湖南省湘西自治州2013届高三下学期第二次联考数学(文科)试卷(word版)
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效.3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|-3<X〈1},N={—3,-2,—1,0,1},则M∩N=(A){—2,-1,0,1} (B){-3,-2,-1,0}(C){—2,—1,0} (D){-3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x—3y的最小值是(A)(B)—6 (C)(D)—(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30.,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b (9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C)(D)(10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点。
2013年湖南省高考数学试卷(文科)
2013年湖南省高考数学试卷(文科)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)“1<x<2”是“x<2”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.134.(5分)已知f(x)是奇函数,g(x)是偶函数,且f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,则g(1)=()A.4 B.3 C.2 D.15.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(5分)函数f(x)=lnx的图象与函数g(x)=x2﹣4x+4的图象的交点个数为()A.0 B.1 C.2 D.37.(5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.8.(5分)已知,是单位向量,•=0.若向量满足|﹣﹣|=1,则||的最大值为()A.B.C.D.9.(5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分.10.(5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B=.11.(5分)在平面直角坐标系xOy中,若直线(s为参数)和直线(t为参数)平行,则常数a的值为.12.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.13.(5分)若变量x,y满足约束条件,则x+y的最大值为.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.15.(5分)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=cosx•cos(x﹣).(1)求f()的值.(2)求使f(x)<成立的x的取值集合.17.(12分)如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.19.(13分)设S n为数列{a n}的前n项和,已知a1≠0,2a n﹣a1=S1•S n,n∈N*(Ⅰ)求a1,a2,并求数列{a n}的通项公式;(Ⅱ)求数列{na n}的前n项和.20.(13分)已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.21.(13分)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.2013年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数z,根据复数与复平面内点的对应关系可得答案.【解答】解:z=i•(1+i)=﹣1+i,故复数z对应的点为(﹣1,1),在复平面的第二象限,故选:B.【点评】本题考查复数的代数表示法及其几何意义,属基础题.2.(5分)“1<x<2”是“x<2”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】设A={x|1<x<2},B={x|x<2},判断集合A,B的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【解答】解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选:A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.13【分析】甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,求出丙车间生产产品所占的比例,从而求出n的值.【解答】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13.故选:D.【点评】本题主要考查了分层抽样方法,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.4.(5分)已知f(x)是奇函数,g(x)是偶函数,且f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,则g(1)=()A.4 B.3 C.2 D.1【分析】直接利用函数的奇偶性,化简方程,解方程组即可.【解答】解:f(x)是奇函数,g(x)是偶函数,方程f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,化为:﹣f(1)+g(1)=2,f(1)+g(1)=4,两式相加可得2g(1)=6,所以g(1)=3.故选:B.【点评】本题考查函数的奇偶性的应用,函数的值的求法,基本知识的考查.5.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选:A.【点评】本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(5分)函数f(x)=lnx的图象与函数g(x)=x2﹣4x+4的图象的交点个数为()A.0 B.1 C.2 D.3【分析】在同一个坐标系中,画出函数f(x)=㏑x 与函数g(x)=x2﹣4x+4=(x ﹣2)2的图象,数形结合可得结论.【解答】解:在同一个坐标系中,画出函数f(x)=㏑x 与函数g(x)=x2﹣4x+4=(x﹣2)2的图象,如图所示:故函数f(x)=㏑x的图象与函数g(x)=x2﹣4x+4的图象的交点个数为2,故选:C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.7.(5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.【分析】通过三视图判断正视图的形状,结合数据关系直接求出正视图的面积即可.【解答】解:因为正方体的棱长为1,俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,说明侧视图是底面对角线为边,正方体的高为一条边的矩形,几何体放置如图:那么正视图的图形与侧视图的图形相同,所以正视图的面积为:.故选:D.【点评】本题考查几何体的三视图形状,侧视图的面积的求法,判断几何体的三视图是解题的关键,考查空间想象能力.8.(5分)已知,是单位向量,•=0.若向量满足|﹣﹣|=1,则||的最大值为()A.B.C.D.【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出.【解答】解:∵||=||=1,且,∴可设,,.∴.∵,∴,即(x﹣1)2+(y﹣1)2=1.∴的最大值==.故选:C.【点评】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.9.(5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.【分析】先明确是一个几何概型中的长度类型,然后求得事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的线段长度,再利用两者的比值即为发生的概率,从而求出.【解答】解:记“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”为事件M,试验的全部结果构成的长度即为线段CD,构成事件M的长度为线段CD其一半,根据对称性,当PD=CD时,AB=PB,如图.设CD=4x,则AF=DP=x,BF=3x,再设AD=y,则PB==,于是=4x,解得,从而.故选:D.【点评】本题主要考查几何概型,基本方法是:分别求得构成事件A的区域长度和试验的全部结果所构成的区域长度,两者求比值,即为概率.二、填空题:本大题共6小题,每小题5分,共30分.10.(5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A)∩B={6,8} .【分析】先求出集合A的补集,再利用交集的定义求(C U A)∩B【解答】解:由题意∵U={2,3,6,8},集合A={2,3},∴C U A={6,8},又B={2,6,8},故(C U A)∩B={6,8}故答案为:{6,8}.【点评】本题考查交、并、补集的混合运算,正确解答本题关键是掌握并理解补集与交集的定义,并能根据所给的规则进行正确运算.11.(5分)在平面直角坐标系xOy中,若直线(s为参数)和直线(t为参数)平行,则常数a的值为4.【分析】先将直线的参数方程化为普通方程,再利用两条直线平行,直接求出a 的值即可.【解答】解:直线l1的参数方程为(s为参数),消去s得普通方程为x ﹣2y﹣1=0,直线l2的参数方程为(t为参数),消去t得普通方程为2x﹣ay﹣a=0,∵l1∥l2,x﹣2y﹣1=0的斜率为k1=,∴2x﹣ay﹣a=0的斜率k2==,解得:a=4.故答案为:4.【点评】本题是基础题,考查直线的平行条件的应用,注意直线的斜率是否存在是解题关键,考查计算能力.12.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为32.【分析】模拟执行程序,依次写出每次循环得到的a的值,当a=32时,满足条件a>31,退出循环,输出a的值为32.【解答】解:模拟执行程序,可得a=1,b=2不满足条件a>31,a=2不满足条件a>31,a=4不满足条件a>31,a=8不满足条件a>31,a=16不满足条件a>31,a=32满足条件a>31,退出循环,输出a的值为32.故答案为:32.【点评】本题主要考查了程序框图和算法,正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.13.(5分)若变量x,y满足约束条件,则x+y的最大值为6.【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.【解答】解:画出可行域如图阴影部分,由得A(4,2)目标函数z=x+y可看做斜率为﹣1的动直线,其纵截距越大z越大,由图数形结合可得当动直线过点A时,z=4+2=6最大故答案为:6.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.【分析】根据题意可知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,求得|PF1|和|PF2|,进而利用双曲线定义建立等式,求得a和c的关系,则离心率可得.【解答】解:依题意可知∠F1PF2=90°|F1F2|=2c,∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c,由双曲线定义可知|PF1|﹣|PF2|=2a=(﹣1)c∴e==.故答案为:.【点评】本题主要考查了双曲线的简单性质特别是双曲线定义的运用,属于基础题.15.(5分)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P ∩Q的元素个数为17.【分析】(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.【解答】解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足P i+P i+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17﹣1)×6,∴共有17相同的元素.故答案分别为2,17.【点评】正确理解“特征数列”的定义是解题的关键.三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=cosx•cos(x﹣).(1)求f()的值.(2)求使f(x)<成立的x的取值集合.【分析】(1)将x=代入f(x)解析式,利用两角和与差的余弦函数公式及特殊角的三角函数值化简即可得到结果;(2)f(x)解析式利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,变形后,利用余弦函数的图象与性质即可得到满足题意x的集合.【解答】解:(1)f()=cos cos(﹣)=cos cos=﹣cos2=﹣;(2)f(x)=cosxcos(x﹣)=cosx(cosx+sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=cos(2x﹣)+,∴f(x)<,化为cos(2x﹣)+<,即cos(2x﹣)<0,∴2kπ+<2x﹣<2kπ+(k∈Z),解得:kπ+<x<kπ+(k∈Z),则使f(x)<成立的x取值集合为{x|kπ+,kπ+(k∈Z)}.【点评】此题考查了两角和与差的余弦函数公式,以及余弦函数的单调性,熟练掌握公式是解本题的关键.17.(12分)如图.在直棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1﹣A1B1E的体积.【分析】(1)根据直三棱柱的性质,得AD⊥BB1,等腰△ABC中利用“三线合一”证出AD⊥BC,结合线面垂直判定定理,得AD⊥平面BB1C1C,从而可得AD⊥C1E;(2)根据AC∥A1C1,得到∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角.由A1C1⊥A1B1且A1C1⊥AA1,证出A1C1⊥平面AA1B1B,从而在Rt△A1C1E中得到∠EC1A1=60°,利用余弦的定义算出C1E=2A1C1=2,进而得到△A1B1E面积为,由此结合锥体体积公式即可算出三棱锥C1﹣A1B1E的体积.【解答】解:(1)∵直棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,AD⊂平面ABC,∴AD⊥BB1∵△ABC中,AB=AC,D为BC中点,∴AD⊥BC又∵BC、BB1⊂平面BB1C1C,BC∩BB1=B∴AD⊥平面BB1C1C,结合C1E⊂平面BB1C1C,可得AD⊥C1E;(2)∵直棱柱ABC﹣A1B1C1中,AC∥A1C1,∴∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角∵∠BAC=∠B1A1C1=90°,∴A1C1⊥A1B1,又∵AA1⊥平面A1B1C1,可得A1C1⊥AA1,∴结合A1B1∩AA1=A1,可得A1C1⊥平面AA1B1B,∵A1E⊂平面AA1B1B,∴A1C1⊥A1E因此,Rt△A1C1E中,∠EC1A1=60°,可得cos∠EC1A1==,得C1E=2A1C1=2又∵B1C1==2,∴B1E==2由此可得V=S×A1C1=×=【点评】本题给出直三棱柱的底面是等腰直角三角形,在已知侧棱长和底面边长的情况下证明线线垂直并求锥体的体积,着重考查了直棱柱的性质、空间线面垂直的判定与性质等知识,属于中档题.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.【分析】(Ⅰ)根据题意可知所种作物的总株数为1+2+3+4+5,其中“相近”作物株数为1的有2株,“相近”作物株数为2的有4株,“相近”作物株数为3的有6株,“相近”作物株数为4的有3株,据此列表,且可得出所种作物的平均所收获量.(Ⅱ)由(Ⅰ)知,P(Y=51)=,P(Y=48)=,从而根据互斥事件的概率加法公式得出在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.【解答】解:(Ⅰ)所种作物的总株数为1+2+3+4+5=15,建立如图所示直角坐标系,其中“相近”作物株数为1的植株有2株,植株坐标分别为(4,0),(0,4),“相近”作物株数为2的植株有4株,植株坐标分别为(0,0),(1,3),(2,2),(3,1),“相近”作物株数为3的植株有6株,植株坐标分别为(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),“相近”作物株数为4的植株有3株,植株坐标分别为(1,1),(1,2),(2,1).列表如下:所种作物的平均所收获量为:(51×2+48×4+45×6+42×3)==46;(Ⅱ)由(Ⅰ)知,P(Y=51)=,P(Y=48)=,故在所种作物中随机选取一株,求它的年收获量至少为48kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=+=.【点评】本题考查互斥事件的概率加法公式,众数、中位数、平均数和利用图表获取信息的能力.利用图表获取信息时,必须认真观察、分析、研究图表,才能作出正确的判断和解决问题.19.(13分)设S n为数列{a n}的前n项和,已知a1≠0,2a n﹣a1=S1•S n,n∈N*(Ⅰ)求a1,a2,并求数列{a n}的通项公式;(Ⅱ)求数列{na n}的前n项和.【分析】(Ⅰ)令n=1和2,代入所给的式子求得a1和a2,当n≥2时再令n=n﹣1得到2a n﹣1﹣1=S n﹣1,两个式子相减得a n=2a n﹣1,判断出此数列为等比数列,进而求出通项公式;(Ⅱ)由(Ⅰ)求出na n=n•2n﹣1,再由错位相减法求出此数列的前n项和.【解答】解:(Ⅰ)令n=1,得2a1﹣a1=,即,∵a1≠0,∴a1=1,令n=2,得2a2﹣1=1•(1+a2),解得a2=2,当n≥2时,由2a n﹣1=S n得,2a n﹣1﹣1=S n﹣1,两式相减得2a n﹣2a n﹣1=a n,即a n=2a n﹣1,∴数列{a n}是首项为1,公比为2的等比数列,∴a n=2n﹣1,即数列{a n}的通项公式a n=2n﹣1;(Ⅱ)由(Ⅰ)知,na n=n•2n﹣1,设数列{na n}的前n项和为T n,则T n=1+2×2+3×22+…+n×2n﹣1,①2T n=1×2+2×22+3×23+…+n×2n,②①﹣②得,﹣T n=1+2+22+…+2n﹣1﹣n•2n=2n﹣1﹣n•2n,∴T n=1+(n﹣1)2n.【点评】本题考查了数列a n与S n之间的转化,以及由错位相减法求出数列的前n项和的应用.20.(13分)已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y﹣2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.【分析】(I)由题意可知:F1(﹣2,0),F2(2,0),可得⊙C的半径为2,圆心为原点O关于直线x+y﹣2=0的对称点.设圆心的坐标为(m,n).利用线段的垂直平行的性质可得,解出即可得到圆的方程;(II))由题意,可设直线l的方程为x=my+2,利用点到直线的距离公式可得圆心到直线l的距离d=,再利用弦长公式即可得到b=.把直线l 的方程为x=my+2与椭圆的方程联立得到根与系数的关系,利用弦长公式即可得到a,进而得到ab,利用基本不等式的性质即可得出结论.【解答】解:(I)由题意可知:F1(﹣2,0),F2(2,0).故⊙C的半径为2,圆心为原点O关于直线x+y﹣2=0的对称点.设圆心的坐标为(m,n).则,解得.∴圆C的方程为(x﹣2)2+(y﹣2)2=4;(II)由题意,可设直线l的方程为x=my+2,则圆心到直线l的距离d=,∴b=.由得(5+m2)y2+4my﹣1=0.设l与E的两个交点分别为(x1,y1),(x2,y2).则,.∴a===,∴ab===.当且仅当,即时等号成立.故当时,ab最大,此时,直线l的方程为,即.【点评】本题综合考查了圆与椭圆的标准方程及其性质、轴对称的性质、圆的弦长公式b=、直线与椭圆相交的弦长公式a=、基本不等式的性质等基础知识与方法,需要较强的推理能力、计算能力、分析问题和解决问题的能力..21.(13分)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【分析】(Ⅰ)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0的x取值范围即可得到单调区间;(Ⅱ)当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(I)可知:x1∈(﹣∞,0),x2∈(0,1).利用导数先证明:∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),可得f(x2)<f(﹣x2).即f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,因此得证.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(﹣∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(﹣x),即证<.此不等式等价于.令g(x)=,则g′(x)=﹣xe﹣x(e2x﹣1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(﹣x).而x2∈(0,1),∴f(x2)<f(﹣x2).从而,f(x1)<f(﹣x2).由于x1,﹣x2∈(﹣∞,0),f(x)在(﹣∞,0)上单调递增,∴x1<﹣x2,即x1+x2<0.【点评】本题综合考查了利用导数研究函数的单调性、等价转化问题等基础知识与基本技能,需要较强的推理能力和计算能力.第21页(共21页)。
