高中立体几何基础知识点全集(图文并茂)

合集下载

高考立体几何所有知识点结构图(公立-定理-重要结论).

高考立体几何所有知识点结构图(公立-定理-重要结论).
4.三个Rt△______________________________________________________________________________
三、多面体与欧拉公式:1.凸多面体:________________________________________________________。
二、棱锥的概念与性质:
1.棱锥的平行于底面的截面面积为S′,底面面积为S,顶点到截面与底面的距离分别为h′,h,则_________
2.正棱锥的各侧棱_____________,各侧面都是_____________,斜高__________。
3.正棱锥的顶点在底面上的射影是______________。
③球的表面积S=___________________;④球的体积V=____________________。
五、体积公式:1.柱体:V柱=_______________;2.锥体:V锥=_______________;
直线与平面
说明:
一、末列数字与数字和依次说明见右面。
二、推理须知:
1.A ,B ,C AB C ;
2.线线平行 线面平行 面面平行;
3.线线垂直 线面垂直 面面垂直;
4.使用某定理时,必须完整罗列该定理的条件,才能得出该定理的结论;
5.定理的使用不要受其在课本中的先后顺序的局限,要灵活运用。
三、深刻理解反证法,会用反证法。
则E为BC的中点,且BC1⊥平面A1B1E
∴平面A1B1E⊥平面A1BC1,
过B1作B1H⊥A1E于H,则B1H为所求距离。
2:两种作法

②已知PC⊥平面ABC,求作二面角P—AB—C的平面角。
i)在平面ABC内过C作CD⊥AB,则由三垂线定理知PD⊥AB,∠PDC为所作平面角,如图(4);

高中立体几何所有的定理大总结(绝对全)

高中立体几何所有的定理大总结(绝对全)

高中立体几何所有定理大总结(一)异面直线所成角1.定义:不同在任何一个平面内的两条直线或既不平行也不相交的两条直线叫异面直线。

2.画法:借助辅助平面。

1.定义:对于异面直线a和b,在空间任取一点P,过P分别作a和b的平行线1a和1b,我们把1a和1b所成的锐角或者叫做异面直线a和b所成的角。

2.范围:(0°,90°】(★空间两条直线所成角范围:【0°,90°】)(二)线面角1.定义:当直线l与平面α相交且不垂直时,叫做直线l与平面α斜交,直线l叫做平面α的斜线。

设直线l与平面α斜交与点M,过l上任意点A,做平面α的垂线,垂足为O,把点O叫做点A在平面α上的射影,直线OM叫做直线l在平面α上的射影。

1.定义:把直线l与其在平面α上的射影所成的锐角叫做直线l和平面α所成的角。

2.范围【0°,90°】(★斜线与平面所成角范围:【0°,90°】)(三)二面角1.定义:(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(3)二面角的棱:这一条直线叫做二面角的棱。

(5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6) 直二面角:平面角是直角的二面角叫做直二面角。

1.定义:从一条直线出发的两个半平面所组成的图形叫做二面角。

2.表示:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。

2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。

3.点到面的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。

两条平行线的距离4.线到线的距离:异面直线的距离:公垂线段PQ ⊥1l , PQ ⊥2l ,则线段PQ 的长。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.根本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)〔规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]〕斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

行。

8.〔1〕二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°]〔2〕二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(完整版)高中数学必修2立体几何知识点

(完整版)高中数学必修2立体几何知识点

高中数学必修 2 知识点第一章空间几何体1.1 柱、锥、台、球的构造特色(略)棱柱:棱锥:棱台:圆柱:圆锥:圆台:球:1.2 空间几何体的三视图和直观图1三视图:正视图:以前去后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐标轴的线依旧平行于坐标轴;(2).平行于 y 轴的线长度变半,平行于x,z 轴的线长度不变;(3).画法要写好。

