新北师大版数学六年级下册《圆柱的体积》ppt课件4

合集下载

北师六年级下册数学1单元 第6课时 圆柱的体积(2) 教案

北师六年级下册数学1单元 第6课时 圆柱的体积(2) 教案
计算底面积:3.14×22=12.56(cm2),
最后计算体积,12.56×200=2512(cm3)。
师:这种情况可以总结为:已知底面周长和高,求圆柱的体积,用字母表示V =π(C÷π÷2)2h。
师:如果这根金箍棒是铁制的,每立方厘米的铁重7.9g,这根金箍棒质量为多少千克?同学们,从中你发现了什么?
师:看来高相等的长方体和圆柱体,底面积大的体积就大。这种问题,只比较它们的底面积大小就好了。
4.如图,求出小铁块的体积。
师:一起来看图中的信息:已知原来圆柱形容器的底面直径是10cm,水的高度是5cm,将小铁块放入水中,容器中水的高度上升,上升了2cm。从中我们会发现:小铁块的体积与上升水的体积是相等的。上升的水的形状是圆柱形,这个圆柱的底面直径与容器的直径一样,也是10cm,高是2cm,所以计算出这个圆柱的体积,就是小铁块的体积了。3.14×(10÷2)2×2=157(cm3)
生:从题目中我发现“每立方厘米铁重7.9g”,由此可得,将圆柱的体积乘7.9即可。但7.9的单位是g,最终问题要求单位是kg,所以,最终结果需要换算单位。正确算法是7.9×2512=19844.8(g)=19.8448(kg),所以这根金箍棒重19.8448千克。
师:接着我们一起进入练习环节,看看从中会收获哪些。
师:老师实际测量了这三个圆柱的相关数据,并且实际计算了它们的体积,一起来看。同学们将你的估计值和老师的实际计算值比较一下,你认为哪一种圆柱体的体积你不容易估准?
生:通过对比,我认为:笔筒的体积不容易估,因为我的估计值和实际计算值相差大些。
师:像这样的问题,答案是不唯一的。因为可能有些同学会在估计其他圆柱物体的体积时与实际值相差较大。关键是同学们能够有一个善于观察和探究的好习惯就好了。

人教版六年级下册数学《圆柱的体积容积》精品PPT课件

人教版六年级下册数学《圆柱的体积容积》精品PPT课件

⑷ 一个圆柱的体积是180 立方分米,底面积是 30 平方分米。它的高是( 6 分)米。
3、判断正误,对的画“√”,错 误 的画“×”。
(1)圆柱体的底面积越大,它的体积越大。
(×)
(2)圆柱体的高越长,它的体积越大。
(×)
(3)圆柱体的体积与长方体的体积相等。
(×)
(4)圆柱体的底面直径和高可以相等。
杯子的容积: 50.24×10 =502.4(ml)
502.4ml>498ml
答:这个杯子能装下这袋奶.
例2 一个圆柱形水桶,从里 面量底面直径是20厘米, 高是25厘米。这个水桶的
容积是多少立方分米?
例3、一根长2米的圆钢,横截面直径是6 厘米,每立方厘米钢重7.8千克。这根圆金 钢的重是多少千克?(得数保留整千克)
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。
圆柱的体积
例 1 一个圆柱形钢材,底面积是 20 平方 厘米,高是 1.5 米。它的体积是多少? 怎样解答?
想一想、填一填:
把圆柱体切割拼成近似( ),它们
的( )相等。长方体的高就是圆柱体的
( ),长方体的底面积就是圆柱体的
(
),因为长方体的体积=(底面积×高
),所以圆柱体的体积=( 底面积×高)。用字母 “V”表示( ),“S”表示( ), “h”表示( ),那么,圆柱体体积用字母 表示为( )
猜想:圆柱体积的大小跟 哪些条件有关?
棒!
h甲>h乙 甲 V甲>V乙

