电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

合集下载

单相全桥逆变电路毕业设计

单相全桥逆变电路毕业设计

2008级应用电子技术毕业设计报告设计题目单相电压型全桥逆变电路设计姓名及学号学院专业应用电子技术班级2008级3班指导教师老师2011年05月1日题目:单相电压型全桥逆变电路设计目录第一章绪论1.1整流技术的发展概况 (4)第二章设计方案及其原理2.1电压型逆变器的原理图 (5)2.2电压型单相全桥逆变电路 (6)第三章仿真概念及其原理简述3.1 系统仿真概述 (6)3.2 整流电路的概述 (8)3.3 有源逆变的概述 (8)3.4逆变失败原因及消除方法 (9)第四章参数计算4.1实验电路原理及结果图 (10)第五章心得与总结 (14)参考文献 (15)第一章绪论1.1整流技术的发展概况正电路广泛应用于工业中。

整流与逆变一直都是电力电子技术的热点之一。

桥式整流是利用二极管的单向导通性进行整流的最常用的电路。

常用来将交流电转化为直流电。

从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。

基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。

目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。

系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。

加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。

从而大大提高了通信网运行可靠和通信质量。

高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。

由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。

新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

第二章 设计方案及其原理2.1电压型逆变器的原理图原理框图等效图及其输出波形当开关S1、S4闭合,S2、S3断开时,负载电压u o 为正; 当开关S1、S4断开,S2、S3闭合时,u o 为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o 的波形如上图 (b)所示。

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真开题报告课题名称:单相电压型全桥逆变电路及其simulink仿真完成时间:指导老师:刘彬(一)简要背景说明随着电力电子技术的发展,逆变电路具有广泛的应用范围。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。

由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。

电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。

由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。

②不停电电源。

该电源在逆变输入端并接蓄电池,类似于电压源。

图1 单相电压型全桥逆变电路(二)研究的目的及其意义在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。

培养学生运用所学知识综合分析问题解决问题的能力。

在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。

逆变电路是与整流电路相对应,把直流电变成交流电的电路。

逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。

无源逆变电路的应用非常广泛。

在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。

IGBT单相桥式无源逆变仿真

IGBT单相桥式无源逆变仿真
在阻感负载时,还可以采用移相的方式来调节逆变电路的输出电压,这种方 式称为移相调压。移相调压实际上就是调节输出电压脉冲的宽度。在单相桥式逆 变电路中,个 IGBT 的栅极信号仍为 180 度正偏,180 度反偏,并且 V1 和 V2 的 栅极信号互补,V3 和 V4 的栅极信号互补,但 V3 的基极信号不是比 V1 落后 180
图 2-7
6 本系统选择的仿真算法为 ode23tb,仿真 Start time 设为 0,Stop time 设为 0.08s。
三、仿真结果与分析
波形图分别代表输入电压波形、IGBT1.IGBT3 触发脉冲、IGBT2.IGBT4 触 发脉冲、负载输出波形上的电压。下列波形分别是延迟角 a 为 30、40、50 时的 波形变化。
3
Simulink 仿真实验报告
Subsystem 参数设定如下:
IGBT1 增补的触发脉冲:

图 2-4
4 RLC 支路参数设定:
图 2-5
图 2-6
4
Simulink 仿真实验报告
5 示波器相关参数的设定:“Number of axes”设置为 4,“Time range” 设置为 auto,“Tick labels”设置为 bottom axis only,“sampling”设置为 Decimation1。
图 1-2.移向调压理论波形
二、单相桥式无源逆变电路(阻感性负载)建模
1).单相桥式无源逆变电路(电阻性负载)仿真电路图如图 2-1.所示:
图 2-1.单相桥式无源逆变仿真电路图
2
Simulink 仿真实验报告
2).仿真参数设定 1 IGBT 参数 Rn=0.001Ω,Lon=1e-6H,Vf=1V,Rs=1e5Ω,Cs=250e-6F; 负载参数 R=1Ω,L=1e-3H; 2 直流电压源参数 U=100V;

电力电子课题选择

电力电子课题选择

自本1004班课题选择
1、单相半波晶闸管整流电路的设计(纯电阻负载):谢世峰,刘超,肖亮湘
2、单相半波晶闸管整流电路的设计(阻感负载):房帮亮,赵振江,罗涛
3、单相全控桥式晶闸管整流电路的设计(纯电阻负载):喻鹏,杨元友,刘伟
4、单相全控桥式晶闸管整流电路的设计(阻感负载):薛涛,袁林海,马佑军
5、单相半控桥式晶闸管整流电路的设计(阻感负载):刘爽,黄宗杰,葛取文
6、单相半控桥式晶闸管整流电路的设计(带续流二极管,阻感负载):吴磊,徐松松
7、MOSFET降压斩波电路设计(纯电阻负载):张旭,吴志,林鹏
8、IGBT降压斩波电路设计(纯电阻负载):崔倩雯,赵丽娜,王娥
9、升压斩波电路设计(纯电阻负载):邓静,乐力铭,刘奇
10、IGBT升压斩波电路设计(纯电阻负载):邵一峰,梁咏柏,喻盛
11、MOSFET单相桥式无源逆变电路设计(纯电阻负载):刘志伟,朱谣,提云凯
12、IGBT单相桥式无源逆变电路设计(纯电阻负载):刘一环,王向阳,舒乐军
13、MOSFET单相半桥无源逆变电路设计(纯电阻负载):阳发,刘相伟,王德龙
14、IGBT单相半桥无源逆变电路设计(纯电阻负载):
15、升降压斩波在直流可逆电动机调速中的应用:李敏,王文亮。