5用斜二测画法画出长方体的步骤:(1)画轴( 2)画底面( 3)画侧棱( 4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1 棱柱、棱锥的表面积:各个面面积之和2圆柱的表面积4圆台的表面积S 2 rl2r 2 3 圆锥的表面积S rlr 2 S rl r 2Rl R2 5 球的表面积S 4R26扇形的面积公式S扇形n R21lr (此中l表示弧长,r表示半径)3602(二)空间几何体的体积1柱体的体积 V S底h 2 锥体的体积1S底h V33台体的体积V1S上h4 球体的体积V4R3(下下3S上 SS )3第二章直线与平面的地点关系2.1 空间点、直线、平面之间的地点关系1平面含义:平面是无穷延展的 , 无大小,无厚薄。

2平面的画法及表示450,且横边画成邻边的(1)平面的画法:水平搁置的平面往常画成一个平行四边形,锐角画成 2 倍长(2)平面往常用希腊字母α、β、γ等表示,如平面α、平面β等,也能够用表示平面的平行四边形的四个极点或许相对的两个极点的大写字母来表示,如平面AC、平面 ABCD等。

3三个公义:(1)公义 1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内A l符号表示为B ll AB公义 1 作用:判断直线能否在平面内(2)公义 2:过不在一条直线上的三点,有且只有一个平面。

符号表示为: A、B、C 三点不共线有且只有一个平面α,使A∈α、 B∈α、 C∈α。

高中数学—立体几何知识点总结(精华版)

高中数学—立体几何知识点总结(精华版)

立体几何知识点一.基本概念和原理:1.公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1: 经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4 :平行于同一条直线的两条直线互相平行。

如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)(规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°])斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

a和一个平面内的任意一条直线都垂直,就说直线a和平面互相垂直.直线a叫平面的垂线,平面叫做直线a的垂面。

直,那么这条直线垂直于这个平面。

如果两条直线同垂直于一个平面,那么这两条直线平行。

如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

行,那么这条直线和这个平面平行。

如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

面,那么这两个平面平行。

如果两个平行平面同时和第三个平面相交,则交线平行。

8.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

高中立体几何基础知识点全集

高中立体几何基础知识点全集

高中立体几何基础知识点全集在高中数学的学习中,立体几何是一个重要的组成部分。

它不仅能够培养我们的空间想象力和逻辑思维能力,也是解决许多实际问题的有力工具。

接下来,就让我们一起走进高中立体几何的世界,系统地梳理一下其中的基础知识点。

一、空间几何体1、棱柱棱柱是由两个平行且全等的多边形底面和若干个平行四边形侧面围成的多面体。

侧棱都平行且相等,侧面都是平行四边形。

根据侧棱与底面是否垂直,棱柱又分为直棱柱和斜棱柱。

2、棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面围成的多面体。

如果棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,那么这样的棱锥叫做正棱锥。

正棱锥的性质包括:侧棱长相等、侧面是全等的等腰三角形、顶点在底面的射影是底面正多边形的中心。

3、棱台棱台是用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

棱台的上下底面是相似多边形,侧面都是梯形。

4、圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

5、圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

圆锥的轴、底面、侧面、母线的定义与圆柱类似。

6、圆台用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

圆台的上下底面是两个半径不同的圆,侧面是一个母线延长后能够相交于一点的曲面。

7、球以半圆的直径所在直线为轴,将半圆旋转一周所形成的曲面叫做球面,球面所围成的几何体叫做球体,简称球。

二、空间几何体的表面积和体积1、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。

直棱柱的侧面积等于底面周长乘以高,正棱锥的侧面积等于底面周长乘以斜高的一半,正棱台的侧面积等于上下底面周长之和乘以斜高的一半。

高中数学立体几何知识点总结

高中数学立体几何知识点总结

立体几何知识点总结1、 多面体(棱柱、棱锥)的结构特征(1)棱柱:①定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

棱柱斜棱柱直棱柱正棱柱;四棱柱平行六面体直平行六面体长方体正四棱柱正方体。

②性质:Ⅰ、侧面都是平行四边形; Ⅱ、两底面是全等多边形;Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形;Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。