北师大版小学数学六年级下册《圆柱的体积》说课稿

北师大版小学数学六年级下册《圆柱的体积》说课稿

《圆柱的体积》说课稿一、说教材1.教学内容本节课内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。

2.本节课在教材中所处的地位和作用《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。

学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3.教材的重点和难点由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。

其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

4.教学目标(1)、理解圆柱体积公式的推导过程。

(2)、能够初步地学会运用体积公式解决简单的实际问题。

(3)、进一步提高学生解决问题的能力。

二、说教法从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:1.直观演示,操作发现教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。

从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。

2.巧设疑问,体现两“主"教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。

把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的。

3.运用迁移,深化提高运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。

三、说学法课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。

《圆柱的体积》教学设计六年级下册数学北师大版

《圆柱的体积》教学设计六年级下册数学北师大版

《圆柱的体积》教学设计六年级下册数学北师大版我今天要为大家讲授的是六年级下册数学北师大版中的《圆柱的体积》一课。

一、教学内容本节课的主要内容是圆柱的体积计算方法。

我们将从生活中的实例出发,引入圆柱的概念,并通过实际操作,让学生掌握圆柱体积的计算方法。

教材中的相关章节为“圆柱的认识”和“圆柱的体积”。

二、教学目标通过本节课的学习,我希望学生们能够掌握圆柱的概念,了解圆柱体积的计算方法,并能够运用所学知识解决实际问题。

三、教学难点与重点本节课的重点是圆柱体积的计算方法,难点是理解圆柱体积的计算原理。

四、教具与学具准备为了更好地帮助学生们理解圆柱体积的计算,我准备了一些实际的圆柱体,如圆柱形的饮料瓶、圆柱形的铅笔等,以及一些测量工具,如尺子、量筒等。

五、教学过程1. 实践情景引入:我会向学生们展示一些实际的圆柱体,让他们观察并描述圆柱的特点。

2. 圆柱的概念:我会通过讲解,让学生们了解圆柱的定义,包括底面、高 etc.3. 圆柱体积的计算方法:我会通过示例,向学生们讲解圆柱体积的计算方法,即底面积乘以高。

4. 实例讲解:我会选取一些实例,让学生们运用所学知识进行计算。

5. 随堂练习:我会布置一些练习题,让学生们巩固所学知识。

6. 作业设计:我会布置一些有关圆柱体积的计算题目,让学生们课后进行练习。

六、板书设计板书设计如下:圆柱的体积 = 底面积× 高七、作业设计(1)底面半径为3cm,高为5cm的圆柱;(2)底面半径为4cm,高为7cm的圆柱;答案:(1)282.7cm³;(2)351.68cm³。

2. 某饮料瓶的底面直径为8cm,高为10cm,求该饮料瓶的体积。

答案:502.4cm³。

八、课后反思及拓展延伸通过本节课的学习,学生们掌握了圆柱体积的计算方法,并能运用所学知识解决实际问题。

但在教学过程中,我发现部分学生对于圆柱体积计算原理的理解还不够深入,需要在今后的教学中加强引导和讲解。

人教版小学数学六年级下册12册《圆柱的体积》教学课件

人教版小学数学六年级下册12册《圆柱的体积》教学课件
怎样求它们 的体积呢?
圆的面积公式推导过程:
圆的面积公式推导过程:
πr
S=π r
2
r
2
S=πr ×r =π r
1、拼成的长方体的体积与原来的圆 柱体体积是否相等? 2、它的底面积变了吗? 3、它的高变了吗?
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
长方形的体积= 长×宽×高 正方形的体积= 棱长×棱长 ×棱长
大胆猜想圆柱体的体积等于??
因为变换成长方体后,底面积和 高的大小是不变的,所以圆柱的 体积也等于底面积×高
V= S × h
直柱体的体积 = 底面积×高
V =s h
一、填表。
高 h 圆柱体积 V (平方米) (米) (立方米)
底面积
s
15 40
3 4
45 160
二、填空
1、一个长方体和一个圆柱的体积相等,
米, 高 5 厘米。
5
12 24× 12
2
3.14× 2 × 5
2
求下面圆柱的体积。
3、底面直径 5 分米, 高 2 分米。
5
2 3.14×(5 2)× 5
2ቤተ መጻሕፍቲ ባይዱ
图1 :
h=h

讨论题:
1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

圆柱体的大小与底面积 有关!
高相等时底面积越大的 体积越大。
将一个圆柱截成不相等的两段,哪个圆柱 体积大?