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种将直流电能转换为交流电能的电路,广泛应用于电力电子领域中。

无源逆变电路由于不需要任何外部能源,使得其工作更加简单和可靠。

本文将介绍IGBT单相桥式无源逆变电路的设计原理、主要组成部分以及其工作原理等内容。

在设计IGBT单相桥式无源逆变电路时,需要考虑以下几个关键因素:1.选择合适的IGBT管:IGBT管是无源逆变电路的关键部件,应选择具有适当的功率、电压和电流特性的IGBT管。

同时需要考虑其导通和关断速度,以确保电路的稳定性和工作效率。

2.设计适当的驱动电路:由于IGBT管需要在高频环境下工作,需要设计适当的驱动电路,以提供恰当的电压和电流波形,确保IGBT的正常工作。

3.控制策略设计:无源逆变电路的控制策略是确保电路能够实现所需输出的重要因素。

可以采用脉宽调制(PWM)控制策略,通过控制开关的导通和关断时间,来实现电压和频率的调节。

4.滤波电路设计:逆变电路产生的输出电压可能存在较高的谐波成分,需要设计适当的滤波电路来消除这些谐波,从而获得稳定的交流输出。

1.当输入直流电源施加在桥式电路的直流侧时,根据控制策略,对四个IGBT管进行相应的开通和关断操作。

2.当Q1和Q4管开通,Q2和Q3管关断时,输入直流电源通过Q1管和Q4管流入负载电阻RL,形成正向电压。

3.反之,当Q1和Q4管关断,Q2和Q3管开通时,输入直流电源通过Q2管和Q3管流入负载电阻RL,形成反向电压。

通过适当控制IGBT管的导通和关断时间,可以调节输出的电压和频率,从而实现不同的应用需求。

在设计IGBT单相桥式无源逆变电路时,需要进行合理的元件选择、电路设计和控制策略设计,以确保电路的性能和稳定性。

此外,还需要考虑保护电路的设计,以确保电路和负载的安全性。

IGBT单相桥式无源逆变电路设计(纯电阻负载)

IGBT单相桥式无源逆变电路设计(纯电阻负载)

湖北民族学院科技学院信息工程系课程设计报告书题目: IGBT单相全桥无源逆变电路设计课程:电力电子技术课程设计专业:电气工程及其自动化班级:K0312417学号:K031241723学生姓名:罗开元指导教师:曾仑明2015年 01月06日信息工程系课程设计任务书1、李先允主编电力电子技术20062、佟纯厚主编电力电子学2000342004 4、黄俊王兆安主编319945、石玉王文郁主编电力电子技术题解与电路设计指导20006、百度文库。

2015年 01月 06日信息工程学院系设计成绩评定表摘要本次课程设计的主要目的是设计一个带纯电阻负载的单相全桥逆变电路,然后得到负载两端的电压电流波形。

本次所设计的单相全桥逆变电路采用IGBT作为开关器件,将直流电压Ud逆变为频率为1KHZ的方波电压,并将它加到负载电路。

负载电路是由纯电阻构成的电路,通过电阻的电流波形也为方波。

而IGBT的导通,则由脉冲电路产生的触发脉冲来触发其导通。

在进行主电路的设计时,根据主电路的输入、输出参数来确定各个电力电子器件的参数,并进行器件的选择,以使设计的主电路能够达到要求的技术指标。

关键词:IGBT单相全桥无源逆变电路设计MATLAB仿真目录1.单相全桥逆变电路的设计 (1)2.MATLAB仿真 (4)3.总结 (6)4.参考文献 (7)1单相全桥逆变电路的设计1.1主电路及工作原理单相桥式逆变电路由4个全控型开关器件(本实验采用IGBT)、电阻构成,直流侧采用一个电容器即可,其电路图如下图所示:全控型开关器件T1和T4构成一对桥臂,T2和T3构成一对桥臂, T1和T4同时通、断,T2和T3同时通、断。

当T1、T4闭合,T2、T3断开时,负载电压为正,当T1、T4 断开,T2、T3闭合时,负载电压为负,其波形如图a所示,因为是纯电阻负载,所以,电压电流波形相同,如图b所示。

实验时T1与T2,T3与T4的驱动信号需要互补,即当T1和T4有驱动信号时,T2,和T3无驱动信号,T2和T3有驱动信号时,T1和T4无驱动信号,两对桥臂各交替导通180°。

