值大于0?(3)b取什么值时,函数值小于0?8.已知二次函数y =x2-x—6·(1)求二次函数图象与坐标轴的交点坐标及顶点坐标;(2)画出函数图象;(3)观察图象,指出方程x2-x—6=0的解;(4)求二次函数图象与坐标轴交点所构成的三角形的面积考点5:用二次函数解决实际问题一、考点讲解:1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.二、针对性训练:1.小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?2.数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱50元销售平均每天销售90箱,价格每降低1元平均每天可多销售3箱.老师要求根据以上资料,解答下列问题,你能做到吗?⑴写出平均每天销售量y(箱)与每箱售价社元)之间的函数关系;⑵写出平均每天销售利润W(元)与每箱售价x(元)之间的函数关系;⑶求出⑵中M次函数的顶点坐标及当x=40、70时的W的值.3.某商人开始时,将进价为每件8元的某种商品按每件10元出售,每天可售出100件.他想采用提高售价的办法来增加利润,经试验,发现这种商品每件每提价l元,每天的销售量就会减少10件.⑴写出售价x(元/件)与每天所得的利润y(元)之间的函数关系式;⑵ 每件售价定为多少元,才能使一天的利润最大?4.如图1-2-38所示是一条高速公路上的隧道口在平面直角坐标系上的示意图,点A 和A 1,点B 和B 1分别关于y 轴对称,隧道拱部分BCB 1为一段抛物线,最高点C 离路面AA 1的距离为8米,点B 离路面AA 1的距离为6米,隧道的宽AA 1为16米.⑴ 求隧道拱抛物线 BCB ;的函数解析式;⑵ 现有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与路面的距离为7米,它能否安全通过这个隧道?说明理由.5.启明公司生产某种产品,每件产品成本是8元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投人的广告费是x(万元)时,产品的年销售量将是原销售量的y 倍,且y=277101010x x -++,如果把利润看作是销售总额减去成本费和广告费: (1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资 新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问:有几种符合要求的投资方式?写出每种投资方式所选的项目.6.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日生产出的产品全部售出,已知生产X 只玩具熊猫的成本为R ((元),售价每只为P (元)且R ,P 与X 的关系式为 R=500+3.5x ,P=170 - 2x . ⑴ 当日产量为多少时,每日获得的利润为1750元;⑵ 当日产量为多少时,可获得最大利润?最大利润是多少?。

2015中考夺分自主复习课件第12讲 二次函数的图象与性质

2015中考夺分自主复习课件第12讲 二次函数的图象与性质

第12讲┃ 二次函数的图象与性质
3.设 A(-2,y1),B(1,y2),C(2,y3)是抛物线 y= -(x+1)2+a 上的三点, 则 y1, y2, y3 的大小关系为( A ) A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2
[解析] ∵函数的解析式是 y=-(x+ 1)2+a,如图所示,∴对称轴是 x=-1, ∴点 A 关于对称轴的对称点 A′是(0, y1), 则点 A′,B,C 都在对称轴的右边,而在 对称轴右边,y 随 x 的增大而减小, ∴y1>y2>y3.故选 A.
考点3
抛物线的平移
1.将抛物线 y=3x2 向上平移 3 个单位长度,再向左平 移 2 个单位长度, 那么得到的抛物线的函数解析式为( A ) A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3 D.y=3(x-2)2-3
[解析] 由“上加下减”的平移规律可知,将抛物线 y= 3x2 向上平移 3 个单位长度所得抛物线的函数解析式为 y= 3x2+3;由“左加右减”的平移规律可知,将抛物线 y=3x2 +3 向左平移 2 个单位长度所得抛物线的函数解析式为 y= 3(x+2)2+3.故选 A.
2. 已知二次函数 y=2(x-3)2+1.下列说法: ①其图象的 开口向下;②其图象的对称轴为直线 x=-3;③其图象的顶 点坐标为(3,-1);④当 x<3 时,y 随 x 的增大而减小.其 中说法正确的有 ( A ) A.1 个 B.2 个 C.3 个 D.4 个
[解析] ∵a=2>0,∴抛物线开口向上.由二次函数的顶点 式可得抛物线的对称轴为 x=3,顶点坐标为(3,1).∵a=2>0, ∴当 x<3 时,y 随 x 的增大而减小,当 x>3 时,y 随 x 的增大 而增大.由此可得正确的只有 1 个,故选 A.