当底面积相等时,高 越长的体积越大。
下 上
高也相等,那么它们的底面积(相等)。
2、一根横截面面积是10平方厘米的圆柱 形钢材,长是2米,它的体积是(

人教版数学六年级下册 圆柱的体积课件(44张PPT)

人教版数学六年级下册  圆柱的体积课件(44张PPT)

=3.14×16×25
=1256(cm^3)
=1256(ml)
答:瓶子的容积是1256ml。
解:减少的表面积是两个底面面积 底面面积:25.12÷2=12.56(cm3)
底面半径为:
12.56÷3.14÷2=2(cm)
原圆柱的体积:
3.14×22×(20÷2)=125.6(cm3)
答:原来每个圆柱的体积为125.6cm3 。
答:这个圆柱的表面积是301.44cm2;体积是401.92cm3.
例7. 一个圆柱体底面周长和高相等。如果高缩短 2厘米,表面积就减少6.28平方厘米, 这个圆柱 体的体积是多少?
减少的6.28平方厘米 表面积是哪一块呢?
24cm
6.28平方厘米
C=6.28÷ 2=3.14(厘米) r=3.14÷ 3.14÷ 2=0.5(厘米) V=0.52× 3.14× 3.14=2.4649(立方厘米) 答:这个圆柱体的体积是2.4649立方厘米。
502.4 ml>498ml
答:能装下这袋奶。
例2. 若圆柱体的侧面展开后是一个边长为12.56分米正方形,求
这个圆柱的体积。
边长
r=12.56÷ 3.14÷ 2=2(分米12.)56厘米 S底=22× 3.14=12.56(平方分米) V=12.56× 12.56=157.7536(立方分米)
12.56分米
12.56 分米
答:这个圆柱的体积是157.7536立方分米。 “侧面展开 图是正方形”说明 什么呢?
例3.一个圆柱形粮囤,从里面量底面半径是2.5米,高是2米。如 果每立方米稻谷约重545千克,这个粮囤装的稻谷大约有多少千 克?
粮屯体积: 3.14×2.52×2 =3.14×6.25×2 =39.25(m2)

《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册

《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册

4.压路机前轮直径是1.6m,长2m,它转动一周,压路 的面积是多少平方米?
求圆柱侧面积
3.14×1.6×2=10.048(m2)
答:压路的面积是10.048平方米。
5.制作一个底面直径20cm,长50cm的圆柱形通风管,至少 要用多少平方厘米的铁皮?
求圆柱侧面积
3.14×20×50=3140(cm2) 答:至少要用3140平方厘米的铁皮。
S=πr 2
r
πr
S=πr ×r =πr 2
把圆柱的底面平均分的份数越多,切拼成的立体图形 越接近长方体。
思考: ①拼成的长方体的底面积与原来圆柱的底面积有什 么关系?为什么? ②拼成的长方体的高与原来圆柱的高有什么关系? 为什么? ③拼成的长方体的体积与原来圆柱的体积有什么关 系?为什么?
)里画



3. 转动长方形ABCD,生成右面的两个圆柱。说说
它们分别是以长方形的哪条边为轴旋转而成的,底面半 径和高分别是多少。
A
D
1cm
B 2cm C
(1)
(2)
那长方形ABCD如果以AD边为轴旋转,会形 成哪个圆柱呢?请你动手试一试。
答:长方形ABCD如果以AD边为轴旋转,会形成(2)号圆柱。 底面半径是1cm,高是2cm。
?cm S侧:18.84×10=188.4(cm2)
18.84cm 10cm r:18.84÷3.14÷2=3(cm) S底:3.14×32×2=56.52(cm2)
S表:188.4+56.52=244.92(cm2)
1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么 粉刷树干的面积是指树的( B )。
有一个棱长为10厘米的正方体木块,把它削成一个最 大的圆柱体,应削多少体积的木头?