(2)棱锥:①定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面围成的几何体叫做棱锥;正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质:Ⅰ、平行于底面的截面和底面相似,截面的边长和底面的对应边边长的比等于截得的棱锥的高与原棱锥的高的比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、正棱锥性质:各侧面都是全等的等腰三角形;通过四个直角三角形POH Rt ∆,POB Rt ∆,PBH Rt ∆,BOH Rt ∆实现边,高,斜高间的换算棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是正多边形侧棱垂直于底面侧棱不垂直于底面AB CD OHP2、旋转体(圆柱、圆锥、球)的结构特征(2)性质:① 任意截面是圆面(经过球心的平面,截得的圆叫大圆,不经过球心的平面截得的圆叫 小圆)② 球心和截面圆心的连线垂直于截面,并且22d R r -=,其中R 为球半径,r 为截面半径,d 为球心的到截面的距离。

3、柱体、锥体、球体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(C 底为底面周长,h 为高,h '为棱锥的斜高或圆锥的母线)直棱柱、圆柱的侧面积 S C h =⋅侧底;正棱锥、圆锥的侧面积12S C h '=⋅侧底 (3)柱体、锥体的体积公式V S h =⋅柱底, 13V S h =⋅锥底(4)球体的表面积和体积公式:34=3V R π球 ; 24S R π=球面(5)球面距离(注意识别经度和纬度)球面上,A B 两点的球面距离AB R α=⋅,其中α为劣弧AB 所对的球心角AOB ∠的弧度数.4、空间几何体的三视图空间中的点、直线、平面之间的关系(一)、立体几何网络图:(1)、平行于同一直线的两直线平行。

(完整版)高中数学必修二立体几何知识点总结

(完整版)高中数学必修二立体几何知识点总结

第一章 立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积 rh S π2=圆柱侧 ()l r r S +=π2圆柱表rl S π=圆锥侧面积 ()l r r S +=π圆锥表 lR r S π)(+=圆台侧面积 ()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式 V Sh =柱13V Sh =锥'1()3V S S h =台 2V Sh r h π==圆柱h r V 231π=圆锥 '2211()()33V S S h r rR R h π=+=++圆台 (4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.11 2 三个公理:(1符号表示为A ∈LB ∈L => l α⊂ A ∈αB ∈α(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理(3公理 L A · α C · B · A · α2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

高一数学立体几何知识点(全章)

高一数学立体几何知识点(全章)

高一数学立体几何学1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。

(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)向这个平面所引的垂⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..线段和斜线段)⑦b a,是夹在两平行平面间的线段,若ba=,则b a,的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

(直线与直线所成角]90,0[︒︒∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂P直,过一点有且只有一个平面和一条直线垂直.●若PA⊥α,a⊥AO,得a⊥PO(三垂线定理),●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条..斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

高中数学——立体几何全知识点与结论梳理

高中数学——立体几何全知识点与结论梳理

向量差
a-b=(a1-b1,a2-b2,a3-b3)
数量积
a·b=a1b1+a2b2+a3b3
共线 a∥b⇒a1=λb1,a2=λb2,a3=λb3(λ∈R,b≠0)
垂直 夹角公

a⊥b⇔a1b1+a2b2+a3b3=0 cos〈a,b〉= a1b1+a2b2+a3b3
a21+a22+a23 b21+b22+b23
2.空间几何体的表面积与体积公式
名称 几何体
表面积
柱体(棱柱和 S 表面积=S 侧+2S
圆柱)

锥体(棱锥和 S 表面积=S 侧+S 底
圆锥)
体积 V=Sh V=31Sh
关 注 高 中 数 学 ( gaozhong shu-xue ) 即 可 免 费 获 取 : 知识点精讲、解题技巧分享,大小考真题押题详解以 及 小 数 老 师 贴 心 答 疑 解 惑 。
立体几何全知识点与结论梳理
第一节 空间几何体的结构特征、三视图和直观图
[基础知识]
1.简单几何体 1多面体的结构特征
名称
棱柱
棱锥
棱台
图形
底面 侧棱 侧面形状
互相平行且相等
多边形
互相平行且相似
相交于一点,但不
互相平行且相等
延长线交于一点
一定相等
平行四边形
三角形
梯形
①特殊的四棱柱
底面为 平行 侧棱垂直 直平行 底面为 四棱柱 平―行―四――边→形 六面体 ―于―底――面→ 六面体 ―矩―形→
圆锥
侧面展开