IGBT单相电压型全桥无源逆变电路设计

IGBT单相电压型全桥无源逆变电路设计

IGBT单相电压型全桥无源逆变电路设计无源逆变器是一种将直流电能转换为交流电能的装置。

在无源逆变器中,使用单相电压型全桥拓扑结构,其中IGBT是指绝缘栅双极型晶体管,具有高电压和高电流开关特性。

本文将详细设计IGBT单相电压型全桥无源逆变电路。

设计要求:1. 输入电压:直流电压为Vin。

2. 输出电压:交流电压为Vout,频率为f。

3.负载:纯电阻性负载。

电路原理:1. 在每个IGBT导通期间的2/3时间内,两个IGBT之一导通,直流电压Vin流过负载。

2.在导通的另外1/3时间内,两个IGBT同时导通,负载两端电压降为零。

电路结构:1.两个开关电路串联:IGBT1和IGBT4、IGBT3和IGBT22.两个共享电压元件:一个直流电源和一个电感。

电路设计:1.选择IGBT:根据输入电压和负载电流选择IGBT,确保IGBT的电流和电压额定值工作在安全范围内。

2.选择电感:根据电压和电流需求选取合适的电感,它能平滑电路的工作并提供稳定的电流输出。

3.选择电容:选取合适的电容来平滑输出电压。

4.选择二极管:选择合适的二极管防止反向电流损坏电路。

参数计算:1. 选择输入电压Vin。

2. 根据输出电压Vout和负载电流计算负载电阻Rload。

3. 根据输出电压Vout和负载电流计算功率P。

4.根据频率f和功率P计算电感L和电容C的值。

原理图设计:根据电路设计和参数计算结果,绘制原理图。

确保各个组件的连接正确并保证整个电路的工作稳定。

电路实现:将电路原理图转换为实际的电路板。

在实际实施中,要注意电路的布局合理性、组件之间的联接可靠性,以确保电路能够正常工作。

性能测试:测试电路的性能,包括输出电压和电流的波形、频率和效率。

如果有必要,可以进行调整和改进。

总结:。

北京交通大学电力电子IGBT无源单项半桥逆变(电阻负载)课程设计IGBT无源单项半桥逆变(电阻负载)

北京交通大学电力电子IGBT无源单项半桥逆变(电阻负载)课程设计IGBT无源单项半桥逆变(电阻负载)

电气工程学院电力电子课程设计设计题目:IGBT单相半桥无源逆变电路设计专业班级:学号:姓名:同组人:指导教师:设计时间:设计地点:课程设计任务书学生姓名:专业班级指导教师:一、课程设计题目:IGBT单相半桥无源逆变电路设计(纯电阻负载)设计条件:1、输入直流电压:U d=100V2、输出功率:300W3、输出电压波形:1KHz方波二、课程设计要求1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整;2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真;3. 完成预习报告,报告中要有设计方案,还要有仿真结果;4. 进实验室进行电路调试,边调试边修正方案;5. 撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明调试过程中遇到的问题和解决问题的方法。

三、进度安排第一章系统方案设计1、系统方案在电路原理框图中,交流电源,整流,滤波和半桥逆变电路四部分构成电路的主电路,驱动电路和驱动电源构成指挥主电路中逆变桥正确工作的控制电路。

其中交流电源,整流和滤波三部分的功能分别由交流变压器、全桥整流模块和两个串联的电解电容实现半逆变电路由半桥电路和缓冲电路构成,而驱动电路和驱动电源则根据实验要求进行搭建。

2、系统工作原理在一个周期内,电力晶体管T1 和T2 的基极信号各有半周正偏,半周反偏,且互补。

若负载为阻感负载,t2 时刻以前,T1有驱动信号导通,T2 截止,U0 =Ud/2。

t2 时刻关断的T1,同时给T2 发出导通信号。

由于感性负载中的电流i。

不能立即改变方向,于是D2 导通续流,U0=-Ud/2。

T3 时刻i。

降至零,D2 截止,T2 导通,i。

开始反向增大,此时仍然有U0=-Ud/2 。

全桥逆变电路IGBT模块的实用驱动设计

全桥逆变电路IGBT模块的实用驱动设计

全桥逆变电路IGBT模块的实用驱动设计一、本文概述《全桥逆变电路IGBT模块的实用驱动设计》一文旨在深入探讨全桥逆变电路中IGBT(Insulated Gate Bipolar Transistor)模块的高效、可靠驱动技术。

该文以工程实践为导向,结合理论基础与现代电力电子技术的发展趋势,系统地阐述了IGBT模块驱动设计的关键要素、设计原则、常见挑战以及应对策略,旨在为相关领域的工程师和研究人员提供一套全面且实用的驱动设计方案参考。

文章将对全桥逆变电路的工作原理及IGBT模块在其中的核心作用进行简要回顾,强调其作为功率开关器件在电能转换过程中的高效性和可控性。

在此基础上,详述IGBT模块的结构特性、电气性能参数及其对驱动电路的具体要求,包括但不限于阈值电压、开关速度、安全工作区、栅极电荷等关键指标,为后续驱动设计的合理选择与优化奠定理论基础。

本文将聚焦于实用驱动设计的各个环节,从驱动电路拓扑的选择与设计开始,剖析隔离技术、驱动电源、缓冲电路、保护机制等关键组件的设计原则与实现细节。

将特别讨论驱动信号的形成与传输、栅极电阻的计算与选取、dvdt与didt抑制措施、过流与短路保护、过热与欠压保护等关键技术点,旨在确保IGBT模块在各种工况下能够稳定、快速、无损地开关,并有效延长其使用寿命。

进一步地,文中将结合实际应用案例,探讨驱动设计在不同应用场景下的适应性与优化策略,如工业变频器、新能源汽车、不间断电源(UPS)等领域的特定需求与挑战。

通过实例分析,读者将了解到如何根据具体应用条件,如负载特性、工作频率、环境温度、系统效率要求等,灵活调整和优化驱动方案,以实现最佳的系统性能与可靠性。

本文还将探讨驱动技术的最新进展与未来发展趋势,包括智能驱动、集成化驱动解决方案、基于新型半导体材料的驱动技术等前沿研究方向,以启发读者关注并跟进领域内的技术创新,不断提升全桥逆变电路中IGBT模块驱动设计的先进性与竞争力。

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

(完整word版)电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

电力电子课程设计_IGBT单相电压型全桥无源逆变电路(阻感负载)

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,和整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的使用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻和MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊和发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且和负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