北师大版数学六年级下册全册ppt课件 (完整)

北师大版数学六年级下册全册ppt课件 (完整)
北师大版数学六年级 下册全册
第一单元 圆柱与圆锥 第二单元 比例 第三单元 图形的运动 第四单元 正比例与反比例
数学好玩 整理与复习 总复习
北师大版 六年级下册 第一单元 圆柱与圆锥
旋转后会得到哪个图形? 想一想,连一连。
圆柱
圆台

圆锥
操作活动:
准备两块橡皮泥,捏成圆柱和 圆锥;用看、滚、剪、切等多种 方式探索圆柱和圆锥的特征。
1.上面一排图形旋转后会得到下面的哪个图形?
2.找一找下面图中的圆柱或圆锥,说说圆柱 和圆锥有什么特点。
如果小麦堆的底面半径为2m,高为1.5m。小麦堆 的体积是多少立方米?
1 3.14 22 1.5 3 =6.28(m3)
答:小麦堆的体积是6.28m3。
1.下图中,圆锥的体积与哪个圆柱的体积相等?说 说你是怎么想的。
北师大版 六年级下册 第二单元 比例
12:6=8:4
内项 外项
12 = 8 64
6:4=3:2
6=3 42
3:2=15:10 2:3=10:15 10:2=15:3 2:10=3:15
1.
⑴分别写出图中两个长
方形长与长的比和宽
与宽的比,判断这两
个比能否组成比例。
⑵分别写出图中每个长
方形与宽的比,判断
新的发现。
12×4=6×8
6×2=4×3
3×10=2×15
10×3=2×15 淘气的发现你同意吗?再写出几个比例验证一下。 在比例里,两个内项的积等于两个外项的积。
3.应用比例内项的积与外项的积的关系,判断下面 哪几组的两个比可以组成比例,并写出组成的比 例。
4.根据下面的两组乘法算式,分别写出两个不同的 比例。

北师大版六年级数学下册教材练习课件-第4单元 正比例与反比例(共37张PPT)

北师大版六年级数学下册教材练习课件-第4单元 正比例与反比例(共37张PPT)
变化而变化,煤炭年均开采量与可开采年数的积是一定 的,所以成反比例。
4.如图是两个互相啮合的齿轮,它们在同一时间内转动 时,大齿轮和小齿轮转过的总齿数是相同的。尝试回答 下面的问题。 (1)大齿轮和小齿轮在同一时间内转动时,哪个齿轮 转得更快?哪个齿轮转的圈数多?
小齿轮
小齿轮
(2)转过的总齿数一定时,每个齿轮的齿数和转 过的圈数是什么关系? 成反比例关系 (3)大齿轮有40个齿,小齿轮有24个齿。如果 大齿轮每分转90圈,小齿轮每分转多少圈?
(2)写出竿影的长和竹竿的高的比,你有什么发现? (3)竹竿的高与竿影的长是不是成正比例?说明理由。
(2) 0.4 = 0.8 = 1.2 = 1.6 = 2.4 = 3.2 =0.4,
1
2
3
4
6
8
它们的比值相同。
(3)成正比例,因为竿影的长随着竹竿的高的变化而
变化,且两者比值不变(0.4)。
2.根据下表中底是6cm的平行四边形的面积与高相对应
第4单元·P47~P48练一练
1.
平均每天看的页数
10
15
20
30
40
看完全书所需天数
12
8
6
4
3
(1)把上表补充完整。
(2)说一说看完全书所需天数与平均每天看的页数的变 化关系。(2)看完全书所需天数随平均每天看的页数的增加而减少 (3)平均每天看的页数与看完全书所需天数是不是成反 比例?说明理由。
成正比例,并说明理由。
物体质量/kg
1
2
3
4
5
6
弹簧伸长的长度/cm 0.4 0.8 1.2 1.6
2
2.4
弹簧伸长的长度随物体质量的变化而变化,并且