侧面积公 式
S 圆柱侧=2πrl
S 圆锥侧=πrl
圆台 S 圆台侧=π(r+r′)l
①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. ②圆台、圆柱、圆锥的转化 当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥, 由此可得:

高中数学立体几何知识点总结(超详细)

高中数学立体几何知识点总结(超详细)

立体几何知识梳理一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体.其中,这条直线称为旋转体的轴.(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱. 1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体 性质:Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等;1.3 棱柱的面积和体积公式ch S 直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征2.1 棱锥的定义(1) 棱锥:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥.棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形;Ⅲ、两个特征三角形:(1)POH ∆(包含棱锥的高、斜高和底面内切圆半径);(2)POB ∆(包含棱锥的高、侧棱和底面外接圆半径) 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高)正四面体:各条棱长都相等的三棱锥叫正四面体对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题. 对棱间的距离为a 2(正方体的边长) 正四面体的高a 6(正方体体对角线l 32=) 正四面体的体积为32a (正方体小三棱锥正方体V V V 314=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2161=) 3 、棱台的结构特征3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台. 3.2 正棱台的结构特征(1)各侧棱相等,各侧面都是全等的等腰梯形;(2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点. 4 、圆柱的结构特征4.1 圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲ABC D POH面所围成的几何体叫圆柱.4.2 圆柱的性质(1)上、下底及平行于底面的截面都是等圆;(2)过轴的截面(轴截面)是全等的矩形.4.3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形.4.4 圆柱的面积和体积公式S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高)V圆柱= S底h = πr2h5、圆锥的结构特征5.1 圆锥的定义:以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆锥.5.2 圆锥的结构特征(1)平行于底面的截面都是圆,截面直径与底面直径之比等于顶点到截面的距离与顶点到底面的距离之比;(2)轴截面是等腰三角形;图1-5 圆锥(3)母线的平方等于底面半径与高的平方和:l2 = r2 + h25.3 圆锥的侧面展开图:圆锥的侧面展开图是以顶点为圆心,以母线长为半径的扇形.6、圆台的结构特征6.1 圆台的定义:用一个平行于底面的平面去截圆锥,我们把截面和底面之间的部分称为圆台.6.2 圆台的结构特征⑴圆台的上下底面和平行于底面的截面都是圆;⑵圆台的截面是等腰梯形;⑶圆台经常补成圆锥,然后利用相似三角形进行研究.6.3 圆台的面积和体积公式S圆台侧= π·(R + r)·l (r、R为上下底面半径)V圆台= 1/3 (π r2+ π R2+ π r R) h (h为圆台的高)7 球的结构特征7.1 球的定义:以半圆的直径所在的直线为旋转轴,半圆旋转一周形成的旋转体叫做球体.空间中,与定点距离等于定长的点的集合叫做球面,球面所围成的几何体称为球体.7-2 球的结构特征⑴ 球心与截面圆心的连线垂直于截面;⑵ 截面半径等于球半径与截面和球心的距离的平方差:r 2 = R 2 – d 2 ⑶注意圆与正方体的两个关系:球内接正方体,球直径等于正方体对角线; 球外切正方体,球直径等于正方体的边长. 7-3 球的面积和体积公式S 球面 = 4 π R 2 (R 为球半径); V 球 = 4/3 π R 3 (三)空间几何体的表面积与体积 空间几何体的表面积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+圆锥的表面积:2S rl r ππ=+圆台的表面积:22S rl r Rl R ππππ=+++球的表面积:24S R π= 空间几何体的体积柱体的体积 :V S h =⨯底;锥体的体积 :13V S h =⨯底台体的体积:1)3V S S h =++⨯下上(;球体的体积:343V R π=斜二测画法:(1)平行于坐标轴的线依然平行于坐标轴;(2)平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;二 、点、直线、平面之间的关系(一)、立体几何网络图:1、线线平行的判断:(1)平行于同一直线的两直线平行.