第12讲 函数的图像(精讲)

第12讲 函数的图像(精讲)

2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第12讲函数的图像(精讲)①画函数的图像一、基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、描点法作图要点描点法作函数图象的基本步骤是列表、描点、连线,具体为:(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性、最值等).(2)列表(找特殊点:如零点、最值点、区间端点以及与坐标轴的交点等).(3)描点、连线.三、函数图像变换(1)平移变换提醒:“左加右减”只针对x本身,与x的系数无关,“上加下减”指的是在f (x)整体上加减.一、必备知识整合(2)对称变换①y =f (x )的图象―――――――→关于x 轴对称y =-f (x )的图象; ②y =f (x )的图象――――――――→关于y 轴对称y =f (-x )的图象; ③y =f (x )的图象―――――――――→关于原点对称y =-f (-x )的图象;④y =a x (a >0且a ≠1)的图象――――――――――→关于直线y =x 对称y =log a x (a >0且a ≠1)的图象. (3)含绝对值的对称变换①()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示①()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换. (4)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.①()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.1.若)()(x m f x m f -=+恒成立,则)(x f y =的图像关于直线m x =对称.2.设函数)(x f y =定义在实数集上,则函数)(m x f y -=与)(x m f y -=)0(>m 的图象关于直线m x =对称.3.若)()(x b f x a f -=+,对任意∈x R 恒成立,则)(x f y =的图象关于直线2ba x +=对称.4.函数()y f a x =+与函数()y f b x =-的图象关于直线2a bx +=对称. 5.函数..()y f x =..与函数(2)y f a x =-的图象关于直线x a =对称. 6.函数()y f x =与函数2(2)y b f a x =--的图象关于点()a b ,中心对称. 7.函数平移遵循自变量“左加右减”,函数值“上加下减”.【题型一 画函数的图像】作函数图象的两种常用方法【典例1】(2024高三·全国·专题练习)画下列函数的图象 (1)lg y x =;(2)221y x x =--.一、解答题1.(2024高三·全国·专题练习)(1)利用函数f (x )=2x 的图象,作出下列各函数的图象. ① y =f (-x ); ① y =f (|x |); ① y =f (x )-1;① y =|f (x )-1|;① y =-f (x );① y =f (x -1). (2)作出下列函数的图象.二、考点分类精讲① y =(12)|x |;① y =|log 2(x +1)|; ① y =211x x --. 2.(23-24高一上·河南濮阳·阶段练习)已知函数()2,01,0132,1x x xf x x x x x ⎧≤⎪-⎪=<<⎨⎪--≥⎪⎩.(1)画出函数()f x 的图象;(2)当()2f x ≥时,求实数x 的取值范围,【题型二 已知解析式选图像】辨析函数图象的入手点(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.A.B.C.D.一、单选题1.(23-24高三下·天津·阶段练习)函数()f x=)A.B.C.D.2.(2024·四川·模拟预测)数形结合思想是数学领域中一种核心的思想方法,它将数的概念与几何图形的特性相结合,从而使抽象的数学问题具体化,复杂的几何问题直观化.“数与形,本是相倚依,焉能分作两边飞”是我国著名数学家华罗庚教授的名言,是对数形结合简洁而有力的表达.数与形是不可分割的统一体,彼此相互依存.已知函数()) cos ln2f x x x=,则()f x的图象大致是()A.B.C .D .3.(2024·陕西商洛·模拟预测)函数cos sin y x x x =-的部分图象大致为( )A .B .C .D .4.(2024·湖北·模拟预测)函数()12e e ln xxf x x =--的图象大致为( )A .B .C .D .5.(2024·四川·模拟预测)函数()()321ln f x x x x =--的大致图象可能为( )A .B .C .D .【题型三 已知图像选解析式】【典例1】(单选题)(2024·天津·二模)函数()f x 的图象如图所示,则()f x 的解析式可能为( )A .()2ln 1x f x x =+B .()2e e x xf x x --=C .()21x f x x-=D .()ln x f x x=一、单选题1.(2024·天津·二模)已知函数()y f x =的部分图象如图所示,则()f x 的解析式可能为( ).A .()e 1e 1x xf x +=- B .()e 1e 1x x f x -=+C .()2f x D .()f x =2.(2024·广东广州·一模)已知函数()f x 的部分图像如图所示,则()f x 的解析式可能是( )A .()sin(tan )f x x =B .()tan(sin )f x x =C .()cos(tan )f x x =D .()tan(cos )f x x =3.