最新北师大版数学六年级下册《圆柱的体积》·PPT

最新北师大版数学六年级下册《圆柱的体积》·PPT
底面 半径 圆柱底面周长的一半
V=Sh
3.14×0.42×5 =3.14×0.16×5 =3.14×0.8 =2.512(m3) 答:需要2.512m3木材。
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升)
答:一个杯子能装452.16毫升水。
1.分别计算下列各图形的体积,再说说这几个图形 体积计算方法之间的联系。
V= Sh
4×3×8 =96(cm3)
6×6×6
3.14×(5÷2)2×8
=216(cm3) =157(cm3)
2.计算下面各圆柱的体积。
60×4 =240(cm3)
3.14×12×5 3.14×(6÷2)2×10 =15.7(cm3) =282.6(dm3)
3.这个杯子能否装下3000mL的牛奶?
3.14×(14÷2)2×20 =3077.2(cm3) =3077.2(mL) 3077.2mL>3000mL 答:这个杯子能装下3000mL的牛奶。
金箍棒底面周长是12.56cm,长是200cm。这根金箍棒的体积是多 少立方厘米?
底面半径: 12.56÷3.14÷2=2(cm)
2×0.8×600=960(kg)
6.下面的长方体和圆柱哪个体积大?说说你的比较方 法。
7.如图,求出小铁块的体积。
10cm
2cm
3.14×(10÷2)2×2
2cm
=157(cm3)
ቤተ መጻሕፍቲ ባይዱ
8.请你设计一个方案,测量并计算出1枚1元硬币的 体积。
9.寻找日常生活中的三个粗细不同的圆柱形物体。 ⑴ 分别估计它们的体积。 ⑵ 测量相关数据,计算它们的体积。 ⑶ 比较估计值与计算值,哪一种圆柱体的体积你容 易估计错?

小学六年级数学下册教学课件《圆柱的体积(2)》

小学六年级数学下册教学课件《圆柱的体积(2)》

2.一个圆柱形的水池,从里面量底面半径是5m,深 是3.2m。这个水池能蓄水多少吨? (1m3的水重1t。)
【教材P25 做一做 第2题】
V =πr2h 3.14×52×3.2=251.2(m3) 答:这个水池能蓄水251.2吨。
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
探索新知
下图中的杯子能不能装下2袋这样的牛奶? (数据是从杯子里面测量得到的。)
容积的计算方 法与体积的计
算方法相同
要先计算出杯子的容积。
杯子的底面积:3.14×(8÷2)2
=3.14×42
=3.14×16
=50.24 (cm2) 杯子的容积: 50.24×10
=502.4 (cm3)
=502.4 (mL) 牛奶的体积:240×2=480(mL)
2÷2=1(m) 3.14×12×3=9.42(m3) 9.42 m3=9420 dm3=9420L 9420 ÷350≈26(辆)
三、一个水龙头的内直径是1.6cm,打开水龙 头后水的流速是30厘米/秒,一个容积是5L的 水桶,80秒能装满水吗?
5 L=5000 mL
3.14×
1.6 2
×2 30×80=4823.04(cm3)
所用钢材的体积就是用大圆柱的体积减 去中空的小圆柱的体积。
大圆柱的体积:3.14×(10÷2)2×80=6280(cm3) 小圆柱的体积:3.14×(8÷2)2×80=4019.2(cm3) 钢材的体积:6280-4019.2=2260.8(cm3)
3.下面是一根钢管,求它所用钢材的体积。 (单位:cm)【教材P28 练习五 第12题】
想象一下1秒流出的水是什么形状的。 求50秒流出的水的体积就是求什么?