IGBT单相电压型全桥无源逆变电路设计

IGBT单相电压型全桥无源逆变电路设计

IGBT单相电压型全桥无源逆变电路设计————————————————————————————————作者:————————————————————————————————日期:电子技术课程设计说明书IGBT 单相电压型全桥无源逆变电路设计学生姓名: 学号:学 院:专 业:指导教师:2013年01月XXX 1005044245 信息与通讯工程学院 电气工程及其自动化 XXX中北大学电子技术课程设计任务书2012/2013 学年第一学期学院:信息与通讯工程学院专业:电气工程及其自动化学生姓名:胡定章学号: 1005044245课程设计题目:IGBT单相电压型全桥无源逆变电路设计起迄日期: 12月24日~ 01月4 日课程设计地点:电气工程系软件实验室指导教师:石喜玲系主任:王忠庆下达任务书日期: 2012 年 12 月 24日课程设计任务书1.设计目的:1.加深理解《电力电子技术》课程的基本理论2.掌握电力电子电路的一般设计方法,具备初步的独立设计能力3.学习MATLAB仿真软件及各模块参数的确定2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):设计条件:1.电源电压:直流U d=100V2.输出功率:300W3.输出电压波行1KHz方波,脉宽4.阻感负载根据课程设计题目和设计条件,说明主电路的工作原理、计算选择元器件参数。

设计内容包括:1.IGBT电流、电压额定参数选择2.IGBT控制电路的设计3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:1.根据设计题目要求的指标,通过查阅有关资料分析其工作原理,确定各器件参数,设计电路原理图;2.利用MATLAB仿真软件绘制主电路结构模型图,设置相应的参数。

3.用示波器模块观察和记录电源电压、控制信号、负载电压的波形图。

课程设计任务书4.主要参考文献:[1].王兆安.电力电子技术.机械工业出版社.2009[2].李传琦.电力电子技术计算机仿真实验.电子工业出版社.2005[3].洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真.机械工业出版社.2006[4].钟炎平.电力电子电路设计.华中科技大学出版社.20105.设计成果形式及要求:1.电路原理图及各器件参数计算2. MATLAB仿真3.编写课程设计报告。

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计

IGBT单相桥式无源逆变电路设计IGBT单相桥式无源逆变电路是一种常用于将直流电转换成交流电的电路。

在没有任何主动元件的控制下,通过合适的电路设计可以实现直流到交流的转换。

本文将详细介绍IGBT单相桥式无源逆变电路的设计原理、电路组成以及相关参数的计算。

一、IGBT单相桥式无源逆变电路的设计原理IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关元件,同时结合了MOSFET和BJT的优点,具有低开关损耗、高开关速度等特点。

单相桥式无源逆变电路是由四个IGBT和四个二极管组成的桥式整流电路,它可以将直流电源的电压转换成交流电,供给交流电动机等负载使用。

桥式无源逆变电路的工作原理是通过控制IGBT的导通和关断时间来生成脉冲调制信号,进而控制IGBT的输出电压波形。

通过合理的波形控制,可以实现直流到交流的转换。

二、IGBT单相桥式无源逆变电路的电路组成1.IGBT模块:IGBT模块由四个IGBT和四个二极管组成,承担了整流和逆变的功能。

2.LC滤波网络:LC滤波网络由电感器和电容器组成,用于平滑逆变后的脉冲信号,使其更接近于纯正弦波。

3.电源:电源为IGBT单相桥式无源逆变电路提供直流信号,可以采用整流桥或直流电源等形式。

4.纯电阻负载:纯电阻负载是指无感性和无容性的负载,用于测试和验证逆变电路的输出波形。

三、IGBT单相桥式无源逆变电路参数的计算1.IGBT参数的计算:IGBT的参数包括额定电压、额定电流、功率损耗等。

根据所需的载波频率、输入电压和输出功率等参数进行计算。

2.LC滤波网络参数的计算:根据所需的输出频率和负载电流等参数,计算出电感器和电容器的数值。

3.电源参数的计算:根据所需的输入电压、输出功率和效率等参数,选择合适的电源。

四、总结IGBT单相桥式无源逆变电路是一种常用的电路,用于将直流电转换成交流电供给负载使用。

本文介绍了该电路的设计原理、电路组成以及相关参数的计算方法。

IGBT单相桥式无源逆变电路设计资料

IGBT单相桥式无源逆变电路设计资料

IGBT单相桥式无源逆变电路设计资料1.设计原理2.工作过程当输入电压正半周时,IGBT1和IGBT3导通,IGBT2和IGBT4截至,使得直流电源电压施加在纯电阻负载上,电流从A点流向B点。