2013年湖南高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i(1i)z =+(i 为虚数单位)在复平面上对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【测量目标】复数代数形式的四则运算及复平面.【考查方式】给出复数的乘法形式,间接地考查了复数的代数与几何之间的关系. 【参考答案】B【试题解析】 i(1i)1i z =+=-+,∴复数z 对应复平面上的点是(1,1)-,该点在第二象限.2.“1<x <2”是“x <2”成立的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】命题的基本关系,充分、必要条件. 【考查方式】主要考查命题的基本关系以及充分必要条件. 【参考答案】A【试题解析】设{|12}A x x =<<,{|2}B x x =<,∴A B Ü,即当0x A ∈时,有0x B ∈,反之不一定成立.因此“12x <<”是“2x <”成立的充分不必要条件.3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n = ( ) A .9 B .10 C .12 D .13 【测量目标】分层抽样.【考查方式】根据分层抽样的特点,结合实际问题用比例法求解样本容量的多少. 【参考答案】D 【试题解析】3=601208060n++,13n ∴= 4.已知()f x 是奇函数,()g x 是偶函数,且(1)(1)2f g -+=,()()114f g +-=,则g (1)等于( )A .4B .3C .2D .1【测量目标】函数的奇偶性、函数的求值.【考查方式】给出两个奇、偶函数的关系式,结合奇、偶函数的性质求解g (1). 【参考答案】B【试题解析】根据奇、偶函数的性质,将(1)f -和(1)g -转化(1),(1)f g -为列方程再求解. (f x )是奇函数,(1)(1).f f ∴-=-又()g x 是偶函数, (1)(1)g g ∴-=,(步骤1) (1)(1)2,(1)(1)2f g g f -+=∴-= . ①(步骤2)又(1)(1)4,(1)(1)4f g f g +-=∴+=. ②(步骤3) 由①②,得(1)3g =.(步骤4)5.在锐角三角形ABC 中,角,A B 所对的边长分别为a ,b .若2sin a B =,则角A 等于( ) A .π3 B .π4 C .π6 D .π12【测量目标】正弦定理.【考查方式】给出三角形的边角之间的关系,根据正弦定理,求出其中一个角的大小. 【参考答案】A【试题解析】在△ABC 中,2sin ,2sin a R A b R B ==(R 为△ABC 的圆半径),2sin ,2sin sin a B A B B =∴=sin A ∴=,又△ABC 为锐角三角形,π3A ∴=.6.函数()ln f x x =的图象与函数2()44g x x x =-+的图象的交点个数为 ( ) A .0 B .1 C .2 D .3【测量目标】函数的图像与性质,数形结合思想.【考查方式】给出对数函数和二次函数,考查了两个函数的图像与交点. 【参考答案】C【试题解析】22()44(2)g x x x x =-+=-在同一平面直角坐标系内画出函数()ln f x x =与2()(2)g x x =-的图象(如图).由图可得两个函数的图象有2个交点. 第6题图7.已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于 ( )A B .1 C D 【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法.【考查方式】给出正方体的三视图面积,间接地考查了对正方形三视图的认识,并求出正视图的面积. 【参考答案】D【试题解析】由于该正方形的俯视图是面积为11的矩形,所以8.已知,a b 是单位向量,0∙=a b ,若向量c 满足0--=c a b ,则c 的最大值为 ( )A 1-BC 1D 2 【测量目标】向量的运算律、向量的数量积及模.【考查方式】给出模为零的向量,间接地考查了向量的运算律、数量积及模的综合应用,并求出其中一个向量的模. 【参考答案】C【试题解析】 ,a b 是单位向量, ∴1==a b ,(步骤1)又0∙=a b ,∴⊥a b ,(步骤2)∴+=a b .(步骤3) ∴22222()+21--=-∙+∙++=c a b c c a b αb a b .22()10∴-∙++=c c a b ,22()1∴∙+=+c a b c .(步骤4) ∴21+c 2cos θ=+c a b (θ是c 与+a b 的夹角).(步骤5)∴21+c cos θ=…,∴210-+c ….(步骤6)∴11c 剟,∴c 1.(步骤7) 9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB= ( )A .12 B .14C D【测量目标】几何概型.【考查方式】给出事件发生的概率并与代数相结合,求出几何概型的概率. 【参考答案】D【试题解析】由于满足条件的点P 发生的概率为12,点P 在边CD 上运动,根据图形的对称性当点P 在靠近点D 的CD 边的14分点时,EB AB =(当P 点超过点E 向点D 运动时,PB AB >).设AB x =,过点E 作EF AB ⊥交AB 于点F ,则34BF x =.在Rt FBE △中,222222716EF BE FB AB FB x =-=-=,即EF x =,AD AB ∴=第9题图 二、填空题:本大题共6小题,每小题5分,共30分.10.已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B ð= . 【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算. 【参考答案】{6,8}【试题解析】因为{2,3,6,8},{2,3}U A ==,所以{6,8}U A =ð,所以(){6,8}{2,6,8}{6,8}U A B == ð. 11.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为 .【测量目标】参数方程、两直线的位置关系,转化思想的应用.【考查方式】参数方程与直角坐标方程的互化,间接考查了直线方程与直线位置的关系. 【参考答案】4 【试题解析】由21,x s y s=+⎧⎨=⎩消去参数s ,得21x y =+.由,21x at y t =⎧⎨=-⎩消去参数t ,得2x ay a =+.12l l ∥,21, 4.2a a ∴=∴=12.执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为 . 【测量目标】循环结构的程序框图.【考查方式】程序框图的逻辑关系,并根据程序框图求出a 的值. 第12题图【参考答案】9【试题解析】当1,2a b ==时,8a >不成立,执行a a b =+后a 的值为3.当3,2a b ==时,8a >不成立,执行a a b =+后a 的值为5.当5,a =2b =时,8a >不成立,执行a ab =+后a 的值为7.当7,a =2b =时,8a >不成立,执行a a b =+后a 的值为9.由于98>成立,故输出的a 值为9.13.若变量,x y 满足约束条件28,04,03x y x y +⎧⎪⎨⎪⎩…剟剟则x y +的最大值为______.【测量目标】线性规划知识求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最大值. 【参考答案】6【试题解析】根据不等式组出其平面区域,令z x y =+,结合直线z x y =+的特征求解.如图,画出不等式组表示的平面区域,平行移动z x y =+经过点(4,2)A 时,z 取最大值6. 第13题图14.设12,F F 是双曲线C 22221x y a b-= ()0,0a b >>的两个焦点.若在C 上存在一点P .使12PF PF ⊥,且1230PF F ∠=,则C 的离心率为___________. 【测量目标】双曲线的定义及其相关性质.【考查方式】给出双曲线上的点到两焦点之间直线的关系,根据双曲线的定义及性质求解其离心率.1【试题解析】如图,利用12PF PF ⊥及1230PF F ∠=,求出a ,c 的关系式. 设点P 在双曲线右支上. 12PF PF ⊥,122F F c =,且1230PFF ∠= ,∴2PF c =,1PF =.又点P 在双曲线右支上,∴12PF PF-1)c =2a =.∴c e a==1=. 第14题图 15.对于12100{,,,}E a a a = 的子集12{,,,}k i i i X a a a = ,定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== .其余项均为0,例如子集23{,}a a 的“特征数列”为0,1,0,0, 0⑴子集135{,,}a a a 的“特征数列”的前三项和等于___________;⑵若E 的子集P 的“特征数列”12100,,,p p p ⋅⋅⋅ 满足11p =,11i i p p ++=,199i剟;E 的子集Q 的“特征数列” 12100,,,q q q ⋅⋅⋅满足11q =,121j j j q q q ++++=,198j剟,则P Q 的元素个数为_________.【测量目标】集合的子集、交集定义的理解以及数列中项、项数概念的理解及应用. 【考查方式】根据给定“特征数列”的新定义,明确其性质,结合集合及数列性质求解. 【参考答案】⑴2 ⑵17【试题解析】子集中元素的个数为“特征数列”中项1的个数,并且1所在的项记为“特征数列”中的第i 项. ⑴子集{}135,,a a a 的“特征数列”中共有3个1,其余均为0,该数列为1,0,1,0,1,0,0,,0. 故该数列前3项的和为2.⑵E 的子集P 的“特征数列”12100,,,p p p 中,由于11p =,11(199)i i p p i++=剟,因此集合P 中必含有元素1a .又当1i =时,121p p +=,且11p =,故20p =同理可求得31p =,40p =,51p =,60p =,….故E 的子集P 的“特征数列”为1,0,1,0,1,0,1,0,,1,0 ,即{}1,35799,,,,.P a a a a a =⋅⋅⋅E 的子集Q 的“特征数列”12100,,,q q q ⋅⋅⋅中,由于11q =,121j j j q q q ++++=(198)j剟,因此集合Q 中必含有元素1a .当1j =时,1231q q q ++=,当2j =时,2341q q q ++=,当3j =时,3451q q q ++=,…故11q =230q q ==,41q =,560q q ==,71q =,….故,所以E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,,0,1⋅⋅⋅,即{}14710100,,,,,Q a a a a a =⋅⋅⋅.因为1001(1)3n =+-⨯,故34n =,所以集合Q 中有34个元素,其下标为奇数的有17个.因此,P Q {}17131997,,,,,a a a a a =⋅⋅⋅共有17个元素. 三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)已知函数π()cos cos()3f x x x =⋅-.⑴求2π()3f 的值; ⑵求使 1()4f x <成立的x 的取值集合.【测试目标】三角函数的定义及性质,三角函数的恒等变换.【考查方式】利用三角函数的恒等变换将函数转化成正弦函数,根据三角函数图像的性质求出x 的范围.【试题解析】(1)ππ()cos (cos cossin sin )33f x x x x =⋅⋅+⋅111(sin 2cos 2)2224x x =⋅+⋅+ 1π1sin(2)264x =++2π13π1()sin3224f ⇒=+14=-,所以2π1()34f =-. (2)由(1)知,1π11()sin(2)2644f x x =++<1π11cos(2)2344x ⇔-+<,即πcos(2)03x -<于是ππ3π2π22π232k x k +<-<+5π11π(π,π),1212x k k k ⇒∈++∈Z .故使1()4f x <成立的x 的取值集合为5π11π,1212x kx x kx k ⎧⎫+<<+∈⎨⎬⎩⎭Z . 17.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,AB AC ==13AA = ,D 是BC 的中点,点E 在棱1BB 上运动.⑴证明:1AD C E ⊥;⑵当异面直线AC ,1C E 所成的角为60时,求三棱柱111C A B E -的体积.【测量目标】空间点、线、面的之间的位置关系,线线、线面、面面垂直与平行 第17题图 的性质与判定,异面直线所成角,三棱柱的体积.【考查方式】根据线面垂直推导到线线垂直,求出三棱柱111E A B C -的高1EB 再求体积. 【试题解析】⑴AB AC = ,D 是BC 的中点,AD BC ∴⊥.(步骤1) ① 又在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面11BB C C ,∴1AD BB ⊥.(步骤2) ② 由①②,得AD ⊥平面11BB C C ,由E 点在棱1BB 上运动,得1C E ⊂平面11BB C C 1C E AD ∴⊥.(步骤3)⑵11CA C A ∥,1160AC E ∴∠=⇒在11Rt AC E △中,1A E =,(步骤4) ⇒在11Rt A B E △中,12EB =.(步骤5) 111ABC A B C - 是直棱柱,1EB ∴是三棱柱111E A B C -的高.(步骤6) 11111111111212333C A B E E A B C A B C V V S EB --==⨯⨯=⨯⨯=△.所以三棱柱111C A B E -的体积是23.(步骤7)18.(本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. ⑴完成下表,并求所种作物的平均年收获量;⑵在所种作物中随机选取一株,求它的年收获量至少为48 kg 的概率.【测量目标】频数分布表及平均数、简单随机事件的概率.【考查方式】考查识图能力及数据处理能力及分类讨论思想,结合图形解决概率与统计的相关知识,根据图形找出Y 对应的频数.【试题解析】(1) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4).与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1). 如下表所示:平均年收获量5124844564234615u ⨯+⨯+⨯+⨯==.(2)在15株中,年收获量至少为48kg 的作物共有246+=个. 所以,15株中任选一个,它的年收获量至少为48kg 的概率60.415p ==. 19.(本小题满分13分)设n S 为数列{}n a 的前项和,已知01≠a ,112n n a a S S -=∙,*n ∈N .⑴求1a ,2a ,并求数列{}n a 的通项公式; ⑵求数列{}n na 的前n 项和.【测量目标】等比数列的公式、性质及数列的前n 项和的公式、性质.【考查方式】利用递推公式1n n n a S S -=-(2)n …消去n S 得到关于n a 的通项公式,并用错位相减法求{}n na 的前n 项和.【试题解析】⑴ 11S a = ∴令1n =,得21112a a a -=.1,011=≠⇒a a (步骤1)令2n =,得2221a S -=21a =+22a ⇒=.(步骤2) 当2n …时,由21nn a S -=,1121n n a S ---=两式相减,得122n n n a a a --=,即12n n a a -=.(步骤3) 于是{}n a 是首项为1,公比为2的等比数列.(步骤4) 因此,12,n na n -*=∈N ,∴数列{}n a 的通项公式为12n n a -=.(步骤5) ⑵由⑴知,12n n na n -=⋅.记数列{}12n n -⋅的前n 项和为n T ,于是21122322n nT n -=+⨯+⨯++⨯ ①2321222322n n T n ⇒=⨯+⨯+⨯++⨯ ② (步骤6)①-②,得21122...22n n nT n --=++++-⋅212n n n =--⋅(1)21,n n T n n *⇒=-⋅+∈N .(步骤7) 20.(本小题满分13分)已知1F ,2F 分别是椭圆E :2215x y +=的左、右焦点1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点.⑴求圆C 的方程;⑵设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【测量目标】点关于直线对称点的求法,圆的方程,直线与椭圆的位置关系,直线的方程以及利用函数求最值问题.【考查方式】考查了对称思想在求解实际问题中的应用,求出圆C 的方程.由勾股定理求出弦长b ,根据焦半径的公式求出弦长a ,构造函数判断单调性,求出ab 最大值,求出l 的方程.【试题解析】⑴先求圆C 关于直线20x y +-=对称的圆D ,由题意知,圆D 的直径为12F F ,所以圆D 的圆心是(0,0)D,半径2r c ==,(步骤1) 圆心0,0D ()与圆心C 关于直线02=-+y x 对称(2,2)C ⇒. ⇒圆的方程是22(2)(2)4x y -+-=(步骤2)⑵由⑴知2(2,0)F ,根据题可设直线l 方程为:2,x my m =+∈R . 这时直线l 可被圆和椭圆截得2条弦,符合题意.圆C :4)2()2(22=-+-y x 到直线l的距离d =.(步骤3)⇒在圆中,由勾股定理,得22222444(4)11m b m m =-=++.(步骤4) 直线与椭圆相较于点1122(,),(,)E x y F x y ,联立直线与椭圆方程,得22(5410m y my ++-=)12x x ⇒+12()4m y y =++2445m mm -=++2205m =+,由椭圆的焦半径公式得:12)a x x =+=2215m m +=+2215m ab m +∴=+25m =+(步骤5)令()0f x x =…()y f x ⇒=在[0,3]上单调增,在[3,)+∞单调减,(步骤6) 令()(3)f x f …⇒当23m =时,取ab最大值,这时直线方程为2x =+,所以当取ab最大值,直线方程为2x =+.(步骤7) 21.(本小题满分13分)已知函数21()e 1xx f x x-=+.⑴求()f x 的单调区间;⑵证明:当时1212()()()f x f x x x =≠时,120x x +<.【测量目标】导数的运算,导数研究函数的单调性,导数在不等式证明问题中的应用.【考查方式】考查导数的运算、利用导数求函数单调区间的方法、构造函数判断函数大小的方法.【试题解析】⑴ 函数的定义域,-∞+∞(), 2211()e e 11x x x x f x x x '--⎛⎫'=+ ⎪++⎝⎭222(11)e 1)(1)e 21)x x x x x x x -+-⋅+--⋅=+((22232e 1)x x x x x --+=⋅+((步骤1) 22420∆=-⨯< ,∴当(,0)x ∈-∞时,()0,()f x y f x '>=单调递增,当时(0,)x ∈+∞,()0,()f x y f x '=…单调递减.∴()y f x =在(,0)-∞上单调递增,在(0)x ∈+∞,上单调递减.(步骤2) ⑵当1x <时,由于2101x x ->+,e 0x >,故()0f x >;同理,当1x >时,()0f x <.(步骤3) 当1212()()()f x f x x x =≠时,不妨设12x x <,由⑴知,1(,0)x ∈-∞,2(0,1)x ∈.(步骤4) 下面证明:(0,1)x ∀∈,()()f x f x <-,即证2211e e 11x x x x x x --+<++⇔1(1)e 0e x x x x ---<.(步骤5) 令1()(1)e ex x x g x x +=--,则2()e (e 1)x x g x x -'=--.(步骤6) 当(0,1)x ∈时,()0g x '<,()g x 单调递减,从而()(0)0g x g <=,即1(1)e 0e x xx x +--<. (0,1)x ∴∀∈,()()f x f x <-.(步骤7)而2(0,1)x ∈,22()()f x f x ∴<-,从而12()()f x f x <-.(步骤8) 由于1x ,2(,0)x -∈-∞,()f x 在(,0)-∞上单调递增,所以12x x <-,即120x x +<.(步骤9)。
2013年湖南高考文科数学试题及详细解答
绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。
一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=i ·(1+i)(i 为虚数单位)在复平面上对应的点位于___ B ____ A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B【解析】 z = i ·(1+i) = i – 1.所以对应点(-1,1).选B2.“1<x <2”是“x <2”成立的___ A ____ A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】A【解析】 若“1<x <2”成立,则“x <2”成立,所以“1<x <2”是“x <2”的充分条件; 若“x <2” 成立,则“1<x <2”不一定成立, 所以“1<x <2”不是“x <2”的必要条件. 综上,“1<x <2”是“x <2”的充分不必要条件. 选A3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。
为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D ____ A .9 B .10 C .12 D .13 【答案】D【解析】 4,63::60:80:120,,==⇒=b a b a c b a 个样本,则抽取从甲乙丙三个车间依次 n = a + b + c=13. 选D4.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于____ B ____A .4B .3C .2D .1 【答案】 B【解析】 由题知f (-1)+g (1)= - f (1)+g (1)= 2,f (1)+g (-1)= f (1)+ g (1)= 4.上式相加,解得g(1) = 3 . 选B5.在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2sinB=3b ,则角A 等于____ A ____ A .3π B .4π C .6π D .12π 【答案】 A【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A , 选A6.函数f (x )=㏑x 的图像与函数g (x )=x 2-4x+4的图像的交点个数为____ C ____A.0B.1C.2D.3 【答案】 C【解析】 在同一坐标系中画出对数函数f (x )=㏑x 的图像和二次函数g (x )=x 2-4x+4的图像,观察可知交点个数为2个。