人教版六年级数学下册《圆柱的体积》课件

人教版六年级数学下册《圆柱的体积》课件
的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。

《圆柱的体积》(说课课件)人教版六年级数学下册

《圆柱的体积》(说课课件)人教版六年级数学下册




圆柱体体积=底面积×高
(四)学以致用,解决问题
1.判断正误,对的画“√”,错误的画“×”。 (1)圆柱体的底面积越大,它的体积越大。 (2)长方体,正方体,圆柱体的体积都能用底 面积乘高来计算。 (3)圆柱体的体积与长方体的体积相等。 (4)两个等高的圆柱,底面积大的那个圆柱体
积一定大。
2.李家庄挖了一口圆柱 形水井,地面以下的井 深10m,井底直径为1m。 挖出的土有多少立方米?
作业布置 巩固发展
(一)回顾旧知,复习铺垫
问题1:什么是体积? 物体所占空间大小就做物体的体积。
问题2:长方体、正方体体积的计算方法 底面积×高
问题3:圆的面积怎么计算? 圆是把圆的面积转化成近似的长方形面积进行
计算的。
(二)创设情境、导入新知
问题:这么大的柱子需要 多少木料?
创设问题情境,激发学 生的学习兴趣,使学生为了 验证自己的猜想而产生了强 烈的求知欲望,从而进入最 佳的学习状态。
教学目标
知识与技能目标: 理解圆柱体积公式的推导过程,掌握圆
柱体积的计算方法。 过程与方法目标:
经历用分割拼合的方法推导出援助体积 公式的过程,培养学生独立思考及解决问题 的方法。 情感态度与价值观目标:
感受数学与生活的联系,提高学生学习 数学的积极性,渗透极限的数学思想。
教学重点与难点
教学重点: 理解圆柱体积的推导过程。
(三)合作交流、探究发现
S圆= πr×r= πr2

长方形
利用了( 转化 )的思想方法
πr
r
学习新知
把圆柱的底面分成许多相等的 扇形。 把圆柱沿着高切开,再像这样 拼起来,得到一个近似的长方 体。

北师大版小学数学六年级下册 总复习2-5 立体图形的表面积和体积 教学课件

北师大版小学数学六年级下册 总复习2-5  立体图形的表面积和体积 教学课件
上课时衣着要整洁,不得穿无袖背心、吊带 上衣、超短裙、拖鞋等进入教室。
尊敬谢老师,服谢从任课老师大管理。 家
不做与课堂教学无关的事,保持课堂良好纪 律秩序。
听课时有问题,应先举手,经教师同意后, 起立提问。
上课期间离开教室须经老师允许后方可离开。
上课必须按座位表就坐。
5×5×6=150(平方厘米) 答:做出这个化妆品盒至少需要150平方厘米纸板。
一个游泳池从里面量长是80米,宽是60米,深是
2.5米,在它的内壁四周和底部涂抹水泥,如果每平
方米需要水泥6千克,那么一共需要水泥多少千克?
(80×2.5×2+60×2.5×2+80×60)×6
=(400+300+4800)×6 =5500×6 =33000(千克) 答:一共需要水泥33000千克。
变,则体积扩大到原来的( 4 )倍。
7.把12立方分米的水倒入一个长3分米、宽2分米、
高4分米的长方体玻璃缸内,水面距缸口有( 2 ) 分米。
8.一个正方体的棱长总和是60厘米,那么它的表
面积是( 150 )平方厘米,体积是( 125 )立方厘米。
9.把一根长48厘米的铁丝做成一个长方体的框架
(接头处不计)。已知长、宽、高的比为3∶2∶1, 则这个长方体最大一个面的面积是( 24 )平方 厘米。
10.一个圆柱的侧面展开图是正方形,已知它的底 面周长是31.4厘米,则它的高是( 31.4 )厘米。
二、我是聪明的小法官
1.两个圆柱的侧面积相等,它们的底面周长也一
定相等。 ( × )
2.正方体、长方体、圆柱体都可以用它们各自
的底面积乘高求得体积。( √ )
3.圆柱体的底面半径扩大到原来的2倍,高也扩大