(2024·陕西汉中·二模)已知函数()y f x =的图象如图所示,则()f x 的解析式可能是( )A .sin ()e e x x x xf x ---=+B .cos ()e e x x x xf x --=+C .sin ()e e x xx xf x -+=+D .cos ()e e x xx xf x -+=+4.(2024·四川成都·模拟预测)华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是( )A .sin ()3xf x = B .cos ()3xf x =C .sin 1()3xf x ⎛⎫= ⎪⎝⎭D .cos 1()3xf x ⎛⎫= ⎪⎝⎭5.(23-24高三上·广东惠州·阶段练习)“家在花园里,城在山水间.半城山色半城湖,美丽惠州和谐家园”一首婉转动听的《美丽惠州》唱出了惠州的山姿水色和秀美可人的城市环境.下图1是惠州市风景优美的金山湖片区地图,其形状如一颗爱心.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为( )A .y =B .y =C .y =D .y 6.(2024高三·全国·专题练习)如图,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记BOP x ∠=.将动点P 到,A B 两点距离之和表示为x 的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .【题型四 函数图像的平移、对称、伸缩变换】【典例1】(单选题)(23-24高三上·北京·阶段练习)要得到函数1xy x =-的图象,只需将函数1y x =的图象( )A .向右平移1个单位长度,再向上平移1个单位长度B .向右平移1个单位长度,再向下平移1个单位长度C .向左平移1个单位长度,再向上平移1个单位长度D .向左平移1个单位长度,再向下平移1个单位长度一、单选题1.(23-24高三上·北京·阶段练习)要得到函数1xy x =-的图象,只需将函数1y x=的图象( )A .向右平移1个单位长度,再向上平移1个单位长度B .向右平移1个单位长度,再向下平移1个单位长度C .向左平移1个单位长度,再向上平移1个单位长度D .向左平移1个单位长度,再向下平移1个单位长度2.(2024·北京西城·二模)将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =( ) A .1tan -xB .1tan --xC .tan (1)--xD .tan (1)-+x3.(2024·四川南充·二模)已知函数()3=f x x,则函数()11y f x =-+的图象( ) A .关于点()1,1对称 B .关于点()1,1-对称 C .关于点()1,0-对称D .关于点()1,0对称4.(2024·重庆·三模)设函数()22xf x x-=+,则下列函数中为奇函数的是( ) A .()21f x -+ B .()22f x -+ C .()22f x ++D .()21f x ++5.(22-23高二上·贵州遵义·期末)已知函数()f x 的图象如下图所示,则(|1|)f x +的大致图象是( )A .B .C .D .6.(2024·辽宁·三模)已知对数函数()log a f x x ,函数()f x 的图象上所有点的纵坐标不变,横坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向上平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( )A .32 B .23 C D【题型五 函数图像的其他应用】 函数图像的其他应用1.利用函数图象研究不等式【典例1】(单选题)(23-24高一上·广东韶关·期中)已知函数21,2,()3,2,1x x f x x x ⎧-<⎪=⎨≥⎪-⎩若函数()y f x =图象与直线y k =有且仅有三个不同的交点,则实数k 的取值范围是( )A .0k >B .01k <<C .03k <<D .13k <<一、单选题1.(2024高二下·湖南·学业考试)如图,已知函数y x =的图象与函数y x m =-的图象关于直线1x =对称,则m =( )A .0.5B .1C .1.5D .22.(2024·广东江门·二模)若函数()f x 的图象与圆22:4C x y +=恰有4个公共点,则()f x 的解析式可以为( ) A .()|||2|f x x =-B .2()2||f x x x =-C .()22x f x =-D .2()lg f x x =3.(2024·北京昌平·二模)已知函数()()24,1,ln 1, 1.x x x f x x x ⎧-+≤⎪=⎨->⎪⎩若对任意的x 都有()f x ax ≥恒成立,则实数a 的取值范围是( )A .(],0-∞B .[]4,0-C .[]3,0-D .(],2-∞4.(23-24高一下·安徽·阶段练习)定义在[]1,6-上的()f x 满足对()()22log 2,26(1),12x x f x x x ⎧-<≤⎪=⎨--≤≤⎪⎩,关于x 的方程()()()210f x a f x a -++=⎡⎤⎣⎦有7个不同的实数根,则实数a 的取值范围是( )A .(]1,2B .[]1,2C .(]2,4D .(]1,4二、多选题5.(23-24高一上·河南郑州·期末)已知函数()ln f x x =,则( ) A .函数()f x 的定义域为RB .函数()f x 的值域为RC .函数()f x 是偶函数D .函数()f x 是增函数6.(23-24高一上·河南洛阳·期末)已知函数23log ,02(),1()1,22x x x f x x -⎧<≤⎪=⎨->⎪⎩()()g x f x k =-,则( ) A .()f x 的值域为()1,∞-+B .若()g x 有1个零点,则0k <或1k >C .若()g x 有2个零点,则0k =或1k =D .若()g x 的3个零点分别为:1x ,2x ,3123()x x x x <<,则123x x x 的取值范围为()2,3。