2013年湖南卷文科数学高考试卷(原卷 答案)
绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)文科数学本试卷共22题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(原创)已知集合{}2|20A x x x =−−<,集合{}|0B x x =≥,则AB =( )A .()1,2−B .[)0,2C .()0,2D .[]1,2− 2.(原创)复数i i−12的虚部为( ) A .iB .i −C .1D .1−3.(原创)已知命题p :函数()f x 在0x x =处有极值,命题q :可导函数()f x 在0x x =处导数为0,则p 是q 的( )条件。
A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要 4.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是5.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg6. 已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1 B.25x -220y =1 C.280x -220y =1 D.220x -280y =17 . 设 a >b >1,0c < ,给出下列三个结论: ①c a >c b;② c a <cb ; ③ log ()log ()b a ac b c −>−, 其中所有的正确结论的序号是__.A .① B.① ② C.② ③ D.① ②③8 . 在△ABC 中,,BC=2,B =60°,则BC 边上的高等于A.2B.2C.2D.49. 设定义在R 上的函数f(x)是最小正周期为2π的偶函数,()f x '是f(x)的导函数,当[]0,x π∈时,0<f(x)<1;当x ∈(0,π) 且x ≠2π时 ,()()02x f x π'−>,则函数y=f(x)-sinx 在[-2π,2π] 上的零点个数为A .2B .4 C.5 D. 8二、填空题,本大题共7小题,考生作答6小题.每小题5分共30分,把答案填在答题卡中对应题号后的横线上. (一)选做题,(请考生在第10,,1两题中任选一题作答,如果全做 ,则按前一题记分) 10.在极坐标系中,曲线1C:sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______. 11.某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______. (二)必做题(12~16题)12.不等式x 2-5x+6≤0的解集为______.13.图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________.08910352图(注:方差2222121()()()n s x x x x x x n ⎡⎤=−+−++−⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)14.如果执行如图3所示的程序框图,输入 4.5x =,则输出的数i = .15.如图4,在平行四边形ABCD 中 ,AP ⊥BD ,垂足为P ,3AP =且AP AC = . 16.对于N n *∈,将n 表示为1101102222kk k k n a a a a −−=⨯+⨯++⨯+⨯,当i k =时1i a =,当01i k ≤≤−时i a 为0或1,定义n b 如下:在n 的上述表示中,当01,a a ,a 2,…,a k 中等于1的个数为奇数时,b n =1;否则b n =0. (1)b 2+b 4+b 6+b 8=__;(2)记c m 为数列{b n }中第m 个为0的项与第m +1个为0的项之间的项数,则c m 的最大值是___. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,(Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值; (Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)18.(本小题满分12分)已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<的部分图像如图5所示.(Ⅰ)求函数f (x )的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=−−+的单调递增区间.19.(本小题满分12分)如图6,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD. (Ⅰ)证明:BD ⊥PC ;(Ⅱ)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.20.(本小题满分13分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元. (Ⅰ)用d 表示a 1,a 2,并写出1n a +与a n 的关系式;(Ⅱ)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).21.(本小题满分13分)在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C :x 2+y 2-4x+2=0的圆心. (Ⅰ)求椭圆E 的方程;(Ⅱ)设P 是椭圆E 上一点,过P 作两条斜率之积为12的直线l 1,l 2.当直线l 1,l 2都与圆C 相切时,求P 的坐标.22.(本小题满分13分)已知函数f(x)=e x -ax ,其中a >0.(1)若对一切x ∈R ,f(x) ≥1恒成立,求a 的取值集合;(2)在函数f(x)的图像上去定点A (x 1, f(x 1)),B(x 2, f(x 2))(x 1<x 2),记直线AB 的斜率为k ,证明:存在x 0∈(x 1,x 2),使0()f x k '=恒成立.2013年普通高等学校招生全国统一考试(湖南卷)文科数学(参考答案)二、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的. 4.【答案】D 【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年来热点题型. 5. 【答案】D【解析】由回归方程为y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()y bx a bx y bx a y bx =+=+−=−,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错. 6.【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为by x a=±,点P (2,1)在C 的渐近线上,12b a ∴=,即2a b =.又222c a b =+,25,5a b ∴==,∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型. 7 . 【答案】D【解析】由不等式及a >b >1知11a b <,又0c <,所以c a >cb,①正确;由指数函数的图像与性质知②正确;由a >b >1,0c <知11a c b c c −>−>−>,由对数函数的图像与性质知③正确.【点评】本题考查函数概念与基本初等函数Ⅰ中的指数函数的图像与性质、对数函数的图像与性质,不等关系,考查了数形结合的思想.函数概念与基本初等函数Ⅰ是常考知识点. 8 .【答案】B【解析】设AB c =,在△ABC 中,由余弦定理知2222cos AC AB BC AB BC B =+−⋅⋅,即27422cos60c c =+−⨯⨯⨯,2230,(-3)(1)c c c c −−=+即=0.又0, 3.c c >∴= 设BC 边上的高等于h ,由三角形面积公式11sin 22ABCSAB BC B BC h ==,知 1132sin 60222h ⨯⨯⨯=⨯⨯,解得2h =. 【点评】本题考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容. 9. 【答案】B【解析】由当x ∈(0,π) 且x ≠2π时 ,()()02x f x π'−>,知0,()0,()2x f x f x π⎡⎫'∈<⎪⎢⎣⎭时,为减函数;()0,()2x f x f x ππ⎛⎤'∈> ⎥⎝⎦,时,为增函数又[]0,x π∈时,0<f (x )<1,在R 上的函数f (x )是最小正周期为2π的偶函数,在同一坐标系中作出sin y x =和()y f x =草图像如下,由图知y=f(x)-sinx 在[-2π,2π] 上的零点个数为4个.【点评】本题考查函数的周期性、奇偶性、图像及两个图像的交点问题.二、填空题,本大题共7小题,考生作答6小题.每小题5分共30分,把答案填在答题卡中对应题号后的横线上.(一)选做题,(请考生在第10,,1两题中任选一题作答,如果全做 ,则按前一题记分) 10.【答案】2【解析】曲线1C 1y +=,曲线2C 的普通方程是直角坐标方程222x y a +=,因为曲线C 1:sin )1ρθθ+=与曲线C 2:a ρ=(0)a >的一个交点在极轴上,所以1C 与x轴交点横坐标与a 值相等,由0,2y x ==,知a =2. 【点评】本题考查直线的极坐标方程、圆的极坐标方程,直线与圆的位置关系,考查转化的思想、方程的思想,考查运算能力;题型年年有,难度适中.把曲线1C 与曲线2C 的极坐标方程都转化为直角坐标方程,求出与x 轴交点,即得.11.xyo2π2π−11−sin y x=()y f x =【答案】7【解析】用分数法计算知要最少实验次数为7.【点评】本题考查优选法中的分数法,考查基本运算能力. (二)必做题(12~16题) 12.【答案】{}23x x ≤≤【解析】由x 2-5x+6≤0,得(3)(2)0x x −−≤,从而的不等式x 2-5x+6≤0的解集为{}23x x ≤≤. 【点评】本题考查一元二次不等式的解法,考查简单的运算能力. 13【答案】6.8 【解析】1(89101315)115x =++++=, 2222221(811)(911)(1011)(1311)(1511)5s ⎡⎤=−+−+−+−+−⎣⎦ 6.8=. 【点评】本题考查统计中的茎叶图方差等基础知识,考查分析问题、解决问题的能力. 14.【答案】4【解析】算法的功能是赋值,通过四次赋值得0.5x =,输出4i =.【点评】本题考查算法流程图,考查分析问题解决问题的能力,平时学习时注意对分析问题能力的培养. 15.【答案】18 【解析】设ACBD O =,则2()AC AB BO =+,AP AC = 2()AP AB BO +=22AP AB AP BO +222()2AP AB AP AP PB AP ==+=18=.【点评】本题考查平面向量加法的几何运算、平面向量的数量积运算,考查数形结合思想、等价转化思想等数学思想方法. 16.【答案】(1)3;(2)2. 【解析】(1)观察知000112,1,1a a b =⨯==;1010221202,1,0,1a a b =⨯+⨯===; 一次类推1331212,0b =⨯+⨯=;21044120202,1b =⨯+⨯+⨯=;21055120212,0b =⨯+⨯+⨯=;2106121202=⨯+⨯+⨯,60b =,781,1b b ==,b 2+b 4+b 6+b 8=3;(2)由(1)知c m 的最大值为2.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.【解析】(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:115 1.530225 2.5203101.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为1.5分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======. 123123,,,A A A A A A A =且是互斥事件, 123123()()()()()P A P A A A P A P A P A ∴==++33172010410=++=. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.【点评】本题考查概率统计的基础知识,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%,知251010055%,35,y x y ++=⨯+=从而解得,x y ,再用样本估计总体,得出顾客一次购物的结算时间的平均值的估计值;第二问,通过设事件,判断事件之间互斥关系,从而求得 一位顾客一次购物的结算时间不超过...2分钟的概率. 18.【解析】(Ⅰ)由题设图像知,周期11522(),21212T Tππππω=−=∴==. 因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即. 又55450,,=26636πππππϕϕϕπ<<∴<+<+从而,即=6πϕ.又点0,1()在函数图像上,所以sin 1,26A A π==,故函数f (x )的解析式为()2sin(2).6f x x π=+(Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=−+−++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2sin 22sin(2)3x x π=−+12sin 22(sin 2cos 2)22x x x =−+sin 22x x =2sin(2),3x π=− 由222,232k x k πππππ−≤−≤+得5,.1212k x k k z ππππ−≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤−+∈⎢⎥⎣⎦【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期1152(),1212T πππ=−=从而求得22Tπω==.再利用特殊点在图像上求出,A ϕ,从而求出f (x )的解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+的单调性求得. 19.【解析】(Ⅰ)因为,,.PA ABCD BD ABCD PA BD ⊥⊂⊥平面平面所以 又,,AC BD PA AC ⊥是平面PAC 内的两条相较直线,所以BD ⊥平面PAC , 而PC ⊂平面PAC ,所以BD PC ⊥.(Ⅱ)设AC 和BD 相交于点O ,连接PO ,由(Ⅰ)知,BD ⊥平面PAC , 所以DPO ∠是直线PD 和平面PAC 所成的角,从而DPO ∠30=. 由BD ⊥平面PAC ,PO ⊂平面PAC ,知BD PO ⊥. 在Rt POD 中,由DPO ∠30=,得PD=2OD. 因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC 均为等腰直角三角形,从而梯形ABCD 的高为111(42)3,222AD BC +=⨯+=于是梯形ABCD 面积 1(42)39.2S =⨯+⨯=在等腰三角形AOD中,,2OD AD ==所以2 4.PD OD PA ====故四棱锥P ABCD −的体积为11941233V S PA =⨯⨯=⨯⨯=.【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD ⊥平面PAC即可,第二问由(Ⅰ)知,BD ⊥平面PAC ,所以DPO ∠是直线PD 和平面PAC 所成的角,然后算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积. 20.【解析】(Ⅰ)由题意得12000(150%)3000a d d =+−=−,2113(150%)2a a d a d =+−=−,13(150%)2n n n a a d a d +=+−=−.(Ⅱ)由(Ⅰ)得132n n a a d −=−2233()22n a d d −=−− 233()22n a d d −=−−=12213333()1()()2222n n a d −−⎡⎤=−++++⎢⎥⎣⎦. 整理得 1133()(3000)2()122n n n a d d −−⎡⎤=−−−⎢⎥⎣⎦13()(30003)22n d d −=−+. 由题意,134000,()(30003)24000,2n n a d d −=∴−+=解得13()210001000(32)2332()12n n n n nn d +⎡⎤−⨯⎢⎥−⎣⎦==−−. 故该企业每年上缴资金d 的值为缴11000(32)32n n n n+−−时,经过(3)m m ≥年企业的剩余资金为4000元. 【点评】本题考查递推数列问题在实际问题中的应用,考查运算能力和使用数列知识分析解决实际问题的能力.第一问建立数学模型,得出1n a +与a n 的关系式132n n a a d +=−,第二问,只要把第一问中的132n n a a d +=−迭代,即可以解决. 21.【解析】(Ⅰ)由22420x y x +−+=,得22(2)2x y −+=.故圆C的圆心为点(2,0),从而可设椭圆E的方程为22221(0),x y a b a b+=>>其焦距为2c ,由题设知22212,,24,12.2c c e a c b a c a ===∴===−=故椭圆E的方程为: 221.1612x y += (Ⅱ)设点p 的坐标为00(,)x y ,12,l l 的斜分率分别为12,.k k 则12,l l 的方程分别为10102020:(),:(),l y y k x x l y y k x x −=−−=−且121.2k k =由1l 与圆22:(2)2c x y −+=相切,得=即 222010020(2)22(2)20.x k x y k y ⎡⎤−−+−+−=⎣⎦同理可得 222020020(2)22(2)20x k x y k y ⎡⎤−−+−+−=⎣⎦.从而12,k k 是方程0220000(2)22(2)20x k x y k y ⎡⎤−−+−+−=⎣⎦的两个实根,于是 202200(2)20,8(2)20,x x y ⎧−−≠⎪⎨⎡⎤∆=−+−>⎪⎣⎦⎩① 且2012222 2.(2)2y k k x −==−− 由220020201,161221(2)22x y y x ⎧+=⎪⎪⎨−⎪=⎪−−⎩得20058360.x x −−=解得02,x =或010.5x = 由02x =−得03;y =±由0185x =得0,5y =±它们满足①式,故点P的坐标为 (2,3)−,或(2,3)−−,或18(55,或18(,55−.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问根据条件设出椭圆方程,求出,,c a b 即得椭圆E 的方程,第二问设出点P 坐标,利用过P 点的两条直线斜率之积为12,得出关于点P 坐标的一个方程,利用点P 在椭圆上得出另一方程,联立两个方程得点P 坐标.22.【解析】解:(),x f x e a '=−令()0ln f x x a '==得.当ln x a <时()0,()f x f x '<单调递减;当ln x a >时()0,()f x f x '>单调递增,故当ln x a =时,()f x 取最小值(ln )ln .f a a a a =−于是对一切,()1x R f x ∈≥恒成立,当且仅当ln 1a a a −≥. ①令()ln ,g t t t t =−则()ln .g t t '=−当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减.故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当1a =时,①式成立.综上所述,a 的取值集合为{}1. (Ⅱ)由题意知,21212121()().x x f x f x e e k a x x x x −−==−−− 令2121()(),x x xe e xf x k e x x ϕ−'=−=−−则 12112121()()1,x x x e x e x x x x ϕ−⎡⎤=−−−−⎣⎦− 21221221()()1.x x x e x e x x x x ϕ−⎡⎤=−−−⎣⎦− 令()1t F t e t =−−,则()1t F t e '=−.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增.故当0t =,()(0)0,F t F >=即10.t e t −−>从而2121()10x x e x x −−−−>,1212()10,x x e x x −−−−>又1210,x e x x >−2210,x e x x >− 所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0,x ϕ=即0()f x k '=成立.【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出()f x 取最小值(ln )ln .f a a a a =−对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥从而得出求a 的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i=+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c =,解得c =.所以三角形的面积为117sin 22212bc A π=⨯⨯.因为7231s i n s i n (()1232222πππ=++,所以13s i n ()312b c A =++,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以212tan 30,PF c PF ===.又122PF PF a +==,所以c a ==,故选D .(6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321lo g 21lo g 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+ (B)1)y x =-或1)y x =- (C)1)y x -或1)y x =- (D)1)y x =-或1)y x =-【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =,所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =线方程为1)y x -.若1y =-,则1(3,),()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x -或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D .解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯=,解得高h =.所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A = ,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =得90ACB ∠=︒,CD1A D =DE =13A E =,故22211A D DE A E +=,即1D E A D ⊥.所以111132C A DE V -⨯=.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.1解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =.故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<; 当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞ ,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞ ,,时,()m t的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,. 综上,l 在x轴上的截距的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有CE DC =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b cb c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013年高考文科数学湖南卷试题与答案word解析版