《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)

《圆柱与圆锥——圆锥的体积》数学教学PPT课件(4篇)
人教版六年级下册
圆锥的体积
一、问题导入、引入新课
看,小麦堆得像小山一
样,小麦丰收了!张小
玲和爷爷笑得合不搅嘴
这时,爷爷用竹子量了量麦堆的
高和底面的直径,出了个难题要
考一考小玲,让小玲算一算这堆
小麦大约有多少立方米?
二、探索新知
• 等底等高
1.估一估:你能估计出这个
圆锥的体积是圆柱几分之几
吗?
2.想一想:可以用什么
1、圆锥的体积等于圆柱体积的1/3( )
2、因为圆锥的体积等于圆柱体积的1/3,所以圆柱的体积比圆锥的体积大
( )
3、等底等高的圆柱与圆锥的体积比是3:1 ( )
4、把一个圆柱加工成一个与它等底的圆锥,削去部分的体积是这个圆锥体积的2倍( )
第一关
第二关:
一个圆锥形的零件,底面积是19平方厘米,高是12厘米,
与它等底等高的圆柱体铝坯。
15 ÷ 3 = 5(个)
)个
5
等底等高的圆柱和圆锥
1
圆锥 = 圆柱
3
2.计算下面各圆锥的体积。
1
9×3.6×3
=10.8(㎡)
1
3×3×3.14×8×3
=75.36(d㎡)
1
(8÷2)²×3.14×12×3
=200.96(cm²)
3. 一个圆锥形的零件,底面积是19cm2 ,高是12cm,
这个零件的体积是多少?
规范解答:

圆锥 =


×19×12=76(cm³)

答:这个零件的体积是76 cm3 。
4. 一个圆柱的底面周长是12.56dm,高是4.5dm,将它削成
最大的圆锥,削去部分的体积是多少?

西师大版数学六年级下册《圆柱的体积》PPT课件2013

西师大版数学六年级下册《圆柱的体积》PPT课件2013

3.14×5² ×15=1177.5(立方厘 米)
练一练
1.填表
底面积S(m² )
高h(m)
圆柱的体积 V(m³ ) 45 25.6
15 6.4
3 4
2.求下面各圆柱体的体积(单位:cm)
4
8 314
12
8
20
3.14×4² ×12 =602.88cm³
3.14×( 8 )² ×8 2 =401.92cm³
西师大版六年级数学下册
教学目标
Hale Waihona Puke 1.运用迁移规律,引导同学们借助圆面积计 算公式的推导方法来推导圆柱的体积计算公 式,并理解这个过程。 2.会用圆柱的体积公式计算圆柱形物体的体 积和容积。 3.引导同学们逐步学会转化的数学思想和数 学方法,培养同学们解决实际问题的能力。 4.借助实物演示,培养同学们抽象、概括的思 维能力。
3.14×(
314 )² ×20 2×3.14
=157000cm³
谢谢!
d
h
沿直径把圆柱一分为二
把圆柱的两半分成若干份
拼 成 一 个 长 方 体
因为:长方体的体积
V=Sh
所以:圆柱体的体积
V=Sh
例4 一根圆柱形钢材,底面积是50平方厘米,高是 2.1米。他的体积是多少?
(想:由于底面积和高的单位不统一,先要进行 单位换算)
2.1米=210厘米
50 × 210 = 10500 立方厘米
314
3.14×(
20 2