当输入电压负半周时,IGBT2和IGBT4导通,IGBT1和IGBT3截至,电流从B点流向A点。

通过周期性地控制IGBT管的导通和截至,可以实现对输入电压的逆变转换。

3.性能分析在纯电阻负载情况下,IGBT单相桥式无源逆变电路具有以下特点:1)输出电压波形基本近似正弦波,谐波含量较低,可以满足很多电器设备对电源质量的要求。

2)输出电压最大值等于输入电压的峰值,输出电压最小值为0,可以满足正负半周的电压需求。

3)输出电压频率与输入电压频率相同,可以匹配大多数电器设备的工作频率。

4)可以通过改变IGBT管的导通时间和导通频率来调节输出电压的大小和频率。

5)由于使用了无源逆变,电路效率较高,损耗较小。

4.应用领域1)智能电网中的逆变器装置,用于将电网交流电转换为直流电,以供给电动汽车等设备使用。

2)变频空调、变频电机等设备的电源模块,用于将输入电源转换为合适的频率和电压,以满足设备的工作要求。

3)太阳能光伏逆变器,将太阳能电池板产生的直流电转换为交流电,以供给电网使用或给其他设备充电。

4)离网系统中的逆变器,用于将微型风力发电机或小型水力发电机产生的直流电转换为交流电,以供给独立的电力系统使用。

总结:IGBT单相桥式无源逆变电路是一种常用的电力转换器,适用于各种领域的电源转换应用。

在纯电阻负载情况下,该电路具有输出电压近似正弦波、频率可调、效率高等特点,因此被广泛应用于智能电网、变频设备、太阳能光伏逆变器和离网系统等领域。

igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计

igbt单相电压型半桥无源逆变电路设计本文介绍了一种IGBT单相电压型半桥无源逆变电路设计,该电路采用半桥拓扑结构,通过IGBT管控制开关实现正负半周期无源逆变,具有高效、可靠、稳定等优点。

同时,本文还介绍了电路的设计流程和注意事项。

一、电路拓扑结构IGBT单相电压型半桥无源逆变电路采用半桥拓扑结构,如图1所示。

电路中,IGBT1和IGBT2分别代表上管和下管,L1和L2为变压器的两个线圈,C为输出滤波电容。

该拓扑结构有以下优点:1、半桥结构可以避免直流电离子飘移问题,提高电路的可靠性。

2、IGBT管负责开关电流,电压由变压器自行绝缘,可以避免功率管受到高频电磁干扰而损坏的问题。

3、半桥拓扑结构使得电路的效率较高,能够满足高效、小型化的需求。

二、电路设计1、选择IGBT管根据电路的工作电压和电流,选择适合的IGBT管是很重要的。

可以根据功率、电压承受能力、开关速度、漏电流等因素进行选择。

2、选择变压器变压器是半桥无源逆变电路的关键元件之一,变压器的参数需要根据电路需求进行选择。

如果输出功率较大,则需选择大功率变压器;如果需要较小的体积,则可以选择小型化的变压器。

3、选择输出电容电容可以用来过滤输出端的噪声和杂波。

根据输出电压、输出电流等参数选择适合的电容,并确保电容的电压承受能力充足。

4、电路参数计算根据电路的拓扑结构和工作参数,进行电路参数的计算。

需要计算的参数包括变压器的线圈数、电感值、电容容值等。

这些参数的计算需要根据电路需求进行合理设置。

三、注意事项在使用IGBT管时,需要防止温度过高和静电干扰等问题。

建议在使用IGBT管时加装散热器,并采用静电保护措施,以保证管子的正常工作。

总之,IGBT单相电压型半桥无源逆变电路是一种高效、可靠、稳定的电路结构,在工业自动化控制等领域有着广泛的应用。

《电力电子技术》课程设计单相桥式逆变课程设计

《电力电子技术》课程设计单相桥式逆变课程设计

《电力电子技术》课程设计说明书单相桥式逆变电路院、部:电气与信息工程学院学生姓名:指导教师:职称副教授专业:电气工程及其自动化班级:完成时间:2015年6月1日摘要随着电力电子技术的高速发展,逆变电路的应用非常广泛,蓄电池、干电池、太阳能电池等都是直流电源,当我们使用这些电源向交流负载供电时,就需要逆变电路。

另外,交流电机调速用变频器、不间断电源、感应加热等电力电子装置,其核心部分都是逆变电路。

本设计要做的就是输入100V的直流电压,输出交流电压频率范围在30~60H Z,电压30~50V范围可调。

根据电力电子技术的相关知识,把直流电变成交流电的电路成为逆变电路。

单相桥式逆变电路是一种常见的逆变电路。

采用阻感负载,负载两端的电压即为输出电压。

设计电路中采用IGBT作为开关器件,利用ICL8038芯片产生频率符合要求的信号来控制IGBT的通断,从而得到频率范围在30~60H Z的交流电压。

采用移相调压来调节输出电压的大小。

关键词:直流电压;交流电压;逆变;桥式ABSTRACTWith the rapid development of power electronic technology, the inverter circuit has a very wide range of applications, such as battery, battery, solar battery is a dc power supply, when we use the power supply to the ac load power supply, inverter circuit is needed.In addition, the ac motor speed control by frequency converter, uninterruptible power supply, induction heating power electronic devices, such as its core part is the inverter circuit.This design has to do is enter the dc voltage 100 v, output voltage in 30 ~ 60 hz frequency range, 30 ~ 50 v voltage range is adjustable.According to the power electronic technology knowledge, become the inverter circuit of direct current into alternating current circuit.Single-phase bridge inverter circuit is a common inverter e resistance load, feeling at the ends of the load voltage is the output voltage.In the design of circuit using IGBT as the switch device, using ICL8038 chip conform to the requirements of the frequency signal to control the on-off of IGBT, frequency range is obtained in 30 ~ 60 hz ac voltage.Phase-shifting surge tank is used to adjust the size of the output voltage.Key wordsdc voltage;ac voltage;inverter;bridge目录摘要 (I)ABSTRACT ....................................................................................................................... I I 课程设计任务书 (V)绪论 (1)第1章方案设计 (5)系统框图 (5)主电路框图 (5)主电路原理图 (6)第2章主电路设计 (7)主电路原理图 (7)主电路原理分析 (7)器件的选择 (8)绝缘栅双极晶体管 (8)电力二极管 (8)元件参数 (9)第3章驱动电路的设计 (10)驱动电路原理图设计 (10)驱动电路的种类 (10)驱动电路的作用 (10)驱动电路的选择 (11)第4章控制电路设计 (12)4.1 控制电路的作用 (12)控制电路原理图设计 (12)控制电路原理分析 (13)移相调压的原理 (13)CL8038芯片介绍 (14)ICL0838引脚功能 (14)ICL0838内部结构 (15)第5章保护电路的设计 (17)保护电路的种类 (17)保护电路的作用 (17)保护电路的选择 (18)第6章仿真分析 (19)仿真软件MATLAB (19)仿真电路图 (20)参数设置 (21)仿真效果图 (21)仿真结果分析 (22)第7章设计总结 (23)参考文献 (24)致谢词 (25)附录 (26)课程设计任务书一、课程设计的目的1、加强和巩固所学的知识,加深对理论知识的理解;2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料;3、培养学生综合分析问题、发现问题和解决问题的能力;4、培养学生综合运用知识的能力和工程设计能力;5、培养学生运用仿真软件的能力和方法;6、培养学生科技写作水平。