数学文史类一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =i²(1+i)(i 为虚数单位)在复平面上对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 2. “1<x <2”是“x <2”成立的( ).A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( ).A .9B .10C .12D .134.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( ).A .4B .3C .2D .1 5.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B,则角A 等于( ).A .π3B .π4C .π6D .π126.函数f (x )=ln x 的图象与函数g (x )=x 2-4x +4的图象的交点个数为( ).A .0B .1C .2D .37.已知正方体的棱长为1,其俯视图是一个面积为1方体的正视图的面积等于( ).A.2 B .1 C.12 D8.已知a ,b 是单位向量,a²b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为( ).A1 B1 D29.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( ).A .12B .14 C.2 D.4二、填空题:本大题共6小题,每小题5分,共30分.10.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(UA )∩B =__________.11.在平面直角坐标系xOy 中,若直线l 1:21x s y s =+⎧⎨=⎩(s 为参数)和直线l 2:,21x at y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为__________.12.执行如图所示的程序框图,如果输入a =1,b =2,则输出的a 的值为__________.13.若变量x ,y 满足约束条件28,04,03,x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩则x +y 的最大值为__________.14.设F 1,F 2是双曲线C :22221x y a b-=(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为__________.15.对于E ={a 1,a 2,…,a 100}的子集X ={1i a ,2i a ,…,k i a },定义X 的“特征数列”为x 1,x 2,…,x 100,其中xi 1=xi 2=…=xi k =1,其余项均为0.例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0,…,0. (1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于__________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)已知函数f (x )=cos x ²πcos 3x ⎛⎫- ⎪⎝⎭.(1)求2π3f ⎛⎫⎪⎝⎭的值;(2)求使f (x )<14成立的x 的取值集合.17. (本小题满分12分)如图,在直棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动. (1)证明:AD ⊥C1E ;(2)当异面直线AC ,C 1E 所成的角为60°时,求三棱锥C 1-A 1B 1E 的体积.18. (本小题满分12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X1米. (1)(2)48 kg 的概率.19. (本小题满分13分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1²S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.20.(本小题满分13分)已知F 1,F 2分别是椭圆E :25x +y 2=1的左、右焦点,F 1,F 2关于直线x +y -2=0的对称点是圆C 的一条直径的两个端点. (1)求圆C 的方程;(2)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b ,当ab 最大时,求直线l 的方程. 21. (本小题满分13分)已知函数f (x )=211x x -+e x. (1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.数 学(文史卷)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B解析:z =i²(1+i)=i -1=-1+i ,故选B . 2. 答案:A解析:∵“1<x <2”能推出“x <2”成立,但“x <2”不能推出“1<x <2”成立,故选A . 3. 答案:D 解析:抽样比为316020=,所以甲抽取6件,乙抽取4件,丙抽取3件,∴n =13,故选D . 4. 答案:B解析:∵f (x )是奇函数,g (x )是偶函数, ∴f (-1)+g (1)=2,即-f (1)+g (1)=2.① f (1)+g (-1)=4,即f (1)+g (1)=4.② 由①+②得g (1)=3,故选B . 5. 答案:A解析:∵2a sin B ,∴2sin A sin B B .∵sin B ≠0,∴sin A∵A ∈π0,2⎛⎫⎪⎝⎭, ∴A =π3.故选A .6. 答案:C解析:利用图象知,有两个交点.故选C .7. 答案:D解析:如图所示,正方体ABCD -A 1B 1C 1D 1的俯视图为ABCD ,侧视图为BB 1D 1D正方体的正视图应为AA1C 1C .又因AC8. 答案:C解析:可利用特殊值法求解.可令a =(1,0),b =(0,1),c =(x ,y ).由|c -a -b |=1,1=,∴(x -1)2+(y -1)2=1.|c |即为,可看成M 上的点到原点的距离,∴|c |max =|OM |+1=1.故选C .答案:D解析:如图,设AB =2x ,AD =2y .由于AB 为最大边的概率是12,则P 在EF 上运动满足条件,且DE =CF =12x ,即AB =EB 或AB =FA .∴2x =4x 2=4y 2+94x 2,即74x 2=4y 2,∴22716y x =.∴4y x =.又∵224AD y y AB x x ===,故选D . 二、填空题:本大题共6小题,每小题5分,共30分. 10.答案:{6,8} 11.答案:4解析:l 1的普通方程为:x =2y +1,l 2的普通方程为:x =a ²12y +,即22a ax y =+,∴a =4. 12.答案:9解析:输入a =1,b =2,不满足a >8,故a =3;a =3不满足a >8,故a =5;a =5不满足a >8,故a =7;a =7不满足a >8,故a =9,满足a >8,终止循环.输出a =9. 13.答案:6解析:画出可行域,令z =x +y ,易知z 在A (4,2)处取得最大值6.14.1解析:如图所示,∵PF 1⊥PF 2,∠PF 1F 2=30°, 可得|PF 2|=c . 由双曲线定义知, |PF 1|=2a +c ,由|F 1F 2|2=|PF 1|2+|PF 2|2得 4c 2=(2a +c )2+c 2,即2c 2-4ac -4a 2=0,即e 2-2e -2=0,∴e =1e =. 15.答案:(1)2 (2)17解析:(1){a 1,a 3,a 5}的特征数列为1,0,1,0,1,0,…,0,∴前3项和为2. (2)根据题意知,P 的特征数列为1,0,1,0,1,0,…,则P ={a 1,a 3,a 5,…,a 99}有50个元素,Q 的特征数列为1,0,0,1,0,0,1,…, 则Q ={a 1,a 4,a 7,a 10,…,a 100}有34个元素, ∴P ∩Q ={a 1,a 7,a 13,…,a 97}, 共有1+9716-=17个. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解:(1)2π2ππcos cos 333f ⎛⎫=⋅⎪⎝⎭=ππcos cos 33-⋅=21124⎛⎫-=- ⎪⎝⎭.(2)f (x )=cos x ²πcos 3x ⎛⎫- ⎪⎝⎭=cos x ²1cos 22x x ⎛⎫+ ⎪ ⎪⎝⎭=12cos 2x +2sin x cos x=14(1+cos 2x )+4sin 2x =1π1cos 2234x ⎛⎫-+ ⎪⎝⎭. f (x )<14等价于1π11cos 22344x ⎛⎫-+< ⎪⎝⎭,即πcos 2<03x ⎛⎫- ⎪⎝⎭.于是2k π+π2<2x -π3<2k π+3π2,k ∈Z .解得k π+5π12<x <k π+11π12,k ∈Z .故使f (x )<14成立的x 的取值集合为5π11π|ππ,1212x k x k k ⎧⎫+<<+∈⎨⎬⎩⎭Z .17.(1)证明:因为AB =AC ,D 是BC 的中点, 所以AD ⊥BC .①又在直三棱柱ABC -A 1B 1C 1中,BB 1⊥平面ABC ,而AD ⊂平面ABC ,所以AD ⊥BB 1.② 由①,②得AD ⊥平面BB 1C 1C .由点E 在棱BB 1上运动,得C 1E ⊂平面BB 1C 1C ,所以AD ⊥C 1E .(2)解:因为AC ∥A 1C 1,所以∠A 1C 1E 是异面直线AC ,C 1E 所成的角,由题设,∠A 1C 1E =60°, 因为∠B 1A 1C 1=∠BAC =90°,所以A 1C 1⊥A 1B 1,又AA 1⊥A 1C 1,从而 A 1C 1⊥平面A 1ABB 1,于是A 1C 1⊥A 1E .故C 1E =11cos 60AC =︒,又B 1C 1=2,所以B 1E =2,从而111C A B E V -三棱锥=1113A B E S ∆³A 1C 1=1122323⨯⨯=. 18.解:(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:所种作物的平均年收获量为51248445642315⨯+⨯+⨯+⨯=10219227012615+++=69015=46.(2)由(1)知,P(Y=51)=215,P(Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=242 15155+=.19.解:(1)令n=1,得2a1-a1=a12,即a1=a12.因为a1≠0,所以a1=1.令n=2,得2a2-1=S2=1+a2.解得a2=2.当n≥2时,由2a n-1=S n,2a n-1-1=S n-1两式相减得2a n-2a n-1=a n.即a n=2a n-1.于是数列{a n}是首项为1,公比为2的等比数列.因此,a n=2n-1.所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,na n=n²2n-1.记数列{n²2n-1}的前n项和为B n,于是B n=1+2³2+3³22+…+n³2n-1,①2B n=1³2+2³22+3³23+…+n³2n.②①-②得-B n=1+2+22+…+2n-1-n²2n=2n-1-n²2n.从而B n=1+(n-1)²2n.20.解:(1)由题设知,F1,F2的坐标分别为(-2,0),(2,0),圆C的半径为2,圆心为原点O关于直线x+y -2=0的对称点.设圆心的坐标为(x0,y0),由001,20 22yxx y⎧=⎪⎪⎨⎪+-=⎪⎩解得02,2.xy=⎧⎨=⎩所以圆C的方程为(x-2)2+(y-2)2=4.(2)由题意,可设直线l的方程为x=my+2,则圆心到直线l的距离d=所以b==由222,15x my x y =+⎧⎪⎨+=⎪⎩得(m 2+5)y 2+4my -1=0. 设l 与E 的两个交点坐标分别为(x 1,y 1),(x 2,y 2),则y 1+y 2=245m m -+,y 1y 2=215m -+.于是a =从而ab==4==,即m=故当m =±3时,ab 最大,此时,直线l 的方程为x +2或x =+2,即x -2=0,或x -2=0.21.(2013湖南,文21)(本小题满分13分)已知函数f (x )=211x x -+e x.(1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0. (1)解:函数f (x )的定义域为(-∞,+∞).f ′(x )=211x x -⎛⎫'⎪+⎝⎭e x +211x x -+e x=2222211e 11xx x x x x ⎡⎤---+⎢⎥(+)+⎣⎦ =222[12]e 1xx x x -(-)+(+). 当x <0时,f ′(x )>0;当x >0时,f ′(x )<0.所以f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)证明:当x <1时,由于211x x-+>0,e x>0, 故f (x )>0;同理,当x >1时,f (x )<0.当f (x 1)=f (x 2)(x 1≠x 2)时,不妨设x 1<x 2, 由(1)知x 1∈(-∞,0),x 2∈(0,1).下面证明:∀x ∈(0,1),f (x )<f (-x ),即证2211e e 11x xx x x x--+<++. 此不等式等价于(1-x )e x-1e xx+<0. 令g (x )=(1-x )e x-1ex x +,则g ′(x )=-x e -x (e 2x -1).当x ∈(0,1)时,g ′(x )<0,g (x )单调递减,从而g (x )<g (0)=0.即(1-x )e x-1e xx+<0. 所以∀x ∈(0,1),f (x )<f (-x ). 而x 2∈(0,1),所以f (x 2)<f (-x 2), 从而f (x 1)<f (-x 2).由于x 1,-x 2∈(-∞,0),f (x )在(-∞,0)上单调递增,所以x 1<-x 2,即 x 1+x 2<0.。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生将自己的姓名、准考证号填写在答题卡上。
2。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框.写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|—3<X〈1},N={—3,-2,-1,0,1},则M∩N=(A){-2,—1,0,1} (B){—3,-2,-1,0} (C){—2,—1,0}(D){—3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x—3y的最小值是(A)(B)—6 (C)(D)—(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)—1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B) (C)(D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L的方程为(A)y=x-1或y=—x+1 (B)y=(X-1)或y=—(x—1)(C)y=(x—1)或y=—(x—1)(D)y=(x—1)或y=—(x—1)(11)已知函数f(x)=x3+ax2+bx+c ,下列结论中错误的是(A)(B)函数y=f(x)的图像是中心对称图形(C)若x0是f(x)的极小值点,则f(x)在区间(—∞,x0)单调递减(D)若x0是f(x)的极值点,则f’( x0)=0(12)若存在正数x使2x(x-a)<1成立,则a 的取值范围是(A)(—∞,+∞) (B)(-2,+∞)(C)(0,+∞) (D)(-1,+∞)第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答。
2013年高考文科数学试卷--湖南卷(含答案)
2013年普通高等学校招生全国统一考试(湖南卷)数 学(文史类)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=i ·(1+i)(i 为虚数单位)在复平面上对应的点位于___ ____ A .第一象限 B .第二象限 C .第三象限 D .第四象限2.“1<x <2”是“x <2”成立的______ A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件。
为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D ____A .9B .10C .12D .134.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于____ A .4 B .3 C .2 D .15.在锐角∆ABC 中,角A ,B 所对的边长分别为a ,b. 若2sinB=3b ,则角A 等于______ A .3πB .4πC .6πD .12π6.函数f (x )=㏑x 的图像与函数g (x )=x 2-4x+4的图像的交点个数为______ A.0 B.1 C.2 D.37.已知正方体的棱长为1,其俯视图是一个面积为1的矩形,则该正方体的正视图的面积等于______A .B.1 8.已知a,b 是单位向量,a ·b=0.若向量c 满足|c-a-b|=1,则|c|的最大值为____ C ____1-12+9.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为.21,则ADAB=____A.12 B.14二、填空题:本大题共6小题,每小题5分,共30分。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3。
答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4。
考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|-3〈X<1},N={—3,-2,—1,0,1},则M∩N=(A){-2,—1,0,1} (B){—3,-2,—1,0}(C){—2,—1,0}(D){—3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A)(B)—6 (C)(D)—(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC 的面积为(A)2+2 (B)(C)2(D)—1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B)b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A) (B)(C)(D)(10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。
2013年湖南省高考文科数学试卷及参考答案与试题解析