知识点_初中数学总结汇总

知识点_初中数学总结汇总

【归纳总结】 第12讲┃ 二次函数的图象与性质
第12讲┃ 二次函数的图象与性质
【归纳总结】 抛物线
第12讲┃ 二次函数的图象与性质
减小
增大
第12讲┃ 二次函数的图象与性质
第13讲 二次函数的应用
【归纳总结】
两个不相等的
两个相等的
没有
第13讲┃ 二次函数的应用
第14讲 几何初步、相交线与平 行线
第1讲 实数及其运算
【归纳总结】
正整数
负整数 正分数 负分数 正无理数 负无理数
无限循环 不循环
第1讲┃ 实数及其运算
【归纳总结】
<<
> <
小 大

第1讲┃ 实数及其运算
第2讲 整式与因式分解
【归纳总结】
am+n amn anbn am-n
第2讲┃ 整式与因式分解
【归纳总结】
a2-b2
a2+2ab+b2 a2-2ab+b2
平行
第19讲┃ 图形的相似
【归纳总结】 相等 成比例
成比例
第19讲┃ 图形的相似
【归纳总结】
相等
成比例
相似比的平方
相似比
相似比 相似比的平方
相等
成比例 相似比
第19讲┃ 图形的相似
[中考点金] 第19讲┃ 图形的相似
第20讲 锐角三角函数
【归纳总结】 第20讲┃ 锐角三角函数
考点2 特殊角的三角函数值 45°
【归纳总结】
相等 垂直 平分一组对角 轴
相等 垂直
第22讲┃ 矩形、菱形、正方形
【归纳总结】
相等 直角
平分一组对角 中心
矩形 菱形
第22讲┃ 矩形、菱形、正方形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲 二次函数的图象和性质
1.抛物线y =(x -2)2+4的对称轴是( B )
A .直线x =-2
B .直线x =2
C .直线x =4
D .直线x =-4
2.(2016·永州)抛物线y =x 2+2x +m -1与x 轴有两个不同的交点,则m 的取值范围是( A )
A .m<2
B .m>2
C .0<m ≤2
D .m<-2
3.(2016·雅安中学三诊)抛物线y =(x +2)2-1可以由抛物线y =x 2平移得到,下列平移方法中正确的是( B )
A .先向左平移2个单位,再向上平移1个单位
B .先向左平移2个单位,再向下平移1个单位
C .先向右平移2个单位,再向上平移1个单位
D .先向右平移2个单位,再向下平移1个单位
4.若二次函数y =-x 2-3x +2的自变量x 分别取x 1,x 2,x 3且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( A )
A .y 3<y 2<y 1
B .y 1<y 2<y 3
C .y 1<y 3<y 2
D .y 2<y 3<y 1
5.(2016·益阳)关于抛物线y =x 2-2x +1,下列说法错误的是( D )
A .开口向上
B .与x 轴有两个重合的交点
C .对称轴是直线x =1
D .当x>1时,y 随x 的增大而减小
6.(2016·凉山模拟)已知抛物线y =x 2+bx +c 的顶点在第三象限,则关于x 的一元二次方程x 2+bx +c =0根的情况是( A )
A .有两个不相等的实数根
B .有两个相等的实数根
C .无实数根
D .无法确定
7.(2016·凉山)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则反比例函数y =-a x
与一次函数y =bx -c 在同一坐标系内的图象大致是( C )
8.(2016·常德)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①b<0;②c>0;③a +c<b ;④b 2-4ac>0.其中正确的个数是( C )
A .1
B .2
C .3
D .4
9.(2016·德阳中江模拟四)抛物线y =ax 2
+bx +c(a ≠0)的顶点坐标为(-b 2a ,4ac -b 24a ).
10.(2016·凉山模拟)如图,一次函数y 1=kx +1与二次函数y 2=ax 2+bx -2交于A ,B 两点,且A(1,0),抛物线
的对称轴是x =-32
. (1)求k 和a ,b 的值;
(2)求不等式kx +1>ax 2+bx -2的解集.
解:(1)把A(1,0)代入一次函数解析式,得k +1=0,解得k =-1.
根据题意,得
⎩⎪⎨⎪⎧-b 2a =-32,a +b -2=0.解得⎩
⎨⎧a =12,b =32. (2)联立⎩⎪⎨⎪⎧y =-x +1,y =12
x 2+32x -2, 解得⎩⎨⎧x 1=1,y 1=0,⎩⎪⎨⎪⎧x 2=-6,y 2=7.
∴B(-6,7). 根据图象可得不等式kx +1>ax 2+bx -2的解集是-6<x<1.
11.(2016·德阳旌阳区一模)若抛物线y =ax 2+bx +c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴的左侧,则a 的取值范围是( D )