(3)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(6)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(12)垂直于同一平面的两直线平行.2、线线垂直的判断:(7)三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.(8)三垂线逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直.如图,已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面α内一条直线.①三垂线定理:若a⊥OA,则a⊥PA.即垂直射影则垂直斜线.②三垂线定理逆定理:若a⊥PA,则a⊥OA.即垂直斜线则垂直射影.(10)若一直线垂直于一个平面,则这条直线垂直于平面内所有直线.补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条.3、线面平行的判断:(2)如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.(5)两个平面平行,其中一个平面内的直线必平行于另一个平面.判定定理:性质定理:★判断或证明线面平行的方法⑴利用定义(反证法):lα=∅,则l∥α (用于判断);⑵利用判定定理:线线平行线面平行(用于证明);⑶利用平面的平行:面面平行线面平行(用于证明);⑷利用垂直于同一条直线的直线和平面平行(用于判断).2线面斜交和线面角:l∩α = A2.1 直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角θ.2.2 线面角的范围:θ∈[0°,90°]注意:当直线在平面内或者直线平行于平面时,θ=0°;当直线垂直于平面时,θ=90°4、线面垂直的判断:(9)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面.(11)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面.(14)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.(16)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面.判定定理:性质定理:(1)若直线垂直于平面,则它垂直于平面内任意一条直线.即:(2)垂直于同一平面的两直线平行.即:★判断或证明线面垂直的方法⑴利用定义,用反证法证明.⑵利用判定定理证明.⑶一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面.⑷一条直线垂直于两平行平面中的一个,则也垂直于另一个.⑸如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面.5、面面平行的判断:(4)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行.(13)垂直于同一条直线的两个平面平行.6、面面垂直的判断:(15)一个平面经过另一个平面的垂线,这两个平面互相垂直.判定定理:性质定理:(1)若两面垂直,则这两个平面的二面角的平面角为90°;(2)(二)、其他定理结论:(1)确定平面的条件:①不共线的三点;②直线和直线外一点;③两条相交直线;④两条平行直线;(2)直线与直线的位置关系:相交;平行;异面;直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况);平面与平面的位置关系:相交;;平行;(3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等;如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等;(4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短.(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角.(6)异面直线的判定:①反证法;②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线.(7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内.(8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线.(三)、唯一性定理结论:(1)过已知点,有且只能作一直线和已知平面垂直.(2)过已知平面外一点,有且只能作一平面和已知平面平行.(3)过两条异面直线中的一条能且只能作一平面与另一条平行.四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:平移转化,把异面直线所成的角转化为平面内相交直线o o(2)线面所成的角:①线面平行或直线在平面内:线面所成的角为o 0; ②线面垂直:线面所成的角为o 90;③斜线与平面所成的角:射影转化,即转化为斜线与它在平面内的射影所成的角.o o 线面所成的角范围090o o α≤≤ (3)二面角:关键是找出二面角的平面角,o o α≤<; 五、距离的求法:(1)点点、点线、点面距离:点与点之间的距离就是两点之间线段的长、点与线、面间的距离是点到线、面垂足间线段的长.求它们首先要找到表示距离的线段,然后再计算.注意:求点到面的距离的方法:①直接法:直接确定点到平面的垂线段长(垂线段一般在二面角所在的平面上); ②转移法:转化为另一点到该平面的距离(利用线面平行的性质); ③体积法:利用三棱锥体积公式.。