2013年湖南省高考文科数学试卷及参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)“1<x<2”是“x<2”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9B.10C.12D.134.(5分)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)=( )A.4B.3C.2D.15.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于( )A. B. C. D.6.(5分)函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为( )A.0B.1C.2D.37.(5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于( )A. B.1 C. D.8.(5分)已知,是单位向量,•=0.若向量满足|--|=1,则||的最大值为( )A. B. C. D.9.(5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=( )A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分.A)∩B=.10.(5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U11.(5分)在平面直角坐标系xOy中,若直线(s为参数)和直线(t 为参数)平行,则常数a的值为.12.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.13.(5分)若变量x,y满足约束条件,则x+y的最大值为.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.15.(5分)对于E={a1,a2,….a100}的子集X={ai1,ai2,…,aik},定义X的“特征数列”为x 1,x2…,x100,其中xi1=xi2= (x)ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为.三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=cosx•cos(x-).(1)求f()的值.(2)求使f(x)<成立的x的取值集合.17.(12分)如图.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的X之间的关系如下表所示:1米.48kg的概率.19.(13分)设Sn 为数列{an}的前n项和,已知a1≠0,2an-a1=S1•Sn,n∈N*(Ⅰ)求a1,a2,并求数列{an}的通项公式;(Ⅱ)求数列{nan}的前n项和.20.(13分)已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.21.(13分)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.2013年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数z,根据复数与复平面内点的对应关系可得答案.【解答】解:z=i•(1+i)=-1+i,故复数z对应的点为(-1,1),在复平面的第二象限,故选:B.【点评】本题考查复数的代数表示法及其几何意义,属基础题.2.(5分)“1<x<2”是“x<2”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】设A={x|1<x<2},B={x|x<2},判断集合A,B的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【解答】解:设A={x|1<x<2},B={x|x<2},∵A⊊B,故“1<x<2”是“x<2”成立的充分不必要条件.故选:A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9B.10C.12D.13【分析】甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,求出丙车间生产产品所占的比例,从而求出n的值.【解答】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13.故选:D.【点评】本题主要考查了分层抽样方法,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.4.(5分)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)=( )A.4B.3C.2D.1【分析】直接利用函数的奇偶性,化简方程,解方程组即可.【解答】解:f(x)是奇函数,g(x)是偶函数,方程f(-1)+g(1)=2,f(1)+g(-1)=4,化为:-f(1)+g(1)=2,f(1)+g(1)=4,两式相加可得2g(1)=6,所以g(1)=3.故选:B.【点评】本题考查函数的奇偶性的应用,函数的值的求法,基本知识的考查.5.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于( )A. B. C. D.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选:A.【点评】本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(5分)函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为( )A.0B.1C.2D.3【分析】在同一个坐标系中,画出函数f(x)=㏑x 与函数g(x)=x2-4x+4=(x-2)2的图象,数形结合可得结论.【解答】解:在同一个坐标系中,画出函数f(x)=㏑x 与函数g(x)=x2-4x+4=(x-2)2的图象,如图所示:故函数f(x)=㏑x的图象与函数g(x)=x2-4x+4的图象的交点个数为2,故选:C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.7.(5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于( )A. B.1 C. D.【分析】通过三视图判断正视图的形状,结合数据关系直接求出正视图的面积即可.【解答】解:因为正方体的棱长为1,俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,说明侧视图是底面对角线为边,正方体的高为一条边的矩形,几何体放置如图:那么正视图的图形与侧视图的图形相同,所以正视图的面积为:.故选:D.【点评】本题考查几何体的三视图形状,侧视图的面积的求法,判断几何体的三视图是解题的关键,考查空间想象能力.8.(5分)已知,是单位向量,•=0.若向量满足|--|=1,则||的最大值为( )A. B. C. D.【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出.【解答】解:∵||=||=1,且,∴可设,,.∴.∵,∴,即(x-1)2+(y-1)2=1.∴的最大值==.故选:C.【点评】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.9.(5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=( )A. B. C. D.【分析】先明确是一个几何概型中的长度类型,然后求得事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的线段长度,再利用两者的比值即为发生的概率,从而求出.【解答】解:记“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”为事件M,试验的全部结果构成的长度即为线段CD,构成事件M的长度为线段CD其一半,根据对称性,当PD=CD时,AB=PB,如图.设CD=4x,则AF=DP=x,BF=3x,再设AD=y,则PB==,于是=4x,解得,从而.故选:D.【点评】本题主要考查几何概型,基本方法是:分别求得构成事件A的区域长度和试验的全部结果所构成的区域长度,两者求比值,即为概率.二、填空题:本大题共6小题,每小题5分,共30分.10.(5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B={6,8} .【分析】先求出集合A的补集,再利用交集的定义求(CUA)∩B【解答】解:由题意∵U={2,3,6,8},集合A={2,3},∴CUA={6,8},又B={2,6,8},故(CUA)∩B={6,8}故答案为:{6,8}.【点评】本题考查交、并、补集的混合运算,正确解答本题关键是掌握并理解补集与交集的定义,并能根据所给的规则进行正确运算.11.(5分)在平面直角坐标系xOy中,若直线(s为参数)和直线(t 为参数)平行,则常数a的值为 4 .【分析】先将直线的参数方程化为普通方程,再利用两条直线平行,直接求出a的值即可.【解答】解:直线l1的参数方程为(s为参数),消去s得普通方程为x-2y-1=0,直线l2的参数方程为(t为参数),消去t得普通方程为2x-ay-a=0,∵l1∥l2,x-2y-1=0的斜率为k1=,∴2x-ay-a=0的斜率k2==,解得:a=4.故答案为:4.【点评】本题是基础题,考查直线的平行条件的应用,注意直线的斜率是否存在是解题关键,考查计算能力.12.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为32 .【分析】模拟执行程序,依次写出每次循环得到的a的值,当a=32时,满足条件a>31,退出循环,输出a的值为32.【解答】解:模拟执行程序,可得a=1,b=2不满足条件a>31,a=2不满足条件a>31,a=4不满足条件a>31,a=8不满足条件a>31,a=16不满足条件a>31,a=32满足条件a>31,退出循环,输出a的值为32.故答案为:32.【点评】本题主要考查了程序框图和算法,正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查.13.(5分)若变量x,y满足约束条件,则x+y的最大值为 6 .【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值.【解答】解:画出可行域如图阴影部分,由得A(4,2)目标函数z=x+y可看做斜率为-1的动直线,其纵截距越大z越大,=4+2=6由图数形结合可得当动直线过点A时,z最大故答案为:6.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.【分析】根据题意可知∠F1PF2=90°,∠PF2F1=60°,|F1F2|=2c,求得|PF1|和|PF2|,进而利用双曲线定义建立等式,求得a和c的关系,则离心率可得.【解答】解:依题意可知∠F1PF2=90°|F1F2|=2c,∴|PF1|=|F1F2|=c,|PF2|=|F1F2|=c,由双曲线定义可知|PF1|-|PF2|=2a=(-1)c∴e==.故答案为:.【点评】本题主要考查了双曲线的简单性质特别是双曲线定义的运用,属于基础题.15.(5分)对于E={a1,a2,….a100}的子集X={ai1,ai2,…,aik},定义X的“特征数列”为x 1,x2…,x100,其中xi1=xi2= (x)ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于 2 ;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,pi+pi+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为17 .【分析】(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.【解答】解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足Pi+Pi+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,qj+qj+1+qj+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n-2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17-1)×6,∴共有17相同的元素.故答案分别为2,17.【点评】正确理解“特征数列”的定义是解题的关键.三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=cosx•cos(x-).(1)求f()的值.(2)求使f(x)<成立的x的取值集合.【分析】(1)将x=代入f(x)解析式,利用两角和与差的余弦函数公式及特殊角的三角函数值化简即可得到结果;(2)f(x)解析式利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,变形后,利用余弦函数的图象与性质即可得到满足题意x的集合.【解答】解:(1)f()=cos cos(-)=cos cos=-cos2=-;(2)f(x)=cosxcos(x-)=cosx(cosx+sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=cos(2x-)+,∴f(x)<,化为cos(2x-)+<,即cos(2x-)<0,∴2kπ+<2x-<2kπ+(k∈Z),解得:kπ+<x<kπ+(k∈Z),则使f(x)<成立的x取值集合为{x|kπ+,kπ+(k∈Z)}.【点评】此题考查了两角和与差的余弦函数公式,以及余弦函数的单调性,熟练掌握公式是解本题的关键.17.(12分)如图.在直棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.(1)证明:AD⊥C1E;(2)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.【分析】(1)根据直三棱柱的性质,得AD⊥BB1,等腰△ABC中利用“三线合一”证出AD⊥BC,结合线面垂直判定定理,得AD⊥平面BB1C1C,从而可得AD⊥C1E;(2)根据AC∥A1C1,得到∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角.由A1C1⊥A1B1且A1C1⊥AA1,证出A1C1⊥平面AA1B1B,从而在Rt△A1C1E中得到∠EC1A1=60°,利用余弦的定义算出C 1E=2A1C1=2,进而得到△A1B1E面积为,由此结合锥体体积公式即可算出三棱锥C1-A 1B1E的体积.【解答】解:(1)∵直棱柱ABC-A1B1C1中,BB1⊥平面ABC,AD⊂平面ABC,∴AD⊥BB1∵△ABC中,AB=AC,D为BC中点,∴AD⊥BC又∵BC、BB1⊂平面BB1C1C,BC∩BB1=B∴AD⊥平面BB1C1C,结合C1E⊂平面BB1C1C,可得AD⊥C1E;(2)∵直棱柱ABC-A1B1C1中,AC∥A1C1,∴∠EC1A1(或其补角)即为异面直线AC、C1E 所成的角∵∠BAC=∠B1A1C1=90°,∴A1C1⊥A1B1,又∵AA1⊥平面A1B1C1,可得A1C1⊥AA1,∴结合A1B1∩AA1=A1,可得A1C1⊥平面AA1B1B,∵A1E⊂平面AA1B1B,∴A1C1⊥A1E因此,Rt△A1C1E中,∠EC1A1=60°,可得cos∠EC1A1==,得C1E=2A1C1=2又∵B1C1==2,∴B1E==2由此可得V=S△×A1C1=×=【点评】本题给出直三棱柱的底面是等腰直角三角形,在已知侧棱长和底面边长的情况下证明线线垂直并求锥体的体积,着重考查了直棱柱的性质、空间线面垂直的判定与性质等知识,属于中档题.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的X之间的关系如下表所示:1米.48kg的概率.【分析】(Ⅰ)根据题意可知所种作物的总株数为1+2+3+4+5,其中“相近”作物株数为1的有2株,“相近”作物株数为2的有4株,“相近”作物株数为3的有6株,“相近”作物株数为4的有3株,据此列表,且可得出所种作物的平均所收获量.(Ⅱ)由(Ⅰ)知,P(Y=51)=,P(Y=48)=,从而根据互斥事件的概率加法公式得出在所种作物中随机选取一株,求它的年收获量至少为48kg的概率.【解答】解:(Ⅰ)所种作物的总株数为1+2+3+4+5=15,建立如图所示直角坐标系,其中“相近”作物株数为1的植株有2株,植株坐标分别为(4,0),(0,4),“相近”作物株数为2的植株有4株,植株坐标分别为(0,0),(1,3),(2,2),(3,1),“相近”作物株数为3的植株有6株,植株坐标分别为(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),“相近”作物株数为4的植株有3株,植株坐标分别为(1,1),(1,2),(2,1).所种作物的平均所收获量为:(51×2+48×4+45×6+42×3)==46;(Ⅱ)由(Ⅰ)知,P(Y=51)=,P(Y=48)=,故在所种作物中随机选取一株,求它的年收获量至少为48kg的概率为P(Y≥48)=P(Y=51)+P(Y=48)=+=.【点评】本题考查互斥事件的概率加法公式,众数、中位数、平均数和利用图表获取信息的能力.利用图表获取信息时,必须认真观察、分析、研究图表,才能作出正确的判断和解决问题.19.(13分)设Sn 为数列{an}的前n项和,已知a1≠0,2an-a1=S1•Sn,n∈N*(Ⅰ)求a1,a2,并求数列{an}的通项公式;(Ⅱ)求数列{nan}的前n项和.【分析】(Ⅰ)令n=1和2,代入所给的式子求得a1和a2,当n≥2时再令n=n-1得到2an-1-1=Sn-1,两个式子相减得an=2an-1,判断出此数列为等比数列,进而求出通项公式;(Ⅱ)由(Ⅰ)求出nan=n•2n-1,再由错位相减法求出此数列的前n项和.【解答】解:(Ⅰ)令n=1,得2a1-a1=,即,∵a1≠0,∴a1=1,令n=2,得2a2-1=1•(1+a2),解得a2=2,当n≥2时,由2an -1=Sn得,2an-1-1=Sn-1,两式相减得2an -2an-1=an,即an=2an-1,∴数列{an}是首项为1,公比为2的等比数列,∴an =2n-1,即数列{an}的通项公式an=2n-1;(Ⅱ)由(Ⅰ)知,nan =n•2n-1,设数列{nan}的前n项和为Tn,则Tn=1+2×2+3×22+…+n×2n-1,①2Tn=1×2+2×22+3×23+…+n×2n,②①-②得,-Tn=1+2+22+…+2n-1-n•2n =2n-1-n•2n,∴Tn=1+(n-1)2n.【点评】本题考查了数列an 与Sn之间的转化,以及由错位相减法求出数列的前n项和的应用.20.(13分)已知F1,F2分别是椭圆的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.(Ⅰ)求圆C的方程;(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.【分析】(I)由题意可知:F1(-2,0),F2(2,0),可得⊙C的半径为2,圆心为原点O关于直线x+y-2=0的对称点.设圆心的坐标为(m,n).利用线段的垂直平行的性质可得,解出即可得到圆的方程;(II))由题意,可设直线l的方程为x=my+2,利用点到直线的距离公式可得圆心到直线l的距离d=,再利用弦长公式即可得到b=.把直线l的方程为x=my+2与椭圆的方程联立得到根与系数的关系,利用弦长公式即可得到a,进而得到ab,利用基本不等式的性质即可得出结论.【解答】解:(I)由题意可知:F1(-2,0),F2(2,0).故⊙C的半径为2,圆心为原点O关于直线x+y-2=0的对称点.设圆心的坐标为(m,n).则,解得.∴圆C的方程为(x-2)2+(y-2)2=4;(II)由题意,可设直线l的方程为x=my+2,则圆心到直线l的距离d=,∴b=.由得(5+m2)y2+4my-1=0.设l与E的两个交点分别为(x1,y1),(x2,y2).则,.∴a===,∴ab===.当且仅当,即时等号成立.故当时,ab最大,此时,直线l的方程为,即.【点评】本题综合考查了圆与椭圆的标准方程及其性质、轴对称的性质、圆的弦长公式b=、直线与椭圆相交的弦长公式a=、基本不等式的性质等基础知识与方法,需要较强的推理能力、计算能力、分析问题和解决问题的能力..21.(13分)已知函数f(x)=.(Ⅰ)求f(x)的单调区间;(Ⅱ)证明:当f(x1)=f(x2)(x1≠x2)时,x1+x2<0.【分析】(Ⅰ)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0的x取值范围即可得到单调区间;(Ⅱ)当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(I)可知:x1∈(-∞,0),x2∈(0,1).利用导数先证明:∀x∈(0,1),f(x)<f(-x).而x2∈(0,1),可得f(x2)<f(-x2).即f(x1)<f(-x 2).由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,因此得证.【解答】解:(Ⅰ)易知函数的定义域为R.==,当x<0时,f′(x)>0;当x>0时,f′(x)<0.∴函数f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(Ⅱ)当x<1时,由于,e x>0,得到f(x)>0;同理,当x>1时,f(x)<0.当f(x1)=f(x2)(x1≠x2)时,不妨设x1<x2.由(Ⅰ)可知:x1∈(-∞,0),x2∈(0,1).下面证明:∀x∈(0,1),f(x)<f(-x),即证<.此不等式等价于.令g(x)=,则g′(x)=-xe-x(e2x-1).当x∈(0,1)时,g′(x)<0,g(x)单调递减,∴g(x)<g(0)=0.即.∴∀x∈(0,1),f(x)<f(-x).而x2∈(0,1),∴f(x2)<f(-x2).从而,f(x1)<f(-x2).由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上单调递增,∴x1<-x2,即x1+x2<0.【点评】本题综合考查了利用导数研究函数的单调性、等价转化问题等基础知识与基本技能,需要较强的推理能力和计算能力.。
2013届高三下学期第二次联考数学(文)
INPUT n S=0 i =0 WHILE i<n S=S+2^i +1 i =i +1 WEND PRINT S END高三最后一卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题). 本试卷共4页. 满分150分. 考试时间120分钟. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.考生作答时,将答案答在答题卡上。