IGBT单相半桥无源逆变电路设计说明

IGBT单相半桥无源逆变电路设计说明

《单片机技术》课程设计说明书模板IGBT单相半桥无源逆变电路设计院、部:电子与信息工程学院学生姓名:指导教师:职称:博士专业:自动化班级:完成时间:2013年5月20日摘要本次课程设计的题目是IGBT单相半桥无源逆变电路设计,同时设计相应的触发电路。

根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

本次设计中主要由交流电源,整流,滤波和半桥逆变电路四部分构成电路的主电路,驱动电路和驱动电源构成指挥主电路中逆变桥正确工作的控制电路。

设计中使用到的绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

本文对使用的IGBT单相半桥无源逆变电路进行了波形的仿真和分析。

关键词:IGBT;单相半桥;无源逆变ABSTRACTThe course design is the subject of IGBT single-phase half-bridge passive inverter circuit design, while the design of trigger circuit corresponding. According to the related knowledge of power electronics technology, single-phase bridge inverter circuit is a circuit common, compared with the rectifier circuit, the DC to AC inverter circuit become. When the AC side is connected to the power grid, called active inverter; when the AC side directly and load connected, called passive inverter, the inverter circuit is widely applied in real life.This design is mainly composed of AC power, rectifier, filter and half-bridge inverter circuit four parts of the main circuit circuit, driving circuit and power supply control circuit in the main circuit of inverter bridge command work properly. Insulated gate bipolar transistor to use in design (Insulated-gate Bipolar Transistor), the English abbreviation for IGBT. It is a typical control device. It combines the advantages of GTR and MOSFET, which has a good characteristic. Has now become the leading device, high power electronic equipment. This paper analyzed and simulated waveforms of IGBT single-phase half-bridge inverter circuit using passive.Keywords:IGBT; single-phase half-bridge; passive inverter第一章 系统方案设计及原理1.1 系统方案系统方案如图1所示,在电路原理框图中,交流电源、整流、滤波和半桥逆变电路四个部分构成电路的主电路,驱动电源和驱动电路两部分构成指挥主电路中逆变桥正确工作的控制电路。

电压型单相全桥逆变电路

电压型单相全桥逆变电路

1.引言逆变电路所谓逆变,就是与整流相反,把直流电转换成某一固定频率或可变频率的交流电(DC/AC)的过程。

当把转换后的交流电直接回送电网,即交流侧接入交流电源时,称为有源逆变;而当把转换后的交流电直接供给负载时,则称为无源逆变。

通常所讲的逆变电路,若不加说明,一般都是指无源逆变电路。

1. 电压型逆变器的原理图当开关S1、S4闭合,S2、S3断开时,负载电压u o为正;当开关S1、S4断开,S2、S3闭合时,u o为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u o的波形如图7.4(b)所示。

输出交流电的频率与两组开关的切换频率成正比。

这样就实现了直流电到交流电的逆变。

2. 电压型单相全桥逆变电路它共有4个桥臂,可以看成由两个半桥电路组合而成。

两对桥臂交替导通180°。

输出电压和电流波形与半桥电路形状相同,幅值高出一倍。

改变输出交流电压的有效值只能通过改变直流电压U d来实现。

输出电压定量分析u o成傅里叶级数基波幅值基波有效值⎪⎭⎫⎝⎛+++=tttUuωωωπ5sin513sin31sin4doddo1m27.14UUU==πdd1o9.022UUU==π当u o为正负各180°时,要改变输出电压有效值只能改变U d来实现可采用移相方式调节逆变电路的输出电压,称为移相调压。

各栅极信号为180º正偏,180º反偏,且T1和T2互补,T3和T4互补关系不变。

T3的基极信号只比T1落后q ( 0<q <180º),T3、T4的栅极信号分别比T2、T1的前移180º-q,uo成为正负各为q 的脉冲,改变q 即可调节输出电压有效值。

3MATLAB 仿真Simulink组建电路模型及实验结果电压型全桥逆变电路结构图:阻感性质下的仿真:T1 T4的脉冲信号:T2 T3的脉冲信号:带电阻情况下Ia Vab 波形电感负载下的Ia波形Vab波形阻感负载时RL负载电流波形输入电流Id的波形分析:在直流电源电压Vd一定时,输出电压的基波大小不可控,且输出电压中谐波频率低、数值大,直流电源电流Id脉动频率低且脉动数值大。