高中数学立体几何知识要点

高中数学立体几何知识要点

高中数学立体几何知识要点一、立体几何中的基本概念11 空间几何体棱柱棱锥棱台圆柱圆锥圆台球12 空间几何体的三视图正视图侧视图俯视图13 空间几何体的直观图斜二测画法二、表面积与体积21 棱柱、棱锥、棱台的表面积与体积棱柱的表面积与体积公式棱锥的表面积与体积公式棱台的表面积与体积公式22 圆柱、圆锥、圆台的表面积与体积圆柱的表面积与体积公式圆锥的表面积与体积公式圆台的表面积与体积公式23 球的表面积与体积球的表面积公式球的体积公式三、点、直线、平面之间的位置关系31 平面的基本性质公理 1公理 2公理 332 空间中直线与直线的位置关系平行直线相交直线异面直线33 空间中直线与平面的位置关系直线在平面内直线与平面平行直线与平面相交34 空间中平面与平面的位置关系平行平面相交平面四、直线与平面平行的判定与性质41 直线与平面平行的判定定理42 直线与平面平行的性质定理五、平面与平面平行的判定与性质51 平面与平面平行的判定定理52 平面与平面平行的性质定理六、直线与平面垂直的判定与性质61 直线与平面垂直的定义62 直线与平面垂直的判定定理63 直线与平面垂直的性质定理七、平面与平面垂直的判定与性质71 平面与平面垂直的定义72 平面与平面垂直的判定定理73 平面与平面垂直的性质定理八、空间向量在立体几何中的应用81 空间向量的概念82 空间向量的运算83 空间向量的坐标表示84 空间向量在证明线线、线面、面面平行与垂直中的应用85 空间向量在求空间角(异面直线所成角、线面角、二面角)中的应用86 空间向量在求空间距离(点到直线的距离、点到平面的距离、异面直线的距离)中的应用九、常见立体几何问题的解题策略91 证明空间几何体中的线线、线面、面面平行与垂直的问题综合法向量法92 求空间几何体的表面积与体积的问题直接利用公式求解割补法求解93 求空间角与空间距离的问题定义法向量法在学习高中数学立体几何知识时,需要熟练掌握以上要点,并通过大量的练习来加深对知识的理解和运用,从而提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何知识点整理
姓名:
一.直线和平面的三种位置关系:
1. 线面平行
l
符号表示:
2. 线面相交
符号表示:
3. 线在面内
符号表示:
二.平行关系:
1.线线平行:
方法一:用线面平行实现。

m
l
m
l
l
//
//






=


β
α
β
α
方法二:用面面平行实现。

m
l
m
l//
//






=

=

β
γ
α
γ
β
α
方法三:用线面垂直实现。

若α
α⊥
⊥m
l,,则m
l//。

方法四:用向量方法:
若向量和向量共线且l、m不重合,则m
l//。

2.线面平行:
方法一:用线线平行实现。

α
α
α//
//
l
l
m
m
l








方法二:用面面平行实现。

α
β
β
α
//
//
l
l





方法三:用平面法向量实现。

若n为平面α的一个法向
量,l
n⊥且α

l,则
α
//
l。

3.面面平行:
方法一:用线线平行实现。

β
α
α
β
//
'
,'
,
'
//
'
//










且相交
且相交
m
l
m
l
m
m
l
l
方法二:用线面平行实现。

β
α
β
α
α
//
,
//
//






⊂且相交
m
l
m
l
三.垂直关系:
1. 线面垂直:
方法一:用线线垂直实现。

α
α










=



l
AB
AC
A
AB
AC
AB
l
AC
l
,
m
l
α
方法二:用面面垂直实现。

αββαβα⊥⇒⎪⎭

⎬⎫
⊂⊥=⋂⊥l l m l m ,
2. 面面垂直:
方法一:用线面垂直实现。

βαβα⊥⇒⎭
⎬⎫
⊂⊥l l
方法二:计算所成二面角为直角。

3. 线线垂直:
方法一:用线面垂直实现。

m l m l ⊥⇒⎭
⎬⎫
⊂⊥αα
方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥⎫

⊥⇒⊥⎬⎪⊂⎭
方法三:用向量方法:
若向量和向量的数量积为0,则m l ⊥。

三.夹角问题。

(一) 异面直线所成的角: (1) 范围:]90,0(︒︒ (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。

(常用到余弦定理) 余弦定理:
ab
c
b a 2cos 2
22-+=
θ
(计算结果可能是其补角)
方法二:向量法。

转化为向量的夹角 (计算结果可能是其补角):
=
θcos
(二) 线面角
(1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。