请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损. 考试结束后,将答题卡交回. 参考公式:样本数据1x ,2x , ,n x 的标准差 锥体体积公式:s =13V Sh = 其中S 为底面面积,h 为高 其中x 为样本平均数 球的表面积、体积公式 柱体体积公式 24S R =π,343V R =πV Sh = 其中R 为球的半径其中S 为底面面积,h 为高第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数x x y +-=2的定义域为A .}2|{≤x xB .}0|{≥x xC .}20|{≥≤x x x 或D .}20|{≤≤x x 2.若复数)1(5-=+i i bi a (其中i R b a ,,∈是虚数单位),则b a +=A .-2B .-1C .0D .23.某中学高三(1)班有学生55人,现按座位号的编号采用系统抽样的方法选取5名同学参加一项活动,已知座位号为5号、16号、27号、49号的同学均被选出,则被选出的5名同学中还有一名的座位号是A .36B .37C .38D .394.若角310π的终边上有一点P (a ,-2),则实数a 的值为A .32B .32-C .332 D .332- 5.已知平面向量a 、b 均为单位向量,且a 与b 的夹角为1200,则|2a +b |=A .3B .7C .3D .76.某算法程序如图所示,执行该程序,若输入4,则输出的S 为 A .36 B .19 C .16 D .107.一个几何体的三视图如图所示,其中俯视图与侧视图都是半径为2的圆,则这个几何体的A 1ABB 1C 1CD D 1·P ·E ·FQ · 体积是A .8π B .16π C .38π D .316π 8.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a ,b ,c 成等比数列,A =600,则cBb sin = A .43 B .23 C .22 D .219.下列命题中,假命题...的是 A.2cos 3sin ,000=+∈∃x x R xB .0),,0[>-+∞∈∀x e x xC .1lg ),,0(00-=+∞∈∃x xD .0232),0,(2>---∞∈∀x x x 10.以双曲线222=-x y 的一个焦点为圆心,离心率为半径的圆的方程是 A .2)2(22=±+y x B .2)2(22=+±y x C .4)2(22=±+y x D .4)2(22=+±y x11.如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,动点E 、F 在BC 1上,动点P 、Q 分别在AD 1、CD 上,若21=EF ,y DQ x AP ==,,则四面体P -EFQ 的体积 A .与x 、y 都有关 B .与x 有关、与y 无关C .与x 、y 都无关D .与x 无关、与y 有关12.设函数)(x f 的定义域为D ,如果D y D x ∈∃∈∀,,使C y f x f =+2)()((C 为常数)成立,则称函数)(x f 在D 上的均值为C . 给出下列四个函 数:①3x y =;②x y )21(=;③x y ln =;④1sin 2+=x y ,则满足在其定义域上均值为1的函数的个数是A .1B .2C .3D .4第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置. 13.015tan = .14.记等差数列}{n a 的前n 项和为n S ,若54,10953==+S a a ,则直线0241=++a y a x a 的斜率为= .甲班乙班9 0 1 5 5 81 2 4 6 7 8 9 3 4 6 8 8 7 8 6 5 5 2 1 1 8 7 6 2 2 2 15.如图,曲线AC 的方程为)20,30(14922≤≤≤≤==+y x y x ,为估计椭圆14922==+y x 的面积,现采用随机模拟方式产生)2,0(),3,0(∈∈y x 的200个点),(y x ,经统计,落在图中阴影部分的点共157个,则可估计椭圆14922==+y x 的面积是 .(精确到0.01)16.若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={,,}a b c ,对于下面给出的四个集合τ:①{{}{}{}}a c a b c τ=∅,,,,,; ②{{}{}{}{}}b c b c a b c τ=∅,,,,,,,; ③{{}{}{}}a a b a c τ=∅,,,,,; ④{{}{}{}{}}a c b c c a b c τ=∅,,,,,,,,. 其中是集合X 上的拓扑的集合τ的序号是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知n S 为数列{}n a 的前n 项和,且)(232*N n a S n n ∈-=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若)1(log 3+=n n S b ,求数列}{2n b 的前n 项和n T .18.(本小题满分12分)某电视台2012年举办了“中华好声音”大型歌手选秀活动,过程分为初赛、复赛和决赛,经初赛进入复赛的40名选手被平均分成甲、乙两个班。
文科2卷 题 2013年高考(新课标全国二卷)文科数学高清修正word版 2
绝密★启用前2013年普通高等学校招生全国统一考(新课标Ⅱ卷)数学(文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合}1,01-2-,3{},13{,,-=<<-=N x x M ,则=N M ( ) (A ){-2,-1,0,1} (B ){-3,-2,-1,0} (C ){-2,-1,0} (D ){-3,-2,-1 }(2)=+i12( )(A)22 (B)2 (C)2(D)1(3)设y x ,满足约束条件⎪⎩⎪⎨⎧≤≥-+≥+-30101x y x y x ,则y x z 32-=的最小值是( )(A)7-(B)6- (C)5- (D)3-(4)在ABC ∆中内角C B A ,,的对边分别为c b a ,,,已知4,6,2ππ===C B b 则ABC ∆的面积为( )(A)232+ (B)13+ (C)232- (D)13-(5)设椭圆:C )0(12222>>=+b a by a x 左右焦点分别为21,F F ,P 是C 上的点,212F F PF ⊥,则C 的离心率为( )(A)63 (B)31(C)21 (D)33(6)已知322sin =α,则=+)4(cos 2πα( ) (A)61(B)31 (C)21 (D)32(7)执行右图的程序框图,如果输入的4=N ,则输出的=S ( )(A)4131211+++ (B)2341231211⨯⨯+⨯++ (C)514131211++++ (D)234512341231211⨯⨯⨯+⨯⨯+⨯++(8)设2log 3=a ,2log 5=b ,3log 2=c 则( )(A)b c a >> (B)a c b >> (C)a b c >> (D)c >a >b(9)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是 )1,0,1(,)0,1,1(,)1,1,0(,)0,0,0(画该四面体三视图中的正视图时, 以zOx 平面为投影面,则正视图可以为( )(A)(B) (C) (D)(10)设抛物线:C x y 42=)0(>p 的焦点为F ,直线l 过F 且与C 交于B A ,两点,若BF AF 3=,则l 的方程为( ) (A)1-=x y 或1+-=x y (B))1(33-=x y 或)1(33--=x y(C))1(3-=x y 或)1(3--=x y (D))1(22-=x y 或)1(22--=x y(11)已知函数c bx ax x x f +++=23)(,则下列结论中错误的是( ) (A)0)(,00=∈∃x f R x(B)函数)(x f y =的图像是中心对称图形(C)若0x 是)(x f 的极小值点,则)(x f 在区间),(0x -∞单调递减 (D)若0x 是)(x f 的极值点,则0)(0='x f(12)若存在正数x 使1)(2<-a x x 成立,则a 的取值范围是( ) (A)),(+∞-∞ (B)),2(+∞- (C)),0(+∞ (D)),1(+∞-第Ⅱ卷本卷包括必考题和选考题两部分,第13题~21题为必考题,每个考生都必须作答。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效.3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4。
考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
(1)已知集合M={x|—3〈X<1},N={—3,-2,-1,0,1},则M∩N=(A){—2,-1,0,1} (B){-3,—2,-1,0}(C){-2,—1,0} (D){-3,—2,-1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x—3y的最小值是(A)(B)—6 (C)(D)—(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)—1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A) (B)(C)(D)(10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。
2013高考全国卷2文科数学试卷及答案
绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4。
考试结束,将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.(1)已知集合M={x|—3<X〈1},N={—3,—2,—1,0,1},则M∩N=(A){-2,—1,0,1}(B){—3,-2,—1,0}(C){—2,-1,0}(D){—3,—2,—1 }(2)||=(A)2(B)2 (C)(D)1(3)设x,y满足约束条件,则z=2x-3y的最小值是(A) (B)-6 (C)(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为(A)2+2 (B)(C)2(D)-1(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)(6)已知sin2α=,则cos2(α+)=(A)(B)(C)(D)(7)执行右面的程序框图,如果输入的N=4,那么输出的S=(A)1(B)1+(C)1++++(D)1++++(8)设a=log32,b=log52,c=log23,则(A)a>c>b (B) b>c>a (C)c>b>a (D)c>a>b(9)一个四面体的顶点在点间直角坐系O—xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可为(A)(B)(C) (D)( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A,B两点。
湖南省十二校2013届高三数学第二次联考试题 文(含解析)湘教版
2013年某某省十二校第二次联考数学试卷(文科)一、选择题:本大题共9小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在答题卡中对应位置.1.(5分)(2013•某某模拟)已知集合M={x∈Z|﹣1≤x≤1},N={x∈Z|x(x﹣2)≤0},则如图所示韦恩图中的阴影部分所表示的集合为()A.{0,1} B.{﹣1,2} C.{﹣1,0,1} D.{﹣1,0,1,2}考点:Venn图表达集合的关系及运算.专题:计算题.分析:根据描述法表示集合,求出集合M、N,再求阴影部分表示的集合.解答:解:M={﹣1,0,1},N={0,1,2},阴影部分表示集合为[(C U M)∩N]∪[M∩(C U N)]={﹣1,2}.故选B点评:本题考查Venn图表示集合关系及运算.2.(5分)(2013•某某模拟)若a,b∈R,i是虚数单位,且对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;平面向量及应用.分析:根据复数相等的含义建立关于a、b的方程组,解出a=1,b=2.代入化简得复数2﹣i,由此结合复数的几何意义即可得到对应的点所在的象限.解答:解:∵a+(b﹣1)i=1+i,∴a=1且b﹣1=1,解之得a=1,b=2因此,复数==2﹣i∵复数2﹣i对应复平面内的点P(2,﹣1)∴对应的点在第四象限故选:D点评:本题给出复数方程,求另一复数对应点所在的象限,着重考查了复数的四则运算和复数的几何意义等知识,属于基础题.3.(5分)(2013•某某模拟)已知双曲线﹣=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,则该双曲线的方程为()A.x2﹣=1 B.x2﹣y2=15 C.﹣y2=1D.﹣=1考点:双曲线的简单性质;双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:求出抛物线的焦点坐标,利用双曲线的一个焦点与抛物线y2=4x的焦点重合,且双曲线的离心率等于,建立方程组,求出几何量,即可求得双曲线的标准方程.解答:解:抛线线y2=4x的焦点(,0)∴c2=a2+b2=10,e==.∴a=3,b=1,∴该双曲线的方程为.故选C.点评:本题考查抛物线的性质,考查双曲线的标准方程,考查学生的计算能力,属于基础题.4.(5分)(2013•某某模拟)如图,大正方形的面积是34,四个全等直角三角形围成一个正方形,直角三角形的较短边长为3,向大正方形内设一飞镖,则飞镖落在小正方形内的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.解答:解:根据题意,大正方形的面积是34,则大正方形的边长是,又直角三角形的较短边长为3,得出四个全等的直角三角直角边分别是=5和3,则小正方形的边长为2,面积为4;又∵大正方形的面积为34;故飞镖扎在小正方形内的概率为=.故选C.点评:用到的知识点为:概率=相应的面积与总面积之比;难点是得到正方形的边长.属于基础题.5.(5分)(2013•某某模拟)某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形,则该几何体的表面积为()A.80 B.C.D.118考点:棱柱、棱锥、棱台的侧面积和表面积;空间几何体的直观图.专题:计算题;空间位置关系与距离.分析:根据题意,该几何体是一个四棱锥,其底面是边长分别为6和8的矩形,侧棱长均相等且高SO=4.因此利用线面垂直的性质结合勾股定理算出等腰△SAB和等腰△SCB的高长,从而算出四个侧面等腰三角形的面积,结合矩形ABCD的面积即可得到该几何体的全面积.解答:解:根据题意,可得该几何体是底面边长分别为6和8的矩形,且侧棱长均相等的四棱锥,高长为SO=4,如图所示因此,等腰△SAB的高SE===5等腰△SCB的高SF===4∴S△SAB=S△SCD=×AB×SE=20,S△SCB=S△SAD=×CB×SF=12∵矩形ABCD的面积为6×8=48∴该几何体的表面积为S全=S△SAB+S△SCD+S△SCB+S△SAD+S ABCD=2×20+2×12+48=24+88故选:B点评:本题给出四棱锥的三视图,要我们根据题中数据计算四棱锥的全面积,着重考查了线面垂直的性质、三视图的理解和锥体表面积计算等知识,属于基础题.6.(5分)(2013•某某模拟)下列命题中正确的命题个数为()①存在一个实数x使不等式成立;②已知a,b是实数,若ab=0,则a=0且b=0;③是tanx=1的充要条件.A.0B.1C.2D.3考点:命题的真假判断与应用.专题:计算题.分析:对于①,由于的△<0,从而恒成立,据此对①进行判断;②若ab=0,则a=0或b=0;从而进行判断;③当时,得出 tan(2kπ+)=tan =1,“x=2kπ+(k∈Z)”是“tanx=1”成立的充分条件;举反例x=时,tan =1.推出“x=2kπ+(k∈Z)”是“tanx=1”成立的不必要条件,据此进行判断.解答:解:的△=9﹣26<0,∴恒成立,故①不正确;对于②若ab=0,则a=0或b=0,故②不正确;③tan(2kπ+)=tan =1,所以充分;但反之不成立,如 tan =1.故是tanx=1的充分不必要条件.故③不正确.∴命题中正确的命题个数为0.故选A.点评:本题主要考查了命题的真假判断与应用,必要条件、充分条件与充要条件的判断.充分条件与必要条件是中学数学最重要的数学概念之一,要理解好其中的概念.7.(5分)(2013•某某模拟)已知数列{a n}的前n项和S n满足:S n+S m=S n+m(m,n∈N*)且a1=6,那么a10=()A.10 B.60 C.6D.54考点:数列递推式;等差数列的通项公式;数列的求和.专题:计算题;等差数列与等比数列.分析:取m=1代入已知等式,结合a1=S1=6得S n+1=S n+6,所以{S n}构成等差数列.然后根据等差数列通项公式求出S n=6n,即可算出a10的值.解答:解:取m=1,可得S n+S1=S n+1,结合a1=6=S1,得S n+1=S n+6,∴{S n}构成以S1=6为首项,公差d=6的等差数列可得S n=6+(n﹣1)×6=6n因此,a10=S10﹣S9=60﹣54=6故选:C点评:本题给出数列的前n项和满足S n+S m=S n+m,求第10项的值,着重考查了数列递推关系的认识和等差数列的通项公式等知识,属于基础题.8.(5分)(2009•某某)若x,y满足约束条件目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值X围是()A.(﹣1,2)B.(﹣4,2)C.(﹣4,0] D.(﹣2,4)考点:简单线性规划.专题:常规题型;压轴题.分析:先根据约束条件画出可行域,设z=ax+2y,再利用z的几何意义求最值,只需利用直线之间的斜率间的关系,求出何时直线z=ax+2y过可行域内的点(1,0)处取得最小值,从而得到a的取值X围即可.解答:解:可行域为△ABC,如图,当a=0时,显然成立.当a>0时,直线ax+2y﹣z=0的斜率k=﹣>k AC=﹣1,a<2.当a<0时,k=﹣<k AB=2a>﹣4.综合得﹣4<a<2,故选B.点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.9.(5分)(2013•某某模拟)定义在R上的函数f(x)满足.若,则n()A.1B.4C.2D.3考点:函数与方程的综合运用;函数的值域.专题:计算题;函数的性质及应用.分析:采用换元法并结合二次函数的性质,算出当x∈[0,2]时,[f(x)]min=﹣,此时x=.然后类似地算出当x∈[﹣2,0]、x∈[﹣4,﹣2]、x∈[﹣6,﹣4]时,f(x)在各个区间上的最小值,即可得到若f(x)在[2n,2n+2]上的最小值为﹣时,x∈[﹣6,﹣4],由此即可得到本题的答案.解答:解:①∵当x∈[0,2]时,f(x)=,∴令2x=t,得f(x)=(t﹣1)(t﹣4)=g(t)当且仅当t=时,[f(x)]min=g()=﹣,此时x=∈[0.2].②当x∈[﹣2,0]时,f(x)=f(x+2)=,类似①的方法,可得当x=∈[﹣2,0)时,[f(x)]min=﹣;③当x∈[﹣4,﹣2]时,f(x)=f(x+2)=类似①的方法,可得当x=∈[﹣4,﹣2)时,[f(x)]min=﹣;④当x∈[﹣6,﹣4]时,f(x)=f(x+2)=类似①的方法,可得当x=∈[﹣4,﹣2)时,[f(x)]min=﹣综上所述,若f(x)在[2n,2n+2]上的最小值为﹣时,n=3故选:D点评:本题给出抽象函数f(x),在已知在x∈[0,2]时函数表达式且f(x+2)=2f(x)的情况下,求若f (x)在[2n,2n+2]上的最小值为﹣时n的值.着重考查了函数的对应法则、二次函数的图象与性质和函数值域求法等知识,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分,把答案填在答题卡中对应题号后的横线上.10.(5分)(2013•某某模拟)已知向量=(sinθ,cosθ),=(2,1),且∥,则tan2θ=﹣.考点:二倍角的正切;平行向量与共线向量.专题:计算题;三角函数的图像与性质;平面向量及应用.分析:利用共线向量的坐标运算可求得tanθ=2,再利用二倍角的正切即可求得tan2θ.解答:解:∵=(sinθ,cosθ),=(2,1),且∥,∴sinθ﹣2cosθ=0,∴tanθ=2,∴tan2θ==﹣.故答案为:﹣.点评:本题考查共线向量的坐标运算,考查二倍角的正切,求得tanθ=2是关键,属于中档题.11.(5分)(2013•某某模拟)设极点与坐标原点重合,极轴与x轴正半轴重合,已知直线l的极坐标方程是:=a,a∈R圆,C的参数方程是为参数),若圆C关于直线l对称,则a= ﹣2 .考点:点的极坐标和直角坐标的互化;直线与圆的位置关系;参数方程化成普通方程.专题:直线与圆.分析:将两曲线方程化为直角坐标方程,根据题意可得圆心在直线上,圆心的坐标适合直线的方程,由此求得实数a的取值.解答:解:将两曲线方程化为直角坐标坐标方程,得直线l直角坐标方程为:x﹣y+2a=0,C:(x﹣2)2+(y﹣2)2=4.因为圆C关于直线l对称,所以,圆心在直线上,圆心的坐标适合直线的方程,即×﹣2+2a=0,解得a=﹣2.故答案为:﹣2.点评:本题考查把极坐标方程化为直角坐标方程的方法,直线与圆的位置关系,属于基础题.12.(5分)(2013•某某模拟)设函数f(x)=是奇函数,则g(3)= ﹣26 .考点:函数的值.专题:函数的性质及应用.分析:根据分段函数的奇偶性,则有f(3)=﹣f(﹣3),f(3)适合0<x≤6时的解析式,f(﹣3)适合﹣6<x<0时的解析式,代入f(3)=﹣f(﹣3)后即可求得g(3)的值.解答:解:因为是奇函数,所以当0<x<6时,﹣6<﹣x<6.则f(3)=﹣f(﹣3).即g(3)﹣.所以g(3)==﹣26.故答案为﹣26.点评:本题考查了函数的值的求法,考查了分段函数的奇偶性的判断及应用,是基础题.13.(5分)(2013•某某模拟)执行如图所示程序框图,输出结果S= 1 .考点:程序框图.专题:图表型.分析:首先分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量S的值,模拟程序的运行,运行过程中各变量的值进行分析,不难得到输出结果.解答:解:按照程序框图依次执行为n=5,S=1,T=1;S=1﹣(﹣1)1×1=2,T=3,n=2;S=3﹣(﹣1)2×2=1,T=5,n=3;S=5﹣(﹣1)3×1=6,T=7,n=4;S=7﹣(﹣1)4×6=1,T=9>7,n=5,此时T=9>7,退出循环,输出S=1.故答案为:1.