×
25
=3.14×10² =314(平方厘米)
=7850(立方厘米) =7.85(立方分米)
答:这个水桶的容积是7.85立方分米

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

大?你有什么发现?
18

12
9
6
2 3 4 6
图1
以长方形的宽 图1
为底面周长:
图2
5π4>
36 π

27 π

18 π
图3
图4的体积最大。 图4
图2
图3
图4
π×(2÷π÷2)²×2=1π8(dm³)
π×(3÷π÷2)²×3= 2π7(dm³)
π×(4÷π÷2)²×4= 3π6(dm³)
π×(6÷π÷2)²×6= 5π4(dm³)
求高为12cm圆柱的体积。
(6÷2)2×3.14×12 =9×3.14×12 =339.12(cm3) =339.12(mL) 答:小红喝了339.12mL的水。
两个底面积相等的圆柱,一个高为4.5dm,体积为81dm3。 另一个高为3dm,它的体积是多少?
只要求出其中一 个圆柱的底面积, 也就得出了另一 个圆柱的底面积。
下面4个图形的面积都是36dm2(图中单位:dm)。
用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最
大?你有什么发现?
18
12
9
6
2 3 4 6
图1
图2
同一个长方形,以 长为底面周长比以 宽为底面周长卷成 的圆柱体积大。
1
图3
图4
侧面积相等的圆柱, 底面周长比高大得 越多,体积就越大。 否则就越小。
=3.14×400×10
20cm
20cm,高10cm。
=1256×10
=12560(cm³)
答:以宽为轴旋转一周,得到的圆柱的体积是12560cm³。
我国是一个水资源短缺、水旱灾害频繁的国家, 全国669座城市中有400座供水不足,110座严重缺 水。但是,在一些校园内经常会发现学生忘关水龙 头的现象,如果学校自来水管的内直径是2厘米, 水管内水的流速是每秒8分米。小军去水池洗手时, 忘记关掉水龙头,像这样5分钟会浪费多少升水?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=282.6(dm3)
3.这个杯子能否装下3000mL的牛奶?
3.14×(14÷2)2×20 =3077.2(cm3) =3077.2(mL) 3077.2mL>3000mL
答:这个杯子能装下3000mL的牛奶。
金箍棒底面周长是12.56cm,长是200cm。这根金箍 棒的体积是多少立方厘米? 底面半径: 12.56÷3.14÷2=2(cm) 底面积: 3.14×22=12.56(cm3) 体积: 12.56×200=2512(cm3) 答:这根金箍棒的体积是2512cm3。 如果这根金箍棒是铁制的,每立方厘米的铁重 7.9g, 这根金箍棒重多少千克? 7.9×2512=19844.8(g)=19.8448(kg)
1.分别计算下列各图形的体积,再说说这几个图形
体积计算方法之间的联系。
V = Sh
4×3×8
=96(cm3) 6×6×6 =216(cm3)
3.14×(5÷2)2×8
=157(cm3)
2.计算下面各圆柱的体积。
60×4 =240(cm3)
3.14×12×5
=15.7(cm3)
3.14×(6÷2)2×10
⑴ 分别估计它们的体积。
⑵ 测量相关数据,计算它们的体积。 ⑶ 比较估计值与计算值,哪一种圆柱体的体积你容 易估计错?
80cm=0.8m
2×0.8×600=960(kg)
6.下面的长方体和圆柱哪个体积大?说说你的比较方法。
7.如图,求出小铁块的体积。
2cm 10cm
3.14×(10÷2)2×2
2cm
=157(cm3)
8.请你设计一个方案,测量并计算出1枚1元硬币的
体积。
9.寻找日常生活中的三个粗细不同的圆柱形物体。
答:这根金箍棒重19.8448千克。
4.光明村李大伯家挖一口圆柱形的水井,底面周长
是3.14m,深4m。挖出了多少立方米的土?
3.14×(3.14÷3.14÷2)2×4=3.14(m3)
5.一个装满稻谷的圆柱形粮囤,底面面积为2m2,高
为80cm。每立方米稻谷约重600kg,这个粮囤存放
的稻谷约重多少千克?
北师大版 六年级下册 第一单元 圆柱与圆锥
h
S
h
h
SSVຫໍສະໝຸດ = ShV = Sh圆 柱 的 高 底面 半径
圆柱底面周长的一半
圆柱的体积=底面积×高
3.14×0.42×5 =3.14×0.16×5 =3.14×0.8 =2.512(m3) 答:需要2.512m3木材。
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升) 答:一个杯子能装452.16毫升水。
相关文档
最新文档