A .a <0
B .-2<a <0
C .-23
<a <0 D .-1<a <0 提示:分别将(0,1)和(2,-3)两点代入y =ax 2
+bx +c ,得⎩⎪⎨⎪⎧c =1,4a +2b +1=-3.∴b =-2-2a.① ∵开口向下,∴a <0.
∵对称轴在y 轴的左侧,∴-b 2a
<0.② 把①代入②,得--2-2a 2a <0,即1+a a
<0. ∵a <0,∴1+a >0.
∴a >-1.
∴a 的取值范围是-1<a <0.
12.(2015·达州)若二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M(x 0,y 0),在x 轴下方,则下列判断正确的是( A )
A .a(x 0-x 1)(x 0-x 2)<0
B .a >0
C .b 2-4ac ≥0
D .x 1<x 0<x 2
提示:A.当a >0时,∵点M(x 0,y 0).在x 轴下方,∴x 1<x 0<x 2.
∴x 0-x 1>0,x 0-x 2<0.
∴a(x 0-x 1)(x 0-x 2)<0;
当a <0时,若点M 在对称轴的左侧,
则x 0<x 1<x 2,
∴x 0-x 1<0,x 0-x 2<0.
∴a(x 0-x 1)(x 0-x 2)<0;
若点M 在对称轴的右侧,则x 1<x 2<x 0,
∴x 0-x 1>0,x 0-x 2>0.
∴a(x 0-x 1)(x 0-x 2)<0.
综上所述,a(x 0-x 1)(x 0-x 2)<0,故本选项正确;
B .a 的符号不能确定,故本选项错误;
C .∵函数图象与x 轴有两个交点,∴Δ>0.故本选项错误;
D .x 1,x 0,x 2的大小无法确定,故本选项错误.
13.二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①b<2a ;②4a -2b +c>0;③b>a>c ;④b 2+2ac>6c 2.其中正确结论的个数是( D )
A .1
B .2
C .3
D .4
14.(2016·齐齐哈尔)如图,抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示.下列结论:①4ac<b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c>0;④当y>0时,x 的取值范围是-1≤x<3;⑤当x<0时,y 随x 增大而增大,其中结论正确的个数是( B )
A .4
B .3
C .2
D .1
提示:正确的结论有:①②⑤.
15.(2016·舟山)二次函数y =-(x -1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( D )
A.52 B .2 C.32 D.12
16.(2016·荷泽)在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B(-2,6),C(2,2)两点.
(1)试求抛物线的解析式;
(2)记抛物线顶点为D ,求∠BCD 的面积;
(3)若直线y =-12
x 向上平移b 个单位所得的直线与抛物线BDC(包括端点B ,C)部分有两个交点,求b 的取值范围.
解:(1)由题意⎩
⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2. 解得⎩⎪⎨⎪⎧a =12,b =-1.
∴抛物线解析式为y =12
x 2-x +2.
(2)∵y =12x 2-x +2=12(x -1)2+32
, ∴顶点坐标(1,32
). 易得直线BC 解析式为y =-x +4,
∴对称轴与BC 的交点H(1,3).
∴S △BDC =S △BDH +S △DHC =12×32×3+12×32
×1=3. (3)由⎩
⎨⎧y =-12x +b ,y =12x 2-x +2消去y 得x 2-x +4-2b =0. 当Δ=0时,直线与抛物线相切,1-4(4-2b)=0,
∴b =158
. 当直线y =-12
x +b 经过点C 时,b =3; 当直线y =-12
x +b 经过点B 时,b =5. ∵直线y =-12
x 向上平移b 个单位所得的直线与抛物线段BDC(包括端点B ,C)部分有两个交点, ∴158
<b ≤3.
17.(2016·成都锦江区一诊)已知二次函数y =x 2-2(k +1)x +k 2-2k -3与x 轴有两个交点,当k 取最小整数时,将二次函数的图象在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分不变,得到一个新图象,则新图象与直
线y =x +m 有三个不同公共点时,m 的值是1或134
.。

相关文档
最新文档