点评:本题主要考查了循环结构的程序框图,一般都可以反复的进行运算直到满足条件结束,本题中涉及到三个变量,注意每个变量的运行结果和执行情况.14.(5分)(2013•某某模拟)设圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为y=2x﹣1或y=2x﹣11 .考点:直线与圆相交的性质;直线的一般式方程.专题:计算题;压轴题.分析:由题意可设直线L的方程为y﹣5=k(x﹣3),P(0,5﹣3k),设A(x1,y1),B(x2,y2),联立,然后由方程的根与系数关系可得,x1+x2,x1x2,由A为PB的中点可得x2=2x1,联立可求x1,x2,进而可求k,即可求解直线方程解答:解:由题意可得,C(3,5),直线L的斜率存在可设直线L的方程为y﹣5=k(x﹣3)令x=0可得y=5﹣3k即P(0,5﹣3k),设A(x1,y1),B(x2,y2)联立消去y可得(1+k2)x2﹣6(1+k2)x+9k2+4=0由方程的根与系数关系可得,x1+x2=6,x1x2=①∵A为PB的中点∴即x2=2x1②把②代入①可得x2=4,x1=2,x1x2==8∴k=±2∴直线l的方程为y﹣5=±2(x﹣3)即y=2x﹣1或y=﹣2x+11故答案为:y=2x﹣1或y=﹣2x+11点评:本题主要考查直线和圆的位置关系,方程的根与系数关系的应用,体现了方程的数学思想,属于中档题.15.(5分)(2013•某某模拟)已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f'(x)的图象如图所示.x ﹣1 0 2 4 5y 1 2 0 2 1(1)f(x)的极小值为0 ;(2)若函数y=f(x)﹣a有4个零点,则实数a的取值X围为[1,2).考点:函数在某点取得极值的条件;根的存在性及根的个数判断.专题:综合题;导数的综合应用.分析:(1)由导数图象可知导函数的符号,从而可判断函数的单调性,得函数的极值;(2)函数y=f(x)﹣a有4个零点,即函数y=f(x)与y=a的图象有4个交点,求出函数f(x)在定义域内的极大值、极小值及端点处的函数值,结合图象即可求得a的取值X围;解答:解:(1)由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,所以当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=0,所以f(x)的极小值为0;(2)函数y=f(x)﹣a有4个零点,即函数y=f(x)与y=a的图象有4个交点,由(1)知,函数取得极大值f(0)=2,f(4)=2,取得极小值f(2)=0,又f(﹣1)=1,f(5)=1,所以1≤a<2,故答案为:(1)0;(2)[1,2).点评:本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(12分)(2013•某某模拟)已知向量=,==•+1.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象上所有点的纵坐标保持不变,横坐标缩短到原来的倍;再把所得到的图象向左平移个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.考点:平面向量数量积的运算;两角和与差的正弦函数;正弦函数的定义域和值域;正弦函数的单调性;五点法作函数y=Asin(ωx+φ)的图象.专题:三角函数的图像与性质.分析:(1)利用数量积、两角和差的正弦公式即可把f(x)化为asin(ωx+φ)的形式,进而即可得出周期及其单调区间;(2)利用图象变换的法则即可得到y=g(x),再利用三角函数的单调性即可得出值域.解答:解:(1)f(x)====2,∴函数f(x)的最小正周期T==π,由,解得(k∈Z).∴函数f(x)的单调递增区间为(k∈Z);(2)函数y=f(x)的图象上所有点的纵坐标保持不变,横坐标缩短到原来的倍得到y=2,再把所得到的图象向左平移个单位长度,得到函数y=g(x)=2=2cos4x,当x∈时,,∴当x=0时,g(x)max=2;当时,=﹣1.∴函数y=g(x)在区间上的值域为[﹣1,2].点评:熟练掌握数量积、两角和差的正弦公式即可把f(x)化为asin(ωx+φ)的形式、三角函数周期及其单调性、图象变换的法则是解题的关键.17.(12分)(2013•某某模拟)M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.(I)求男生成绩的中位数及女生成绩的平均值;(II)如果用分层抽样的方法从“甲部门”人选和“乙部门”人选中共选取5人,再从这5人中选2人,那么至少有一人是“甲部门”人选的概率是多少?考点:列举法计算基本事件数及事件发生的概率;茎叶图;众数、中位数、平均数.专题:概率与统计.分析:(Ⅰ)利用中位数、平均值的意义即可得出;(Ⅱ)利用分层抽样及列举法、古典概型的计算公式即可得出.解答:解:(Ⅰ)男生共14人,中间两个成绩是175和176,它们的平均数为175.5.因此男生的成绩的中位数是175.5.女生的平均成绩==181.(Ⅱ)用分层抽样的方法从“甲部门”和“乙部门”20人中抽取5人,每个人被抽中的概率是=.根据茎叶图,“甲部门”人选有8人,“乙部门”人选有12人.所以选中的“甲部门”人选有=2人,“乙部门”人选有=3人.记选中的“甲部门”的人员为A1,A2,选中的“乙部门”人员为B,C,D.从这5人中选2人的所以可能情况为:(A1,A2),(A1,B),(A1,C),(A1,D),(A2,B),(A2,C),(A2,D),(B,C),(B,D),(C,D),共10种.其中至少有1人是“甲部门”人选的结果有7种.因此,至少有1人是“甲部门”人选的概率是.点评:熟练掌握中位数、平均值的意义、分层抽样及列举法、古典概型的计算公式是解题的关键.18.(12分)(2013•某某模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=.(1)证明:平面ACD⊥平面ADE,(2)令AC=x,V(x)表示三棱锥A﹣CBE的体积,当V(x)取得最大值时,求直线AD与平面ACE所成角的正弦值.考点:用空间向量求直线与平面的夹角;平面与平面垂直的判定.专题:综合题;空间位置关系与距离.分析:(1)欲证平面ACD⊥平面ADE,根据面面垂直的判定定理可知在平面ADE内一直线与平面ACD垂直,而根据BC⊥平面ADC,DE∥BC,可得DE⊥平面ADC;(2)先利用等体积法表示出三棱锥A﹣CBE的体积,利用基本不等式求最值,再建立空间直角坐标系,利用向量的夹角公式,即可求得直线AD与平面ACE所成角的正弦值.解答:(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,∴DE⊥平面ADC又∵DE⊂平面ADE,∴平面ACD⊥平面ADE;(2)∵DC⊥平面ABC,CD∥BE,∴BE⊥平面ABC∵AB⊂平面ABC,∴BE⊥AB,在Rt△ABE中,由tan∠EAB==,AB=2得BE=在Rt△ABC中,∵BC==(0<x<2)∴S△ABC=AC•BC=∴V(x)=V C﹣ABE=V E﹣ABC=S△ABC•BE==(0<x<2)∵0<x<2,∴≤=2∴V(x)≤,当且仅当x2=4﹣x2,即x=时,V(x)取得最大值,AC=这时△ABC为等腰直角三角形建立如图所示的坐标系,C(0,0,0),A(,0,0),E(0,,),D(0,0,),=(﹣,0,)设平面AEC的法向量,则,∴,∴可取=(0,﹣,)设直线AD与平面ACE所成角为θ,则sinθ=cos<>===故直线AD与平面ACE所成角的正弦值为点评:本题主要考查空间中的线面关系,考查面面垂直的判定及简单组合体体积的计算,考查线面角,考查向量知识的运用,属于中档题.19.(13分)(2013•某某模拟)大学生自主创业已成为当代潮流.长江学院大三学生夏某今年一月初向银行贷款两万元作开店资金,全部用作批发某种商品,银行贷款的年利率为6%,约定一年后一次还清贷款,已知夏某每月月底获得的利润是该月月初投人资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1500元,余款作为资金全部投入批发该商品再经营,如此继续,假定每月月底该商品能全部卖出.(1)设夏某第n个月月底余a n元,第n+l个月月底余a n+1元,写出a1的值并建立a n+1与a n的递推关系;(2)预计年底夏某还清银行贷款后的纯收入.(参考数据:1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10﹣11,0.1212≈8.92×10﹣12)考点:数列的应用.专题:应用题;等差数列与等比数列.分析:(1)根据夏某每月月底获得的利润是该月月初投人资金的15%,每月月底需要交纳个人所得税为该月所获利润的20%,当月房租等其他开支1500元,可求a1的值并建立a n+1与a n的递推关系;(2)构造{a n﹣12500}是以20900为首项,1.12为公比的等比数列,即可求得结论.解答:解:(1)由题意a1=20000(1+15%)﹣20000×15%×20%﹣1500=20900(元)…(2分)a n+1=a n(1+15%)﹣a n×15%×20%﹣1500=1.12a n﹣1500(n∈N+,1≤n≤11)…(6分)(2)令a n+1+λ=1.12(a n+λ),则a n+1=1.12a n+0.12λ,∵a n+1=1.12a n﹣1500,∴对比得λ=﹣12500…(8分)∴a n+1﹣12500=1.12(a n﹣12500),∴{a n﹣12500}是以20900为首项,1.12为公比的等比数列∴a n﹣12500=(20900﹣12500)×1.12n﹣1,即a n=8400×1.12n﹣1+12500∴a12=8400×1.1211+12500≈41732(元)…(11分)又年底偿还银行本利总计20000(1+6%)=21200(元)…(12分)故该生还清银行贷款后纯收入41732﹣21200=20532(元)…(13分)点评:本题考查数列的应用,解题时要注意认真审题,本题解题的关键是构造{a n﹣12500}是以20900为首项,1.12为公比的等比数列.20.(13分)(2013•某某模拟)设椭圆的左、右焦点分别为F1、F2,上顶点为A,离心率为,在x轴负半轴上有一点B,且.(1)若过A、B、F2三点的圆恰好与直线相切,求椭圆C的方程;(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P (m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值X围;如果不存在,说明理由.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题.分析:(1)根据,得,所以|F1F2|=a,利用,可得F1为BF2的中点,从而可得△ABF2的外接圆圆心为,半径r=|F1A|=a,根据过A、B、F2三点的圆与直线相切,利用点到直线的距离公式,即可确定椭圆方程;(2)由(1)知F2(1,0),设l的方程为:y=k(x﹣1)与椭圆方程联立,利用韦达定理,结合菱形对角线垂直,所以,可得m,k之间的关系,从而可得结论.解答:解:(1)由题意,得,所以|F1F2|=a∵|AF1|=|AF2|=a,,∴F1为BF2的中点,∴|AF1|=|AF2|=|F1F2|=a∴△ABF2的外接圆圆心为,半径r=|F1A|=a…(3分)又过A、B、F2三点的圆与直线相切,所以∴a=2,∴c=1,b2=a2﹣c2=3.∴所求椭圆方程为…(6分)(2)由(1)知F2(1,0),设l的方程为:y=k(x﹣1)将直线方程与椭圆方程联立,整理得(3+4k2)x2﹣8k2x+4k2﹣12=0设M(x1,y1),N(x2,y2),则…(8分)假设存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,由于菱形对角线垂直,所以又又MN的方向向量是(1,k),故k(y1+y2)+x1+x2﹣2m=0,则k2(x1+x2﹣2)+x1+x2﹣2m=0,即由已知条件知k≠0且k∈R,∴…(11分)∴,故存在满足题意的点P且m的取值X围是…(13分)点评:本题考查椭圆的标准方程,考查直线与圆,直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆方程,正确运用韦达定理是关键.21.(13分)(2013•某某模拟)已知的图象在点(1,f(1)处的切线与直线y=3x+1平行.(1)求a与b满足的关系式;(2)若a>0且f(x)≥3lnx在[1,+∞)上恒成立,求a的取值X围.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)根据f(x)在点(1,f(1)处的切线与直线y=3x+1平行建立等式关系:f'(1)=3,即可求出a与b的关系式;(2)先构造函数g(x)=f(x)﹣3lnx=ax++3﹣2a﹣3lnx,x∈[1,+∞),利用导数研究g(x)的最小值,讨论a的X围,分别进行求解即可求出a的取值X围.解答:解:(1)f′(x)=a﹣,由于的图象在点(1,f(1)处的切线与直线y=3x+1平行,则有f′(1)=a﹣b=3,即b=a﹣3,此时,f(1)=a+a﹣3+3﹣2a=0≠4,(2)由f(x)≥3lnx在[1,+∞)上恒成立,得ax++3﹣2a﹣3lnx≥0在[1,+∞)上恒成立,令g(x)=ax++3﹣2a﹣3lnx,x∈[1,+∞)则g(l)=0,g′(x)=a﹣﹣=.(i)当a>,≤l则g′(x)>0,g(x)在[1,+∞)上是增函数,所以g(x)≥g(l)=0,f(x)>3lnx,故f(x)≥3lnx在[1,+∞)上恒成立.(ii)a=时,g′(x)≥0,g(x)在[1,+∞)上是增函数,所以g(x)≥g(l)=0,f(x)>3lnx,故f(x)≥3lnx在[1,+∞)上恒成立.(iii)当0<a<,>l,则x∈(1,)时,g′(x)<0,g(x)在[1,+∞)上是减函数,x∈(,+∞)时,g′(x)>0,g(x)在[1,+∞)上是增函数,所以存在x0∈(1,),使得g(x0)<g(l)=0,即存在x0∈(1,),使得f(x0)>3lnx0不成立,综上所述,所求a的取值X围为[,+∞).点评:本题主要考查了利用导数研究曲线上某点切线方程,以及函数恒成立问题等基础题知识,考查运算求解能力,考查化归与转化思想,分类讨论思想,属于中档题.。
【推荐】2013年湖南省高考数学试卷(文科)
2013年湖南省高考数学试卷(文科)一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)“1<<2”是“<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.134.(5分)已知f()是奇函数,g()是偶函数,且f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,则g(1)=()A.4 B.3 C.2 D.15.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.6.(5分)函数f()=ln的图象与函数g()=2﹣4+4的图象的交点个数为()A.0 B.1 C.2 D.37.(5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.8.(5分)已知,是单位向量,•=0.若向量满足|﹣﹣|=1,则||的最大值为( )A .B .C .D .9.(5分)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为,则=( ) A . B . C .D .二、填空题:本大题共6小题,每小题5分,共30分.10.(5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U A )∩B= .11.(5分)在平面直角坐标系Oy 中,若直线(s 为参数)和直线(t 为参数)平行,则常数a 的值为 .12.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a 的值为 .13.(5分)若变量,y 满足约束条件,则+y 的最大值为 .14.(5分)设F 1,F 2是双曲线C :(a >0,b >0)的两个焦点.若在C 上存在一点P .使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为 .15.(5分)对于E={a 1,a 2,….a 100}的子集={a i1,a i2,…,a i },定义的“特征数列”为1,2…,100,其中i1=i2=…i =1.其余项均为0,例如子集{a 2,a 3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于 ;(2)若E 的子集P 的“特征数列”P 1,P 2,…,P 100 满足p 1=1,p i +p i+1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,q 100满足q 1=1,q j +q j+1+q j+2=1,1≤j ≤98,则P ∩Q 的元素个数为 .三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f ()=cos •cos (﹣).(1)求f ()的值. (2)求使f ()<成立的的取值集合.17.(12分)如图.在直棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=,AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动.(1)证明:AD ⊥C 1E ;(2)当异面直线AC ,C 1E 所成的角为60°时,求三棱锥C 1﹣A 1B 1E 的体积.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:g )与它的“相近”作物株数之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米.(Ⅰ)完成下表,并求所种作物的平均年收获量;48g 的概率.19.(13分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n ﹣a 1=S 1•S n ,n ∈N * (Ⅰ)求a 1,a 2,并求数列{a n }的通项公式;(Ⅱ)求数列{na n }的前n 项和.20.(13分)已知F 1,F 2分别是椭圆的左、右焦点F 1,F 2关于直线+y ﹣2=0的对称点是圆C 的一条直径的两个端点.(Ⅰ)求圆C 的方程;(Ⅱ)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.21.(13分)已知函数f ()=.(Ⅰ)求f ()的单调区间;(Ⅱ)证明:当f (1)=f (2)(1≠2)时,1+2<0.2013年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数,根据复数与复平面内点的对应关系可得答案.【解答】解:=i•(1+i)=﹣1+i,故复数对应的点为(﹣1,1),在复平面的第二象限,故选:B.【点评】本题考查复数的代数表示法及其几何意义,属基础题.2.(5分)“1<<2”是“<2”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】设A={|1<<2},B={|<2},判断集合A,B的包含关系,根据“谁小谁充分,谁大谁必要”的原则,即可得到答案.【解答】解:设A={|1<<2},B={|<2},∵A⊊B,故“1<<2”是“<2”成立的充分不必要条件.故选:A.【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.3.(5分)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A.9 B.10 C.12 D.13【分析】甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,求出丙车间生产产品所占的比例,从而求出n的值.【解答】解:∵甲、乙、丙三个车间生产的产品件数分别是120,80,60,∴甲、乙、丙三个车间生产的产品数量的比依次为6:4:3,丙车间生产产品所占的比例,因为样本中丙车间生产产品有3件,占总产品的,所以样本容量n=3÷=13.故选:D.【点评】本题主要考查了分层抽样方法,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.4.(5分)已知f()是奇函数,g()是偶函数,且f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,则g(1)=()A.4 B.3 C.2 D.1【分析】直接利用函数的奇偶性,化简方程,解方程组即可.【解答】解:f()是奇函数,g()是偶函数,方程f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,化为:﹣f(1)+g(1)=2,f(1)+g(1)=4,两式相加可得2g(1)=6,所以g(1)=3.故选:B.【点评】本题考查函数的奇偶性的应用,函数的值的求法,基本知识的考查.5.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选:A.【点评】本题考查正弦定理,将“边”化所对“角”的正弦是关键,属于基础题.6.(5分)函数f()=ln的图象与函数g()=2﹣4+4的图象的交点个数为()A.0 B.1 C.2 D.3【分析】在同一个坐标系中,画出函数f()=㏑与函数g()=2﹣4+4=(﹣2)2的图象,数形结合可得结论.【解答】解:在同一个坐标系中,画出函数f()=㏑与函数g()=2﹣4+4=(﹣2)2的图象,如图所示:故函数f()=㏑的图象与函数g()=2﹣4+4的图象的交点个数为2,故选:C.【点评】本题主要考查方程的根的存在性及个数判断,体现了数形结合的数学思想,属于中档题.7.(5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A.B.1 C.D.【分析】通过三视图判断正视图的形状,结合数据关系直接求出正视图的面积即可.【解答】解:因为正方体的棱长为1,俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,说明侧视图是底面对角线为边,正方体的高为一条边的矩形,几何体放置如图:那么正视图的图形与侧视图的图形相同,所以正视图的面积为:.故选:D.【点评】本题考查几何体的三视图形状,侧视图的面积的求法,判断几何体的三视图是解题的关键,考查空间想象能力.8.(5分)已知,是单位向量,•=0.