电力电子技术课程设计mosfet电压型单相半桥无源逆变电路设计

电力电子技术课程设计mosfet电压型单相半桥无源逆变电路设计

电力电子技术课程设计一、课程设计的性质和目的1、性质:是电气自动化专业的必修实践性环节。

2、目的:1)培养学生综合运用知识解决问题的能力与实际动手能力;2)加深理解《电力电子技术》课程的基本理论;3)初步掌握电力电子电路的设计方法。

二、课程设计的题目MOSFET电压型单相半桥无源逆变电路设计(阻感性负载)设计条件:(1)输入直流电压:Ui=200V(2)输出功率:500W(3)输出电压波形:1KHz方波三、课程设计的内容,指标内容及要求,应完成的任务1、课程设计的要求1)整流电路的选择2)整流变压器额定参数的计算3)晶闸管(全控型器件)电压、电流额定的选择4)平波电抗器电感值的计算5)保护电路(缓冲电路)的设计6)触发电路(驱动电路)的设计7)画出完整的主电路原理图和控制电路原理图2、指标要求(1)输入直流电压:Ui=200V;(2)输出功率:500W;(3)输出电压波形:1KHz方波。

3、整流电路的选择整流电路选择感容滤波的二极管整流电路,由于电容两端的电压不能突变,故能够保证输出电压为大小恒定的直流电压。

u d波形更平直,电流i2的上升段平缓了许多,这对于电路的工作是有利的。

4、触发电路(驱动电路)的设计实现逆变的主电路中用的是全控型器件MOSFET,触发电路主要是针对它的触发设计,电路的原理图如下图所示。

跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。

这个很容易做到,但是,我们还需要速度。

在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。

对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。

选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。

第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。

而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 引言本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计(阻感负载),根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。

当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。

2 工作原理概论2. 1 IGBT的简述绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。

它是一种典型的全控器件。

它综合了GTR和MOSFET的优点,因而具有良好的特性。

现已成为中、大功率电力电子设备的主导器件。

IGBT是三端器件,具有栅极G、集电极C和发射极E。

它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。

其等效电路和电气符号如下:图2-1 IGBT等效电路和电气图形符号它的开通和关断是由栅极和发射极间的电压所决定的。

当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。

由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。

当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。

2.2电压型逆变电路的特点及主要类型根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。

电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。

直流侧电压基本无脉动,直流回路呈现低阻抗。

由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。

当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。

为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。

又称为续流二极管。

逆变电路分为三相和单相两大类。

其中,单相逆变电路主要采用桥式接法。

主要有:单相半桥和单相全桥逆变电路。

而三相电压型逆变电路则是由三个单相逆变电路组成。

2.3 IGBT单相电压型全桥无源逆变电路原理分析单相逆变电路主要采用桥式接法。

它的电路结构主要由四个桥臂组成,其中每个桥臂都有一个全控器件IGBT和一个反向并接的续流二极管,在直流侧并联有大电容而负载接在桥臂之间。

其中桥臂1,4为一对,桥臂2,3为一对。

可以看成由两个半桥电路组合而成。

其基本电路连接图如下所:图2-2 电压型全桥无源逆变电路的电路图由于采用绝缘栅晶体管(IGBT)来设计,如图2-2的单相桥式电压型无源逆变电路,此课程设计为阻感负载,故应将RLC负载中电容的值设为零。

此电路由两对桥臂组成,V1和V4与V2和V3两对桥臂各导通180度。

再加上采用了移相调压法,所以VT3的基极信号落后于VT1的90度,VT4的基极信号落后于VT2的90度。

V1和V2栅极信号各半周正偏、半周反偏,互补。

u o为矩形波,幅值为Um=Ud/2,i o波形随负载而异,感性负载时,图2-3-b,V1或V2通时,i o和u o同方向,直流侧向负载提供能量,VD1或VD2通时,i o和u o反向,电感中贮能向直流侧反馈,VD1、VD2称为反馈二极管,还使i o连续,又称续流二极管。

在阻感负载时,还可以采用移相的方式来调节逆变电路的输出电压,这种方式称为移相调压。

移相调压实际上就是调节输出电压脉冲的宽度。

在单相桥式逆变电路中,个IGBT的栅极信号仍为180度正偏,180度反偏,并且V1和V2的栅极信号互补,V3和V4的栅极信号互补,但V3的基极信号不是比V1落后180度,而是只落后θ(0<θ<180).也就是说,V3、V4的栅极信号不是分别和V2、V1的栅极信号同相位,而是前移了180-θ。

这样,输出电压u0就不再是正负各180度的脉冲,而是正负各为θ的脉冲,由于输入为DC100V,输出幅值也是100V,θ=90°,则输出电压有效值为50V。

各IGBT的栅极信号u G1~u G4及输出电压u0、输出电流i0的波形如下图所示。

图2-3 θ如图所示3 系统总体方案3.1.确定各器件参数,设计电路原理图设计条件:1.电源电压:直流U d=100V2.输出功率:300W3.输出电压波行1KHz方波,脉宽θ=90°4.阻感负载计算内容:T=1/f=1/1000=0.001s由于V3的基波信号比V1落后了90°(即1/4个周期)。

则有:t3=0.001/4=0.00025s,t1=0st2=0.001/2=0.0005s,t4=0.00075s100*θ/180°=100V*90°/180°=50V(输出电压)100V*X/0.001s=50V 得:X=0.0005s设在t1=0.0005s时刻前V1和V4导通,输出电压u0为U d=100V,t1时刻V3和V4栅极信号反向,V4截止,而因负载电感中的电流i0不能突变,V3不能立刻导通,VD3导通续流。