(2)范围:]90,0[︒︒
当︒=0θ时,α⊂l 或α//l 当︒=90θ时,α⊥l (3)求法: 方法一:定义法。

步骤1:作出线面角,并证明。

步骤2:解三角形,求出线面角。

方法二:向量法(为平面α的一个法向量)。

><=,
cos sin θ
=
θ
c b
a
(三) 二面角及其平面角
(1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。

(2)范围:]180,0[︒︒ (3)求法: 方法一:定义法。

步骤1:作出二面角的平面角(三垂线定理),并证明。

步骤2:解三角形,求出二面角的平面角。

方法二:截面法。

步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。

步骤2:解三角形,求出二面角。

方法三:坐标法(计算结果可能与二面角互补)。

步骤一:计算12
1212
cos n n n n n n ⋅<⋅>=⋅
步骤二:判断θ与12n n <⋅>
的关系,可能相等或
者互补。

四.距离问题。

1.点面距。

方法一:几何法。

步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。

步骤
2:计算线段PO 的长度。

(直接解三角形;等体积法和等面积法;换点法) 方法二:坐标法。

>⋅<⋅=d cos
=
2.线面距、面面距均可转化为点面距。

3.异面直线之间的距离 方法一:转化为线面距离。

m
如图,m 和n 为两条异面直线,α⊂n 且
α//m ,
则异面直线m 和n 之间的距离可转化为直线m 与平面α
之间的距离。

方法二:直接计算公垂线段的长度。

方法三:公式法。

如图,AD 是异面直线m 和n 的公垂线段,
'//m m ,则异面直线m 和n 之间的距离为: θcos 2222ab b a c d ±--=
五.空间向量 (一)空间向量基本定理
若向量,,为空间中不共面的三个向量,则对空间中任意一个向量,都存在唯一的有序实数对
z y x 、、,使得z y x ++=。

(二) 三点共线,四点共面问题 1. A ,B ,C 三点共线⇔
OA xOB yOC =+
,且1x y +=
当2
1
==y x 时,A 是线段BC 的
A ,
B ,
C 三点共线⇔λ= 2. A ,B ,C ,
D 四点共面⇔
OA xOB yOC zOD =++
,且1x y z ++=
当1
3
x y z ===时,A 是△BCD 的
A ,
B ,
C ,
D 四点共面⇐y x += (三)空间向量的坐标运算
1. 已知空间中A 、B 两点的坐标分别为:
111(,,)A x y z ,222(,,)B x y z 则:
AB =
;=B A d ,AB =
2. 若空间中的向量111(,,)a x y z =

),,(222z y x = 则a b += a b -=
a b ⋅= cos a b <⋅>=
六.常见几何体的特征及运算 (一) 长方体
1. 长方体的对角线相等且互相平分。

2. 若长方体的一条对角线与相邻的三条棱所成的
角分别为αβγ、、,则222
cos cos cos αβγ=++
若长方体的一条对角线与相邻的三个面所成的角分别为αβγ、、,则2
2
2
cos cos cos αβγ=++ 3.若长方体的长宽高分别为a 、b 、c ,则体对角线长为 ,表面积为 ,体积为 。

(二) 正棱锥:底面是正多边形且顶点在底面的射影
在底面中心。

(三) 正棱柱:底面是正多边形的直棱柱。

(四) 正多面体:每个面有相同边数的正多边形,且
每个顶点为端点有相同棱数的凸多面体。

(只有五种正多面体)
(五) 棱锥的性质:平行于底面的的截面与底面相似,
且面积比等于顶点到截面的距离与棱锥的高的平方比。

正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形。

(六) 体积:=棱柱V =棱锥V (七) 球
1.定义:到定点的距离等于定长的点的集合叫球面。

2. 设球半径为R ,小圆的半径为r ,小圆圆心为O 1,球心O 到小圆的距离为d ,则它们三者之间的数量关系是 。

3. 球面距离:经过球面上两点的大圆在这两点间的一段劣弧的长度。

4.球的表面积公式: 体积公式:。

相关文档
最新文档