若向量满足|﹣﹣|=1,则||的最大值为()A.B.C.D.【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出.【解答】解:∵||=||=1,且,∴可设,,.∴.∵,∴,即(﹣1)2+(y﹣1)2=1.∴的最大值==.故选:C.【点评】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.9.(5分)已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为,则=()A.B.C.D.【分析】先明确是一个几何概型中的长度类型,然后求得事件“在矩形ABCD 的边CD上随机取一点P,使△APB的最大边是AB”发生的线段长度,再利用两者的比值即为发生的概率,从而求出.【解答】解:记“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”为事件M,试验的全部结果构成的长度即为线段CD,构成事件M的长度为线段CD其一半,根据对称性,当PD=CD时,AB=PB,如图.设CD=4,则AF=DP=,BF=3,再设AD=y,则PB==,于是=4,解得,从而.故选:D.【点评】本题主要考查几何概型,基本方法是:分别求得构成事件A的区域长度和试验的全部结果所构成的区域长度,两者求比值,即为概率.二、填空题:本大题共6小题,每小题5分,共30分.A)10.(5分)已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁U∩B= {6,8} .【分析】先求出集合A的补集,再利用交集的定义求(CA)∩BU【解答】解:由题意∵U={2,3,6,8},集合A={2,3},A={6,8},∴CU又B={2,6,8},A)∩B={6,8}故(CU故答案为:{6,8}.【点评】本题考查交、并、补集的混合运算,正确解答本题关键是掌握并理解补集与交集的定义,并能根据所给的规则进行正确运算.11.(5分)在平面直角坐标系Oy中,若直线(s为参数)和直线(t为参数)平行,则常数a的值为 4 .【分析】先将直线的参数方程化为普通方程,再利用两条直线平行,直接求出a的值即可.【解答】解:直线l的参数方程为(s为参数),消去s得普通方程为1﹣2y﹣1=0,直线l 2的参数方程为(t 为参数),消去t 得普通方程为2﹣ay ﹣a=0,∵l 1∥l 2,﹣2y ﹣1=0的斜率为1=, ∴2﹣ay ﹣a=0的斜率2==, 解得:a=4. 故答案为:4.【点评】本题是基础题,考查直线的平行条件的应用,注意直线的斜率是否存在是解题关键,考查计算能力.12.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a 的值为 32 .【分析】模拟执行程序,依次写出每次循环得到的a 的值,当a=32时,满足条件a >31,退出循环,输出a 的值为32. 【解答】解:模拟执行程序,可得 a=1,b=2不满足条件a >31,a=2 不满足条件a >31,a=4 不满足条件a >31,a=8 不满足条件a >31,a=16 不满足条件a >31,a=32满足条件a >31,退出循环,输出a 的值为32.故答案为:32.【点评】本题主要考查了程序框图和算法,正确写出每次循环得到的a 的值是解题的关键,属于基本知识的考查.13.(5分)若变量,y 满足约束条件,则+y 的最大值为 6 .【分析】先画出线性约束条件表示的可行域,再将目标函数赋予几何意义,最后利用数形结合即可得目标函数的最值. 【解答】解:画出可行域如图阴影部分, 由得A (4,2)目标函数=+y 可看做斜率为﹣1的动直线,其纵截距越大越大, 由图数形结合可得当动直线过点A 时,最大=4+2=6 故答案为:6.【点评】本题主要考查了线性规划,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属于基础题.14.(5分)设F 1,F 2是双曲线C :(a >0,b >0)的两个焦点.若在C 上存在一点P .使PF1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为.【分析】根据题意可知∠F 1PF 2=90°,∠PF 2F 1=60°,|F 1F 2|=2c ,求得|PF 1|和|PF 2|,进而利用双曲线定义建立等式,求得a 和c 的关系,则离心率可得. 【解答】解:依题意可知∠F 1PF 2=90°|F 1F 2|=2c ,∴|PF1|=|F 1F 2|=c ,|PF 2|=|F 1F 2|=c ,由双曲线定义可知|PF 1|﹣|PF 2|=2a=(﹣1)c∴e==.故答案为:.【点评】本题主要考查了双曲线的简单性质特别是双曲线定义的运用,属于基础题.15.(5分)对于E={a 1,a 2,….a 100}的子集={a i1,a i2,…,a i },定义的“特征数列”为1,2…,100,其中i1=i2=…i =1.其余项均为0,例如子集{a 2,a 3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于 2 ;(2)若E 的子集P 的“特征数列”P 1,P 2,…,P 100 满足p 1=1,p i +p i+1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,q 100满足q 1=1,q j +q j+1+q j+2=1,1≤j ≤98,则P ∩Q 的元素个数为 17 .【分析】(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P ,Q 的“特征数列”,再找出相同“1”的个数即可.【解答】解:(1)子集{a 1,a 3,a 5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E 的子集P 的“特征数列”P 1,P 2,…,P 100 满足P i +P i+1=1,1≤i ≤99, ∴P 的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0. 则P={a 1,a 3,a 5,…,a 99}有50个元素,又E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j+1+q j+2=1,1≤j ≤98,可知:j=1时,q 1+q 2+q 3=1,∵q 1=1,∴q 2=q 3=0;同理q 4=1=q 7=…=q 3n﹣2.∴子集Q 的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1. 则Q={a 1,a 4,a 7,…,a 100}则P ∩Q 的元素为a 1,a 7,a 13,…,a 91,a 97. ∵97=1+(17﹣1)×6,∴共有17相同的元素. 故答案分别为2,17.【点评】正确理解“特征数列”的定义是解题的关键.三、解答题;本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)已知函数f ()=cos •cos (﹣).(1)求f ()的值.(2)求使f ()<成立的的取值集合.【分析】(1)将=代入f ()解析式,利用两角和与差的余弦函数公式及特殊角的三角函数值化简即可得到结果;(2)f ()解析式利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,变形后,利用余弦函数的图象与性质即可得到满足题意的集合.【解答】解:(1)f ()=coscos (﹣)=coscos=﹣cos 2=﹣;(2)f ()=coscos (﹣)=cos (cos+sin )=cos 2+sincos=(1+cos2)+sin2=cos (2﹣)+,∴f ()<,化为cos (2﹣)+<,即cos (2﹣)<0,∴2π+<2﹣<2π+(∈),解得:π+<<π+(∈),则使f ()<成立的取值集合为{|π+,π+(∈)}.【点评】此题考查了两角和与差的余弦函数公式,以及余弦函数的单调性,熟练掌握公式是解本题的关键.17.(12分)如图.在直棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=,AA 1=3,D 是BC 的中点,点E 在棱BB 1上运动. (1)证明:AD ⊥C 1E ;(2)当异面直线AC ,C 1E 所成的角为60°时,求三棱锥C 1﹣A 1B 1E 的体积.【分析】(1)根据直三棱柱的性质,得AD ⊥BB 1,等腰△ABC 中利用“三线合一”证出AD ⊥BC ,结合线面垂直判定定理,得AD ⊥平面BB 1C 1C ,从而可得AD ⊥C 1E ;(2)根据AC ∥A 1C 1,得到∠EC 1A 1(或其补角)即为异面直线AC 、C 1E 所成的角.由A 1C 1⊥A 1B 1且A 1C 1⊥AA 1,证出A 1C 1⊥平面AA 1B 1B ,从而在Rt △A 1C 1E 中得到∠EC1A 1=60°,利用余弦的定义算出C 1E=2A 1C 1=2,进而得到△A 1B 1E 面积为,由此结合锥体体积公式即可算出三棱锥C 1﹣A 1B 1E 的体积.【解答】解:(1)∵直棱柱ABC ﹣A 1B 1C 1中,BB 1⊥平面ABC ,AD ⊂平面ABC ,∴AD ⊥BB 1∵△ABC 中,AB=AC ,D 为BC 中点,∴AD ⊥BC 又∵BC 、BB 1⊂平面BB 1C 1C ,BC ∩BB 1=B∴AD ⊥平面BB 1C 1C ,结合C 1E ⊂平面BB 1C 1C ,可得AD ⊥C 1E ;(2)∵直棱柱ABC ﹣A 1B 1C 1中,AC ∥A 1C 1,∴∠EC 1A 1(或其补角)即为异面直线AC 、C 1E 所成的角 ∵∠BAC=∠B 1A 1C 1=90°,∴A 1C 1⊥A 1B 1, 又∵AA 1⊥平面A 1B 1C 1,可得A 1C 1⊥AA 1, ∴结合A 1B 1∩AA 1=A 1,可得A 1C 1⊥平面AA 1B 1B , ∵A 1E ⊂平面AA 1B 1B ,∴A 1C 1⊥A 1E因此,Rt △A 1C 1E 中,∠EC 1A 1=60°,可得cos ∠EC 1A 1==,得C 1E=2A 1C 1=2又∵B 1C 1==2,∴B 1E==2由此可得V=S△×A 1C 1=×=【点评】本题给出直三棱柱的底面是等腰直角三角形,在已知侧棱长和底面边长的情况下证明线线垂直并求锥体的体积,着重考查了直棱柱的性质、空间线面垂直的判定与性质等知识,属于中档题.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y (单位:g )与它的“相近”作物株数之间的关系如下表所示:1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;48g的概率.【分析】(Ⅰ)根据题意可知所种作物的总株数为1+2+3+4+5,其中“相近”作物株数为1的有2株,“相近”作物株数为2的有4株,“相近”作物株数为3的有6株,“相近”作物株数为4的有3株,据此列表,且可得出所种作物的平均所收获量.(Ⅱ)由(Ⅰ)知,P(Y=51)=,P(Y=48)=,从而根据互斥事件的概率加法公式得出在所种作物中随机选取一株,求它的年收获量至少为48g的概率.【解答】解:(Ⅰ)所种作物的总株数为1+2+3+4+5=15,建立如图所示直角坐标系,其中“相近”作物株数为1的植株有2株,植株坐标分别为(4,0),(0,4),“相近”作物株数为2的植株有4株,植株坐标分别为(0,0),(1,3),(2,2),(3,1),“相近”作物株数为3的植株有6株,植株坐标分别为(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),“相近”作物株数为4的植株有3株,植株坐标分别为(1,1),(1,2),(2,1).列表如下:所种作物的平均所收获量为:(51×2+48×4+45×6+42×3)==46;(Ⅱ)由(Ⅰ)知,P (Y=51)=,P (Y=48)=,故在所种作物中随机选取一株,求它的年收获量至少为48g 的概率为 P (Y ≥48)=P (Y=51)+P (Y=48)=+=.【点评】本题考查互斥事件的概率加法公式,众数、中位数、平均数和利用图表获取信息的能力.利用图表获取信息时,必须认真观察、分析、研究图表,才能作出正确的判断和解决问题.19.(13分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n ﹣a 1=S 1•S n ,n ∈N * (Ⅰ)求a 1,a 2,并求数列{a n }的通项公式; (Ⅱ)求数列{na n }的前n 项和.【分析】(Ⅰ)令n=1和2,代入所给的式子求得a 1和a 2,当n ≥2时再令n=n ﹣1得到2a n ﹣1﹣1=S n ﹣1,两个式子相减得a n =2a n ﹣1,判断出此数列为等比数列,进而求出通项公式;(Ⅱ)由(Ⅰ)求出na n =n •2n ﹣1,再由错位相减法求出此数列的前n 项和. 【解答】解:(Ⅰ)令n=1,得2a 1﹣a 1=,即,∵a 1≠0,∴a 1=1,令n=2,得2a 2﹣1=1•(1+a 2),解得a 2=2, 当n ≥2时,由2a n ﹣1=S n 得,2a n ﹣1﹣1=S n ﹣1, 两式相减得2a n ﹣2a n ﹣1=a n ,即a n =2a n ﹣1, ∴数列{a n }是首项为1,公比为2的等比数列, ∴a n =2n ﹣1,即数列{a n }的通项公式a n =2n ﹣1;(Ⅱ)由(Ⅰ)知,na n =n •2n ﹣1,设数列{na n }的前n 项和为T n , 则T n =1+2×2+3×22+…+n ×2n ﹣1,① 2T n =1×2+2×22+3×23+…+n ×2n ,② ①﹣②得,﹣T n =1+2+22+…+2n ﹣1﹣n •2n =2n ﹣1﹣n •2n , ∴T n =1+(n ﹣1)2n .【点评】本题考查了数列a n 与S n 之间的转化,以及由错位相减法求出数列的前n 项和的应用.20.(13分)已知F 1,F 2分别是椭圆的左、右焦点F 1,F 2关于直线+y ﹣2=0的对称点是圆C 的一条直径的两个端点. (Ⅰ)求圆C 的方程;(Ⅱ)设过点F 2的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.【分析】(I )由题意可知:F 1(﹣2,0),F 2(2,0),可得⊙C 的半径为2,圆心为原点O 关于直线+y ﹣2=0的对称点.设圆心的坐标为(m ,n ).利用线段的垂直平行的性质可得,解出即可得到圆的方程;(II ))由题意,可设直线l 的方程为=my+2,利用点到直线的距离公式可得圆心到直线l 的距离d=,再利用弦长公式即可得到b=.把直线l 的方程为=my+2与椭圆的方程联立得到根与系数的关系,利用弦长公式即可得到a ,进而得到ab ,利用基本不等式的性质即可得出结论.【解答】解:(I )由题意可知:F 1(﹣2,0),F 2(2,0).故⊙C 的半径为2,圆心为原点O 关于直线+y ﹣2=0的对称点.设圆心的坐标为(m ,n ).则,解得.∴圆C 的方程为(﹣2)2+(y ﹣2)2=4;(II )由题意,可设直线l 的方程为=my+2,则圆心到直线l 的距离d=,∴b=. 由得(5+m 2)y 2+4my ﹣1=0. 设l 与E 的两个交点分别为(1,y 1),(2,y 2). 则,.∴a===,∴ab===. 当且仅当,即时等号成立. 故当时,ab 最大,此时,直线l 的方程为,即. 【点评】本题综合考查了圆与椭圆的标准方程及其性质、轴对称的性质、圆的弦长公式b=、直线与椭圆相交的弦长公式a=、基本不等式的性质等基础知识与方法,需要较强的推理能力、计算能力、分析问题和解决问题的能力..21.(13分)已知函数f ()=. (Ⅰ)求f ()的单调区间;(Ⅱ)证明:当f (1)=f (2)(1≠2)时,1+2<0.【分析】(Ⅰ)利用导数的运算法则求出f ′(),分别解出f ′()>0与f ′()<0的取值范围即可得到单调区间;(Ⅱ)当f (1)=f (2)(1≠2)时,不妨设1<2.由(I )可知:1∈(﹣∞,0),2∈(0,1).利用导数先证明:∀∈(0,1),f ()<f (﹣).而2∈(0,1),可得f (2)<f (﹣2).即f (1)<f (﹣2).由于1,﹣2∈(﹣∞,0),f ()在(﹣∞,0)上单调递增,因此得证.【解答】解:(Ⅰ)易知函数的定义域为R .==,当<0时,f ′()>0;当>0时,f ′()<0.∴函数f ()的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).(Ⅱ)当<1时,由于,e >0,得到f ()>0;同理,当>1时,f ()<0. 当f (1)=f (2)(1≠2)时,不妨设1<2.由(Ⅰ)可知:1∈(﹣∞,0),2∈(0,1).下面证明:∀∈(0,1),f ()<f (﹣),即证<.此不等式等价于. 令g ()=,则g ′()=﹣e ﹣(e 2﹣1). 当∈(0,1)时,g ′()<0,g ()单调递减,∴g ()<g (0)=0.即.∴∀∈(0,1),f ()<f (﹣).而2∈(0,1),∴f (2)<f (﹣2).从而,f (1)<f (﹣2).由于1,﹣2∈(﹣∞,0),f ()在(﹣∞,0)上单调递增,∴1<﹣2,即1+2<0.【点评】本题综合考查了利用导数研究函数的单调性、等价转化问题等基础知识与基本技能,需要较强的推理能力和计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省湘西自治州2013届高三下学期第二次联考数
学(文科)试卷(word 版)
考生注意:
1、本试卷共150分,考试时间120分钟。
2、请将各题答案填在试卷后面的答题卷上。
3、本试卷主要考试内容:高考全部内容。
一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有
一项是符合题目要求的. 1、
22
(1)1i i
-+-等于 A .1i + B .1i -+
C .1i -
D .1i --
2、已知全集U R =,集合{A x y ==、集合{}02B x x =<<,则()U A B ð等
于
A .[1,)+∞
B . (1,)+∞
C .[0,)+∞
D .(0,)+∞
3、已知命题
0:p x R +∃∈,20log 1x =,则p ⌝是
A .020log 1x R x +
∀∈≠ B . 020log 1x R x +∀∉≠ C .020log 1x R
x +
∃∈≠ D .020log 1x R x +∃∉≠
4、双曲线2
2212
x y -=的渐近线与圆22()1x y a ++=相切,则正实数a 的值为
A .
4 B ..2
D 5、已知某8个数的平均数为5,方差为2,现又加入一个新数据5,此时这9个数的平均数为x ,方差为2
s ,则 A .2
5,x s
=<2 B .25,x s =>2 C .25,x s ><2 D .25,x s >>2
6、已知0,0ωϕπ><<,直线4
x π
=和54
x π
=
是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ等于 A .4π B .3π
C .2
π D .
34π
7、如图是一个几何体的三视图,则这个几何体的体积是
A .26
B .
C .
57
2
D .28
8、在
ABC 中,60C ∠=
,AB AB 边上的高为3
,则边AC BC +的值为
A .
B
C .
.2
9、已知函数()y f x =是x R ∈上的奇函数且满足(5)()f x f x +≥,(1)()f x f x +≤,则
(2013)f 的值为
A .0
B .1
C .2
D .4
二、填空题,本大题共6小题,每小题5分共30分,把答案填在答卷中的横线上
10、已知不等式组y x y x x a ≤⎧⎪
≥-⎨⎪≤⎩
,表示的平面区域s 的面积为4,则a =
11、曲线1x y xe =+在点0,1()
处的切线方程是 12、在直角坐标系中,参数方程为3
212
x y t
⎧=⎪⎪⎨
⎪=⎪⎩(t 为参数)的直线l ,被以原点为极点,x 轴的正半轴为极轴,极坐标方程为2cos ρθ=的曲线C 所截, 则截得的弦长是
13、如图所示是一个算法的流程图,则输出s 的值是
14、设非零向量,,a b c
满足a b c == ,
a b c += 则sin ,a b =
15、定义映射
:f A B →,其中{}(,),A m n m n N *
=∈,
B R =,已知对所有的有序正整数对(,)m n 满足下述条件:
正视图
第13题
①
(,1)1f m =,②,(,)0n m f m n >=,③(1,)[(,)(,1f m n n f m n f m n +=+-,则
(2,2)f = ;(,2)f n = 。
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16、(本小题满分12分)
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(1)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人? (2)已知245y ≥,245z ≥,求高三年级女生比男生多的概率。
17、(本小题满分12分)
设向量(cos sin ,1)a x x ωω=-- ,(2sin ,1)b x ω=-
,其中0ω>,x R ∈,已知函数()f x a b = 的最小正周期为4π
(1)求ω的值
(2)若0sin x 是关于t 的方程2
210t t --=的根,且0(,)22
x ππ
∈-,求0()f x 的值
18、(本小题满分12分)
如图,已知,
AB ACD ⊥平面DE AB ,ACD ∆ (1)设M 是线段CD 的中点,求证:AM 平面 (2)求直线CB 与平面ABED 所成角的余弦值。
19、(本小题满分13分)
某工厂用32000元买了一台仪器,已知这台仪器从启用的第一天起连续使用,第n 天的
维修保养费为
49
10
n +元()n R *∈ (1)求前10天的维修保养总费用;
(2)求使用它直到报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少)
为止,一共使用了多少天? 20、(本小题满分13分)
已知函数
21
()()ln 2
f x a x x =-+()a R ∈。
(1)当1a =时,求()f x 在区间[1,]e 上的最大值和最小值;
(2)证明:当1
(0,
]2
a ∈时在区间(1,)+∞上,不等式()2f x ax <恒成立。
21、(本小题满分13分)
已知椭圆2222:1x y G a b +=(0)a b >>,的离心率为3
,斜率为1
的直线l 与椭圆G 交于,A B 两点,以AB 为底作等腰三角形,顶点为(3,2)P - (1)求椭圆G 的方程;
(2)求PAB ∆的面积。