因为V1和VD3同时导通,所以输出电压为零。

到t2时候V1和V2栅极信号反向,V1截止,而V2不能立刻导通,VD2导通续流,和VD3构成电流通道,输出电压为-U d。

到负载电流过零并开始反向时,VD2和VD3截止,V2和V3开始导通,u0仍为-U d。

t3时刻V3和V4栅极信号再次反向,V3截止,而V4不能立刻导通,VD4导通续流,u0再次为零。

以后的过程和前面类似。

这样,输出电压u0的正负脉冲宽度就各为θ=90°。

改变θ,就可以调节输出电压。

有效电压:U。

=U/2=100/2=50VR=Ud2/P = 25/3=8.33Ω输出电流有效值:Io=P/Uo=6A则可得电流幅值为:Imax=12A,Imin=-12A电压幅值为:Umax=100V,Umin=-100V晶闸管额定值计算,电流有效值:Ivt=Imax/4=3A。

额定电流In额定值:In=(1.5-2)*3=(4.5-6)A。

最大反向电压:Uvt=100V则额定电压:Un=(2—3)*100V=(200-300)V输出电压定量分析:u o成傅里叶级数:基波幅值:⎪⎭⎫⎝⎛+++=tttUuωωωπ5sin513sin31sin4doddo1m27.14UUU==π基波有效值:所以,IGBT 承受的最大反向电压:U FM =(2~3)×U d =(200~300)V ,因此选用电压为200V 的IGBT.阻抗值的确定:f=1000Hzω=2πf=2*3.14*1000=6280ωL/R=tan θ= 3 可知:L=0.0046H 。

电源端恒压电容C 1的值为100nf 。

4 触发电路的设计IGBT 晶体管触发电路的作用是产生符合要求的触发脉冲,保证晶体管在需要的时刻由阻断转为导通。

晶体管触发电路往往包括:对其触发时刻进行控制的相位控制电路、触发脉冲的放大和输出电路。

该主电路对触发电路的要求有以下几点:1)触发脉冲必须有足够的功率,保证在允许的工作温度范围内,对所有合格的元件都可靠触发。

2)触发脉冲应有足够的宽度。

3)触发脉冲的相位应能够根据控制信号的要求在规定的范围内移动。

4)触发脉冲与主电路电源电压必须同步。

如下图所示,为了使IGBT 稳定工作,一般要求双电源供电方式,即驱动电路要求采用正、负偏压的两电源方式,输入信号经整形器整形后进入放大级,放大级采用有源负载方式以提供足够的门极电流。

为消除可能出现的振荡现象,IGBT 的栅射极间接入了RC 网络组成的阻尼滤波器。

此种驱动电路适用于小容量的IGBT 。

dd 1o 9.022U U U ==πV 0图4-1 有正负偏压的直接驱动电路5 主电路设计及参数选择5.1 电路仿真图在本次设计中,主要采用单相全桥式无源逆变电路(阻感负载)作为设计的主电路。

由于软件上的电源等器件都是理想器件,故可将直流侧并联的大电容直接去掉。

由以上工作原理概论的分析可得其主电路仿真图如图5-1所示:图5-1 单相电压型全桥无源逆变电路(阻感负载)的主电路图5-2 VT1的触发电平参数设置图5-3 VT2的脉冲信号图5-4 VT3的脉冲信号图5-5 VT4的脉冲信号图5—6 阻感负载图5-7 电源电压、输出电压波形图图5-8 输入电流Id的波形图5-9用示波器模块观察和记录电源电压、控制信号、负载电压的波形图说明:如图所示,分别为负载电压、电源电压、控制信号的波形图。

打开新建模型窗口,将所需元件模块从模块库中拖入新建模型窗口并改名,设定有关参数后将各模块库连接组成仿真模型,如下图5-9所示,设置好各模块参数,点击下拉菜单仿真(Simulation)按钮,仿真参数(Simulation Parameters)命令设定有关仿真参数,设定停止时间(Stop Time)为0.1秒,仿真算法选择可变步长(Variable-step)积分算法函数其,他参数用默认值。

然后点击启动仿真按钮,则开始仿真,双击显示模块(scope)就能显示其信号波形。

图5-10 触发电压波形图说明:从上到下依次为VT1,VT2,VT3,VT4的触发电压,幅值为5V。

6 心得体会通过本次课程设计,加深了我对课程《电力电子技术》理论知识的理解,特别是有关逆变电路方面的知识。

同时也培养了以下几点能力:第一:提高了自己完成课程设计报告水平,提高了自己的书面表达能力。

具备了文献检索的能力,特别是如何利用Intel网检索需要的文献资料。

第二:提高了运用所学的各门知识解决问题的能力,在本次课程设计中,涉及到很多学科,包括:电力电子技术、电路原理等,学会了如何整合自己所学的知识去解决实际问题。

第三:深刻理解了单相全桥逆变电路的原理及应用。

参考文献【1】李先允主编电力电子技术北京:中国电力出版社,2006【2】佟纯厚主编电力电子学南京:东南大学出版社,2000【3】王兆安,黄俊主编电力电子技术(第4版)北京:机械工业出版社,2004 【4】黄俊王兆安主编电力电子交流技术(第3版)北京:机械工业出版社,1994 【5】石玉王文郁主编电力电子技术题解与电路设计指导北京:机械工业出版社,2000【6】洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真.机械工业出版社.2006致谢对本次课题的初步了解是在《电力电子》课堂上,在此,真心感谢高丽珍老师,在此课程设计期间,我不仅学到了许多新的知识,而且也开阔了视野,提高了自己的设计能力。

其次,我要感谢帮助过我的同学,他们也为我解决了不少我不太明白的设计商的难题。

同时也感谢学院为我提供良好的做课程设计的环境。

相关文档
最新文档